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LETTERS TO NATURE

A trade-off-invariant life-history
rule for optimal offspring size

Eric L. Charnov* & Jerry F. Downhower'

* Department of Biology, University of Utah, Salt Lake City,
Utah 84112, USA
 Department of Zoology, Ohio State University, Columbus,
Ohio 43210, USA

OPTIMIZATION models have been widely and successfully used in
evolutionary ecology to predict the attributes of organisms'.
Most such models maximize darwinian fitness (or a component of
fitness) in the face of trade-offs and constraints; the numerical
results usually depend on the exact form of the trade-offs/con-
straints. Here we report the first (to our knowledge) numerical
optimum for life-history evolution which is independent of the
details of the underlying trade-off, for a large array for trade-off
forms. The rule is that at small litter sizes, the range in offsping
size is inversely proportional to the size of the litter. Details of
the offspring-survival/offspring-size trade-off~** set the value of
the proportionality constant, but the —1 exponent, the inverse pro-
portionality itself, is universal. Studies of life histories have yielded
many emgirical examples of universality for various scaling
exponents” (for example, adult lifespan scales as ~0.25 with adult
body mass within many taxa); this is an example of the numerical
value of an exponent (here —1) emerging from a life-history model
as independent of all but a few general features of the underlying
economic structure.

Most evolutionary models for the optimal investment per
offspring’~'? begin with a trade-off structure (Fig. 1a). Individual
offspring survival to adulthood (S) is solely a function of the
amount of resource given to the offspring (7). A female with an
amount, R, of reproductive resource can produce R/I offspring
in a litter, each of which survives with probability S(/). Thus,

FIG. 1 Various trade-off functions for offspring survival (S) as a function
of investment in each offspring (/). Each equation (in panels a—f) may
be multiplied by any positive number without altering any of the results
reported here. The trade-off assumed in the classic model*®*! is that
individual offspring survival to adulthood is solely a function of the
resource given to each offspring. A female has some fixed amount of
resource (R) to allocate among offspring, so the number of offspring in
any litter (C) is R/I. The optimal / maximizes the number of surviving
offspring (RS/!). For any fixed R, this is equivalent to choosing I* to
maximize S// and may be found by the tangent argument illustrated in
a. This I* answer requires that the resulting litter size R/I* be an
integer; this requirement is not well approximated at small litter or
clutch sizes (1-6) which are common in many animals. b—f, The invari-
ance/scaling rules discussed in the text hold (to within 5%) for these
trade-off curves, over a large range of parameter values (given in brack-
ets) which yield the finite equilibrium /* in a. Notice that the parameter
value ranges refer only to the dimensionless numbers dl, and §; it is
straightforward to show that the rules discussed here only depend on
these dimensionless numbers (see below).

METHODS. Let R, be the total resource level at the change-over from
litter size i to i+1. Then Ry is where S(R,)=2S(Ry/2), R, is where
25(R2/2)=3S(R2/3), and so forth. Let=mean ‘to within 5%'; then
Ri+2—Ri+1=R;+1—R;. Because the dimensionless ratio between suc-
cessive R intervals is only dependent upon the dimensionless numbers
in each parametric form (dlo, §), calculations are greatly simplified.
Dividing by the respective litter sizes yields rule (1). The resource interval
(Ri+1—R)) is the constant of proportionality (equation (2) in text). Some
parametric forms lead to strict equality (for example, f, e with § =0.5);
other show convergence to equality for large i with the ‘5% or better’
rule applicable for small (2-6) litters. The convergence of R;.1 —R; to a
fixed value at large i may be developed as follows. The largest (smallest)
offspring size is converging to /* (Fig. 2); for large i we have R;/i~I*
and (R;.1)/(i+1)=I*. This immediately implies R;,1— R;~!*. Interest-
ingly this is also approximately true for R values yielding clutch sizes
of 2-6, although the error here may be up to 10%. Curves e and f are
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the parent will produce (R/I) S(I) surviving offspring. Provided
that the parent controls /, natural selection ought to favour
the maximization of RS/ through choice of I (called I* at the
maximum); this solution also assumes that the parent’s own
survival and growth are uncorrelated with 7 (although they may
be related to R). For fixed R, this is equivalent to maximizing
S/I; this optimal / satisfies 0S/0/=S/I and may be found by
the tangent argument illustrated in Fig. la. We will r.efer to I as
‘offspring size’ which is taken to be proportional to investment
per offspring (but see below). '

