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Abstract

We present a new framework for describing multi-agent systems with hybrid interacting dynamics where the
interaction between agents occurs at both the continuous and discrete levels. We formally define these multi-
agent systems as Interconnected Hybrid Systems and then recast fundamental hybrid concepts such as a hybrid
metric, hybrid execution, and reachability in this new interconnected hybrid systems framework. We then prove
a necessary and sufficient condition for the existence and uniqueness of the interconnected hybrid executions
extending previous work on hybrid systems.
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1 Introduction

In most of the work reported on cooperative systems, individual models for cooperating agents are described by
purely continuous dynamics [2, 4, 6, 9, 12–14, 18]. There are few exceptions, where discrete event system theory
is applied [3]. In exploring new communication network paradigms [7, 16] we sometimes find the use of purely
continuous dynamics to be restrictive as explained below.

We envision a network in which functions (e.g. routing) are not fixed to physical nodes, but are instead
implemented by software agents that are free to migrate from node to node, depending on resources that they may
have to compete for [15]. This approach gives rise to a new type of multi-agent system where agent dynamics
are composed by discrete states that represent the location of the agent in the network and its operating mode,
and by continuous states that represent the amount of resources that the agent is receiving from the network. The
node dynamics are also composed by discrete and continuous states. The discrete states represent changes in the
agents hosted by the node, while continuous states represent the evolution of the resource availability due to the
competition of agents for such resources. Agents start at initial locations in the network and with a given set
of resources. Nodes start at discrete states that reflect the initial distribution of agents and at continuous states
corresponding the initial availability of resources. The continuous states of the agents may then evolve according
the agents requirements affecting the availability of resources in the nodes. Agents may also jump to different
locations depending on the conditions in the nodes. These jumps will affect the continuous evolution of other
agents and nodes, and will also cause discrete jumps in the nodes reflecting the new agent distribution. A pictorial
example of this situation is depicted in Figure 1.

Figure 1: Example of dynamical behavior of agents and nodes. Agents are as hybrid automata. Each mode in an
automaton corresponds to a possible location of an agent in the network (Agents on top). Each transition between
modes represents a change of location made by an agent (agent at the bottom). The dynamics of the nodes are
also modeled as hybrid systems. Each mode represents a number of agents residing at a node paired with the
availability of resources that varies in discrete manner. The agents on top are located on a node, therefore have
a discrete state fixed and the continuous dynamics of agents and the nodes that hosts them are interacting. The
agent at the bottom is moving between nodes, so a discrete transition is happening.

It is not clear how to capture the operation of such a system with existing hybrid frameworks. The interactions
between the hybrid systems that model agents and nodes happen at both the continuous and discrete levels. The
continuous and discrete dynamics of the agents depend on both the continuous and discrete states of the nodes and
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viceversa. We attempt to capture this interaction with a new class of systems: the interconnected hybrid systems.
Such systems are not mere parallel compositions, or products, of the component subsystems [19]. The existence
and evolution of an individual subsystem can be meaningless if isolated. Moreover, interactions are not limited
to common or uncommon events. In our case, the hybrid state in one of the systems modifies the execution in
another one. Therefore we formally define the interconnected hybrid system such that the continuous evolution in
one agent depends on the continuous states of agents that are connected to it, and similarly the discrete dynamics
depend on continuous and discrete dynamics of neighboring agents. This definition also includes a description of
the connectivity of the multi-agent system in each agent’s hybrid state. We then extend our previous work [17]
defining a metric for this new class of systems and explaining the properties of this metric. Finally we recast the
reachability and the hybrid execution concepts from hybrid systems theory into the new framework, and provide
a necessary and sufficient condition for the existence and uniqueness of the interconnected hybrid execution (the
hybrid analog to the state’s evolution in continuous dynamical systems), in terms of the components of each
agent’s hybrid model, extending some of the concepts in [11].

The reminder of this paper is organized as follows: In Section 2 we define the interconnected Hybrid System
and explain the key features of this new concept. In Section 3 we introduce an Interconnected hybrid metric and
provide its properties, while in Section 4 we define the interconnected hybrid execution and state the necessary
and sufficient conditions for its existence and uniqueness. Section 5 provides the proofs to the results in the
previous section and Section 6 outlines our conclusions.

2 Interconnected Hybrid Systems

A hybrid system is denoted Hi, where i ∈ I indexes the systems in a group. νi denotes dependence of ν on i. νqi

denotes dependence of ν on both qi and i. νn, denotes the nth element of a sequence in ν, and ν(t) denotes the
value of ν at time t. Finally, with some abuse of notation, ν0 marks an initial condition.

Let Qi be the set of discrete states of Hi, where Qi = Oi×Di, where Oi is the set of operating states and
Di is the set of connectivity states. Each oi ∈ Oi represents a different operating condition of Hi. Each di ∈ Di,
represents different connectivity conditions. (oi,di) ∈ Qi is denoted as qi. Each qi has an associated set V (qi)⊆
I ∀qi ∈ Qi and ∀i ∈ I, which stores the indexes of the systems that are connected to Hi, i.e., if j ∈V (qi) then H j
is connected to Hi. Note that V (q) = V (q′) for all q = (o,d),q′ = (o′,d′) ∈ Qi that satisfy d = d′.

Let Σi = {Σqi}qi∈Qi where Σqi = (Xqi , fqi ,Uqi ,R
+) is a continuous dynamical system that corresponds to

qi ∈Qi with Xqi being the continuous state space, fqi the continuous dynamics, Uqi the set of continuous controls,
and R

+ = [0,∞) the time set.

Let Si = {Sqi}qi∈Qi be the set of discrete transition labels of Hi. Symbol sqi ∈ Sqi determines the discrete state
after a transition from qi ∈ Qi in system Hi. We consider two types of transitions: Transitions triggered by local
external events and transitions that are functions of the states of the local system and the systems connected to it.

Let Gi = {Gqi}qi∈Qi be the set of guard conditions for Hi. Gqi is a map that determines when a transition is
possible from qi ∈ Qi. The set Gqi is defined below for each type of transition. Let Zi = {Zqi}qi∈Qi be the set of
transition maps of Hi, where Zqi : Gqi×Sqi →

⋃

pi∈Qi
{Xpi} determines the continuous state of Hi after a transition

sqi ∈ Sqi .

Definition 1 (Interconnected Hybrid System) An Interconnected Hybrid System (IHS) is a set H∗ = {Hi}i∈I
of Controlled Hybrid Dynamical Systems [1] Hi indexed by the set I. For each i ∈ I, Hi = [Qi,Σi,Gi,Zi,Si], such
that

• The continuous control inputs in Uqi are the continuous states of the systems that are connected to Hi.
Therefore Uqi = Xqi×∏ j∈V (qi) X j. Note that that the dimension of Uqi is lesser or equal to the dimension of
∏i∈I Xi for all qi ∈ Qi for all i ∈ I.
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• A guard condition for an event-triggered transition is denoted as GE
qi

. This guard must satisfy a condition
on the state of the system(s) and on the existence of an event i.e, GE

qi
: Sqi → Ei×Xqi×∏ j∈V (qi) H j where Ei

is the set of possible events of Hi ∈H∗. A guard condition for a state-based transition, denoted GS
qi

needs
to satisfy a condition on the state of the system(s) only i.e, GS

qi
: Sqi → Xqi ×∏ j∈V (qi) H j.

