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Abstract

In this thesis, we consider the system of reaction-diffusion equations and the behavior

of the solution of such a system. The focus is to concentrate on solutions which

decay at ∞. Under suitable assumptions, we prove the solution and its derivatives

decay exponentially in all space. We also attempt to show that the solution decays

exponentially for the system of equations when posed on a finite disk. This result

has been confirmed via numerical methods before, but has never been attempted

through an analytic approach, like in this paper. We prove the exponential decay of

the solution in a one dimensional case and also discuss the limitations we face when

we extend the problem to a system of equations posed on a finite disk.
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Chapter 1

Introduction

Wave motion is the key mechanism of interest to many fields of science, such as

mechanics, acoustics, seismology, oceanography, etc. The study of nonlinear waves

has quietly and steadily revolutionized the realm of science over recent years. Non-

linear waves are solutions of time dependent PDE’s that are posed on an unbounded

domain. There are different types of nonlinear waves, like travelling waves, rotating

waves, solitons etc.

In this thesis, we want to study the behavior of the solutions of such PDE’s when

posed to a bounded domain. Mainly because problems posed on infinite domains are

always idealizations, and formulations on finite regions may be more realistic and

more accurate. Also, whenever we are doing numerical computations, we always

reduce the PDE to a bounded domain, since they can only be performed on finite

domains. For this reason, it is crucial to study the behavior of such problems when

posed on a finite domain. Our main concern in this paper is to be able to understand

the relation between the problems on unbounded domain to the problems on bounded

domain. Two main questions arise while trying to understand that relation. Does

the solution of the BVP on infinite domain decay exponentially? The main aim
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Chapter 1. Introduction

of this paper, is to prove that the problem in all space has a solution that decays

exponentially. Does the BVP imposed on a bounded domain have a nearby solution?

In doing so, we want to show that the error between the solution of the PDE on a

bounded domain and the solution on an infinite domain is exponentially small as a

function of domain size.

The motivation for this paper comes from the solution for the Quintic-Cubic

Ginzburg-Landau equation (QCGL). The complex Ginzburg-Landau equation [6]

was first derived in the studies of Poiseuille flow and reaction-diffusion systems and

is one of the most studied equations in applied mathematics. Let us consider the

QCGL equation

ut = α∆u+ u(µ+ β|u|2 + γ|u|4) (1.1)

where x ∈ R2, u(x, t) ∈ C and µ ∈ R , α, β, γ ∈ C. Since u is complex valued

the equation corresponds to a real system with two variables. We will look at the

numerical solution of this equation as discussed in the paper [1]. The following

parameters were used to compute the solution.

α =
1

2
(1 + i), β = 2.5 + i, γ = −1− 0.1i, µ =

−1

2
.

For the numerical computations, Cosmol Multiphysics [3] has been used. The

problem is discretized on balls BR(0) = {x ∈ R2 : |x| ≤ R} with Neumann boundary

conditions. The real and imaginary parts of the solution are shown in Figure 1.1 and

Figure 1.2.

Spinning solitons are solutions that rotate at constant speed and converge to 0

as |x| → ∞. For more information on spinning solitons, see [4], [5].

2



Chapter 1. Introduction

Figure 1.1: Real part of spinning solitons in the QCGL-system [1].

Figure 1.2: Imaginary part of spinning solitons in the QCGL-system [1].

1.1 Class of Problems

In recent years, systems of reaction-diffusion equations have received a great deal of

attention, motivated by both their widespread occurrence in models of chemical and

biological phenomena, and by the richness of the structure of their solution sets [8].

In the current thesis, we consider the following system of reaction-diffusion equa-

3



Chapter 1. Introduction

tions

ut(x, t) = A∆u(x, t) + f(u(x, t)) , t ≥ 0, x ∈ Rd, d ≥ 2,

u(x, 0) = u0(x) , t = 0, x ∈ Rd, (1.2)

where A ∈ RN×N is a diffusion matrix, f : RN → RN is a sufficiently smooth non-

linearity, u0 : Rd → RN are the initial data and u : Rd× [0,∞)→ RN is the solution

to be determined.

The rotating wave solutions of (1.2) are of the form

u∗(x, t) = v∗(e
−tSx), t ≥ 0, x ∈ Rd, d ≥ 2, (1.3)

with space dependent profile v∗ : Rd → RN and skew symmetric matrix 0 6= S ∈

Rd×d.

Transforming (1.2) via u(x, t) = v(e−tSx, t) we obtain the following evolution

equationvt(x, t) = A∆v(x, t) + 〈Sx,∇v(x, t)〉+ f(v(x, t)), t ≥ 0, x ∈ Rd, d ≥ 2,

v(x, 0) = u0(x) , t = 0, x ∈ Rd,
(1.4)

with the term

〈Sx,∇v(x)〉 =
d∑
i=1

[(Sx)iDiv(x)] =
d∑
i=1

d∑
j=1

[SijxjDiv(x)] (1.5)

where Di =
∂

∂xi
.

Our interest is in skew-symmetric matrices S = −ST , in which case (1.5) is a

rotational term containing angular derivatives

〈Sx,∇v(x)〉 =
d−1∑
i=1

d∑
j=i+1

[Sij(xjDi − xiDj)v(x)] (1.6)

4



Chapter 1. Introduction

Firstly, we would like to study the behavior of the steady state problem

A∆v∗(x) + 〈Sx,∇v∗(x)〉+ f(v∗(x)) = 0, x ∈ Rd. (1.7)

In the infinite domain case, the problem is considered in [1, 7]. The main result

of this paper has been stated as a conjecture in [1]. In paper [1], it was conjectured

that one can show the solution of (1.7) decays exponentially as |x| → ∞, but the

details have never been carried out in [1]. However in [7], it has been shown that the

solution v∗ of (1.7) belongs to an exponentially weighted Sobolev space. This, for

example is discussed in Section 1.2. We take this result and further show that the

solution and its derivatives decay exponentially. However, comparing the solution

of (1.7) posed on the infinite domain to the solution of (1.7) when posed on a finite

disk with Dirichlet boundary conditions is still an open problem.

