

Chapter 7. Multivalent Random Walkers are Molecular Motors

feasible region

substrateproduct sea

feasible region

boundary

substrateproduct sea
boundary

(a)

(b)

Figure 7.2: (a) The walker in a
boundary state B where it is at-
tached to substrates on the bound-
ary between visited and unvisited
sites. The residence time bias and
non-uniform local distribution of
substrates gives the spider an out-
ward bias. (b) The walker in the
diffusive state D where it moves
over previously visited sites.

moves ballistically in the B state and diffusively in the D state, and the overall motion

depends on how much time the walker spends in each of the metastates. Similarly, the

initial superdiffusive motion in the MVRW model for r < 1 can be understood as the

walker moving between a B and a D state as shown in Fig 7.2. The walker initially spends

most of its time in the B state, moving ballistically away from the origin in the direction of

unvisited sites. However, the walker has a constant probability of falling off the boundary

and into the D state where it moves diffusively over previously visited sites. As the size of

the region of cleaved products (the product sea) grows, the spider takes increasingly long

to return to the B state, and eventually becomes on average diffusive in the limit of long

times as observed in Figure 6.2.

7.1.3 The boundary and diffusive metastates

The superdiffusive motion of walkers and its eventual decay to diffusion (f = 0) or sta-

tionary equilibrium (f > 0) can be understood by noting that the only source of energy

available to the walkers is present in the substrate molecules, which are a locally-limited,

immobile resource.

After the walker starts moving and catalyzing sites, a contiguous region of product

sites called the product sea begins to form (Figure 7.3). At the boundary between the

110

Chapter 7. Multivalent Random Walkers are Molecular Motors

product sea substrates

region of feasible sites

F

boundary

f

local substrate gradient
x̂

ŷ

Figure 7.3: The irreversible catalysis of substrates to products leads to a spatial asymmetry in
substrate concentration at the boundary between the contiguous product sea and the contiguous
region of unvisited substrates. A residence time bias at the boundary causes a walker with kcat < 1
to move ballistically in the direction of local concentration gradient. The boundary moves with
the walker in the + x̂ direction because the legs irreversibly catalyze the attached substrates into
products.

product sea and unvisited substrates, the local substrate concentration gradient is in the

+ x̂ direction.1 The emergence of spatial asymmetry in concentration makes it possible for

an unoriented, symmetric walker to develop a directional bias. At the boundary, a MVRW

with kcat < 1 is biased in the + x̂ direction not because the legs are more likely to attach to

substrates, but because when they do attach to a substrate, they stay bound longer—there

is an effective residence time bias.

A walker with kcat < 1 is only directionally biased when near the boundary, in which

case its legs irreversibly catalyze attached substrates to products, moving the boundary in

the + x̂ direction as well. Thus, as argued in Section 7.1.1, as long as a walker is near the

boundary, it and the substrate/product boundary move ballistically outwards, away from

the origin.

The emergence of the boundary between the product sea and the unvisited substrates

1This is due to the semi-infinite surface configuration. For more general surface shapes and
orientations, the boundary will have a different orientation.

111

Chapter 7. Multivalent Random Walkers are Molecular Motors

product sea substrates

region of feasible sites

external force f

product sea

substrates

boundary
external force f

Diffusive state (D)

Boundary state (B)

local substrate gradient

boundary

region of feasible sites

ballistic motion

biased diffusive motion

no local substrate gradient

Figure 7.4: The walker moves between boundary (B) and diffusive (D) metastates. The walker
moves ballistically in the direction of local substrate gradient when in the B state, but moves dif-
fusively over previously visited sites in the D state. The walker initially spends most of its time
in the B state, consuming substrate fuel. However, as the product sea grows the time to exit the D
state increases, leading to asymptotically diffusive motion in the absence of force, and equilibrium
stationary motion in the presence of force.

causes the walker to move superdiffusively, but eventually all walkers either move dif-

fusively (f = 0) or move to a stationary equilibrium distribution (f > 0). This can be

understood by decomposing the Markov process into two metastates: a boundary state (B)

wherein the walker is attached to substrates near the boundary of unvisited sites, and a dif-

fusive state (D) wherein the walker moves over the energy-devoid product sea (Figure 7.4).

When the walker is in the B state it moves ballistically in the + x̂ direction, but when

it is in the D state it has no directional orientation, and it moves by ordinary unbiased

112

Chapter 7. Multivalent Random Walkers are Molecular Motors

0

25000

50000

75000

100000 Typical kcat = 0.05 Mean kcat = 0.05

0

25000

50000

75000

100000

Po
si

tio
n

p x
(t

)(
nm

) Typical kcat = 0.005 Mean kcat = 0.005

0.0 0.2 0.4 0.6 0.8 1.0
Time t (s) ×107

0

25000

50000

75000

100000 Typical kcat = 0.001 Mean kcat = 0.001

Figure 7.5: Typical traces of px for a MVRW with f = 0 for three kcat values. The traces are
shaded blue when the walker is in the B metastate, and red when it is in the D metastate. Walk-
ers with smaller kcat have longer B periods, but smaller velocity. The duration of D periods is
independent of time and grows with the size of the product sea.

diffusion for f = 0, or by − x̂-biased diffusion when f > 0. Figure 7.5 shows three typical

traces of the position of individual walkers under zero force, where B and D periods have

been shaded to show the alternation between states and the distinction between the ballistic

and diffusive motion.

The probability of a walker leaving the B state by moving sufficiently far in the − x̂

direction is independent of the absolute position of the boundary. Thus, the B metastate

is Markovian since the transition rate to the D metastate is independent of how long the

113

Chapter 7. Multivalent Random Walkers are Molecular Motors

walker has been moving or the current size of the product sea. The duration of the B state

does, however, depend on kcat, with smaller values leading to longer durations of ballistic

motion, but at smaller velocities (Figure 7.5).

In contrast, the D metastate is non-Markovian. The duration of a D-period depends

on the size of the product sea, and hence this duration grows as the walker catalyzes more

sites. In the case where f = 0, the time is quadratically dependent on the size of the product

sea, but when f > 0 this dependence becomes exponential, and for sufficient forces and

sufficiently large product seas, the probability of returning to the boundary once departed a

significant distance becomes effectively 0. Hence, the duration of B-periods is constant in

time, but the duration of D-periods grows. Eventually walkers spend nearly all their time

moving over products in the D state, and so approach the same equilibrium distribution as

the kcat = 1 walkers, as seen in Figures 6.5 and 6.6.