The state space of the IHS H∗ is H∗ = ∏i∈I Hi where Hi = Qi×
⋃

qi∈Qi
Xqi is the state space of hybrid system

Hi, and the state of the IHS is denoted as~h = (~q,~x~q) where ~q = (qi)
T
i∈I , and ~x~q = (xT

qi
)T

i∈I , where qi ∈ Qi for all
i ∈ I, and xqi ∈ Xqi for all qi ∈ Qi and for all i ∈ I.

Note in Definition 1 that the discrete states of the systems are divided into operating states, which are used to
describe modes of operation of each individual agent in the system, and connectivity states, which describe the
possible configurations for information exchange between agents in the system. If one thinks in the usual graph
theoretic argument that describes the connectivity between agents in multi-agent systems literature [2, 4, 6, 9, 12–
14,18] different connectivity states in each agent correspond to its different possible neighborhoods. We however,
do not limit the connectivity description of the IHS to the use of graph theory. Also note that no assumptions are
made about symmetry on the connectivity, so this definition includes the possibility of agent i∈ I being connected
to agent j ∈ I : j 6= i without j being connected to i, which corresponds to a directed graph on the graph theoretic
argument.

The interactions between the agents in the systems are achieved in the continuous dynamics through the
continuous control inputs. The continuous control inputs of agent i ∈ I in the IHS are functions of the continuous
state of agent i ∈ I and the continuous states of the agents that are directly connected to agent i ∈ I. Therefore the
continuous evolution of each agent is influenced by the continuous dynamics of the agents that are connected to
it.

The interactions between the discrete dynamics of the agents in the system are achieved through the transition
guards. In both cases (the event-triggered, and the state-based transition) the transition guards of agent i ∈ I set
conditions on the continuous states of agent i∈ I and on the hybrid states of the agents that are connected to agent
i ∈ I. So, for the case of state-based transitions, a discrete transition may occur when both the continuous state of
agent i and the hybrid states the the agents connected to i ∈ I reach a guard condition. In the event-triggered case,
a discrete transition may occur on agent i ∈ I when this agent experiences an external event if the condition on
the states of agent i and the agents connected to it is satisfied. Therefore in both state-based and event-triggered
transitions of agent i∈ I, the discrete dynamics are influenced by the hybrid states of the agents that are connected
to agent i ∈ I. Note that the events are assumed to be local, i.e an event in agent i ∈ I has direct influence only
on this agent’s dynamics. However, since an event will generate an state change in agent i ∈ I, such state change
will potentially affect the dynamics of the agents that are connected to agent i ∈ I. For this reason we believe that
the assumption of the events being local should not represent a restriction.

To summarize, Definition 1 presents a hybrid analog to the standard multi-agent setting [2, 4, 6, 9, 12–14, 18]
where each agent uses the states of its neighbors to update its own evolution. The following is an standing
assumption for the rest of this paper.

Assumption 1 The sets of discrete states Qi are finite for all i ∈ I. There exist a vector space Xi such that
Xqi ⊆ Xi ⊆ R

d for all qi ∈ Qi for all i ∈ I where d is an integer. The vector fields fqi(xqi ,uqi , t) are globally
Lipschitz continuous [8] on both xqi and uqi with Lipschitz constants Lxqi

and Luqi
for all qi ∈ Qi for all i ∈ I.

3 A Metric for Interconnected Hybrid Systems

In [17] we introduce a new notion of hybrid metric. We extend this concept for interconnected hybrid systems.
Let the directed graph that represents the hybrid system H [10] be denoted as GH .

3
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Definition 2 (Discrete Distance [17]) Let the distance between two discrete states of a hybrid system q and q′

be the length of the shortest path1 from node q to node q′ in GH . This distance is denoted by dD(q,q′).

Definition 3 (Interconnected hybrid distance (IHD)) Let the distance from~h ∈ H∗ to~h′ ∈ H∗ be:

d∗
H(~h,~h′) = max

i∈I
(dD(qi,q′i))+ tanh(‖~x~q−~x′~q′‖)

where for each i ∈ I, qi and q′i are the components of ~q = (qi)
T
i∈I and ~q′ = (q′i)

T
i∈I .

Note that ~x~q = (xT
qi
)T

i∈I and ~x′~q′ = (x′Tq′i
)T

i∈I where each xT
qi

and x′Tq′i
is a vector. Then ~x and ~x′ are vectors

formed by concatenating the vector states of each individual system in H∗. Therefore the norm ‖~x~q−~x′~q′‖ is well
defined on ∏i∈I Xi. In the reminder of this section we drop the subindex notation on~x~q for simplicity because the
correspondence between~x~q and ~q is clear from the context.

The tanh(.) function of the norm in the interconnected hybrid distance provides a mechanism to distinguish the
discrete and the continuous parts of the distance between two interconnected hybrid states: The interconnected
hybrid distance is composed by an integer and a fractionary part. The integer part provides the exact number
of discrete transitions that the system needs to experience to reach one discrete state from another, while the
fractionary part results from the application of an invertible function to the standard notion of distance between
two continuous states.

Theorem 1 (Properties of the IHD) Given three interconnected hybrid states~h =(~q,~x),~h′ =(~q′,~x′),~h′′ =(~q′′,~x′′)∈
H∗, the following properties hold:

1. d∗
H(~h,~h′)≥ 0 for all h,h′ ∈ H∗.

2. d∗
H(~h,~h′) = 0 if and only if~h =~h′.

3. d∗
H(~h,~h′′)≤ d∗

H(~h,~h′)+d∗
H(~h′,~h′′) for all h,h′,h′′ ∈ H∗.

Proof:

1. From Def. 2 here, and Def. 11 and Prop. 2 in [17] dD(qi,q′i) ≥ 0 ∀i ∈ I, then maxi∈I dD(qi,q′i) ≥ 0. By
properties of norm and of tanh, tanh‖~x−~x′‖ ≥ 0 for all~x,~x′ ∈∏i∈I Xi. Thus d∗

H(~h,~h′)≥ 0 for all h,h′ ∈H∗.

2. (⇒) If~h =~h′, ~q =~q′ and ~x =~x′. ~q =~q′ implies qi = q′i ∀i ∈ I. Then dD(qi,q′i) = 0 ∀i ∈ I, which implies
maxi∈I(dD(qi,q′i)) = 0. ~x =~x′ implies tanh(‖~x−~x′‖) = 0. Thus~h =~h′⇒ d∗

H(~h,~h′) = 0.

(⇐) Since maxi∈I dD(qi,q′i)≥ 0 and tanh(‖~x−~x′‖)≥ 0 ∀~h,~h′ ∈H∗, d∗
H(~h,~h′)= 0 implies that maxi∈I dD(qi,q′i)=

0 and tanh(‖~x−~x′‖) = 0. From Def. 2 maxi∈I dD(qi,q′i) = 0 implies dD(qi,q′i) = 0 ∀i ∈ I, which together
with Prop. 1 in [17] implies qi = q′i ∀i ∈ I, which implies ~q =~q′. tanh(‖~x−~x′‖) = 0 implies ‖~x−~x′‖= 0,
which implies~x =~x′. Thus d∗

H(~h,~h′) = 0⇒~h =~h′.

(⇒) and (⇐) imply d∗
H(~h,~h′) = 0⇐⇒~h =~h′.