1.2 Previous Result

In [7], the behavior of the solution to (1.7) has been studied closely, under the

following assumptions.

1. Assumption 1 The matrix A ∈ Rd×d is positive-definite, i.e. A+AT ≥ 2CAI,

for some positice constant CA.

2. Assumption 2 The matrix S ∈ Rd×d is skew-symmetric, i.e. S = −ST

(rotational condition).

3. Assumption 3 The function f : RN → RN satisfies f ∈ C2(RN ,RN) (smooth-

ness condition).

4. Assumption 4 f(0) = 0 (constant asymptotic state).

5. Assumption 5 A and Df(0) ∈ RN×N are simultaneously diagonalizable.

5



Chapter 1. Introduction

6. Assumption 6 σ(Df(0)) ⊂ {λ ∈ C|Reλ < 0}.

Before stating the theorem; first let’s introduce some necessary notations and

definitions of [7]. In this paper, we let K ∈ {R,C}.

Definition 1. For any given matrix C ∈ KN×N , we define the following:

1. σ(C) denotes the spectrum of C, i.e. the set of all eigenvalues of the matrix C.

2. ρ(C) =: maxλ∈σ(C)|λ| denotes the spectral radius of C.

3. s(C) =: maxλ∈σ(C)Reλ denotes the spectral abscissa of C.

Using the above notation, we define the following constants for the matrix A in

(1.7):

amin =: (ρ(A−1))−1,

amax =: ρ(A),

a0 =: −s(−A),

b0 =: −s(Df(0)).

Definition 2. [9] A function θ ∈ C(Rd,R) is called a weight function of exponential

growth rate η ≥ 0 provided that

θ(x) > 0 ∀x ∈ Rd

∃Cθ > 0 : θ(x+ y) ≤ Cθθ(x)eη|y| ∀x, y ∈ Rd.

Definition 3. A weight function θ ∈ C(Rd,R) of exponential growth rate η ≥ 0 is

called radial provided that

∃φ : [0,∞)→ R : θ(x) = φ(|x|) ∀x ∈ Rd.

6



Chapter 1. Introduction

Definition 4. A radial weight function θ ∈ C(Rd,R) of exponential growth rate

η ≥ 0 is called non-decreasing (or monotonically increasing) provided that

θ(x) ≤ θ(y) ∀x, y ∈ Rd with |x| ≤ |y|.

Associated with the weight functions of exponential growth rate are exponentially

weighted Lebesgue and Sobolev spaces

Lpθ(R
d,KN) =: {u ∈ L1

loc(Rd,KN) | ||θu||Lp <∞},

W k,p
θ (Rd,KN) =: {u ∈ Lpθ(R

d,KN) | Dβu ∈ Lpθ(R
d,KN) ∀ |β| ≤ k},

for every 1 ≤ p ≤ ∞ and k ∈ N0. The main result of [7] is the following.

Theorem 1. Under the above assumptions for some fixed p where 1 < p < ∞, for

every 0 < ϑ < 1 and for every radially nondecreasing weight function θ ∈ C(Rd,R)

of exponential growth rate η ≥ 0 with

0 ≤ η2 ≤ ϑ
2

3

a0b0
a2maxp

2
,

there exists a constant K1 = K1(A, f, d, p, θ, ϑ) > 0 with the following property:

Every classical solution v∗ of

A∆v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd,

such that v∗ ∈ Lp(Rd,RN) and

sup|x|≥R0|v∗(x)| ≤ K1 for some R0 > 0

satisfies

v∗ ∈ W 1,p
θ (Rd,RN)

7



Chapter 1. Introduction

Theorem 1 states that, if one multiplies v∗ by an exponentially growing function,

then the product is still integrable. A similar result has been proven in the complex

system case, when f : CN → CN in [7]. Using this result, we want to further prove

that the solution v∗ of (1.7) and its derivatives must decay exponentially. This is

the main aim of this paper. And the motivation for this came from the following

theorem in [7].

Theorem 2. With all the assumptions as before, we consider some fixed p, where

1 ≤ p ≤ ∞. Moreover, let 0 < ϑ < 1 and λ ∈ C with Reλ > 0. Then for every

radially nondecreasing weight function θ ∈ C(Rd,R) of exponential growth rate η ≥ 0

with 0 ≤ η2 ≤ ϑ a0Reλ
a2maxp

2 and for every g ∈ Lpθ(Rd,CN) we have v∗ ∈ W 1,p
θ (Rd,CN) with

||v∗||Lpθ(Rd,CN ) ≤
C1

Reλ
||g||Lpθ(Rd,CN ),

||Div∗||Lpθ(Rd,CN ) ≤
C2

(Reλ)1/2
||g||Lpθ(Rd,CN ), i = 1, ..., d,

where v∗ denotes the unique solution of (λI − L0)v = g in Lpθ(Rd,CN) with the

λ-independent constants C1, C2. And [L0v] =: A∆v(x) + 〈Sx,∇v(x)〉.

Just as a note, we would like to mention here that all the constants that are

introduced in the estimates in the following Sections, should be considered as some

real constants which do not depend on other parameters; unless otherwise mentioned.