In preliminary work investigating simple 1D spiders models without force, we have

shown analytically that the motion at the boundary is ballistic [112]. From results in

Figs. 6.2 and 6.5 the motion in 2D (at the ensemble level) is nearly ballistic even when

it opposes small forces, implying that individual walkers near the boundary must also be

moving nearly ballistically.

In summary, the ability of MVRWs to move superdiffusively when in the B metastate

depends on three fundamental conditions.

1) Multivalency — The MVRW must have k ≥ 2 legs, and these legs must be con-

strained so that an unattached leg cannot attach too far away from another attached

leg.

2) Residence time bias — There must be a residence time bias between modified and

unmodified sites, such that the leg-substrate binding is longer lasting than the leg-

product binding. This happens when k−P > kcat + k−S .

114

Chapter 7. Multivalent Random Walkers are Molecular Motors

3) Irreversibility — The irreversibility of substrate catalysis leads to the emergence

of the product sea and a substrate concentration gradient at the boundary between

visited and unvisited sites.

7.2 Brownian motors and biased transport in the MVRW
model

A Brownian motor or Brownian ratchet is a physical or chemical system that rectifies ran-

dom thermal energy into some form of useful work [99]. Thermodynamically, the function

of such a device requires an input of free energy, or must result in a net increase in the en-

tropy of the local environment. A principal property of a Brownian motor is its reliance

on random thermal (Brownian) energy either as a means for supplying the net motion of

the motor, or as a means for energetically inducing some chemical conformational change.

The purpose of the energy input is to bias or rectify this Brownian motion in some pre-

ferred direction. From a theoretical point of view, Brownian motors are interesting as they

are one of the more practical examples of systems that extract order from randomness [13].

One interpretation of the second law of thermodynamics states that the average random-

ness of a closed system must never decrease with time, and no Brownian motor is known

to violate this principle. A Brownian motor either operates in an open environment where

free energy is supplied chemically or in the form of a time-varying potential, or it operates

in an environment with ample reserves of Gibbs free energy that can be used to power the

motor for a sufficient amount of time.

Brownian motors have been described as a system where “mass motion is exclu-

sively powered by thermal fluctuations, i.e., Brownian movement, but under conditions

in which specific boundary conditions have been asymmetrically established at the ex-

pense of metabolic free energy.” [44] In the case of multivalent random walker systems,

the boundary between unvisited substrates and visited products is the asymmetry that rec-

115

Chapter 7. Multivalent Random Walkers are Molecular Motors

tifies the otherwise unbiased walker motion, resulting in biased superdiffusive motion.

The metabolic free energy expended is the result of the energetically downhill (∆G < 0)

substrate conversion to product. Without a strongly negative ∆G, products might be trans-

formed back into substrates by the actions of the legs. The irreversibility of substrate

conversion to products is critical to the emergence of a continuously expanding product

sea and the associated outward moving, bias inducing substrate concentration gradient at

the boundary between this product sea and the unvisited substrates. Thus, while ∆G is

not a primary parameter in the MVRW model, it does play a functional role in enforcing

directionality in the system. For the results of Chapter 6 to hold, we require only that ∆G

it negative enough that the substrate catalysis remains effectively irreversible.

7.3 Natural molecular motors

Cells are increasingly understood as crowded environments where diffusion of larger mol-

ecules is slow and constrained by complex internal structures [122]. Diffusion is often a

limiting factor in chemical processes needed to maintain the biological functions of the

cell. Instead of relying on random, uncontrollable diffusion to move chemicals, eukary-

otic cells have developed a taxonomy of molecular motors that transport cargo along 1D

polymeric tracks. These translational molecular motors consume chemical free energy and

transduce it into mechanical work and directed motion.

One of the most studied natural translational molecular motors is kinesin. Kinesin mol-

ecules are incredibly efficient motors, and are critical to many cellular transport processes,

including mitosis [38, 128], organelle transport [59], and signaling in neurons [50, 63].

Hence, understanding how models describe their ability to move and do work is an impor-

tant reference point for developing models for other walkers in general, and multivalent

random walkers in particular.

116

Chapter 7. Multivalent Random Walkers are Molecular Motors

7.3.1 Kinesin structure and motion

Kinesin is a two-headed protein molecular walker that moves over an oriented 1D poly-

meric track, called a microtubule. Each head of a kinesin is identical and contains two

coupled binding sites. One site binds and catalyzes the breakdown of ATP, and the sec-

ond site binds in an oriented manner to sites that occur at regular intervals on the oriented

microtubule track. Each head is connected by a neck linker to a coiled-coil central neck

which acts as the body of the walker and connects the walking heads to a cargo [120].

Increasingly complicated observational experiments have shown that kinesins move

processively along a microtubule using a hand-over-hand type of gait, where catalysis of

the energy-carrying ATP molecule into ADP and Pi leads to the rearward head unbinding

and attaching towards the + end of the track, resulting in an approximately 8 nm step [119].

In the context of kinesin, directed motion means that a walker moves preferentially in a

particular direction (the +-end of the microtubule). Processivity means that the walker

makes many steps before dissociation. It has been shown that kinesins can move proces-

sively, against a force, up to a so-called stall force of approximately 5 − 8 pN [123].

7.3.2 MVRWs are a fundamentally different kind of motor

We now note the significant differences between how spiders and other multivalent random

walkers move, and how kinesin is thought to move.

Ergodicity

The most fundamental mathematical difference from a modeling perspective between the

two walkers models is that of ergodicity. Kinesins, and other motors that move over pe-

riodic, translationally invariant tracks, without modifying the track, and so are described

by ergodic Markov processes. They operate in a steady state, where each complete step

brings the walker back to the same initial (canonical) conformational state. A step may

117

Chapter 7. Multivalent Random Walkers are Molecular Motors

change the absolute position of the walker on its track, but translational invariance means

that the chemistry at this new site is not changed. In other words the translational invari-

ance of the track means that there is no local difference in the walker’s environment or

chemical state, and so each step operates under the same chemomechanical conditions and

at the same rates. Hence, when the states of the walker are discretized and the stochastic

actions of the walker are defined by a Markov process, the process has a regular, periodic

structure [8, 77, 79]. Thus, kinesin motion can be fully understood by examining those

chemomechanical cycles that start and end at a particular conformational state.

Multivalent random walkers are, however, a non-ergodic system because the walker

modifies the tracks over which it moves. The motion of the walker is not translationally

invariant as it explicitly depends on the irreversible modification of sites by past actions

of the walker. Neither does a MVRW move with the orderly and easy-to-model rigid

walking gaits of kinesin; instead, it moves via a multitude of uncoordinated gaits that lead

to complex, highly branched state spaces, making static analysis difficult to apply directly.

