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Abstract

Despite the rich literature on network architecture and communication system design, the current practice of
describing architectures remains informal and idiosyncratic. Such practice has evolved based on idiomatic termi-
nology and hence, it is failing to provide a formal framework for representing and for reasoning about network
architectures. This state of affairs has led to the overloading of architectural terms, and to the emergence of a large
body of network architecture proposals with no clear indication of the their cross similarities, their compatibility
points, their unique properties, and their architectural performance and soundness. Formalizing network archi-
tectural descriptions is therefore a timely contribution, and this paper presents a first step in that direction. The
paper builds upon architectural style modeling concepts from the software engineering field, and applies them
to the network architecture space. Our approach is presented through a case study detailing a formal model for
a common class of network architectures. The model uses a simple declarative language based on relations and
first-order logic.
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1 Introduction

Despite the rich literature on network architecture and communication system design, the current practice of de-
scribing architectures remains informal and idiosyncratic. This was caused by the evolution of a semantically
rich terminology that has been adopted by network architects over time. The terminology, despite being informal,
reveals a lot of architectural information and has so far enabled efficient communication between architects. This
scenario is very similar to the evolution of software architecture modeling in the context of software engineer-
ing [18]. This state of affairs has however, led to the overloading of architectural terms, and to the emergence of a
large body of network architecture proposals with no clear understanding of their cross similarities, compatibility
points, their unique properties, and architectural performance and soundness.

Several models for communication systems have been recently proposed, some of which are focused on par-
ticular communication aspects such as binding [22, 23] or routing [11]. Others [13, 20] are more general, and
concern themselves with multiple communication aspects such as forwarding, naming, addressing. It is important
to notice however, that the formal modeling and representation of network architectures is fundamentally differ-
ent from that of communication systems. In fact, while the communication structure is necessary for defining
and representing a network architecture, it is not sufficient. In addition to the communication structure, informa-
tion and computation structures are building blocks that need to be properly understood within modern network
architectures. Communication systems tend to share the same set of elements and are generally concerned with
switching properties of networks and their associated communication and control primitives. On the other hand,
network architectural descriptions are concerned with high-level architectural abstractions, their interactions, their
structural and behavioral properties, and the constraints and invariants that define each architecture.

Towards formalizing network architectural descriptions, we utilize concepts relevant to architectural style
modeling. An architectural style 1 is a family of network architectures that share a common representation vo-
cabulary. Hence, while architectural instances specializing a particular style may vary in their particulars, their
overall structure remains the same and obey the general style constraints. There are significant advantages as-
sociated with architectural style design. Those include a better overall system understandability by defining a
precise common design vocabulary, the availability of design re-use among all instances of a class, architectural
interoperability, and specialized analysis of a class of architectures by constraining the design space [15]. This
paper presents a design methodology for formally describing and reasoning about network architectures and ar-
chitectural styles. The methodology is demonstrated by detailing a formal model for the FARA [8] family of
network architectures. Our work provides a framework for network architects to formally group various architec-
tures into a set of styles based on their common structural and behavioral characteristics, enabling researchers to
better represent, analyze, reason about, and infer their important properties.

The rest of the paper is organized as follows: Section 2 presents the necessary background related to archi-
tectural styles and to the language Alloy. Alloy is a simple declarative language based on relations and first-order
predicate logic and is the language that we shall use throughout the discussion for formal modeling and veri-
fication. Section 3 details our approach through a case study of the FARA [8] class of network architectures.
Section 4 then discusses the related work. Finally, we present a discussion of our approach and our current and
future work towards formalizing network architectural descriptions in section 5, before concluding in sections 6.

2 Background

2.1 Architectural Styles: What and Why?

Software architectures are usually viewed as a set of interconnected elements that define the structure of a system.
The elements are mainly components (computational and storage elements) and connectors (interactions among

1Architecture style (or pattern) is a term commonly used in the software engineering field [18].
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the components) 2. An architectural style represents a family of architectures that share a common structural
organization. Despite the different representations of a style [3, 5, 6, 18], it is typically composed of componen-
t/connector types, and a collection of constraints on how the types are combined. Associated with a style are a
design vocabulary, an underlying computational model, and invariants [18].