8



Chapter 2

Exponential Decay for the Infinite

domain case

In order to investigate the exponential decay of (1.7) posed on the infinite domain

first, we would like to break the problem down to a simpler case where we can handle

the technicalities in detail. Once we understand these simple non-trivial cases; we

would then like to understand the solution in a real, systems case. Now note that,

in the one dimensional case we are already assuming that there is a solution to the

problem which decays at ∞. But in the general scenario, we just assume that the

solution is bounded. And the aim is to then show that the solution and its derivaties

indeed decay exponentially.

So, the main focus of this chapter would be to discuss the exponential decay in

the real case of the problem when posed on an infinite domain. In Section 2.1, we

will discuss a half line 1-D problem. We show for the 1-D case, that if there is a

solution that decays at ∞, then it has to decay exponentially. And to prove this,

we use the result from Section 2.2. In Section 2.2, we discuss the exponential decay

of (1.7) in the scalar case. Here, we use the Maximum principle approach to show

9



Chapter 2. Exponential Decay for the Infinite domain case

that the solution decays exponentially. And then in Section 2.3 and 2.4, we discuss

the all-space case. Here we first decompose the given system into an inhomogeneous

system and apply a Theorem from [7] to prove that the solution and its derivatives

decay exponentially using Sobolev inequalities.

2.1 A Simple 1-D Case

The problem (1.7) is quite complex. Hence, we will attempt to narrow down the

problem and first study the behavior of the solution in a 1-D case.

Let’s have a look at the BVP on unbounded domain.
−ū′′ + ū+ ū2 = 0

ū(0) = 1

limx→∞ ū(x) = 0

(2.1)

where ū : [0,∞)→ R.

To begin, we know that there is a solution to (2.1) by looking at the phase plane

diagram as shown in Figure 2.1. We used MATLAB to get this result.

From the phase plane portrait, we see that the solution ū which satisfies the above

boundary conditions should be positive, meaning

ū(x) > 0, x ∈ [0,∞)

Let’s define the linear operator M̃ by

[M̃w](x) = −w′′ + 1

2
w + (

1

2
+ ū)w.

Now, consider the following function h defined on [0,∞), for some positive real

10



Chapter 2. Exponential Decay for the Infinite domain case

Figure 2.1: Phase plane portrait of the half-line BVP.

number C:

h(x) = C e

−1

2
√

2
x

So, now to prove the exponential decay; we claim that δ = h− ū ≥ 0 for x ≥ R, for

some sufficiently large R.

Suppose not! Then δ(x) < 0 for some x > R. This implies that the function δ

has a negative minimum at some x0 > R.

11



Chapter 2. Exponential Decay for the Infinite domain case

Now consider

M̃δ = M̃(h− ū)

= M̃h− M̃ū

= −h′′ + 1

2
h+ (

1

2
+ ū)h, since M̃ū = 0.

Now, from the function h we have

h′′ =
1

8
C e

− x
2
√
2 , which gives

−h′′ + 1

2
h =

3

8
C e

− x
2
√
2 > 0, for x ∈ [0,∞).

And since ū(x) > 0 for x ∈ [0,∞), we get

(
1

2
+ ū)h > 0

Therefore, we get

[M̃δ](x0) > 0, for x0 > R. (2.2)

But,

[M̃δ](x0) = −δ′′(x0) + (1 + ū)δ(x0). (2.3)

And, at x0 where the function δ has a negative minimum we get

−δ′′(x0) ≤ 0

(1 + ū)δ(x0) < 0.

Hence, from (2.3)

[M̃δ](x0) < 0, for x0 > R. (2.4)

12



Chapter 2. Exponential Decay for the Infinite domain case

Therefore, from (2.2) and (2.4) we have a CONTRADICTION!

Hence, δ ≥ 0 which means ū ≤ h.

Similarly, we can show that −h ≤ ū using a similar contradiction argument.

Hence, we get

−h ≤ ū ≤ h =⇒ |ū| ≤ h

And |ū| ≤ C e

−1

2
√

2
x
.

Hence, this implies that ū decays exponentially.

Therefore, from this we see that for (2.1) with solution ū(x), if ū→ 0 as x→∞,

then it goes to zero exponentially.

2.2 The Real, Scalar Case

Now that we understand the scenario in the case of a 1-D BVP, we want to proceed

to the next case. We shall now look at the scalar case problem first, and try and

understand the behavior of the solution just as in the 1-D example; instead of directly

jumping to the more complicated systems case.

Consider the following steady state equation:

A∆v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0 (2.5)

where x ∈ Rd, v : Rd → R, A ∈ R and positive.

Here, in this Section we aim to show that if (2.5) has a solution that decays at

∞ , then it decays exponentially under certain suitable assumptions which are listed

below.

13



Chapter 2. Exponential Decay for the Infinite domain case

We begin, by assuming the following for (2.5):

1. f(0) = 0, f ′(0) = −k2 < 0; for some k ∈ R.

So with this assumption, we can write the function f as, f(v) = −k2v + q(v),

where |q(v)| ≤ C|v|2 for some positive constant C.

2. q(v) = g(v)v, with g(0) = 0 and |g(v)| ≤ C|v| for some positive constant C.

So, with the above two assumptions, we can transform (2.5) as follows:

A∆v(x) + 〈Sx,∇v(x)〉 − k2

2
v(x) + (

−k2

2
+ g(v(x)))v(x) = 0. (2.6)

Now, if there is a solution v(x) to (2.5), which decays at ∞, then

v(x)→ 0 as |x| → ∞ =⇒ g(v)→ 0 as |x| → ∞.

Let’s define the linear operator L̃ by

[L̃w](x) = A∆w(x) + 〈Sx,∇w(x)〉 − k2w(x) + g(v)w(x)

where we apply this operator to a particular function

h(x) = M

√
R√
|x|

e−k(|x|−R)/
√
8, |x| ≥ R

where M is the maximum norm of the function h(x) and R is a sufficiently large

number and A is a positive real number. For convenience, let’s assume |x| represents

the maximum norm of x in Rd.