It is for these reasons that kinetic Monte Carlo simulations are the primary means for

analyzing MVRW behavior.

Furthermore, the non-cyclical and non-ergodic behavior of MVRWs makes it difficult

to compare their motion with kinesin because many standard descriptive statistics for ki-

nesin and other cyclical, ergodic translational processes do not make sense for MVRWs.

For example, MVRWs do not have a well defined force-dependent velocity v(f). A kinesin

will move with the same experimentally measurable [30] and analytically predictable [9]

velocity against force f at any location on its track. However, the motion of a MVRW de-

pends on its location on the track and the location of the boundary between substrates and

products, and thus any velocity must be a function of time. Even reporting an ensemble

estimate of random variable v(f ; t) as a function of t is not very informative, because the

ensemble behavior averages together some walkers which are in the D state with some in

the B state, which means that v(f ; t) tells us little about the typical velocity (i.e., that of an

118

Chapter 7. Multivalent Random Walkers are Molecular Motors

individual walker). Hence, we employ different measurement statistics such as ensemble

MSD (Section 6.1.1) and 〈∆E〉 (Section 6.3), as they are more appropriate for understand-

ing biased motion in a non-ergodic system.

Structural differences

Multivalent random walkers accomplish processive, superdiffusive transport but they do

so through significantly different mechanisms from known natural molecular motors, such

as kinesin. Thus, a multivalent random walker presents a different perspective on biased

molecular motion and molecular motors, in that many of the chemical and structural fea-

tures that are essential to kinesin’s ability to act as a motor are not present in the multivalent

random walker model.

• Kinesins move over regular, oriented polymeric tracks, while MVRWs move over

arbitrary, unoriented 2D surfaces of substrate tracks. The MVRW tracks can be

heterogeneous or homogeneous, structured or unstructured.

• Kinesin heads are oriented, with separate binding sites for the track and the substrate

fuel, whose chemical kinetics are conformationally coupled [91]. The actions of the

two kinesin heads are mechanochemically coupled by long-range conformational

changes [120], whereby the kinetics of a single head dissociating depends on the

chemical conformational state of the other head [30]. In contrast, the legs of a

MVRW are unoriented and uncoupled. The conformational state of an individual

MVRW leg has no influence on the chemical or mechanical actions of the other

legs.

• Kinesin always moves with a rigid hand-over-hand walking gait where the leading

head alternates at each step. The chemomechanical coupling ensures that the trail-

ing head understands its orientation with respect to the track and the leading head,

making it more likely to unbind and move than the leading head [121]. A MVRW,

119

Chapter 7. Multivalent Random Walkers are Molecular Motors

however, has no preferred gait, and legs are unaware of their orientation. The leg

motion is independent and uncoordinated, restricted only by the finite length of legs,

and their connection to a common body.

In each of these areas of difference between kinesin and MVRWs, the mechanisms

employed by kinesin are more complicated to engineer from chemical building blocks,

but lead to more efficient and processive motion. However, based on the simulation results

presented in Section 6.3, we have shown that none of these properties are actually neces-

sary for a molecular walker to act as a translational molecular motor, as MVRWs can still

transform chemical energy into mechanical work without any of these complex structural

and chemical mechanisms.

120

Part II

The Multivalent Random Walker Model
Simulation Architecture

121

Chapter 8
Simulation Architecture

A large part of the complexity of numerical simulations is involved in storing, organizing,

retrieving, and analyzing data gathered from simulations. Data often need to be accessed

concurrently from multiple simulation and analysis processes, and this leads to fundamen-

tal issues in data consistency and availability.

This chapter explores the software engineering and data management issues involved

in simulation of multivalent random walker models. Our MVRW simulation framework is

a set of tools and libraries for distributed concurrent simulation and analysis of the MVRW

model. The object-oriented framework is written in Python and built arround a core set of

classes that define persistent objects allowing the manipulation of database tuples as in-

memory objects. In designing our simulation framework we set three basic requirements:

(1) Simulation data should be stored in a central relational database. Issues of data

consistency and correctness in the context of distributed, concurrent simulation and

analysis processes should be handled using the built-in transactional mechanisms

provided by the relational database.

(2) The simulation environment should use an object-oriented strategy so that we can

take advantage of inheritance to express the relationships between various simula-

tion objects and provide for code reuse.

(3) The simulation architecture must provide for management of large numerical data-

sets, providing fast access, but also maintaining data consistency under concurrent

access patterns.

Requirements (1) and (2) lead us to using object-relational mapping (ORM) techniques to

allow the mapping of class hierarchies to sets of relations in a relational database. ORM

122

Chapter 8. Simulation Architecture

allows objects to be made persistent and available to concurrent distributed access by stor-

ing object state as tuples in the relational database. There are, however, fundamental

issues when using relational databases to store objects as tuples, as the semantics of the

relational model differs significantly from the semantics of object-oriented languages. To

address these issues, we have developed an ORM system called the natural entity frame-

work, which we describe in full detail in Chapter 9. Specifically, we use the SQLAlchemy

ORM software for Python, and our natural entity ORM framework builds on top of the

access layer provided by SQLAlchemy.

In the remainder of this chapter we address the issues of the MVRW simulation ar-

chitecture that are orthogonal to the ORM topics covered in Chapter 9. In Section 8.1 we

discuss large data storage in the context of the goals of requirement (3), allowing us to

provide secure, fast, and highly structured storage for large numerical simulation datasets.

Finally, we present an overview of random number generation in the MVRW simula-

tion framework in Section 8.2. Random number generation is an issue that must be dealt

with carefully in any Monte Carlo simulation, but becomes more complex in distributed,

parallel simulations such as those we employ for the MVRW KMC simulation. We de-

signed the MVRW simulations to use parallel random number generation strategies that

allow a single master stream of random numbers from a single initial seed to be used to

generate an arbitrary number of independent random number streams, which can each be

used to generate a separate parallel KMC simulation trace.