Styles may be treated as stand-alone structures and may be related through inheritance, or composition. In-
heritance, an extremely attractive property for describing architectural styles is the ability of a sub-style to extend
one or more super-styles inheriting their structural properties, vocabulary, and constraints/invariants. Composi-
tion is another form relating multiple styles. The composed style is an aggregation of the vocabulary, structure,
and constraints of the its constituent styles. Generally, the composed style introduces a new structure to relate the
constituent styles together.

The advantages of modeling architectural styles are several. First, given the abstraction level of an architec-
tural style, it is generally hard to verify properties pertaining to the style or even to implement the style itself.
A compact model then allows the verification of a style’s structural and behavioral properties over constrained
instance sets without having to actually implement the style. This is an important step when applied prior to the
actual instantiation of a complete architecture from the style. In other words, a formal model helps the transi-
tion from abstract style design to actual instantiations. Additionally, claims of compatible network architectures,
whether those pertaining to general architectures, or to scoped architectures (such as naming, addressing, or rout-
ing) may then be logically verified. Finally, a formal model helps to classify the literature into related styles and
architectures, and to succinctly illuminate the relations between them, whatever forms those may end up taking.

Modeling the structural properties of software architectural styles has generally been associated with the com-
ponent/connector abstractions, and has utilized architectural description languages (ADLs) [3, 5, 15, 6] for formal
description. We believe that traditional component/connector abstractions associated with style modeling do not
provide sufficient abstractions for network architects to work with 3. Therefore, we simply borrow the notion of
“architectural style” without constraining ourselves to the component, connector, port, and role abstractions. Ad-
ditionally, we choose to use the Alloy modeling language [12] rather than ADLs based on Alloy’s simplicity, its
expressive power and ability to describe structural and behavioral aspects of an architectural style, and its ability
to model desired specification properties that fit our needs (invariants, inheritance, and composition). Despite
Alloy’s scalability concerns, we have fond it useful to formally describe network architectures/styles because of
the presumably small scope of abstractions involved in describing network architectural styles.

2.2 Alloy

Architectural design revolves around exploring the right abstractions, which are simple ideas expressed in some
primitive form. Designing those abstractions requires a formal specification language that is intuitive, expressive,
and at the same time avoids the intricacies of coding. Alloy [12] is one such language that we use to write our
formalization of the FARA style [8] (to be detailed shortly). Alloy is a declarative language based on relations
and first-order predicate logic. A brief overview of Alloy’s logic, language, and analysis follows. A complete
reference is located elsewhere [12].

The Logic - At the core of Alloy is a relational logic that combines relational algebra with first-order predicate
logic. Structures are composed of atoms and relations. Atoms represent typed, immutable structures that are
uninterpreted and can be related through relations. A relation is a set of tuples each being an atom and can have
arbitrary arity. Relations are combined with operators to form expressions. Some of the most common operators
in Alloy are tabulated in Table I.
Constraints are formed of expressions and logical operators. Quantified constraints take the form Q x : e|F

, where F is a constraint over x, e is an expression bounding x, and Q is a quantifier that can take values all
2For example, in a client-server architecture description, one might model the client and server elements as components and an RPC

communication protocol between them as a connector.
3The component/connector abstractions might be sufficient when modeling communication systems, as may be deduced from the ax-

iomatic model in [13].
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Set operators Relational operators Logical operators
+ for union → for product ! for negation
− for difference . for join && for conjunction
& for intersection ˜ for transpose || for disjunction
in for subset ˆ for transitive closure ⇒ for implication
= for equality * for reflexive-transitive closure , for alternative

⇔ for bi-implication
Table I: Operators in Alloy.

(universal), some (existential), no (no values), and lone (at most one value). For example, no x : e|F is true when
no x in e satisfies F . When Let is used as in Let a = b|F , every occurrence of a in F is replaced by b.
Declarations in Alloy take the form relation-name : expression, where expression is the bounding expression for
the declared relation. For example, r : Am→ nB, where m and n are multiplicities, is a declaration saying that
relation r is constrained to map each element of set A to n elements of set B, and each element of set B to m
elements of set A.