So, now to prove the exponential decay; we claim that δ = h− v ≥ 0 for |x| ≥ R,

for some sufficiently large R.

Suppose not! Then δ(x) < 0 for some x such that |x| > R. This implies that the

function δ has a negative minimum at some x0, where |x0| > R.

14



Chapter 2. Exponential Decay for the Infinite domain case

Now consider

L̃δ = L̃(h− v)

= L̃h− L̃v

= A∆h+ 〈Sx,∇h〉 − k2

2
h+ (

−k2

2
+ g(v))h, L̃v = 0 from (2.6)

Now, when we evaluate L̃δ at x0, we get

[L̃δ](x0) < 0, for |x0| > R. (2.7)

We picked the function h(x) such that the above inequality (2.7) holds true.

But,

[L̃δ](x0) = A∆δ(x0) + 〈Sx,∇δ(x0)〉 − (k2 + g(v))δ(x0). (2.8)

And, at x0 where the function δ has a negative minimum we get

A∆δ(x0) ≥ 0

〈Sx,∇δ(x0)〉 = 0

−(k2 + g(v))δ(x0) > 0.

Hence, from (2.8)

[L̃δ](x0) > 0, for |x0| > R. (2.9)

Therefore, from (2.7) and (2.9) we have a CONTRADICTION!

Hence, δ ≥ 0 which means v ≤ h.

Similarly, we can show that −h ≤ v using a similar contradiction argument. Hence,

we get −h ≤ v ≤ h which implies |v| ≤ h; which in turn implies v decays exponen-

tially.

15



Chapter 2. Exponential Decay for the Infinite domain case

Therefore, from this we see that for (2.5) posed on infinite domain with solu-

tion v(x), if v → 0 as |x| → ∞, then it goes to zero exponentially under suitable

assumptions.

2.3 The Decomposed system

Let us revisit the original system of equations (1.7). We are just going to rewrite the

PDE in a different fashion, for convenience.

−A∆v(x)− 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd. (2.10)

where f : RN → RN denotes a C∞ function with f(0) = 0 and set B0 = f ′(0). Here

we consider the following assumptions:

1. A ∈ RN×N is a positive definite matrix, i.e. there exists some cA > 0 such that

Re(w∗Aw) ≥ cA|w|2 for all w ∈ CN .

In other notation, we can also say that

A+ AT ≥ 2CAI where CA > 0.

2. Assume that

B0 +BT
0 ≥ 2δI where δ > 0.

And all the other assumptions we had from Section 1.2 also hold.

Also, we assume that v : Rd → RN solves (2.10).

For every, v ∈ RN , lets define a function ϕ(s) as follows:

ϕ(s) = sv, 0 ≤ s ≤ 1.

16



Chapter 2. Exponential Decay for the Infinite domain case

Now, for every v ∈ RN we have

f(v) = f(v)− f(0)

= f(ϕ(1))− f(ϕ(0))

=

∫ 1

0

d

ds
f(ϕ(s)) ds

=
(∫ 1

0

f ′(sv) ds
)
v

We define the following function B(x) using the solution v(x) of the PDE (2.10)

which satisfies

B(x) =

∫ 1

0

f ′(sv(x)) ds for x ∈ Rd

f(v(x)) = B(x)v(x) and B(x)→ B0 = f ′(0) as |x| → ∞.

Now, set Q(x) = B(x)−B0. So this gives,

B(x) = B0 +Q(x) and Q(x)→ 0 as |x| → ∞.

The PDE (2.10) becomes

−A∆v(x)− 〈Sx,∇v(x)〉+ (B0 +Q(x))v = 0, x ∈ Rd. (2.11)

To decompose Q(x), we use a cutoff function χ1 ∈ C∞(Rd,R) with

χ1(x)


= 1, |x| ≤ 1,

∈ [0, 1], 1 ≤ |x| ≤ 2,

0, |x| ≥ 2,

and its scaled version

χn(x) = χ1(
x

n
), x ∈ Rd.
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Now, we rewrite Q(x) using the cutoff function as follows:

Q(x) = Qs(x) +Qc(x)

where Qs(x) = (1− χn(x))Q(x) and Qc(x) = χn(x)Q(x). So Qs(x) is small for large

n since Q(x)→ 0 as |x| → ∞ and Qc(x) has compact support. And we choose n in

the definition of the function χn(x) so large that Qs(x) is very small.

Now, we rewrite the PDE (2.11) as

−A∆v(x)− 〈Sx,∇v(x)〉+ (B0 +Qs(x))v = −Qc(x)v(x), x ∈ Rd. (2.12)

In Section 2.4, we use this equation to prove the main result of this thesis.

2.4 The Real, Systems Case

Consider the following system

−A∆v − 〈Sx,∇v〉+B(x)v = g, x ∈ Rd, (2.13)

with the following assumptions:

(A1) A ∈ RN×N is positive, i.e. there exists some cA > 0 such that

Re(w∗Aw) ≥ cA|w|2 for all w ∈ CN .

(A2) S ∈ RN×N is skew symmetric, i.e. ST = −S.

(A3) B ∈ L∞(Rd,CN×N) satisfies for some cB > 0

Re(w∗B(x)w) ≥ cB|w|2 for all w ∈ CN .
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Chapter 2. Exponential Decay for the Infinite domain case

For a given weight function θ ∈ C∞(Rd,R) satisfying θ(x) > 0 for all x ∈ Rd, we

define the weighted spaces

L2
θ = L2

θ(Rd,CN) = {u ∈ L1
loc(Rd,CN) : ‖u‖θ <∞},

‖u‖2θ =

∫
Rd
θ(x)|u(x)|2dx,

Hk
θ = Hk

θ (Rd,CN) = {u ∈ Hk
loc(Rd,CN) : ‖u‖θ,k <∞},

‖u‖2θ,k =
∑
|α|≤k

‖Dαu‖2θ.