8.1 Large numerical data storage

The MVRW simulations produce large amounts of measurement data that need to be orga-

nized and recorded. The application structure of the MVRW simulation relies on object-

relational mapping (ORM) (Chapter 9) to store persistent data as objects in a relational

database. Relational databases provide the transactional isolation and consistency guaran-

123

Chapter 8. Simulation Architecture

tees that make the distributed simulation architecture possible. They also provide sophis-

ticated indexing and querying techniques that make retrieving objects easy and fast. How-

ever, to achieve these goals the relational database model has a very rigid data model. As

explained in detail in Section 9.2.1 a relation or table in a relational database is a collection

of tuples, and each attribute or column of a table corresponds to a atomic (unstructured)

data type. Specifically, this implies that a tuple cannot contain attributes of array type, as

this violates what is known as the 0-th normal form in relational models [26, 33]. In the

case of the MVRW simulations, some generated data take the form of a large numerical ar-

ray, which must be correctly and consistently associated with the database tuple describing

the simulation object.

8.1.1 Storage options for numerical arrays

A strict adherence to relational design would dictate that each array-like attribute is trans-

lated to a relation with a foreign key constraint that references back to the associated

relation’s primary key. This array representation is not practical or efficient for large nu-

merical datasets where fast sequential access to array elements is needed. Understanding

this limitation, modern databases, such as PostgreSQL, provide a more efficient array stor-

age mechanism by extending the relational model (and violating normal form) to allow

attributes of array type. This array data representation has the advantage that the seman-

tics of the array type attributes are recorded in the database directly, so the database can

provide extra functionality for storing, querying, and modifying data within the array.

Alternatively, PostgreSQL provides types for large binary data, allowing arbitrary data

to be stored directly in tuple values. Python provides a pickle module (and the faster

cPickle version) that can serialize nearly any Python object into a binary representation

which can then be stored directly in a binary-typed relational attribute. The SQLAlchemy

ORM framework provides column types for managing the storage of object attributes of

arbitrary Python type as binary attributes in PostgreSQL via the cPickle Python module.

124

Chapter 8. Simulation Architecture

This method also has the advantage that the database holds all simulation data directly and

can manage concurrent access in a transactionally secure way. However, unlike an array-

typed relational attribute, PostgreSQL has no semantic understanding of the structure of

the data stored in a binary type attribute, and cannot provide any useful functionality to

manipulate the data within the SQL language.

Finally, we can bypass the database and store the array data in external files. In this

strategy the database tuple contains a file name or some other unambiguous external re-

source key that can be used by the simulation software to retrieve the external array data.

The array data on the file system are no longer protected from incompatible concurrent ac-

cess patterns by the database, so extra care must be taken in writing applications. However,

avoiding the database overhead can often be worth the extra data management complexity.

These external data files could contain serialized Python objects via the cPickle module,

or they could be structured in a more organized format, such as HDF5.

HDF5 data files

Hierarchical data format 5 (HDF5) [42] is a data file format developed with scientific and

numerical datasets in mind [28, 52, 108]. Like XML, HDF5 provides a structured format

rather than a flat file, but the HDF5 data layout and library access is optimized for multidi-

mensional numerical arrays. Each HDF5 file can also store relation-like tables, key/value

attribute pairs, and arbitrary binary data, all of which are arranged in an internal hierarchi-

cal file-system-like structure. The PyTables module provides fast Python access to HDF5

files, allowing their array data to be read from and written to numpy multidimensional

array objects in Python [3].

The primary drawback of the HDF5 data format is that it lacks any concurrency control.

This allows the HDF5 libraries to be small and fast, but can lead to catastrophic data loss

as there are no safety controls for files that are accessed concurrently while they are being

written to.

125

Chapter 8. Simulation Architecture

8.1.2 Access speeds for large data sets

In order to select the best data representation for the array-like data stored in the MVRW

simulation objects, we devised a simple test case. Using the SQLAlchemy ORM we create

a class of persistent objects with a numpy array-type attribute, and store an array of N 64-

bit floating point values. We measure the time to create a new object and save the array, as

well as the time to retrieve, read and sum all of the data in the array. Array elements are

read in after being invalidated, so that the ORM software is forced to reload the data from

the database, or from disk. However, we do not control for caching of data in memory by

the database or by the Linux file cache.

As shown in Figure 8.1, for each of the following representation methods we measure

and report the mean execution time for 50 trials of reading and writing array data of size

1 ≤ N ≤ 106:

1. Using SQLAlchemy and PostgreSQL

a. As a PostgreSQL column with Array(double) type

b. As a PostgreSQL LargeBinary column storing the pickled array using the bi-

nary cPickle protocol number 2, and the SQLAlchemy PickleType

c. As a PostgreSQL Text column storing the array using the text-format cPickle

protocol 0, and an SQLAlchemy extension of a TextPickleType

2. Using the cPickle module directly to read/write array data to a file

a. Using a local file

b. Using a remote file shared over NFS

3. Using PyTables to access the data in an external HDF5 file, where data is stored in

a PyTables EArray type

a. Using a local HDF5 file

126

Chapter 8. Simulation Architecture

b. Using a remote HDF5 file shared over NFS

Our results show that HDF5 files are by far the fastest representation method for arrays

larger than 104 elements, which is the majority of data stored in the MVRW simulations.

Hence, we made the decision to store all non-atomic data in an external HDF5 file associ-

ated with each individual persistent object. The ability to structure the HDF5 file internally

as a file system makes it easy to store several array-valued attributes of an object in a sin-

gle HDF5 file. The inability to allow concurrent access to the file, however, precludes the

possibility of using one file per persistent class, rather than the one file per object strategy

we employ.

The relative overhead of accessing files remotely over NFS is only a factor of 2-4 for

HDF5 files, with the penalty decreasing for larger files. This is acceptable for our MVRW

application as the convenience of uniform file availability over network-attached storage

eliminates many implementation complications.

100 101 102 103 104 105 106

Array Size

10−6

10−5

10−4

10−3

10−2

10−1

100

Ti
m

e
(s

)

Array Read

PostgreSQL Array Type
Sqlalchemy (Binary) PickleType
Sqlalchemy (Text) PickleType
cPickle Binary Local
cPickle Binary Remote
pyables HDF5 Local
pyables HDF5 Remote
Linear: f (t) ∈Θ(t)

100 101 102 103 104 105 106

Array Size

10−2

10−1

100

101

102

103

Ti
m

e
(s

)

Array Create and Write

PostgreSQL Array Type
Sqlalchemy (Binary) PickleType
Sqlalchemy (Text) PickleType
cPickle Binary Local
cPickle Binary Remote
pyables HDF5 Local
pyables HDF5 Remote
Linear: f (t) ∈Θ(t)

Figure 8.1: The read/write speeds for accessing a single large floating point array stored as a
property of a persistent class using various data representation methods.