This answer for the optimal / assumes R is large relative to
I* so that R/I* is (effectively) an integer, a necessary condition
for real litters. When litter sizes are small (1-6), R/I* may differ
significantly from an integer, and a female may gain'more by
increasing the size of her C offspring than by producing C ji-l
smaller offspring. Thus there is a range of ‘optimal’ offspring
sizes (1) at each litter size’. Suppose that the offspring prod}lced
by members of a particular population face the trade-off illus-
trated in Fig. 1a. Each female (i) has R; resources to divide up;
R; may differ among females but the S(I) curve does not. Pro-
vided that a female does not produce offspring of variable size
within her litter, she will have R, /I, offspring in each litter with
a per-offspring survival of S(Z;). If R is great enough to produce
one viable offspring (above I, on Fig. 1a), C=1 and I=R. As
R increases, so will /, as long as one offspring of size R will be
better than two of size R/2. At higher values of R, C will equal
2 and I=R/2; still higher values of R yield C=3 (and /=R/3)
and so forth. Each C will be associated with a maximum (Iinax)
and a minimum (/n;») offspring size, and resource (R) amounts.
The litter size C should change from one to two when the fitness
gain from one offspring of size I equals the fitness gain from
two offspring of size I/2 or S(/)=2S(1/2). The change from
two to three offspring should be at size I where 2S5(/)=
35(0.671). The total resource amount (R;) at this switch point
is the value of R where 2S(R,/2)=3S(R,/3). When continued
to even larger litter sizes, this argument yields successive resource
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non-asymptotic, but may usefully represent S over a reasonable / rapge.
particularly as the calculated answers are independent of any positive
multiplier of the S function.
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amounts (R) at the switch points, and the rule that the largest
offspring associated with litters of size C ought to be (C+1)/C
times as large as the smallest offspring associated with the next
largest litter size, C+ 1. The maximum and minimum offspring
sizes converge from above and below to the optimal size I*, as
given in the classic model'® (Fig. 1a). When offspring size is
measured relative to /* the convergence is then to 1.0 (Fig. 2).
We note two limitations to this argument. First, if the parent
can easily control R it may well pay simply to accumulate
resource until an (or a few) I*-sized offspring can be produced.
Second, the argument assumes that the conversion of R into
offspring is linear; significant nonlinearity would distort the
observed sizes (investment per offspring) at the switch points.
Even given these caveats (R fixed, proportional conversion), the
rules discussed here should be broadly applicable.

Our previous work” suggested the theoretical convergence to
be more or less symmetric around 7*; new calculations have
proved this to be often not true, but these calculations showed
the convergence to have one, unexpected, universal feature; the
size range is proportional to C™' (Fig. 2). Except for C,, the
ratio of the ranges of offspring size at litter sizes i and J are
inversely proportional to the ratio of the litter sizes (Ci, G;); or

(Imax,-_lmim)/(lmaxj_Imin,)=C}/Ci (1)

Thus the size range for C; is predicted to be 2/3 that at C,, and
so on; the rule often fails (up to 20-35% off the mark) at C,,
although it works even here for the parameter values of Fig. 2.
This rule is correct to within 5% (often less, even exact) for
2<C<6 for a remarkable variety of trade-off functions, illus-
trated in Fig. 1. Whereas specific functions and parameter values
yield specific values of I*, Iax,, Imin,, and proportionality con-
stant, each S (/) combined with various and increasing R values
yields rule (1). It seems to follow from the economic rule of
when a female should switch from a litter size of Cto C+ 1 with
consequently smaller offspring (compare discussion above and
Fig. 1 legend). Rule (1) holds mathematically even for large C
values, but is biologically less plausible here.