3. Discrete: From Lemma 2 in [17] dD(qi,q′′i ) ≤ dD(qi,q′i)+ dD(q′i,q
′′
i ). Suppose ∃~q,~q′,~q′′ ∈ ∏i∈I Qi such

that maxi∈I dD(qi,q′′i ) > maxi∈I dD(qi,q′i) + maxi∈I dD(q′i,q
′′
i ). Then, ∃i, j,k ∈ I such that dD(qi,q′′i ) >

dD(q j,q′j)+dD(q′k,q
′′
k ). Note that this implies dD(q j,q′j)≥ dD(qi,q′i) and dD(q′k,q

′′
k )≥ dD(q′i,q

′′
i ). This im-

plies dD(qi,q′′i ) > dD(qi,q′i)+dD(q′i,q
′′
i ), which contradicts Lemma 2 in [17]. Therefore maxi∈I dD(qi,q′′i )≤

maxi∈I dD(qi,q′i)+maxi∈I dD(q′i,q
′′
i ) ∀~q,~q′,~q′′ ∈∏i∈I Qi.

Continuous: tanh(‖x− x′′‖) ≤ tanh(‖x− x′‖)+ tanh(‖x−′ x′′‖) follows from Lemma 3 in [17]. Discrete
and Continuous parts imply the claim.

1For a definition of a path, see [5].
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Note that the interconnected hybrid distance does not satisfy the symmetry property that metrics usually do
because of the use of the discrete distance of Definition 2. However, we believe that the absence of this property
is actually desirable because the number of transitions that are required to reach ~q from ~q′ may be different from
the number of transitions required to reach ~q′ from ~q.

It is possible to reformulate Definition 3 and Theorem 1 to prevent simultaneous discrete transitions among
different individual systems. In such case a more meaningful notion of distance would be d∗

H(~h,~h′)= ∑i∈I(dD(qi,q′i))+
tanh(‖~x−~x′‖).

4 Interconnected Hybrid Execution

In this section we introduce the Interconnected Hybrid Execution (IHE) based on the concept of hybrid execution
in [11]. The IHE is the analog of the state evolution of a continuous multi-agent dynamical system, and captures
the system’s hybrid behavior with respect to both discrete and continuous interactions of the agents among them-
selves and with and with its environment. Then we provide conditions for the existence and uniqueness of an
infinite IHE. These conditions are stated as a function of each agent in the system. Therefore the desired global
behavior of the system (existence and uniqueness of its execution), can be guaranteed by the specification of local
design variables inside each agents dynamics.

A Time Trajectory is a sequence τ̄ = {τ̄0, τ̄1, . . . , τ̄n, . . . , τ̄N̄}, where τ̄n ≤ τ̄n+1 for all n = {0,1, . . . , N̄− 1}. τ̄
is infinite if N̄ = ∞ and is finite otherwise. τ is an Interconnected Hybrid Time Trajectory (IHTT) if τ is a time
trajectory and if 1) τ0 ∈ τ is the time when H∗ starts its evolution, 2) τn ∈ τ is the time at which there is a system
Hi ∈ H∗ that makes a discrete transition from qn

i to qn+1
i for n = {0,1, . . . ,N− 1}, such that the Interconnected

Hybrid System H∗ makes a discrete transition from ~qn to ~qn+1, and 3) τN ∈ τ is the time when H∗ ends its
evolution. τ̂ is an Event Time Trajectory (ETT), if τ̂ is a time trajectory and τ̂n is the time when there is a system
Hi ∈ H∗ that experiments a discrete event en

i ∈ Ei for all n ∈ {0,1, . . . , N̂} where N̂ is the number of events that
H∗ experiments.

The IHTT and the ETT are used to encode timing information for the continuous and discrete dynamics of
the IHS H∗. The IHTT stores the times when a discrete transition takes place at least on one of the agents in
the system. As a consequence the IHTT also specifies time intervals between two consecutive elements in the
sequence where uninterrupted continuous evolution takes place. On the other hand the ETT stores information
about the specific times that events happen somewhere in the system. Note that this two sequences are considered
completely independent. This is useful because the occurrence of an event does not necessarily imply that a
discrete transition takes place.

The IHTT and the ETT as defined above allow to have more than one hybrid system in the overall IHS taking
a discrete transition or experimenting an event at the same time. These definitions may be reformulated to exclude
this possibility. Any time trajectory τ̄ is linearly ordered by the relation ≺ defined by t1 ≺ t2 for t1 ∈ [τ̄i, τ̄i+1] and
t2 ∈ [τ̄ j, τ̄ j+1] if t1 < t2 or i < j. We say τ̄ = {τ̄0, τ̄1, . . . , τ̄N̄} is a prefix of τ̃ = {τ̃0, τ̃1, . . . , τ̃Ñ} (written τ̄ v τ̃) if
either they are identical, or τ̄ is finite, N̄ ≤ Ñ, τ̄n = τ̃n for all n ∈ {0,1, . . . , N̄− 1}, and [τ̄N−1, τ̄N [⊆ [τ̃N−1, τ̃N [,
where [ is either ] or ).

A Group Event Sequence of H∗ is a collection E∗ = (τ̂,Es) where τ̂ is an ETT and Es = (e0
α0 ,e1

α1 , . . . ,eN̂
αN̂ ) is

the sequence of events that H∗ experiments, where αn ∈ I for all n ∈ {0,1, . . . N̂}, such that en
αn ∈ Eαn specifies

the event that occurs at τ̂n, and the individual system Hαn that experiments such event for all n ∈ {0,1, . . . N̂}.
Therefore the group event sequence contains ordered pairs composed by the time when an event occur at any agent
in the system and an event label that indicates what event occurred, and identifies the agent that experimented
such event.

In the following, in order to simplify the description of our results we divide the transition guards into a local
part, a remote part, and an event part when needed. The local part verifies that the state of the agent experimenting

5
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a discrete transition satisfies the transition guard. The remote part verifies that the states of the agents connected
to the one that is experimenting the transition satisfy the transition guard, and finally the event part (in the case of
an event-triggered transition) verifies that the agent experimenting the transition has also experimented a discrete
event that enables such transition. Let GS/Local

qi (s) ⊆ Xqi denote the first element in the cartesian product of the
state-based transition guard GS

qi
(s). Let GS/Remote

qi (s) ⊆ ∏ j∈V (qi) H j denote the remainder of the elements of the

cartesian product of the state-based transition guard GS
qi
(s). Let GE/E

qi (s) ⊆ Ei denote the first element in the

cartesian product of the event-triggered transition guard GE
qi
(s). Let GE/Local

qi (s)⊆ Xqi denote the second element

in the cartesian product of the event-triggered transition guard GE
qi
(s). Finally let GE/Remote

qi (s) ⊆ ∏ j∈V (qi) H j

denote the remainder of the elements of the cartesian product of the event-triggered transition guard GE
qi
(s). We

also use the following notation: qi∈̄~q if qi is a component of the vector~q. xqi ∈̄~x~q if xqi is a component of~x~q where
qi∈̄~q (Similarly for sqi∈̄~s and uqi∈̄~u). hi∈̄~h if hi is a component of~h. Finally since~h = (~q,~x~q) we also say qi∈̄~h if
qi∈̄~q and xqi ∈̄

~h if xqi ∈̄~x~q.

We say that~h(t) satisfies the state-based transition guard GS
qi
(s) if xqi(t) ∈ GS/Local

qi (s), and (h j) j∈V (qi)(t) ∈

GS/Remote
qi (s), where qi∈̄~h, xqi∈̄

~h, and hi∈̄~h for all i∈ I. Similarly~h(t) satisfies the event-triggered transition guard
GE

qi
(s) if xqi(t) ∈ GE/Local

qi (s), and (h j) j∈V (qi)(t) ∈ GE/Remote
qi (s), where where qi∈̄~h, xqi∈̄

~h, and hi∈̄~h for all i ∈ I.