The Language - In addition to the logic, Alloy provides some language constructs to help organize a model.
A model in Alloy may consist of signatures (sig), facts (fact), functions (fun), predicates (pred), and assertions
(assert).
Signature: A signature, declared with sig, introduces a basic type along with a collection of fields, their types and
restrictions over their values. A signature can extend another signature inheriting its fields and constraints. An
abstract signature has no elements except those belonging to its extensions. For example, if we write:

abstract sig A { abstract sig B {}
f: set B sig A1 extends A {}

}{--constraints go here} sig A2 extends A {}

one sig C{} --‘one’ means sig constrained to one element

we have declared three elements A, A1, and A2. Since A1 and A2 extend A, it follows that A in A1 + A2. Ad-
ditionally, because A is abstract, it follows that A = A1 + A2 and A1 and A2 are disjoint sets that partition A. A
declares a field f of type B. This is saying that for each element A, A. f is a set of type B i.e. the relation f is
mapping from elements in A to elements in B.
Facts, Predicates, Functions, and Assertions: A fact is simply a constraint that is assumed always to hold, and
hence needs not be explicitly invoked. Facts usually describe global model constraints. The facts and the signa-
ture constraints thus constitute a complete set of structural constraints over the model.
A function, declared with fun, is a named reusable expression that can be invoked within the model. A function
takes zero or more arguments and returns either a true/false or a relational value.
A predicate, declared with pred, is a named reusable constraint that can be invoked. A predicate takes zero or
more arguments.
An assertion, declared with assert, is a named constraint that is intended to follow from the model’s facts. Asser-
tions take no arguments and are usually checked by the Alloy Analyzer as discussed next.

The Analysis - The Alloy Analyzer (AA) [1] is an automated tool for analyzing models written in Alloy. Two
kinds of analysis are enabled by AA, based on commands. The first is simulation (using run command) whereby
the validity of a predicate or function is verified by showing a snapshot of the system for which the predicate
is valid. The second analysis technique is checking (using check command), whereby an assertion is tested and
AA tries to find a counterexample. This requires a finite scope, bounding the number of atom instances within
the universe, within which AA looks for solutions. Given the undecidability of predicate logic, a finite scope is
necessary to bound the space within which AA searches. Finding an instance to a predicate or a counterexample
to an assertion guarantees the consistency of the constraint. However, failure to find such instance simply makes
it inconsistent within the scope. The intuition is that subtle design bugs are likely to be detected even in small
scopes.

3
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Listing 1 Listing 2
abstract sig AID{}

abstract sig Entity{
associations: Entity->Time,
state: associations->one AID,

}{
no (this & associations.univ)
all t:Time, aid:AID |

lone (state.aid).t
#state = #associations

}
abstract sig RIString {}

abstract sig FD{}
abstract sig Packet{
dstFD: FD,
replyFD: FD

}
abstract sig DPacket extends Packet{
srcAID: AID,
dstAID: AID

}
abstract sig SPacket extends Packet{
ri: RIString

}

3 Case Study

To motivate the usefulness of formal architectural modeling, and the expressiveness of the Alloy language, we
represent the FARA[8] family of network architectures (or the FARA architectural style) using a formal model.
Briefly, FARA [8] is an abstract network model in which the current Internet architecture is generalized and re-
modeled to enable clean separation of endpoint names from network addresses. Modeling FARA is an illustrative
exercise in architectural abstraction, whereby a basis set of structural and behavioral components, assumptions,
and constraints (invariants) that pertain to a desired class of architectures are extracted at the first stage of design
to describe the general architectural model. Instantiations of the general model may then specialize it, obeying
the general design assumptions and invariants. The authors of FARA had to implement a prototype of a FARA
instantiation, M-FARA [8], in order to validate FARA’s usefulness, and self-consistency. One of the goals of this
section is to show how a formal model can be expressive and efficient in validating architectural design decisions,
hoping to replace “validation through implementation” by “validation through formal modeling”. Aside from
providing a conceptual framework for reasoning about a class of architectures, a formal model of an architectural
style (such as FARA) transcends into a formal framework over which essential architectural design decisions can
be modeled and verified.

