Exchange Gas Vibration Isolation for a “Dry” Research Cryostat

S. T. P. Boyd
University of New Mexico, stpboyd@unm.edu

A. V. Pregenzer-Wenzler
University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/phyc_fsp

Part of the Physics Commons

Recommended Citation

This Poster is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Physics & Astronomy Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
Exchange-Gas Vibration Isolation for a “Dry” Research Cryostat

STP Boyd and A Pregenzer-Wenzler

Abstract. Thermal contact to a mechanical refrigerator via 1-atm helium exchange gas provides the best known vibration floor for dry cryostats. We describe initial performance measurements of a new cryostat designed to implement this approach.

Thermal Performance with 1-Atm 4He Exchange Gas

- Heat exchangers are performing well at 1 atmosphere
- Data in agreement with heat-transfer calculations
- No indication of degradation of pulse-tube refrigerator performance when surrounded by 1 atm 4He
 - No Taconis oscillations or convection rolls!
 - No impact from 4He heat capacity in contact with “pulse tube”!

Preliminary Vibration Measurements

- Mechanical Decoupling Verified with Ohmmeter
- Remaining Coupling is through tripod legs, will be addressed in next stage of construction