Finally (τ̂k,ek
αk) satisfies the event-triggered transition guard GE

qi
(s) at time t if αk = i, τ̂k = t, and ek

αk ∈ GE/E
qi (s),

Definition 4 (Interconnected Hybrid Execution) An Interconnected Hybrid Execution (IHE) χ(~h0,E∗) with
initial conditions~h0 and group event sequence E ∗ is a collection (τ,q,s,x,u), where:

• τ is an interconnected hybrid time trajectory.

• q = {~q0,~q1, . . . ,~qn, . . . ,~qN} is a sequence of vectors of discrete locations ~qn = (qn
i )

T
i∈I where qn

i is the
discrete mode of system Hi at the n step on the sequence.

• s = {~s0,~s1, . . . ,~sn, . . . ,~sN} is a sequence of vectors of switching labels~sn = (sn
qi
)T

i∈I where sn
qi

is the switching
label of system Hi at n step in the execution.

• x = {~x0,~x1, . . . ,~xn, . . . ,~xN} is a sequence of continuous evolution~xn = (xT
qn

i
)T

i∈I where xqn
i

is a differentiable

map xqn
i

: [τn−1,τn[→ Xqn
i

of system Hi at the n step on the sequence for all i ∈ I.

• u = {~u0,~u1, . . . ,~un, . . . ,~uN} is a sequence of continuous control inputs ~un =
(

uqn
i

)T
i∈I where uqn

i
is a differ-

entiable map uqn
i

: [τn−1,τn[→Uqn
i

at the n step on the sequence for all i ∈ I.

The interconnected hybrid execution χ(~h0,E∗) satisfies the following conditions:

• Initial Condition:~h0 = (~q0,~x0(0)) is an initial condition of H∗.

• Continuous Dynamics: for all t ∈ [τn−1,τn[, for all n∈{1,2, . . . ,N}, and for all i∈ I, ẋqn
i
(t)= fqn

i
(xqn

i
,uqn

i
, t),

xqn
i
∈ Xqn

i
and uqn

i
∈Uqn

i
where qn

i ∈̄~q
n, xqn

i
∈̄~xn, and uqn

i
∈̄~un.

• Discrete Dynamics: Either the event-triggered transition conditions or the state-based transition condi-
tions hold for each n ∈ {0,1,2, . . . ,N − 1} and for all i ∈ I. The event-triggered transition conditions
are:

– qn+1
i = sqn

i
∈ Sqn

i
, where qn+1

i ∈̄~qn+1 and sqn
i
∈̄~sn,

– There exists a (τ̂k,ek
αk) ∈ E∗ that satisfies GE

qn
i
(sqn

i
) at time τn.

– ~hn(τn) satisfies GE
qn

i
(sqn

i
).

6
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– xqn+1
i

(τn) ∈ Zqn
i

(

ek
αk ,xqn

i
,(hn

j) j∈V (qn
i ),sqn

i

)

.

The state-based transition conditions are:

– qn+1
i = sqn

i
∈ Sqn

i
, where qn+1

i ∈̄~qn+1 and sqn
i
∈̄~s,

– ~hn(τn) satisfies GS
qn

i
(sqn

i
).

– xqn+1
i

(τn+1) ∈ Zqn
i
(xqn

i
,(hn

j) j∈V (qn
i ),sqn

i
).

The IHE provides the information about the continuous and discrete states and inputs of the system at each
instant of its evolution. It is the analog of the state-input trajectory in continuous time systems. The conditions
imposed in the second part of Definition 4 are required for it to be valid to H∗. Therefore an IHE should start at a
valid initial condition. The continuous evolution between two times in the interconnected hybrid time trajectory
should satisfy the continuous dynamics of each agent, and the discrete transitions should have valid transition
guards and transition maps. Note that we used χ(~h0,E∗) to denote an IHE with initial condition ~h0 and group
event sequence E∗.

In order to prove the existence and uniqueness we need to define additional concepts. We say that an
IHE χ(~h0,E∗) = (τ,q,s,x,u) of H∗ with N + 1 elements is a prefix of another IHE χ̃(~h0,E∗) = (τ̃, q̃, s̃, x̃, ũ)

of H∗ with Ñ + 1 elements (written χ(~h0,E∗) v χ̃(~h0,E∗)) if τ v τ̃, and for all n ∈ {0,1, . . . ,N} and for all
t ∈ [τn−1,τn[ (~qn,~sn,~xn(t),~un(t)) = (~̃qn,~̃sn,~̃xn(t),~̃un(t)). We say that χ(~h0,E∗) is a strict prefix of χ̃(~h0,E∗) (writ-
ten χ(~h0,E∗) @ χ̃(~h0,E∗)) if χ(~h0,E∗)v χ̃(~h0,E∗), and χ(~h0,E∗) 6= χ̃(~h0,E∗).

An IHE χ(~h0,E∗) is called maximal if it is not a strict prefix of any other execution. An IHE χ(~h0,E∗) is
finite if τ is a finite sequence and the last elements of u and x are defined over compact intervals of time, i.e.
~uN : [τN−1,τN ]→∏i∈I Uqn

i
, and ~xN : [τN−1,τN ]→∏i∈I Xqn

i
. χ(~h0,E∗) is infinite if τ is an infinite sequence or if

τN = ∞.

χS(~h0,E∗) denotes the set of all IHEs with initial condition~h0 and group event sequence E ∗, and similarly
χF(~h0,E∗) denotes the set of all finite IHEs, χ∞(~h0,E∗) denotes the set of all infinite IHEs, and χM(~h0,E∗)

denotes the set of all maximal IHEs with initial condition~h0 and group event sequence E ∗. Init denotes the set of
all initial conditions, and ESS denotes the set of all possible group event sequences.

We say that χ(~h0,E∗) = (τ,q,s,x,u) ∈ χF(~h0,E∗) that maps ~h0 to~h with group event sequence E ∗ if τ =

{τ0,τ1, . . . ,τN} and~h = (~qN ,~xN(τN)). An interconnected hybrid state ~h ∈ Reach(~h0,E∗) if there exists a finite
IHE χ(~h0,E∗) ∈ χF(~h0,E∗) that maps ~h0 to ~h with group event sequence E ∗. The set of states ~h that can be
reached from any initial condition and with any group event sequence ReachH∗ =

⋃

(~h0,E∗)∈Init×ESS Reach(~h0,E∗)

is called Interconnected Reachable Set.

Let ψ(qi,xqi ,uqi , t) denote the continuous flow of fqi(xqi ,uqi , t) for all i∈ I. We define the set for which contin-
uous evolution is impossible as OutH∗ = {~h∈∏i∈I Xi×∏i∈I Qi;∀ε > 0,∃t ∈ [0,ε) and ∃i∈ I, such that ψ(qi,xqi ,uqi , t) /∈

Xqi , where qi∈̄~h,xqi∈̄
~h}. This set specifies what states in the system require a discrete transition for the system

to continue its evolution.

We say that H∗ is deterministic if given~h0 and E∗, χM(~h0,E∗) contains at most one element. The following
result provides the necessary and sufficient conditions for existence of an infinite execution given that the system
is deterministic. These conditions combined with the condition for a IHS to be deterministic yield the existence
and uniqueness of an infinite IHE. The proof of Lemma 1 is provided in Section 5.