Further, we introduce an exponential weight function of rate ε,

θε(x) = exp(−ε(1 + |x|2)1/2), x ∈ Rd.

Then, we have the following theorem from [2].

Theorem 3. Let the assumptions (A1)-(A3) be satisfied. Then the following asser-

tions hold for every

|ε| ≤ ε0 =
1

|A|

(cAcB
d

)1/2
. (2.14)

If v ∈ H2
loc ∩ L2

θε
solves (2.13) for some g ∈ L2

θε
, then v ∈ H1

θε
and the following

estimate holds

‖v‖θε,1 ≤
2

cB
(1 +

cB
cA

)1/2‖g‖θε . (2.15)

In Section 2.3, we have decomposed the system (1.7) into:

−A∆v(x)− 〈Sx,∇v(x)〉+ (B0 +Qs(x))v = −Qc(x)v(x), x ∈ Rd (2.16)

where v : Rd → RN , Qs(x) is very small and Qc(x) has compact support.

The main goal in this Section, is to show that v(x) and all order derivatives of

v(x) are in the following space Lpθ(Rd,CN), for a fixed p. In other words we want to

show that they are bounded by a constant in the Lpθ(Rd,CN) norm, i.e.

||Dαv(x)||Lpθ(Rd,CN ) ≤ Ck̃ (2.17)
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Chapter 2. Exponential Decay for the Infinite domain case

for some real constant Ck̃, and α = (α1, α2, ...., αd), where |α| = α1 + α2 + ... + αd

denotes the order of the derivative, with d being the dimensions of the vector x. And

Dα is denoted by the multi-index notation:

Dα =
∂|α|

∂x1α1∂x2α2 .....∂xdαd
.

From here on, for the sake of convenience we write any Dα with |α| = j, as Dj.

So, to prove (2.17) we use the method of mathematical induction.

First, we show that the result holds for j = 0.

Now, when we take a closer look at the equation (2.16), we see that the right hand

side of the equation −Qc(x)v(x) ∈ Lpθ(Rd,CN). And since Qc(x)v(x) has compact

support, let’s assume ||Qc(x)v(x)||Lpθ(Rd,CN ) ≤ Cq for some real constant Cq. So, the

equation (2.16) satisfies the requirements for Theorem 3. Hence, we get

||v||Lpθ(Rd,CN ) ≤
2

cB
(1 +

cB
cA

)1/2||Qc(x)v(x)||Lpθ(Rd,CN )

≤ 2

cB
(1 +

cB
cA

)1/2Cq.

Assume the result is true for j = m − 1, where m is a natural number. That is

||Dm−1v||Lpθ(Rd,CN ) ≤ Cm−1 for some real constant Cm−1. Then, we want to prove it

holds for j = m.

Let’s take themth order derivative of the equation (2.16). This yields the following

equation:

− A∆Dmv(x)− 〈Sx,∇Dmv(x)〉+ (B0 +Qs(x) +Qc(x))v =

−DmQc(x)v(x) + 〈DmSx,∇v(x)〉 −DmQs(x)v(x) =: G̃(x), x ∈ Rd.

Now, we see that the right hand side in the above equation G̃(x) has compact

support, so G̃(x) ∈ Lpθ(Rd,CN). Hence, Theorem 3 holds. So for some constant C ′,
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we get

||Dmv||Lpθ(Rd,CN ) ≤ C ′.

Hence, we proved that ||Djv||Lpθ(Rd,CN ) ≤ Cj by induction. In other words, we

have shown that Dαv(x)θ(x) ∈ Lp, i.e. for some radially non-decreasing weight

function θ we have:

||Djv(x)θ(x)||Lp ≤ Ck̃ (2.18)

Moving ahead, for convenience, we consider the following:

1. Let’s take the exponentially weighted function to be θ(x) = eC̃(1+x2)1/2 , for

some positive constant C̃, for which (2.18) holds.

2. Let’s consider p = 2, meaning let’s just look at the L2 space.

Now, let’s define v(x)eε(1+x
2)1/2 =: h(x), for some real ε > 0. So, from (2.18) for

some positive constant C ′ we have:

||h(x)||L2 = ||v(x)eε(1+x
2)1/2||L2

≤ C ′.

And by taking the j-th order derivative of h, we get

Djh(x) =

j∑
l=0

Clj(D
lv)Dj−leε(1+x

2)1/2

Now, by taking ε < C̃, we can make sure the norm of any order derivative of

eε(1+x
2)1/2 is very small. Because of this and from (2.18), we get

||Djh(x)||L2 ≤ C ′′
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for some constant C ′′.

Since, from above we see that h(x) and all its derivatives are in L2 space

||h(x)||L2 ≤ C ′,

||Djh(x)||L2 ≤ C ′′

this implies that h(x) belongs to the Sobolev space W k,2(Rd,CN) by definition.

Therefore, for some constant Ã, we get

||h||Wk,2 < Ã, for k >
d

2
. (2.19)

So now from the Sobolev embedding theorem, we have

|h|∞ ≤ C||h||Wk,2 , for k >
d

2

where C is a constant.

But, since ||h||Wk,2 < Ã from (2.19), we get the following from the Sobolev

embedding theorem

||h||∞ ≤ CÃ, for k >
d

2
.

And this indeed implies that v(x) decays exponentially pointwise. Its clear that

the argument can be extended to all derivatives of v as well.