127

Chapter 8. Simulation Architecture

Finally, we note that for applications with even larger data set sizes than are necessary

for MVRW simulations, HDF5 files will provide further advantages. Array sizes much

beyond 108 become impractical for in-memory storage. At this size, the HDF5 library’s

B-tree index of blocks allows PyTables to quickly index into large arrays stored on disk,

eliminating the need to store an entire array in memory at once as any pickling-based

strategies must.

8.2 Random number generation

Random numbers are a fundamental resource for all Monte Carlo algorithms. While al-

most all proofs of correctness and complexity for Monte Carlo algorithms assume that

numbers can be drawn uniformly at random over some interval, such a resource of truly

random numbers is normally not available on most computers. Fortunately, there are many

efficient pseudorandom number generators available that have all the distribution and cor-

relation properties necessary for Monte Carlo techniques.

A pseudorandom number generator (PRNG) is a deterministic algorithm that produces

a sequence of seemingly random numbers. A PRNG maintains a fixed-size internal state

s which is used to generate the random numbers. At step i, the PRNG generates the

random number xi = f (si) and new state si+1 = g(si). Because the functions f and g are

deterministic, whenever si = s j all subsequent states will also be equal. One of the most

useful features of pseudo-random number generators is the deterministic nature of their

output. Determinism makes the processes of check-pointing, verifying, and debugging

Monte Carlo code much easier.

Because of determinism, a PRNG must have the state initialized to s0 = h(θ), where θ

is called a seed and is typically an integer or array of integers, and h is some method that

ensures that all possible seeds lead to well chosen starting values. The proper choice of

initialization function h is essential for Monte Carlo experiments where many independent

128

Chapter 8. Simulation Architecture

runs of the same code will be run with different starting seeds. The sequences gener-

ated with different seeds need to be uncorrelated, which means all starting states must be

different.

8.2.1 Leapfrogging for parallel random number generation

A consequence of the finite size of the states si is that any PRNG must eventually revisit

some previous state. In other words, there is a finite period p > 0 such that si = si+kp

and hence xi = xi+kp for all k ≥ 0. This must be taken into account for long-running

simulations.

A Monte Carlo simulation that will be run m times, using up to n random numbers on

each run should have the property that all mn states of any run at any time will be different,

and the sequences of random numbers generated should be independently and identically

distributed and uncorrelated both within and between sequences. For most Monte Carlo

simulations, including those used in the MVRW simulation, only the first few decimal

places of the random floating point numbers are important, so distribution properties of

the small-order bits are largely irrelevant.

In the MVRW simulation, random numbers are used in two algorithms: (1) the kinetic

Monte Carlo simulation of the MVRW Markov process, and (2) The Metropolis-Hastings

sampling of the body’s equilibrium position. In order to prevent the possibility of overlap

between the random number sequence between two different random number sequences

chosen using arbitrary seeds, we use the leapfrogging strategy of parallel random number

generation as implemented in the Tina random number generator (TRNG) library [10].

The leapfrogging method allows a single seed value θ to be used to simultaneously ini-

tialize an arbitrary number, m, of parallel random number streams of indefinite length [11].

Leapfrogging works by modifying the functions f (·) and g(·), so that they leap ahead by

m iterations of the PRNG sequence, defining f̂ (si) = f m(si) and ĝ(si) = gm(si). Then from

129

Chapter 8. Simulation Architecture

the single random seed θ, which gives initial state h(θ) = s0, we simultaneously initial-

ize m random number sub-streams, each starting at si for 0 ≤ i < m, and each advanced

using the leapfrogged functions f̂ and ĝ. For arbitrary PRNGs, it may be expensive to

compute f̂ and ĝ, but for the restricted class of linear congruential generators [75], this

can be done quickly as a precomputation step, allowing leapfrogging to be nearly as fast

as the single-stream version of the PRNG [11, 86]. The use of leapfrogging guarantees

that no two PRNG streams used in the simulation overlap at any point. Then, the same

mathematical guarantees of PRNG quality for single-threaded applications [71] also apply

to the distributed, parallel simulations, preventing the types of correlation problems that

have been shown to lead to inaccuracies in other KMC simulations [39].

Our MVRW simulation framework provides a Python module with an interface into

the TRNG library, allowing access to the same PRNG leapfrogged streams in both C

and Python. Thus, for the MVRW simulations we use a single seed for all the KMC

simulations that are used for investigating a single set of model parameters, and a single

seed for all the MH simulations used to precompute transition rates for a particular surface

and spider configuration.

130

Chapter 9
Object Relational Mapping and The Natural
Entity Framework

In order to address the fundamentally important issue of object identity and uniqueness

in object relational mapping we devised a new ORM strategy we call the natural entity

framework. We use the data uniqueness and consistency guarantees provided by the nat-

ural entity framework to allow the built-in uniqueness constraints provided by relational

databases to be enforced within the OO program runtime environment. This allows us

to prevent erroneous duplication or loss of data due to violation of value-based unique-

ness constraints on the persistent objects that represent simulation constructs and store

simulation data. This material is based on joint work with David Mohr and Darko Stefan-

ovic [92].

9.1 Introduction

In an object-oriented (OO) language, data are represented as objects, but objects are

transient—they have no persistence outside a particular process or between subsequent ex-

ecutions of a program. To make the data persistent and accessible for concurrent processes

in a structured form, an object-relational mapping (ORM) can be used to store objects as

tuples in a relational database.1 An ORM is a method for translating between a data model

expressed as a class hierarchy and a data model expressed as a relational schema. ORM

software packages allow a program to create, read, update, delete, and query objects stored

persistently in a relational database using object and class methods of an OO programming

language.

1There are other possibilities such as using a persistent object store and a programming lan-
guage that supports persistence natively. Without going into the merits of different approaches, we
concentrate on ORM because of its widespread use.

131

Chapter 9. Object Relational Mapping and The Natural Entity Framework

Designing an ORM presents many challenges because the object data model and the

relational data model differ profoundly in how they represent, store, and access data. We

focus in this work on just one facet of the mapping between the models: the concept of

identity and uniqueness. Both data models are used to abstractly represent sets of physical

or conceptual entities. An entity has multiple properties; the values of these properties

may affect entity identity and entity uniqueness. However, the concepts of identity and

uniqueness have different semantics in the object model and in the relational model [66].