Lemma 1 (Existence if deterministic) Suppose H∗ is deterministic. Then given an initial condition ~h0 and a
group event sequence, E∗, χ∞(~h0,E∗) is nonempty if and only if for all~h ∈ ReachH∗

⋂

OutH∗ either one of the
following conditions holds:

1. There exist a s ∈ Sqi for some qi∈̄~h such that~h satisfies GS
qi
(s).

7
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2. There exist a s ∈ Sqi for some qi∈̄~h such that~h satisfies GE
qi
(s), and there exists (τ̂k,ek

αk) ∈ E∗ that satisfies

GE
qi
(s) at τN where τN is the time of the last element of the finite execution χ(~h0,E∗) = (τ,q,s,x,u) that

maps the system H∗ from~h0 to~h with group event sequence E ∗ .

Note that the conditions in this lemma essentially require that whenever the system gets into an state where
continuous evolution is impossible, it is guaranteed that a discrete transition from that state exists. In the following
we state the necessary and sufficient conditions for an IHS to be deterministic. The proof of Lemma 2 is provided
in Section 5.

Definition 5 (Forced Transition Condition) Given an initial condition ~h0 and a group event sequence E ∗, we
say that~h ∈ ReachH∗ satisfies the Forced Transition (FT) condition if one of the following holds:

• If there exists a s ∈ Sqi for some qi∈̄~h such that~h satisfies GS
qi
(s), then~h ∈ OutH∗ .

• If there exists a s∈ Sqi for some qi∈̄~h such that~h satisfies GE
qi
(s), and there exists (τ̂k,ek

αk)∈E∗ that satisfies

GE
qi
(s) at τN where τN is the last element of τ in the finite execution χ(~h0,E∗) = (τ,q,s,x,u) that maps~h0

to~h with group event sequence E ∗, then~h ∈ OutH∗

Definition 6 (Disjoint Transition Guard Condition) Given an initial condition~h0 and a group event sequence
E∗, we say that~h∈ReachH∗ satisfies the Disjoint Transition Guard (DTG) condition if one of the following holds:

• If there exist s,s′ ∈ Sqi for some Hi ∈H∗, where s 6= s′ and at least one of s,s′ is a state-based transition, then

either xqi /∈GT/Local
qi (s)

⋂

GT ′/Local
qi (s′), or (h j) j∈V (qi) /∈GT/Remote

qi (s)
⋂

GT ′/Remote
qi (s′), where T,T ′ denote S

or E depending on the type of transition that s and s′ may be, xqi∈̄
~h, qi∈̄~h, and hi∈̄~h for all i ∈ I.

• If there exists s,s′ ∈ Sqi for some Hi ∈H∗, where s 6= s′ and both s,s′ are event-triggered transitions, then ei-
ther xqi /∈GE/Local

qi (s)
⋂

GE/Local
qi (s′), or (h j) j∈V (qi) /∈GE/Remote

qi (s)
⋂

GE/Remote
qi (s′) or ek

αk /∈GE/E
qi (s)

⋂

GE/E
qi (s′),

where xqi∈̄
~h, qi∈̄~h, and hi∈̄~h for all i ∈ I, and ek

αk belongs to (τ̂k,ek
αk) ∈ E∗, with τ̂k = τN and αk = i where

τN is the last element of τ in the finite execution χ(~h0,E∗) = (τ,q,s,x,u) that maps~h0 to~h with group event
sequence E∗.

Definition 7 (Singleton Transition Map Condition) Given an initial condition~h0 and a group event sequence
E∗, we say that~h ∈ ReachH∗ satisfies the Singleton Transition Map (STM) condition if on of the following holds:

• If there exists a s ∈ Sqi for some Hi ∈H∗ such that~h satisfies GS
qi
(s), then Zqi(xqi ,(h j) j∈V (qi),s) contains at

most one element, where xqi∈̄
~h, qi∈̄~h, and hi∈̄~h for all i ∈ I.

• If there exists a s ∈ Sqi for some Hi ∈ H∗ such that~h satisfies GE
qi
(s), and there exists (τ̂k,ek

αk) ∈ E∗ that

satisfies GE
qi
(s) at τN where τN is the last element of τ in the finite execution χ(~h0,E∗) = (τ,q,s,x,u) that

maps~h0 to~h with group event sequence E ∗, then Zqi(e
k
αk ,xqi ,(h j) j∈V (qi),s) contains at most one element,

where xqi∈̄
~h, qi∈̄~h, and hi∈̄~h for all i ∈ I.

Lemma 2 (Determinism) Given an initial condition~h0 and a group event sequence E ∗, χM(~h0,E∗) contains at
most one element if and only if for all~h ∈ ReachH∗ the Forced Transition, the Disjoint Transition Guard, and the
Singleton Transition Map conditions are satisfied.

The conditions in this lemma rule out any possibility where the system may take more than one path at
the same time: If a discrete transition is possible then continuous evolution is impossible and viceversa (FT
condition). If there exist two possible transitions then only one of their transition guards may be completely

8
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satisfied (DTG condition). And for every state that may originate a discrete transition there is only one possible
destination point after such transition takes place (STM condition)

Combining Lemmas 1 and 2 we obtain the following result. This holds because an infinite IHE is maximal
by definition.

Theorem 2 (Existence and Uniqueness) Given an initial condition~h0 and a group event sequence E ∗, χ∞(~h0,E∗)
contains exactly one element if and only if the conditions in Lemmas 1 and 2 hold.

Note that Theorem 2 states the necessary and sufficient conditions for the existence and uniqueness of an
infinite IHE in terms of each agent’s model. These conditions may be used to design the dynamics of each agent
in local form such that the existence and uniqueness of the multi-agent system’s execution is guaranteed. Some of
the conditions may seem difficult to satisfy. However some design guidelines may be followed in order to obtain
a well behaved system:

• Discrete events should be regarded as control inputs, forcing the discrete transition if the guard is satisfied.
Otherwise it becomes practically impossible to guarantee that the FT condition holds for event-triggered
transitions.

• The state based transition guards on each agents should overlap with the set where continuous evolution is
impossible. In this form the conditions for existence and and the FT condition for state-based transitions
are satisfied.

• The event-triggered transition guards should not coincide with the set where continuous evolution is impos-
sible because there is no guarantee for the occurrence of an event that enables a discrete transition, which
would violate the existence of the IHE.

5 Proofs

The proofs of Lemmas 1 and 2 require the following result.

Lemma 3 Let ~f~q(~x~q, t) = ( fqi(xqi ,uqi , t))qi∈Qi,i∈I:qi∈̄~q where xqi ∈̄~x~q. ~f~q(~x~q, t) is globally Lipschitz on ~x~q for all
~q ∈∏i∈I Qi.

Proof: Note that from Definition 1 uqi is a vector formed by the continuous states xq j of the agents
j ∈ V (qi), then fqi(xqi ,uqi , t) = fqi(xqi ,(xq j)q j∈Q j , j∈V (qi), t), which can be rewritten as fqi(~x~q, t) where the com-
ponents of ~x~q that are different from xqi or xq j for all q j ∈ Q j for all j ∈ V (qi) are absent. Therefore ~f~q(~x~q, t) =
( fqi(xqi ,uqi , t))qi∈Qi,i∈I:qi∈̄~q is well defined.