3.1 FARA model

We hereby lay out a formal description of FARA’s basic structural and behavioral components (static and dy-
namic properties) along with the constraints attached to components and to the overall architectural style. The
description accounts for dynamic behavior by explicitly including logical time steps to model evolution over
time 4.

Structural aspects

A formal definition of the entity and the association is given in Listing 1. An Entity is an abstract element that
can have multiple concurrent associations. An association is a relation between two entities over time. Each
entity maintains local immutable state per association, the association ID (AID). A particular association has
exactly one AID, and AIDs are reusable over time. Several constraints are attached to the entity definition: the
first constraint eliminates associations that connect an entity to itself for simplicity. The second constraint is one
of FARA’s key assumptions, and it states that no two associations of an entity can have the same AID at any given

4Note however that analyzing the static properties of the architecture, simply requires dealing with a snapshot of the system at some
timestep t, i.e., constraining the analysis scope of the Time signature to 1 instance.
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time. The third structural consistency constraint forces each association to have state. An entity does not define a
universal name since FARA does not require a global namespace 5.

Listing 2 defines the Forwarding Directive (FD) and the packet abstractions. The FD encapsulates enough
topological information to allow the substrate to deliver a packet to its intended destination. A generic packet,
Packet, says nothing about the identity of the entities, and must indicate a destination forwarding directive
(dstFD) that will be used by the communication substrate (to be defined shortly) to deliver the packet to a
destination entity. A packet might also include a reply FD (replyFD) which the destination entity utilizes on
the reverse path. FARA distinguishes between a packet that belongs to an association, a DPacket, and a setup
packet, SPacket, that bootstraps an association. DPacket must specify the association state at both ends of an
association, srcAID and dstAID, allowing the destination entity to correctly demultiplex the packet to its asso-
ciation. SPacket includes a rendezvous information string, ri of type RIString, and does not include association
state since the association is being bootstrapped.

Listing 3 defines the communication substrate component, CommSubstrate, representing a single global
medium (the underlying operating systems and network) that is able to deliver packets on behalf of associations.
The substrate assumes a basic connectionless delivery, delivery, without making any assumptions about the
delivery function itself. A particular FARA instance, as we shall see later, will provide the respective addressing,
routing and forwarding mechanisms required for successful packet delivery. Supplied with an FD, the substrate
delivers a packet all the way to its destination entity. The point-to-point assumption in FARA is modeled as part
of the CommSubstrate constraints specifying that an FD can lead to a single entity at any time. So far, the model
defines entities and associations independently of the mechanisms employed by the substrate for packet delivery.
This acknowledges FARA’s “red line” logical separation, whereby entities and associations operate above the
line while the communication substrate operates below the line. Additionally, as a key assumption of FARA, no
global address space is defined, with the intent of supporting a multitude of forwarding mechanisms.

Global style constraints, or simply invariants, are specified in Listing 4. The first consistency invariant con-
strains association to be symmetric. Hence, entity A has an association with entity B if and only if the latter has
an association with entity A. The second constraint eliminates dangling association states.

Having formally described the style, we may now proceed to validate some of its properties, specified as
predicates and checked through the AA. For example, to check whether an entity might have overlapping state
for distinct associations at some time, we define and run the predicate in Listing 5. AA does not find any instance
of overlapping state within the simulated scope (7 Entity, Packet, FD, etc.; 15 AID; and 20 Time instances). This
guarantees the correctness of the above claim only within the specified finite scope, and not in general. However,
if inconsistent models can indeed be found, it is likely to find those within the specified scope.

Functional aspects

This section shows how functional aspects are formally specified at a high level of abstraction, leaving the details
for architectural instances to specify.
The first function specified in FARA deals with the creation of associations. To model the system’s dynamic be-

5Our approach to modeling an association as part of the entity’s signature versus modeling it as a separate semantic element renders the
dynamic constraints simpler and clearer.