In relational models uniqueness is a value-based notion defined by relational keys. A

key is a minimal set of attributes (columns) of a relation that uniquely identifies a particular

tuple (row). It can be a surrogate key, an artificial value introduced solely to distinguish

tuples; or it can be a natural key, consisting of attributes that correspond to meaningful,

real-world, properties of the entities. The attributes in a natural key represent those prop-

erties of an entity that define its identity and uniqueness in the context of the application

and are well-known to the users of the entity. A natural key is a concise description that

can be used to query for the existence of a specific individual entity. Every relation must

specify a primary key, which is used as the default identifier for a tuple. For practical rea-

sons this is often a surrogate key. However, when a natural key exists, it often makes sense

to declare its existence as well by enforcing a uniqueness constraint on the natural key

attributes. This prevents the database from maintaining two copies of data that represent

the same entity. Additionally, declaring a natural key results in the database maintaining

an index on the natural key attributes, which allows queries involving the natural key to be

optimized [56].

In contrast, in object models value and identity are independent. While an OO execu-

tion environment enforces the uniqueness of object identities, this imposes no constraints

on the values of objects. Hence, when real-world entities are represented by objects, there

can be many distinct objects having the same values for a set of natural attributes and

thus representing the same entity. There are no mechanisms to prevent this error-prone

132

Chapter 9. Object Relational Mapping and The Natural Entity Framework

duplication of entity representations, and typically no universal mechanism to query for

the existence of an object based on its value.

This fundamental difference in how uniqueness and identity are defined in relational

databases and in OO programming languages leads to problems when data representing

real-world entities are made persistent with a relational database, but are operated on as

in-memory objects. If there are multiple in-memory objects all denoting the same entity,

which object represents the true current state of that entity, and which one corresponds to

the database’s current state, i.e., the tuple representing the entity? This question becomes

even more confusing when there are multiple execution contexts operating on entities con-

currently.

To properly model the concept of entity uniqueness and identity at both the object

and the relational level, we propose a new framework of constraints and semantics for

object construction and interactions that can be enforced in modern ORM systems and

strongly object-oriented languages. Our natural entity framework provides a base class

NaturalEntity with the functionality described in the remainder of this chapter. Nat-

ural entities are persistent objects in an OO execution environment that directly enforce

value-based uniqueness constraints on natural attribute values. Other ORMs allow natural

keys and uniqueness constraints to be declared on the relational model, but they do not

enforce these constraints on the object model, or in the inheritance hierarchy. Making

these constraints explicit allows persistent objects to more directly represent the semantics

of relational tuples used to store their state. This simplifies the programmer’s conceptual

model and reduces potential problems with concurrency, entity identity, and uniqueness.

In contrast to creating regular objects, there is overhead when checking for value-

based uniqueness, but this overhead is not higher than manual enforcement of uniqueness.

It should be stressed that the proposed natural entities are otherwise normal objects that

exist alongside, and interact with, other objects, and that they can be queried and used

polymorphically. Hence, the natural entity framework does not reduce the expressiveness

133

Chapter 9. Object Relational Mapping and The Natural Entity Framework

of the OO language, and a programmer is free to represent entities using persistent objects

that do not enforce uniqueness constraints, or using regular non-persistent objects. How-

ever, only through the use of the natural entity framework can the programmer maintain

the value-based uniqueness constraints for in-memory objects.

The primary contribution of the natural entity framework is that it allows the ORM

to manage and enforce value-based object identity and uniqueness on in-memory objects.

These value-based constraints match the constraints imposed by natural keys on the rela-

tions that store the persistent state of the natural entities. Thus the object model for natural

entities is modified to more closely match that of the relational model.

This framework provides several advantages: (1) natural entities have a strong concept

of value-based identity and uniqueness, accessible through object attributes and methods

that prevent multiple in-memory objects from representing the same conceptual entity

(Section 9.3); (2) the ORM can use an identity map to provide fast value-based queries for

in memory objects and a uniqueness constraint to provide fast queries for archived objects

(Section 9.4); (3) natural entities have constructor methods that automatically manage

the uniqueness constraints for in-memory objects and disambiguate object construction

from object retrieval (Section 9.5); and, (4) natural entities inheritance hierarchies can

be mapped automatically to a relational schema that uses the appropriate constraints and

relations necessary for maintaining natural key uniqueness constraints and for allowing

polymorphic queries (Section 9.6).

Given these features, the natural entity framework provides functionality that is lack-

ing in modern ORM systems and presents an often applicable abstraction that is easy to

understand and implement, allowing the programmer to spend more time on solving the

actual problems at hand.

134

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.2 Background

To be specific about how the concept of uniqueness constraints is implemented, here we

summarize the terminology used for relational models and OO programming languages.

9.2.1 Relational model

A relation is a tuple of attributes denoted R = R(A1, . . . , An). The attributes come from

some domain A, and each attribute Ai has a type τi, (written Ai : τi), where τi ∈ T for

some set T of basic types. For brevity we omit type signatures where they are not essential

to the discussion. A relation instance is a set of tuples from the domain (A1 × . . . × An)

that represents the current factual state of the relation. When it is not otherwise confusing,

the term relation is used to describe both the relation’s schema (attributes, types, and

constraints) and its time-varying instances (the tuples and their values). In the concrete

context of a relational database, a relation specifies the names and types of the columns of

a table, and an instance specifies a set of table rows and their values.

A non-empty set k ⊂ {A1, . . . An} is a key of relation R(A1, . . . An) if for any instance

of the relation, the value of the attributes in k uniquely determines a tuple and no proper

subset of k is also a key. Thus, a key is a minimal set of attributes that can be used to

define the identity of a tuple. A relation may have many keys. A key is simple if it

consists of a single attribute, otherwise it is compound. Each table must have a primary

key, which is used as the canonical set of attributes for identifying a row for the purpose

of database operations and references between tuples of relations. Primary key attributes

are underlined in the notation for a relation to highlight their role (e.g., R(A1, A2, A3) has

a primary key {A1, A2}.) Associations between relations are expressed with a foreign key

constraint that restricts a set of attributes to values that come from the relational instance

state of a separate set of attributes that form a key [26].

A relational schema is a set � = {R1, . . . ,Rm} of relations along with constraints. A

135

Chapter 9. Object Relational Mapping and The Natural Entity Framework

relational database provides a set of types and mechanisms to define relational schemas

over those types. It maintains instances for each relation that obey all the restrictions and

allows queries to create, read, update, and delete tuples.

9.2.2 Object model

An object lives in memory and has identity, type, state, and behavior. An object’s state is

given by the values of a collection of named attributes that come from a set of types T′2.

In strongly object-oriented languages, objects have a concept of identity independent of

their attribute values or addressability [70]. This allows references to objects to be tested

if they refer to the same object, and hence forms a definition for object uniqueness.