Consider
∥

∥

∥

~f~q(~x~q, t)−~f~q(~̃x~q, t)
∥

∥

∥
:= LHS where~x~q,~̃x~q ∈∏i∈I Xi. By triangle inequality

LHS≤∑
i∈I

∥

∥ fqi(~x~q, t)− fqi(~̃xqi , t)
∥

∥

where qi∈̄~q for all i ∈ I. By the previous argument, fqi(~x~q, t) = fqi(xqi ,uqi , t) and fqi(~̃xqi , t) = fqi(x̃qi , ũqi , t), so

LHS≤∑
i∈I

∥

∥ fqi(xqi ,uqi , t)− fqi(x̃qi , ũqi , t)
∥

∥

adding fqi(x̃qi ,uqi , t)− fqi(x̃qi ,uqi , t) = 0 to the term inside the norm in the right hand side above, and applying
triangle inequality we obtain:

LHS≤ ∑i∈I
∥

∥ fqi(xqi ,uqi , t)− fqi(x̃qi ,uqi , t)
∥

∥+ ...

∑i∈I
∥

∥ fqi(x̃qi ,uqi , t)− fqi(x̃qi , ũqi , t)
∥

∥

9
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which by Assumption 1 implies

LHS≤∑
i∈I

Lxqi

∥

∥xqi − x̃qi

∥

∥+Luqi

∥

∥uqi − ũqi

∥

∥

Note that xqi ,uqi are vectors formed by some but not necessarily all the components of ~x~q. Similarly x̃qi , ũqi

are formed by components of ~̃x~q, which implies that
∥

∥xqi − x̃qi

∥

∥ ≤
∥

∥~x~q−~̃x~q
∥

∥ as well as
∥

∥uqi − ũqi

∥

∥ ≤
∥

∥~x~q−~̃x~q
∥

∥.
Therefore if we let L = ∑i∈I Lxqi

+Luqi
we conclude that
∥

∥

∥

~f~q(~x~q, t)−~f~q(~̃x~q, t)
∥

∥

∥
≤ L

∥

∥~x~q−~̃x~q
∥

∥

which proves the claim.

5.1 Proof of Lemma 1

(⇒) Suppose for the sake of contradiction that H∗ is deterministic, and for any~h0 and E∗ χ∞(~h0,E∗) is nonempty,
but there is a~h ∈ ReachH∗

⋂

OutH∗ for which none of 1) or 2) hold. Since~h ∈ ReachH∗ there is a finite execution
χ(~h0,E∗) = (τ,q,s,x,u) ∈ χF(~h0,E∗) such that τ = {τ0,τ1, . . . ,τN} and~h = (~qN ,~xN(τN)).

a) Suppose there exists another execution χ̌(~h0,E∗)= (τ̌, q̌, š, x̌, ǔ) that extends χ(~h0,E∗) such that χ(~h0,E∗)v

χ̌(~h0,E∗) and τ̌ = {τ0,τ1, . . . ,τN−1,τN + ε} for some ε > 0 (Lemma 3 makes this possible). Then there exists
t ∈ [0,ε) such that ψ(qi,xqi ,uqi , t) ∈ Xqi for all i ∈ I, which violates~h ∈ OutH∗ .

b) Suppose there exists χ̌(~h0,E∗)= (τ̌, q̌, š, x̌, ǔ) such that χ(~h0,E∗)v χ̌(~h0,E∗) and τ̌ = {τ0,τ1, . . . ,τN , τ̌N+1},
then there exists Hi ∈H∗ that executes either a state-based transition or a an event-triggered transition at τN , there-
fore one of the following holds:

• If Hi executes a state-based transition, Definition 4 implies there exists a s ∈ SqN−1
i

such that xqN−1
i

(τN) ∈

GS/Local
qN−1

i
(s), (hN−1

j ) j∈V (qN−1
i )(τ

N) ∈ GS/Remote
qN−1

i
(s), and xqN

i
(τN) ∈ ZqN−1

i
(GS

qN−1
i

,s) where qn
i ∈̄

~hn, xqn
i
∈̄~hn,

hn
j ∈̄

~hn for all i, j ∈ I and for all n ∈ {N,N−1}. Note that this violates assumption that 1) does not hold.

• If Hi executes an event-triggered transition, Definition 4 implies there exists a s∈ SqN−1
i

and a (τ̂k,ek
αk)∈E∗,

such that αk = i, τ̂k = τN , ek
αk ∈GE/E

qN−1
i

(s), xqN−1
i (τN) ∈GE/Local

qN−1
i

(s), (hN−1
j ) j∈V (qN−1

i )(τ
N) ∈GE/Remote

qN−1
i

(s), and

xqN
i
(τN) ∈ ZqN−1

i
(GE

qN−1
i

,s), where qn
i ∈̄

~hn, xqn
i
∈̄~hn, hn

j ∈̄
~hn for all i, j ∈ I and for all n ∈ {N,N−1}. Note that

this violates assumption that 2) does not hold.

a) and b) imply that χ(~h0,E∗) = (τ,q,s,x,u) is maximal. However by assumption χ∞(~h0,E∗) is nonempty,
therefore there exists an infinite execution χ̃(~h0,E∗) ∈ χ∞(~h0,E∗). This execution is also maximal and different
from χ(~h0,E∗), which implies that χM(~h0,E∗) has at least two different elements violating the assumption that
H∗ is deterministic, which proves the (⇒) part of our claim.

(⇐) Suppose for the sake of contradiction that there is a~h0 and a E∗ for which χ∞(~h0,E∗) is empty, but for
all~h ∈ ReachH∗

⋂

OutH∗ either 1) or 2) hold.

Since χ∞(~h0,E∗) is empty, we can find a finite, maximal execution χ(~h0,E∗) ∈ χF(~h0,E∗)
⋂

χM(~h0,E∗) that
maps~h0 to~h with group event sequence E ∗. χ(~h0,E∗) = (τ,q,s,x,u) ∈ χF(~h0,E∗) implies that the last elements
of x and u are defined over the compact interval [τN−1,τN ], i.e.,~xN : [τN−1,τN ]→∏i∈I XqN

i
and ~uN : [τN−1,τN ]→

∏i∈I UqN
i

.

By assumption ~hN ∈ ReachH∗ . If~hN /∈ OutH∗ , then there exists ε > 0 such that for all t ∈ [0,ε) and for all
i∈ I ψ(qN

i ,xqN
i
,uqN

i
, t)∈ Xqi , where qN

i ∈̄
~h, xqN

i
∈̄~hN . This implies that χ(~h0,E∗) can be extended to χ̃(~h0,E∗) such

10
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that χ(~h0,E∗) v χ̃(~h0,E∗), with τ̃ = {τ0,τ1, ...,τN + ε}, and ~̃xN and ~̃uN defined over the interval [τN−1,τN + ε[.
Therefore χ(~h0,E∗) is not maximal, contradicting our previous argument.

If ~hN ∈ OutH∗ , then by assumption either 1 or 2) hold. If 1) holds, there exists a Hi ∈ H∗ such that there
exists s ∈ SqN

i
with xqN

i
∈ GS/Local

qN
i

(s), and (hN
j ) j∈V (qN

i ) ∈ GS/Remote
qN

i
(s) where qN

i ∈̄
~hN , xqN

i
∈̄~hN , and hN

i ∈̄
~hN for

all i ∈ I. Then from Definition 4 χ(~h0,E∗) can be extended to χ̃(~h0,E∗) such that χ(~h0,E∗) v χ̃(~h0,E∗) where
χ̃(~h0,E∗) = (τ̃, q̃, s̃, x̃, ũ) = (τ,q,s,x,u) : (τ̃N+1,~̃qN+1,~̃sN+1,~̃xN+1,~̃uN+1) where q̃N+1

i = s∈ SqN
i

and x̃qN+1
i

(τ̃N+1)∈

ZqN
i
(GS

qN
i
,s), where q̃N+1

i ∈̄~̃qN+1 and x̃qN+1
i
∈̄~̃xN+1. Therefore χ(~h0,E∗) is not maximal, contradicting our previous

argument.