Hence, in conclusion we have shown that under certain assumptions the stationary

solution v(x) in all-space decays exponentially.
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Chapter 3

Exponential Closeness to the

solution of a Finite Domain

problem

In this Chapter, we would like to discuss the closeness between the all-space solution

and the solution of a finite domain problem. The first step in this process, is to show

that there is a solution to the finite domain problem. And then, we show that the

solution is exponentially close to the solution of the all-space problem.

In Section 3.1, we give the complete proof for a model problem in one-space

dimension. In Section 3.2, we look at the finite dimensional problem in n-dimensions.

And we also discuss the numerous difficulties that we face in generalizing the result.
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Chapter 3. Exponential Closeness to the solution of a Finite Domain problem

3.1 The model problem

Now, let’s take a close look at the model for the PDE on the bounded domain.
−u′′ + u+ u2 = 0

u(0) = 1

u(R) = 0

(3.1)

where x ∈ [0, R], for some large real number R.

Here, we aim to show that the solution u of the finite domain problem (3.1) is

close to the solution ū|R; where ū denotes the exponentially decaying solution on

half-line, as discussed in Section 2.1. And ū|R denotes the restriction of the decaying

solution ū to the bounded domain [0, R].

Firstly, we want to prove that there is a locally unique solution to (3.1). Consider

u = ū|R + h, then the BVP is transformed to

−h′′ + (1 + 2ū|R)h+ h2 = 0, h(0) = 0, h(R) = −ū(R)

Using the simplified Newton’s method, we get

−h′′n+1 + (1 + 2ū|R)hn+1 = −h2n

Rewriting the BVP from above, we arrive at the following linear inhomogeneous

problem:
−h′′(x) + (1 + 2ū|R)h(x) = F (x)

h(0) = 0

h(R) = −ū(R) =: β

(3.2)

where F (x) = −h2n. We further define 1 + 2ū|R(x) =: g(x) ≥ 1, since ū > 0 as seen

in Section 2.1.
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Now, we want to show that the inhomogeneous problem (3.2) has a unique so-

lution h(x) by first proving that the above problem with F = 0 and homogeneous

boundary conditions has only a trivial solution. So we consider the following homo-

geneous problem corresponding to (3.2):−h
′′(x) + g(x)h(x) = 0

h(0) = h(R) = 0
(3.3)

We claim here that the above homogeneous problem (3.3) has only a trivial solution.

We prove this claim, by the method of contradiction. Suppose that there is a

non-trivial solution, then we either have a positive maximum or a negative minimum.

So, for some x0 ∈ (0, R) let h(x0) = |h|∞ > 0 be the positive maximum. Then

h′′(x0) ≤ 0 and

g(x0)h(x0) > 0.

Hence, this gives −h′′(x0) + g(x0)h(x0) > 0 which is a contradiction!

Therefore, the homogeneous problem (3.3) has only a trivial solution by the

Maximum principle. Hence, the inhomogeneous problem (3.2) has a unique solution

by Fredholm’s alternative.

Now let h(x) = l(x) + η(x), where h(x) is the unique solution of the inhomoge-

neous problem (3.2) and l(x) = −ū(R)
x

R
. We have formulated the function l(x), such

that the problem has homogeneous boundary conditions. So, using h(x) = l(x)+η(x)

in (3.2) we get the following BVP in η(x) is:[L̃η] = −η′′(x) + q(x)η(x) = −η2(x) + f̃(x)

η(0) = η(R) = 0
(3.4)

where q(x) = 1 + 2ū|R(x) + 2l(x)

f̃(x) = −l2(x)− ((1 + 2ū|R(x))l(x).
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Chapter 3. Exponential Closeness to the solution of a Finite Domain problem

And define F̃ (x) =: −η2(x) + f̃(x), for convenience.

Lemma 1. Let q0 be a real number, where q(x) ≥ q0 > 0. Let −M ≤ F̃ (x) ≤ M ,

with M representing the maximum norm of F̃ (x). Then the solution η of (3.4) is

bounded by |η|∞ ≤
1

q0
|F̃ |∞.

Proof. Let η0 =
M

q0
; then

[L̃η0](x) = q(x)η0(x) = q(x)
M

q0
≥M

[L̃(η0 − η)](x) ≥M − F̃ (x) ≥ 0

Now let η̃ = η0 − η ,then :
[L̃η̃](x) ≥M − F̃ (x) ≥ 0

η̃(0) ≥ 0

η̃(R) ≥ 0

The claim here is that η̃ ≥ 0. Suppose not!

Then ∃x0 ∈ (0, R) such that η̃(x0) < 0 (minimum). So, η̃′′(x0) ≥ 0 which gives :

[L̃η̃](x0) = −η̃′′(x0) + q(x0)η̃(x0)

< 0

CONTRADICTION!

Therefore η̃ ≥ 0 =⇒ η ≤ M

q0
.

Similarly, if η1 = −M
q0

; then

[L̃η1](x) = q(x)η1(x) = −q(x)
M

q0
≤ −M
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For η̄ = η1 − η, we get:
[L̃η̄](x) ≤ −M − F̃ (x) ≤ 0

η̄(0) ≤ 0

η̄(R) ≤ 0

Again, the claim here is that η̄ ≤ 0. Suppose not!

Then ∃x1 ∈ (0, R) such that η̄(x1) > 0 (maximum). So, η̄′′(x0) ≤ 0 which gives :

[L̃η̄](x1) = −η̄′′(x1) + q(x1)η̄(x1)

> 0

CONTRADICTION!

Hence we get, η̄ ≤ 0 =⇒ η ≥ −M
q0

.