Listing 3 Listing 4
abstract one sig CommSubstrate{
delivery: FD-> Entity -> Time

}{
all t:Time | delivery.t in

FD -> one Entity
}

fact Invariants{
all t:Time | associations.t

= ˜(associations.t)
Time.(Entity.(Entity.state))

= AID
}

5
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Listing 5
pred showOverlapState {
all t:Time |
some disj e1,e2,e3:Entity
|let w12=getAssociation[e1,e2,t],
w13=getAssociation[e1,e3,t]
|e1.w12=e1.w13 and some w12

}
run showOverlapState for 7

but 15 AID, 20 Time

--Returns the entity AIDs on both
--sides of the association
fun getAssociation
[fst,snd:Entity,t:Time]:Entity->AID
{
fst -> t.(snd.(fst.state)) +
snd -> t.(fst.(snd.state))

}

Listing 6
pred init[t:Time]{

no associations.t
}
pred establishAssociation
[t1,t2:Time, fst,snd: Entity]{
--Preconditions
---association does not exist
let aset = {fst->snd+snd->fst}

| no (aset & associations.t1)
--Postconditions
--no association change
let aset = {fst->snd+snd->fst} |
{
noAssociationStateChange[t1,t2]
associations.t2 =

associations.t1 + aset
}

}

pred teardownAssociation
[t1,t2:Time, fst,snd: Entity]{
--association exists
let aset={fst->snd+snd->fst}|
some (aset & associations.t1)

--remove it
let aset={fst->snd+snd->fst}|
associations.t2 =

associations.t1 - aset
}
--associations @t1 valid @t2
pred noAssociationStateChange
[t1,t2: Time] {
all e1,e2:Entity |
getAssociation[e1,e2,t1]
in getAssociation[e1,e2,t2]

}

havior as a response to establishing and tearing down associations, we use Alloy traces to capture state transitions
over time. Initially, at time t0, there are no associations. As presented in Listing 6, we consider two events that
may change the system’s state, the establishment or the tearing down of an association. The time instants t1 and
t2 describe the state of the system before and after an operation is performed, respectively.
Given the possible state transitions of the system, we can form those into an execution trace by modeling the latter
as a fact (Listing 7). Assertions may then be checked against the trace. An invalid assertion will demonstrate a
trace showing how the assertion was violated. The Alloy analyzer may be used to show some execution trace of

Listing 7
fact Traces {
init [TO/first[]]
all t:Time-TO/last[] |
let t’ = TO/next[t] |
some disj e1,e2:Entity|
establishAssociation[t,t’,e1,e2]
or teardownAssociation[t,t’,e1,e2]

}

assert showSomeState{
no e:Entity |
#e.associations >=1

}
check showSomeState for 4
but 7 AID, 7 Time,
0 RIString, 0 Packet

the system. For example, running the showSomeState assertion using AA, we obtain a counterexample showing
a sample trace which, when projected over time, clearly demonstrates the state change resulting from creating or
tearing down associations.

6
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M-FARA: an Instantiation

M-FARA [8] is an instantiation of FARA that specifies its own addressing, forwarding, and FD management
mechanisms. M-FARA is not a complete architecture, but it is specific enough to explore two points in the FARA
design space: 1) location/identity separation, and 2) mobility. This section models M-FARA, particularly its
addressing and forwarding mechanisms, using Alloy to demonstrate style specialization.
First, a new module for M-FARA is created importing the FARA module just defined. Several new addressing
and topological abstractions are introduced by the M-FARA module, as shown in Listing 8. M-FARA assumes
multiple addressing realms, Domains, each having a space of unique addresses. A subFD represents a set of
addresses that determine a local path within a domain. A domain has a static address space, space, and a dynamic
forwarding mechanism, forwarding. The latter delivers a packet that is destined to some subFD to the entity that
is bound to the respective subFD. Moreover, the topology assumed in M-FARA consists of a two-level domain

Listing 8
sig subFD{}
abstract sig Domain {
space: set subFD,
forwarding:space->Entity->Time

}{
--point2point forwarding
all t:Time | forwarding.t in

subFD -> lone Entity
}
--*No global address space*--
one sig MF_CommSubstrate
extends CommSubstrate{

domains: set Domain,
}

one sig Core extends Domain {}

sig PrivDomain extends Domain{
upspace: some subFD,
downspace: set subFD

}{
upspace in space
downspace in space
no (upspace & downspace)
-- up forwarding is implicit
no ((forwarding.Time).Entity)