If instead 2) holds, there exist a Hi ∈ H∗, and a (τ̂k,ek
αk) ∈ E∗ such that αk = i, and such that there exists

s ∈ SqN
i

with xqN
i
∈ GE/Local

qN
i

(s), (hN
j ) j∈V (qN

i ) ∈ GE/Remote
qN

i
(s), and ek

αk ∈ GE/E
qN

i
(s), with τ̂k = τN . Then from Defi-

nition 4 χ(~h0,E∗) can be extended to χ̃(~h0,E∗) such that χ(~h0,E∗)v χ̃(~h0,E∗) where χ̃(~h0,E∗) = (τ̃, q̃, s̃, x̃, ũ) =
(τ,q,s,x,u) : (τ̃N+1,~̃qN+1,~̃sN+1,~̃xN+1,~̃uN+1) where q̃N+1

i = s∈ SqN
i

and x̃qN+1
i

(τ̃N+1)∈ZqN
i
(GS

qN
i
,s), where q̃N+1

i ∈̄~̃qN+1

and x̃qN+1
i
∈̄~̃xN+1. Therefore χ(~h0,E∗) is not maximal, contradicting our previous argument, and thus proving the

(⇐) part of the claim.

5.2 Proof of Lemma 2

(⇐) Suppose for the sake of contradiction that χM(~h0,E∗) contains at least two elements but all FT, DTG, and
SMT conditions hold. Then there exist χ̃(~h0,E∗) and χ̌(~h0,E∗) such that χ̃(~h0,E∗) 6= χ̌(~h0,E∗) and χ̃(~h0,E∗), χ̌(~h0,E∗)∈

χM(~h0,E∗).

Since both executions start at the same initial condition~h0 and use the same group event sequence E ∗, there
exists an IHE χ(~h0,E∗) that is a maximal prefix of both χ̃(~h0,E∗) and χ̌(~h0,E∗). Moreover χ(~h0,E∗) is finite
because χ̃(~h0,E∗) 6= χ̌(~h0,E∗).

Let~hN be the state of H∗ that is obtained from χ(~h0,E∗) with initial condition~h0 and group event sequence
E∗. Since χ(~h0,E∗) is finite, ~xN∈̄~hN and ~uN are defined over the compact interval [τN−1,τN ]. At this point the
following cases are possible:

1. τN /∈ τ̃ and τN /∈ τ̌, therefore both χ̃(~h0,E∗) and χ̌(~h0,E∗) evolve from~hN on the system’s continuous dy-
namics (This case establishes the sufficiency of Assumption 1 and Lemma 3). By definition of IHE (Defini-
tion 4, Lemma 3, and standard existence and uniqueness argument for continuous dynamical systems there
exists ε > 0 such that for all t ∈ [0,ε) and for all i ∈ I ψ(qN

i ,xN
qi
,uN

qi
, t) ∈ Xqi , where qN

i ∈̄
~hN , xN

qi
∈̄~hN , and

uN
qi
∈̄~uN for all i ∈ I. Therefore there exists χ̄(~h0,E∗) = (τ̄, q̄, s̄, x̄, ū) where τ̄ = {τ0,τ1, . . . ,τN−1,τN +

ε}, ~̄xN and ~̄uN are defined over [τN−1,τN + ε), χ(~h0,E∗) @ χ̄(~h0,E∗), and χ̄(~h0,E∗) v χ̃(~h0,E∗) and
χ̄(~h0,E∗)v χ̌(~h0,E∗) which contradicts discussion about χ(~h0,E∗) being the maximal prefix of χ̃(~h0,E∗)

and χ̌(~h0,E∗).

2. τN /∈ τ̃ and τN ∈ τ̌, therefore χ̃(~h0,E∗) evolves from ~hN on the system’s continuous dynamics, while
χ̌(~h0,E∗) executes a discrete transition from ~hN (This establishes sufficiency of the FT condition). The
discrete transition that χ̌(~h0,E∗) executes from~hN may be and event-triggered transition or a state-based
transition.

If the transition is event-triggered, there exists a Hi ∈ H∗ such that there exists s ∈ SqN
i

with s 6= nt such

that qN+1
i = s, xqN

i
(τN) ∈ GE/Local

qN
i

(s), and (hN
j ) j∈V (qN

i )(τ
N) ∈ GE/Remote

qN
i

(s), and there exist (τ̂k,ek
αk) ∈ E∗

such that τ = τ̂k, αk = i, and ek
αk ∈ GE/E

qN
i

(s). Then by the FT condition (second item)~hN ∈ OutH∗ . On the

11
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other hand, since τN /∈ τ̃, definition of IHE (Definition 4, Lemma 3, and standard existence and uniqueness
argument for continuous dynamical systems there exists ε > 0 such that for all t ∈ [0,ε) and for all i ∈ I
ψ(qN

i ,xN
qi
,uN

qi
, t) ∈ Xqi , where qN

i ∈̄
~hN , xN

qi
∈̄~hN , and uN

qi
∈̄~uN for all i ∈ I, which implies that ~hN /∈ OutH∗

contradicting the previous conclusion.

If the transition is state-based, a similar argument leads to the same conclusion using the first item in the
FT condition.

3. τN ∈ τ̃ and τN /∈ τ̌. Symmetric to case 2.

4. τN ∈ τ̃ and τN ∈ τ̌, therefore both χ̃(~h0,E∗) and χ̌(~h0,E∗) execute a discrete transition from~hN . (This case
establishes the sufficiency of DTG and STM conditions). Each one of the IHE may take an event-triggered
transition or a state-based transition, leading to four possibilities under this case.

If χ̃(~h0,E∗) executes an event-triggered transition, then from definition of IHE, there exists a Hi ∈H∗, such
that there is s̃ ∈ SqN

i
with s̃ 6= nt such that xqN

i
(τN) ∈ GE/Local

qN
i

(s̃) and (hN
j ) j∈V (qN

i )(τ
N) ∈ GE/Remote

qN
i

(s̃), and

there exists (τ̂k,ek
αk) ∈ E∗ such that τ̂k = τN , αk = i, and ek

αk ∈ GE/E
qN

i
(s̃). By assumption, there also exists

an Hi ∈ H∗, such that there is š ∈ SqN
i

, š 6= nt, xqN
i
(τN) ∈ GT/Local

qN
i

(š) and (hN
j ) j∈V (qN

i )(τ
N) ∈ GT/Remote

qN
i

(š)

where T denotes S or E depending on whether š is event-triggered or state-based, and there exists (only in
case š is event-triggered) (τ̂k,ek

αk) ∈ E∗ such that τ̂k = τN , αk = i, and ek
αk ∈ GE/E

qN
i

(š).