Therefore, if −M ≤ F̃ (x) ≤M then
−M
q0
≤ η ≤ M

q0
. In other words :

|η|∞ ≤
1

q0
|F̃ |∞ (3.5)

Now, we can write the BVP (3.4) as the fixed point equation

η = G[−η2 + f̃ ]

where G is an integral operator corresponding to the Green’s function of the

linear BVP:−η
′′(x) + q(x)η(x) = F (x)

η(0) = η(R) = 0
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Consider the Banach space (C[0, R], |.|∞) and a ball of radius r centered at ’0’

given by Br(0) = {f(x) ∈ C[0, R] : |f |∞ ≤ r}.

We have the following fixed point equation:

Φ(η) = η

where Φ(η) = G[−η2 + f̃ ].

To ensure that the Contraction Mapping Theorem applies, we will require

1. Φ : Br(0)→ Br(0)

Let η ∈ Br(0), and we have |G|∞ ≤ 2 from Lemma 1 with

q0 = 1
2

since |ū(R)| ≤ 1
4

holds for R sufficiently large.. Then

|Φ(η)|∞ ≤ 2| − η2 + f̃ |∞

≤ 2r2 + 2|f̃ |∞, |f̃ |∞ is small for R large

≤ r.

2. Φ : Br(0)→ Br(0) is a contraction mapping.

Let η1, η2 ∈ Br(0).Then

Φ(η1)− Φ(η2) = −G(η21 − η22)

= −G(η1 + η2)(η1 − η2)

which gives

|Φ(η1)− Φ(η2)|∞ ≤ |G|∞2r|η1 − η2|∞

≤ k|η1 − η2|∞.

The above conditions are met subsequently by the choice of the radius ’r’ of the

ball Br(0). If we pick r ≤ 1
4
, we can ensure we have a contraction mapping. And for
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the sake of convenience, we pick k =
1

2
. That means, for any η1, η2 ∈ Br(0) :

|Φ(η1)− Φ(η2)|∞ ≤
1

2
|η1 − η2|∞

Therefore by the Contraction Mapping Theorem, η exists and is unique on Br(0).

Lastly, we want to show that the constructed solution u of the finite domain

problem (3.1) is close to the solution ū|R where ū is the solution of (2.1).

Let’s take a look at the Fixed point equation : η = Φ(η) = G[−η2 + f̃ ].

From here, we have Φ(0) = Gf̃ . And since we assume |G|∞ ≤ 2, and also we can

safely take |f̃ |∞ ≤ C2e
−c1R, for some c1, C2 ∈ R, because of the way we constructed

f̃ . Hence

|Φ(0)|∞ ≤ 2C2e
−c1R

Since Φ is a contraction mapping with k =
1

2
, we have

|η − Φ(0)|∞ = |Φ(η)− Φ(0)|∞

≤ 1

2
|η − 0|∞

=
1

2
|η|∞

Now, we can write η as

η = η − Φ(0) + Φ(0)

By triangle inequality, we get:

|η|∞ ≤ |η − Φ(0)|∞ + |Φ(0)|∞

≤ 1

2
|η|∞ + |Φ(0)|∞.
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Therefore |η|∞ ≤ 2|Φ(0)|∞.

But since u = ū|R + η − ū(R)
x

R
, we get:

|u− ū|R|∞ ≤ C̃e−c̃R.

for some positive real constants C̃, c̃.

Hence, this proves in the case of the 1-D BVP, that for large R the bounded

interval problem (3.1) has a solution u(x), which is locally unique and is exponentially

close to the restriction ū|R, where ū(x) is the solution of the half line problem (2.1).

3.2 The Finite dimensional problem and its limi-

tations

In this Section, we want to look at the solution of a finite dimensional problem.

The first question that arises is, if there is a solution to the problem. The result is

discussed in the following Proposition.

Proposition 1. Consider a finite dimensional map F : RN → RN and consider the

equation F (u) = 0. For this map, assume the following

1. There is an almost solution v0 to the problem which satisfies ||F (v0)||∞ = ε,

for a small ε.

2. The inverse (F ′(v0))
−1 exists, with F ′ representing the Jacobian of F . Also

||(F ′(v0))−1|| ≤ C, where C is some real number.

3. F ′ is globally Lipschitz, with L ≥ 0 as the Lipschitz constant.

Then the finite dimensional problem F (u) = 0 has a solution if ε > 0 is sufficiently

small.
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Proof. Consider ||.|| to be the maximum norm.

Let v0 be an almost solution. Then for some real ε > 0

||F (v0)|| = ε

We want to solve F (u) = 0, where u ∈ RN . So, if u is the nearby solution and v0 is

an almost solution, then we would have u = v0 + δ, for some δ ∈ RN . Hence, we get

0 = F (v0 + δ) = F (v0) + F ′(v0)δ + ....

Then by neglecting the higher order terms, we get δ = −(F ′(v0))
−1F (v0), since

(F ′(v0))
−1 exists.

Using simplified Newton’s method, we get

v1 = v0 − (F ′(v0))
−1F (v0),

v2 = v1 − (F ′(v0))
−1F (v1), ....

This gives us the Fixed point iteration vn+1 = Φ(vn) with

Φ(v) = v − (F ′(v0))
−1F (v) (3.6)

Let w, v ∈ Br(v0) for some very small r ∈ R and r > 0. And let

θ(s) = v + s(w − v), 0 ≤ s ≤ 1.

Then by the Mean value theorem, for every w, v ∈ Br(v0) we get

F (w)− F (v) = F (θ(1))− F (θ(0))

=

∫ 1

0

d

ds
F (θ(s)) ds

=
(∫ 1

0

F ′(θ(s)) ds
)

(w − v)
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We define the following for convenience, ∆F =:
∫ 1

0
F ′(θ(s)) ds. So

F (w)− F (v) = ∆F (w − v) (3.7)

Since F ′ is globally Lipschitz, there exists a real constant L ≥ 0 such that, for all

w̃, ṽ ∈ RN , we have

||F ′(w̃)− F ′(ṽ)|| ≤ L||w̃ − ṽ||

Now

∆F =

∫ 1

0

F ′(v0) ds+M

= F ′(v0) +M

where M is such that ||M || ≤ Lr since F ′ is globally Lipschitz and v, w ∈ Br(v0).