& upspace
}

hierarchy with a single distinguished central “Core” domain to which the private domains, PrivDomains, connect
(Listing 8). The extended communication substrate, MF CommSubstrate, may thus be viewed as the set of all
domains including the core. Part of a private domain’s space, upspace, is used to reach the “core” domain.
Similarly, part of the “core” domain’s space, downspace, is used by the core to reach the private domains. In
this model, it is implicitly assumed that the forwarding function of every domain delivers subFDs belonging to
upspace to the core. On the other hand, forwarding from the core down to the domain is explicitly specified in
the domain’s forwarding function (hence subFDs belonging to downspace originate at the “core”).

Listing 9 defines the complete end-to-end FD in M-FARA, MF FD. It consists of a tuple (FDup,FDdown)
which the substrate can use to forward a packet from the source up to the “core” (up), and then from the “core”
down to the destination entity (down). Regarding the entity abstraction, MF Entity, M-FARA extends the entity
definition with the local subFD to which the entity is bound, fddown and on which it is reachable. M-FARA does
not specify whether an entity may be multi-homed (simultaneously bound to multiple domains) or not and our
model does not restrict that either.

Some general structural constraints apply to the model and are expressed in Listing 10. No dangling subFDs
or domains are allowed. Additionally, a subFD can belong to a single domain’s address space. Finally, the
forwarding operation is local to the domain i.e. an entry in the domain’s forwarding table means that the entity is
bound to the domain.

Modeling mobility in M-FARA is another interesting exercise, which we do not address in this paper. This
task requires extending the FARA dynamical behavior, which so far includes establishing and tearing down
associations, with a new mobility operation.

7
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Listing 9
sig MF_FD extends FD {

up: lone subFD,
down: one subFD

}

sig MF_Entity extends Entity{
--canonical route
fddown: subFD -> Time,

}

Abstract style properties

We have so far modeled an architectural style, FARA, and a particular instantiation of the style, M-FARA. The
FARA style advertises a global theme of separating the entity from the communication substrate, and a set of
style goals and properties. Despite the fact that the style leaves much of the functional details unspecified (such
as addressing and forwarding mechanisms in our example), it is still essential for the style architect to model
super-properties. A super-property is a property of the style that is expressed in terms of abstract unspecified
functionality. In other words, the architect needs to confirm that any instantiation of the style that specifies
the missing functionality will do that in such a way that the super-properties are respected. In object-oriented
programming, such design methodology is known as polymorphism. This section demonstrates a process for
modeling style super-properties and checking those against the instantiation, by referring back to the FARA style
and the M-FARA instantiation models.

As a first step, the style model includes the super-properties as facts, predicates, or assertions expressed in
terms of unspecified functionality. The snippet in Listing 11 augments the previous FARA model with two new
invariants (super-properties), expressed in Alloy as facts. The first fact is a “below the line” property. It states that
delivery, which we have previously defined as part of the CommSubstrate in FARA, must be supported by the
substrate’s addressing and forwarding mechanisms. In other words, if the substrate is able to deliver a message
to an entity based on some destination FD, then the substrate’s forwarding mechanism must be able to deliver
to that entity, hence satisfying isDeliverable. Again, note that isDeliverable is left unspecified by the style (in
step 1), and is to be implemented by an instantiating architecture based on the forwarding mechanisms employed.
The second fact is an end-to-end property (“above the line”) stating that an association exists and is valid only if
packets are able to flow over the association from source to destination. In other words, there must exist some FD
that satisfies ise2eDeliverable.