Since~hN satisfies the guard conditions for both s̃ and š, xqN
i
(τN)∈GE/Local

qN
i

(s̃)
⋂

GT/Local
qN

i
(š), (hN

j ) j∈V (qN
i )(τ

N)∈

GE/Remote
qN

i
(s̃)

⋂

GT/Remote
qN

i
(š), and (only in case š is event-triggered) ek

αk ∈ GE/E
qN

i
(s̃)

⋂

GE/E
qN

i
(š). This implies

by DTG condition that s̃ = š (which also discards the possibility of š being state-based). Then by IHE defi-
nition q̃N+1

i = q̌N+1
i , which by the STM condition implies that x̃q̃N+1

i
(τN) = x̌q̌N+1

i
(τN). Therefore χ(~h0,E∗)

can be extended to χ̄(~h0,E∗) = χ(~h0,E∗) : (τ̄N+1, ~¯ N+1q, ~¯ N+1s, ~¯ N+1x, ~¯ N+1s) where χ̄(~h0,E∗) v χ̃(~h0,E∗),
χ̄(~h0,E∗)v χ̌(~h0,E∗), and χ(~h0,E∗) @ χ̄(~h0,E∗) which contradicts discussion about χ(~h0,E∗) being the
maximal prefix of both χ̃(~h0,E∗), and χ̌(~h0,E∗).

If χ̃(~h0,E∗) executes a state-based transition, a similar discussion leads to the same conclusion proving this
case

From all the previous cases the (⇐) part of the claim is proved.

(⇒) Suppose for the sake of contradiction that χM(~h0,E∗) contains at most one element, but that at least
one of the FT, DTG, or STM conditions is not satisfied for~h. Since~h ∈ ReachH∗ there exists a finite execution
χ(~h0,E∗) = (τ,q,s,x,u)∈ χF(~h0,E∗) such that~h =~hN(τN) = (~qN ,~xN(τN)) where~qN and~xN are the last elements
of q and x respectively, and~xN and ~uN are defined over the compact interval [τN−1,τN ].

If the FT condition is violated, there exists s ∈ SqN
i

for some Hi ∈ H∗ such that ~hN(τN) satisfies the event-

triggered transition guard (assuming s is event-triggered), and there exists (τ̂k,ek
αk) ∈ E∗ that satisfies the event-

triggered transition guard, but~hN(τN) /∈ OutH∗ . Therefore χ(~h0,E∗) can be extended with either a discrete tran-
sition or continuous evolution: In case of the discrete transition consider q̌N+1

i = s then there exists χ̌(~h0,E∗) =

(τ,q,s,x,u) : (τ̌N+1,~̌qN+1,~̌sN+1,~̌xN+1,~̌uN+1), where s∈̄~̌sN+1, q̌N+1
i ∈̄~̌qN+1. In case of the continuous evolution

consider ε > 0 such that ψ(qN
i ,xqN

i
,uqN

i
, t) ∈ XqN

i
for all i ∈ I and for all t ∈ [0,ε). Then there exists χ̃(~h0,E∗) =

(τ0,~q0,~s0,~x0,~u0), . . . ,(τN−1,~qN−1,~sN−1,~xN−1,~uN−1),(τN + ε,~qN ,~sN ,~xN ,~uN) where ~xN and ~uN are defined over
[τN−1,τN +ε). Thus χ(~h0,E∗) @ χ̌(~h0,E∗) and χ(~h0,E∗) @ χ̃(~h0,E∗), and χ̌(~h0,E∗) 6= χ̃(~h0,E∗) which implies
that there is at least two maximal executions in χM(~h0,E∗) which contradicts assumption, therefore FT must hold.
A similar conclusion is achieved in the case of a state-based transition.

12
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If the DTG condition does not hold, there exists s,s′ ∈ SqN
i

with s 6= s′ such that xqN
i
∈GT1/Local

qn
I

(s)
⋂

GT2/Local
qN

i
(s′),

(h j) j∈V (qN
i ) ∈GT1/Remote

qN
i

(s)
⋂

GT2/Local
qN

i
(s′), and in case both s and s′ are event-triggered, ek

αk ∈GE/E
qN

i
(s)

⋂

GE/E
qN

i
(s′).

Then ~hN(τN) satisfies the transition guards of both s and s′ simultaneously. Therefore χ(~hN
0 ,E∗) can be ex-

tended on two different discrete transitions q̌N+1
i = s and q̃N+1

i = s′, where q̌N+1
i 6= q̃N+1

i . Then there exist two
IHE χ̌(~hN

0 ,E∗) 6= χ̃(~hN
0 ,E∗) where χ̌(~hN

0 ,E∗) = (τ,q,s,x,u) : (τ̌N+1,~̌qN+1,~̌sN+1,~̌xN+1,~̌uN+1) and χ̃(~hN
0 ,E∗) =

(τ,q,s,x,u) : (τ̃N+1,~̃qN+1,~̃sN+1,~̃xN+1,~̃uN+1), where q̌N+1
i ∈̄~̌qN+1 and q̃N+1

i ∈̄~̃qN+1. Note that χ(~hN
0 ,E∗)@ χ̌(~hN

0 ,E∗)

and χ(~hN
0 ,E∗) @ χ̃(~hN

0 ,E∗) so there exist at least two maximal execution in χM(~hN
0 ,E∗) contradicting our as-

sumption. Thus DTG condition must hold. A similar conclusion is achieved in the case where both s and s′ are
state-based transitions.

If the STM condition does not hold for~h =~hN(τN), there exists s ∈ SqN
i

for some Hi ∈H∗ such that~h satisfies

event-triggered transition transition guard (assuming s is an event-triggered), and there also exists (τ̂k,ek
αk) ∈ E∗

that satisfies the event-triggered transition guard. Since ZqN
i
(ek

αk ,xqN
i
,(h j) j∈V (qN

i ),s) contains at least two elements,

χ(~hN
0 ,E∗) may be extended to χ̌(~hN

0 ,E∗) = (τ,q,s,x,u) : (τ̌N+1,~̌qN+1,~̌sN+1,~̌xN+1,~̌uN+1) as well as to χ̃(~hN
0 ,E∗) =

(τ,q,s,x,u) : (τ̃N+1,~̃qN+1,~̃sN+1,~̃xN+1,~̃uN+1) where ~̌qN+1 = ~̃qN+1 but ~̌xN+1 6= ~̃xN+1 ∈ ZqN
i
(ek

αk ,xqN
i
,(h j) j∈V (qN

i ),s).

This implies χ(~hN
0 ,E∗) @ χ̌(~hN

0 ,E∗) and χ(~hN
0 ,E∗) @ χ̃(~hN

0 ,E∗). Since χ̌(~hN
0 ,E∗) 6= χ̃(~hN

0 ,E∗), χM(~hN
0 ,E∗)

contains at least two elements contradicting our assumption. Therefore STM must hold. A similar conclusion is
achieved in case s is state-based. This completes the proof of (⇒), and of our claim.

6 Conclusion

We present an interconnected hybrid systems framework: a set of hybrid systems with interweaved continuous
and discrete dynamics that form a multi-agent system with hybrid interacting dynamics. We extend the work
in [11, 17] defining a metric, reachable sets, and executions for interconnected hybrid systems. We comment on
the properties of the new metric and prove a necessary and sufficient conditions for the existence and uniqueness
of interconnected hybrid executions that are written in terms of the local model of each hybrid agent.

We are currently working on the application of this conditions to the problem of designing future communi-
cation networks as explained in the introduction. We also expect that this new theoretical framework will enable
us to analyze, control and perform abstractions on multi-agent systems with hybrid interacting dynamics.
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