An object’s type is some class C. A class creates objects: it defines names and types

for each attribute, and the set of methods that operate on the state of an object. These

methods define the behavior of the object. An object that belongs to a class is said to be

an instance of that class.

Inheritance.A set of classes � = {C1, . . . ,Ck} is called a class schema. Classes have a

concept of inheritance. If Ci inherits from C j, we write Ci <: C j, and the class Ci inherits

all of the attributes and methods of C j. The inheritance relation is reflexive, transitive, and

antisymmetric, and so defines a partial ordering on the class schema, called the inheritance

hierarchy. This relation represents specialization as objects of class Ci now can represent

all the state and behavior of C j, but can also add or modify attributes and methods. Thus,

if Ci <: C j and o is an instance of Ci, then o is also an instance of C j. This property is

called polymorphism and allows objects to act as an instance of any class more general

than their own.

The maximal elements in the hierarchy are called the base classes. In many languages

2The set of OO types T′ may, but does not necessarily, intersect with the set of types T used in
the relational schema. They will almost certainly not be identical.

136

Chapter 9. Object Relational Mapping and The Natural Entity Framework

multiple inheritance is possible, so a class can inherit directly from more than one class.

For the purposes of ORM specifically, and OO languages in general, multiple inheritance

introduces additional complexity that is best avoided, so we focus on single inheritance.

In a single inheritance class schema, the inheritance hierarchy is not a general lattice, but

a forest of inheritance trees, each rooted at a single base class. For single inheritance

hierarchies we can uniquely define the super relation Super (Ci) = C j if Ci <: C j and

Ci <: Ck <: C j implies Ck = Ci or Ck = C j. In other words, the super relation determines

the smallest class larger than a given class, called the immediate superclass. Conversely,

Ci is said to be a subclass of C j.

A class can be abstract or concrete. There cannot be objects belonging to an abstract

class, only to concrete classes. Abstract classes are only used to be inherited from by other

classes.

9.2.3 Object-relational mapping

The object and relational models are general enough to apply to most modern OO lan-

guages and relational databases, hence they form a good basis for describing how objects

can be mapped to relations. An ORM is a mapping from a class schema � to a rela-

tional schema � that provides a correspondence between objects in � and tuples (or sets

of tuples) from relations in �.

In this mapping attributes of an object with type t1 ∈ T′ are mapped to one or more

tuple element with type(s) τi ∈ T. Since the types available in a programming language

(subtly) differ from those available in databases, this mapping of types is a necessity, and

may not be 1-to-1. However, for most uses the type differences have no practical effect,

and we leave exploring the implications for value-based identity as future work.

137

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.3 Object identity and uniqueness

The central issue addressed by the natural entity framework is consistently representing

real-world entities that possess a concept of uniqueness described succinctly by the values

of one or more well known (natural) attributes, i.e., a natural key.

Identity in OO languages.

Like objects in the natural world, objects in a programming language have concepts of

identity and uniqueness. Many OO programming languages (Python, Smalltalk, Java,

Ruby, etc.) have a strong concept of object uniqueness in that each object has an associated

immutable internal id(entifier), distinct from the references used to access it [70]. Such

an id is called a surrogate object id since it has no relation to the value or meaning of

the object. It merely serves to define the identity of the object and allows comparing the

identity to those of other objects, as there is a bijection from object ids to objects [126].

Identity in relational databases.

Identity in relational databases is a value-based property determined by a designated pri-

mary key. The primary keys should be unique, immutable, and non-null. The database

maintains a uniqueness constraint on the primary key, preventing duplicate tuples, and

uses an index to quickly select tuples by their primary key or detect violations of the

uniqueness constraint. The primary key is also used to define foreign key relationships.

Because of all these important requirements placed on the primary key, it often makes

sense to use a surrogate key as the primary key, even when there is a well-known natu-

ral key. There are many good reasons to prefer surrogate keys as primary keys, most of

which arise from the fact that using surrogate keys allows the relational schema to decou-

ple identity and value [27]. This allows more flexibility when the relational model needs

to be updated or refactored [4]. Other benefits arise due to the fact that surrogate keys are

138

Chapter 9. Object Relational Mapping and The Natural Entity Framework

simple (consist of a singleton attribute) and are typically small integral types. Natural keys

in contrast are often compound and may include strings and other types that require more

space as foreign keys. Since the primary key is always used to represent entity relation-

ships through foreign key constraints, having a small, simple primary key reduces space

usage and simplifies join operations. Simple integral keys are also often faster for use in

selects against the primary key. For these reasons, ORMs often use surrogate primary keys

by default [43].

However, natural keys are still useful and have some desirable characteristics. Declar-

ing a natural key communicates to the database that the relational model has a logical

uniqueness constraint on the natural key attributes and prevents a single conceptual entity

from being represented by more than one tuple. Additionally, the database can then main-

tain a uniqueness constraint and index on the natural key. The presence of an index allows

clients to quickly retrieve objects by their natural key-values, or determine that no such

object exists. This can lead to distinct performance advantages for natural keys in some

situations [78].

9.3.1 Identity in the natural entity framework

The natural entity framework, like other ORM tools, must reconcile the semantics of object

identity in OO languages and tuple identity in relational databases. Our goal is to enforce

the uniqueness of entity representation across both data models as determined by natural

key attributes, but we simultaneously want to support polymorphic queries, efficient entity

relationships, and flexibility for refactoring databases.

To achieve these objectives, the natural entity framework enforces the simultaneous

use of surrogate primary keys and auxiliary natural keys. This dual-key representation

achieves advantages of both surrogate and natural keys. In particular, our surrogate keys

are unique within each inheritance hierarchy rooted at the NaturalEntity class. This

uniformity of primary keys allows us to use a single top level relation to define a primary

139

Chapter 9. Object Relational Mapping and The Natural Entity Framework

key for every object belonging to the class hierarchy. This makes polymorphic queries

and associations much more efficient and uniform than they could be with natural keys.

Indeed, without a uniform key for the entire inheritance tree, representing polymorphic

associations would become problematic as there would be no single foreign key constraint

that could be used to represent an association. Hence, surrogate primary keys are nec-

essary for polymorphism and flexibility, but they do not fulfill the need for maintaining

value-based uniqueness. This is achieved by the auxiliary natural keys. To maintain these

auxiliary keys, the database must maintain a separate index, which takes up time and space;

however, this index is exactly what ensures the logical value-based uniqueness of natural

entities, and it is heavily used by constructors (Section 9.5) and other common queries

against the natural key.