As a second step, the style instantiation extends the style model implementing the unspecified functionality.
Super-properties are then enforced and checked against the instantiation to verify that the desired style goals are
satisfied by all instantiations. To illustrate this step, the M-FARA model is augmented with the Alloy snippet in
Listing 12, overriding the abstract functionality, isDeliverable and ise2eDeliverable 6.In M-FARA, isDeliverable
or deliverability implies that: 1) some packet may be forwarded from the “core” down to destination’s domain i.e.
the FDdown part of the destination FD should belong to the downspace of the entity’s current domain, and 2) the
domain’s forwarding function delivers to the entity given FDdown. End-to-end deliverability, in turn, requires
two valid paths: one from the source entity’s domain up to the core, and another from the “core” down to the

6In Alloy, the super-properties have to be replicated to the M-FARA model since Alloy does not directly support inheritance of a style or
“module”.

Listing 10
fact Invariants{

--no dangling subFDs
Domain.space = subFD
--no Dangling Domains
MF_CommSubstrate.domains

= Domain
--space is private
all sf: subFD | lone space.sf

--Forwarding is local to a domain
all t:Time, d:Domain |
let fwd = d.forwarding.t
| all sfd:subFD, e:MF_Entity
| {sfd ->e in fwd
=> sfd->t in e.fddown}

}

8
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Listing 11 Listing 12
--Step1: super-property 1
fact {
all t:Time |
let delv=CommSubstrate.delivery.t
| all fd:FD, e:Entity
| {fd->e in delv =>

this/isDeliverable[fd,e,t]}
}
--super-property 2
fact {
all t:Time, e:Entity |
let ea = e.associations.t
|some fd:FD |
this/ise2eDeliverable[e,ea,fd,t]

}
--*To be specified by Instance
pred isDeliverable
[fd:FD, e:Entity, t:Time]{}

pred ise2eDeliverable
[src,dst:Entity,dstfd:FD,t:Time] {}

--Step 2
--Replicate facts from FARA
...
--*overriden function
pred isDeliverable
[dst:FD,e:Entity,t:Time]{
let d_sfd=dst.down,
d_dom = (getDomain[d_sfd])
|d_sfd in d_dom.downspace and
(d_sfd->e in

d_dom.forwarding.t) }

--*overriden function
pred ise2eDeliverable
[src,dst:Entity,dstfd:FD,t:Time]{
some dstfd.up and
dstfd.up in
(getEntityAttachments[src,t].univ)

.upspace
this/isDeliverable [dstfd,dst,t]
}

destination entity.
In the same fashion that facts about the style were replicated in the instantiation above, assertions and predicates
may also be replicated. It is straightforward to add assertions that verify the facts introduced above. For example,
assertions dealing with mobility may easily be implemented.

Composition

Having already demonstrated inheritance and polymorphism in style modeling, we proceed to define and briefly
overview (due to lack of space) composition as a means for composing separately defined modules or styles and
checking for their compatibility. Let Si|ni=1, n > 1 be two or more styles, and let Pi, i = 1..n, be the global consis-
tency constraints defined by Si. The new composed style is denoted by S = C(S1, ..,Sn) and contains the merged
constraint set

Sn
i=1 Pi. Sis are compatible styles i f f the new consistency constraint P = &&n

i=1Pi is satisfied by S.
As an example of composition, assume that a global-hierarchical addressing style, GHAR, is defined in which
address spaces or domains are composed hierarchically (for example through customer-provider or peering rela-
tionships) with a distinguished core. The FARA style may then be composed with GHAR into a new style, say
FARA-GH. An entity in FARA-GH extends the FARA entity and defines a global address field that is inherently
hierarchical. Interestingly, the new FARA-GH architecture resembles the NIRA [21] routing architecture with
the added conceptual clarity and design space partitioning.

4 Related Work

There are two broad areas of related work. The first is concerned with network architecture and communication
system modeling, while the second deals with software system modeling.

Regarding network architecture modeling, the Internet architecture has been thoroughly studied over the past
decade. The design principles of the DARPA Internet are clearly outlined in Clark’s seminal paper [7]. The paper
highlights the connection between the intended goals of the DARPA Internet and design decisions that govern its

9
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current operation. The paper was intended to illuminate the Internet’s design principles rather than to formally
model the Internet architecture. The same applies for other architectural design papers [9, 10].
A methodology for designing and assessing evolvable network architectures based on invariants (or fixed points)
is proposed in [4]. The authors highlight a useful point which calls for considering invariants at an early de-
sign phase. However, they do not provide a complete design methodology or formal framework for reasoning
about network architectures. Our formalization model inherently accounts for invariants as a part of the com-
plete architectural description, and hence provides the architect with a clearer formal framework to work with
invariants.