Now from the fixed-point iteration (3.6) we have

Φ(w)− Φ(v) = (w − v)− (F ′(v0))
−1(F (w)− F (v)

= (w − v)− (F ′(v0))
−1(∆F )(w − v)

= [I − (F ′(v0))
−1(∆F )](w − v).

And since ∆F = F ′(v0) +M , we get

(F ′(v0))
−1∆F = I + (F ′(v0))

−1M

This gives

Φ(w)− Φ(v) = −(F ′(v0))
−1M(w − v) and

||Φ(w)− Φ(v)|| ≤ Lr||(F ′(v0))−1|| ||w − v||

≤ CLr||w − v||.
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Now, Φ is a contraction mapping if

CLr < 1 (3.8)

Also, we need to show that Φ : Br(v0) → Br(v0). Consider v ∈ Br(v0). Then

||v − v0|| ≤ r.

And from (3.6), we get Φ(v0) = v0 − (F ′(v0))
−1F (v0). Now since v0 is an almost

solution, we have that ||(F ′(v0))−1F (v0)|| ≤ Cε from the assumptions.

Now to show that Φ maps Br(v0) into itself, consider

||Φ(v)− v0|| = ||Φ(v)− Φ(v0) + (F ′(v0))
−1F (v0)||

≤ Lr||v − v0||+ Cε

≤ Lr2 + Cε

Note that Φ maps Br(v0) into itself if and only if for every v ∈ Br(v0), ||Φ(v)−

v0|| ≤ r, meaning we need to have

Lr2 + Cε ≤ r (3.9)

So, Φ is a contraction mapping on Br(v0), when both the inequalities (3.8) and

(3.9) are satisfied. And this can be achieved if ε > 0 and r > 0 are sufficiently small.

This shows that Φ is a contraction mapping on Br(v0) and hence the contraction

mapping theorem applies.

Therefore, by the contraction mapping theorem, we know that the fixed point

equation Φ(v) = v has a unique solution in Br(v0). And this implies that the finite

dimensional problem F (u) = 0 has a locally unique solution u which is close to the

almost solution v0.

Hence, this proves that under certain assumptions; if a Finite dimensional prob-

lem has an almost solution, then it has a nearby solution.
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Now, we have to show that this solution is close to the all-space solution. This

task turned out to be a lot more complicated than we anticipated. There are many

issues we encountered in the process, and we would like to discuss a few of these

limitations that we faced.

Let us explain some of the issues involved:

1. Recall the stationary equation

A∆v(x) + 〈Sx,∇v(x)〉+ f(v(x)) = 0, x ∈ Rd

with solution v∗(x). We have shown in Section 2.4 that the solution v∗(x) and

the corresponding derivatives of v∗(x) all decay exponentially. Now, since the

above stationary equation has a solution in all-space, then there are numerous

more solutions to the equation because of rotations.

Now consider the non-linear stationary equation on a finite disk

A∆v + 〈Sx,∇v〉+ f(v(x)) = 0, in BR

v(x) = 0, for |x| = R

for large R. We expect that the function v∗(x) satisfies the Dirichlet bound-

ary conditions upto an exponentially small term and that there is a solution

near v∗(x) which is locally unique except for rotations. And because of these

rotations, when we linearize the equation, we get zero eigenvalue.

Consider the linear operator

Lw = A∆w + 〈Sx,∇w〉+Df(v(x))w, in BR

w(x) = 0, for |x| = R
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The operator L has the eigenvalue zero. Not just that, the operator also

has exponentially small eigenvalues (close to 0) . This rises the question, if

the inverse of the operator exists. And this could make the solution of the

stationary equation on a finite disk unstable.

2. The next question that we need to ask is, if there really is a solution for the

stationary equation on a finite disk that is exponentially close to the stationary

solution in all space. And, if there is a solution, it is not unique because of the

rotations.

3. And to deal with the issue of the zero eigenvalue, we contemplate that we may

need to introduce one more variable of freedom into the existing problem. And

that calls for a whole different formulation of the problem.
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Conclusions and Future Work

The main motivation for this thesis comes from the conjecture stated in [1]. The

conjecture states that the solution to the stationary problem of the reaction-diffusion

system decays exponentially as |x| → ∞. In this thesis, we have mainly looked at

the stationary solution of the reaction-diffusion system with two goals. The main

one being to prove that the solution of the all space problem decays exponentially.

And we have proved this result, starting from a model problem on the half-line and

we were able to then generalize it to all-space. And for this, we have used the result

from [7] and Sobolev theory extensively.

Having achieved the first goal, we wanted to extend this result to the problem

posed on a finite disk. And the motivation for this came from the numerical compu-

tations and the fact that formulations on finite region are more realistic. And also

since, whenever we do numerical computations we reduce the given differential equa-

tion to a bounded domain. For the problem posed on a finite disk, we have looked

at the model problem in one-space dimension and carried out all the details. The

solution in this case is close to the solution of the all space problem. The exponen-

tial decay of the all space solution suggests that one can generalize the result to the
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finite domain problem. However, we have not carried out the detailed arguments.

Our part of future work is to show the closeness between the all-space solution and

the solution of a finite domain problem. Also, to do that we need to address the

issue of the zero eigenvalue. And hence, prove that the solution of the finite domain

problem decays exponentially.
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