Writing rule (1) as OSRoc C™' (where OSR is offspring size
range) implies a proportionality constant (that is, OSR = H/C)
and H may be developed as follows. The range in resource values
at any litter size k may be written as Riax, — Ruin, - The maximum
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FIG. 2 Maximum and minimum offspring sizes, measured relative to
I*, at different litter sizes for the parametric model S=(1—e ¢~ ")
(Fig. 1c with §=1). The maximum and minimum values converge on
1.0 from above and below. Here d and I, were chosen to make
Imax,/1* 1.5 and the convergence is nearly symmetric. Note that the
range of offspring sizes at any litter size (C) is C™%, hence the ratio of
ranges at any two litter sizes is the inverse of the ratio of the litter sizes.
This scaling rule holds true for a wide range of values of d and lo in
this model, and for many shapes for the S(/) curve (Fig. 1).
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(Imax) and minimum (/;n) sized offspring at this litter size are
given by Ruax, /Ci = Imax, and Roin,/ Ci = Ipin,. Thus we have

OSRk = H/Ck = (Rmaxk /Ck) - (Rmink /Ck) (2)

and see immediately that the proportionality constant H is sim-
ply the resource range at any litter size, H = Rmax; — Ruin,- OF
said slightly differently, the range of resources yielding any single
litter size will be the same for all litter sizes.

There is one other interpretation of H. In Fig. 1 legend we
show that, as k gets large, Ruax, — Rin,—I*; as the R intervals
are not too different from this even at small C, we have to a good
approximation, H=I*. If offspring size is measured relative to
I*, as in Fig. 2, then H~1 and the intervals are equal to C™".
Notice that this means the entire convergence illustrated in Fig.
2 can be reconstructed approximately from any single point
(except Io/I*). For example, each In.,/I* will be associated
with a convergence, independent of trade-off details. Notice also
that this allows an estimate of /* from two boundary points;
that is, I*=2 (OSR at C,), and so forth.

Our previous work’ estimated the largest egg size (the 90th
percentile in volume of a single egg) for litters of 1-5 in the
poeciliid fish Gambusia hubbsi, and showed a close correspond-
ence to the decline predicted in Fig. 2. This decline is predicted
to hold, as a good approximation, for models (Fig. 1) yielding
Inax,/IT* near 1.5. Unfortunately, it proved impossible to esti-
mate the smallest egg size at each litter size so we were (are)
unable to estimate the ranges in egg size. We are not aware
of any existing data that would allow such estimates in other
species.

It has proven exceedingly difficult to get detailed information
about the shapes of life-history trade-offs'!, and two decades of
research (beginning with refs 9 and 10) have yielded very few
examples®'? for the estimation of the shape of the trade-off illus-
trated in Fig. 1. This makes theoretical predictions that are
independent of the exact form of trade-offs, like the ones devel-
oped here, of particular interest. It is surprising that the numeri-
cal prediction of —1 scaling holds for such a large and diverse
class of S(I) trade-offs (Fig. 1). This universality makes
empirical studies of offspring size ratios especially worthwhile.
Size/number trade-offs characterize many other evolutionary
problems with similar economic structure'®, and these may be
expected to show similar scaling rules for the size ratios. In
addition, the theoretical existence of trade-off invariance for this
problem should point theorists to search for numeric universality
in other life-history evolution problems®. Finally (and empirical-
ly), scaling exponents of +1 are ubiquitous between timing (size)
variables for life histories, and for inter-species (population)
comparisons®'*'®; the proportionality constant differs between
higher taxa (for example, mammals® versus reptiles'®) but, again,
not the exponent. These seem sensible candidates for trade-off-
invariance rules. O
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