As to communication system modeling, we identify the several relevant proposals that we believe are com-
plementary to our work. However, our work is again concerned with modeling general architectural descriptions
rather than switching properties of networks. Karsten et al. [13] have proposed a general axiomatic basis to
consistently model communication primitives such as forwarding, naming, and addressing for better expressing
architectural invariants and formally proving properties about node reachability within any communication sys-
tem.
Another relevant work is that proposed by Zave [22, 23]. In [23], the author utilizes the Alloy modeling language
to formally model identifier binding schemes which enables informed architectural design decisions for better
supporting networking services. A less general abstraction of the domain and the requirements on binding com-
position to satisfy inter-operation was modeled by in [22].
The proposal MDCM [20] attempts to describe a wide variety of multi-domain, multi-layer communication sys-
tems through a unified model.

Regarding the modeling of software architectures, a lot of work has focused on formally describing those
using Architecture Description Languages (ADL) [3, 5, 15, 6]. Some of the common ADLs are the Acme ADL
with the underlying first-order logic [15], extended WRIGHT [5], process ADL with the underlying process
algebra [6], and π-ADL with the underlying π-calculus [17]. The Acme model in [15] utilizes Alloy and is a
very relevant work to ours. Style inheritance and composition as well as verification of structural properties
and compatibility checking are concepts demonstrated by the authors; however, their current model falls short
of capturing the behavioral aspects of the architectural style. Alternatively, the model in [6] explicitly involves
topology specification (i.e. component/connector instances and their interconnections) as part of the architectural
style description, which we believe is not an efficient approach considering the level of abstraction at hand.
Finally, Alloy has been utilized within several modeling case studies that as described on the Alloy website [1].
We mention here some of those that pertain to networking and that were useful for this work. Khurshid [14] has
used Alloy for modeling and correcting the architecture of the Intentional Naming System (INS). Jackson [1] has
used it to model the Chord peer-to-peer lookup protocol. Some recent work by Narain [16] utilizes Alloy’s model
finding techniques to find network configurations that satisfy a set of input requirements expressed with predicate
logic.

5 Discussion, Future Work, and Conclusion

As previously stated, we have refrained from using the component/connector/interface abstractions for modeling
network architectural styles. By surveying the network architecture literature, we have noticed that architects have
different approaches to modeling abstractions. It is our belief that constraining them to component/connector/in-
terface abstractions limits the expressiveness of the model and hence the innovation. It is additionally hard to
anticipate whether and what modeling abstractions for networks will emerge in the future. The language we have
utilized, Alloy, is generic and flexible enough to allow the architect to represent whatever abstractions she finds
suitable. Despite the scalability concerns associated with constrained instances in Alloy, which does not represent
a major limitation to us considering the high level of abstraction being modeled (and hence the presumable small
instance sets required), the problem is currently being addressed in the literature (such as in [19]).

While this work has presented a first step towards formalizing network architectures and architectural styles,
several research challenges remain to be solved and we address those as part of our current and future research.
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First, there needs to be a consensus regarding the most imminent styles that span the network architecture design
space. Modern and future network architectures, as has been recently acknowledged [2], are being equipped
with more intelligence, generally introducing information and computation structures that are manifested through
increased in-network processing and storage. Extracting a complete, and disjoint set of network architectural
styles may potentially frame the architectural problem and provide a formal framework for classifying, relating,
and reasoning about architectures. Towards this end, we believe that a taxonomy of network architectures is a
timely and essential contribution and represents a significant part of our current work.

6 Conclusions

To conclude, this paper has presented a methodology towards formally describing and modeling network archi-
tectures and architectural styles. Style inheritance, polymorphism, and composition were demonstrated on the
FARA class of network architectures using the Alloy modeling language. Our work helps network architects
and researchers, whereby architects are able to formally represent and group various architectural patterns into
styles, while researchers are provided with a means to better understand, analyze, and reason about network
architectures.
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