9.4 Management of persistent states and concurrency

Building on the concepts of object and relational identity, an ORM must have a way to

track and manage the identity of in-memory objects. Unlike transient objects, which have

a limited scope and lifetime, persistent objects must maintain their identity permanently

and consistently across concurrent processes. To simplify the tracking of persistent objects

and their modifications, modern ORM packages provide the concept of a session manager.

The natural entity framework relies on a session manager to manage the persistent state of

in-memory persistent objects and enforce the uniqueness constraints for natural entities.

Our principal contribution is to provide additional constructor methods which make

explicit the assumptions about the state of a persistent object when it is created and prevent

the user from violating the value-based uniqueness constraints.

140

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.4.1 Transactions

The session manager has transactional semantics and manages a set of persistent objects

by implementing the unit of work concept [43]. It tracks object creation, modification, and

deletion. The session manager delegates large parts of this work to the database by using

transactions. This ensures a consistent database state, even when objects are modified

concurrently by other processes. It follows that the concurrency guarantees are largely

provided by the transaction. The session manager supplies methods to control the global

transactional state for an execution context. The begin() method starts a transaction and

is implicitly called as needed if no transaction is currently in progress. The flush()

method sends pending modifications to the database, but does not end the transaction.

The commit() method commits a transaction, and this implies a flush operation if there

are still pending changes. Finally, the rollback() method undoes all database changes

made during the transaction.

9.4.2 Object states

From the perspective of an OO execution environment, reasoning about persistent objects

is much more complicated than standard transient objects because the data representing

the object can be stored in memory, in a relation(s) in the RDBMs, and/or in the memory

of other concurrent processes. The session manager acts as the single point of persistence

management for an OO execution environment. It determines how a persistent object

relates to its external relational state in the database. Any object of a class that derives

from a persistent base class, such as NaturalEntity, will be understood by the session

manager to be in one of the following six states:

• Transient – The object is not managed as persistent by the session, while a corre-

sponding tuple with the same natural key in the database may or may not exist; there

is no operational connection with any persistent object.

141

Chapter 9. Object Relational Mapping and The Natural Entity Framework

• Pending – The object does not yet have a permanent record but has been successfully

added to the session and will be added to the database when the session state is

flushed to the database. Until the object is successfully flushed it has not yet been

assigned a primary key.

• Persistent Clean – The object has a primary key and a corresponding representation

in the database. No persistently managed attributes have changed values, so no

updates need to be sent to the database.

• Persistent Dirty – The same as a persistent clean object, except the value of one

or more of the persistently maintained attributes has been changed, so that an SQL

update operation is needed to save the state of the object. Copies of this object

in other sessions do not know about the changes and may have made conflicting

changes of their own.

• Expired – The object’s state is no longer valid because it was created in a session

that has been committed or rolled back, so its state needs to be reloaded from the

database. This reloading is done transparently by the session manager when neces-

sary.

• Archived – The object is not part of the store but is persistently stored in the database.

Strictly speaking, this is not a state of an object, since no corresponding object exists

in the session, but conceptually the tuple in database represents an object that is not

currently loaded.

It is important to remember that the identity of a persistent object is provided by the nat-

ural key, and maintained through transactions and the constraint imposed by the database

key. In case of conflicting concurrent transactions, e.g., simultaneous inserts or deletes,

one of the concurrent processes will be prevented from committing its changes by an ex-

ception. In Figure 9.1 we show the effect of various operations on the persistent state of an

object, but omit the expired state and other effects that occur at transaction boundaries. The

142

Chapter 9. Object Relational Mapping and The Natural Entity Framework

create_transient()

(default constructor)
get_or_create()

Persistent Clean

Persistent Dirty

Transient

Pending

Archived

add()

create()

get()
query()

flush()

(modify)

expunge()
delete()

delete()

expunge()

flush()

Figure 9.1: Persistent object states and effect of constructors and session commands within a
single transaction context. The effects of transaction boundaries and the expired state are omitted
for clarity.

effect of commits is to expire all pending and persistent objects and the session manager

updates any identity maps of persistent objects accordingly (Section 9.5.1).

9.5 Object creation

Maintaining a value-based uniqueness constraint for persistent objects causes difficulties

with object creation. Normally, the programming environment’s concept of object identity

is all that determines object uniqueness. When an object constructor is called, a new object

with a unique object id is always created, and an initializer method is called. However,

143

Chapter 9. Object Relational Mapping and The Natural Entity Framework

natural entity classes with value-based uniqueness constraints necessitate different seman-

tics. First, the constructor must be given the values for each of the natural key attributes

since they must not be null. Given the natural key value, the constructor is presented with

several possibilities: (1) an object with those values already exists in memory so we are

not allowed to create a new object with a new object id and the same natural key values;

(2) an object with those values exists in an archived state, so it must be loaded from the

database; or, (3) there is no persistent or in-memory object with the given natural key, so a

new object should be created and added to the database.

Such a constructor requires a natural-keyed dictionary of in-memory persistent ob-

jects, i.e., an identity map (Section 9.5.1), and a mechanism to query for the existence of

archived objects. Both of these can be provided efficiently by the session manger, but they

nevertheless impose a significant cost, especially when the round trip time for remote data-

base queries is involved. Unfortunately, such queries are necessary if we wish to maintain

the consistency constraints; allowing the constructor to make new objects without regard

to the natural key values would result in duplicate objects in memory. Furthermore, note

that the cost of frequent queries can be reduced by allowing the caching of natural keys or

prefetching of objects (particularly when the database transaction isolation prevents non-

repeatable reads). When queries are necessary they can be handled efficiently because of

the unique index maintained on the natural key attributes.

Together all of these considerations impose a significant change to the semantics of

object creation, and can lead to conceptual problems for programmers. The natural entity

framework addresses this conceptual ambiguity by providing additional constructor meth-

ods with different semantics. These constructors allow programmers to explicitly state

their intentions or assumptions when creating an object.

• get() - A constructor that takes the natural key and returns the object uniquely

identified by that key, either by returning a reference to an in-memory object repre-

senting that entity, or by loading an archived object from the database and returning

144

Chapter 9. Object Relational Mapping and The Natural Entity Framework

it in the persistent clean state. If no such object exists, an exception is raised.

• create() - A constructor that takes the natural key and returns a newly created

object in the pending state, but only if no persistent object with the same natural key

exists in memory or in the archived state. An exception is raised if the object already

exists.

• get_or_create() - A constructor with the combined semantics of the get() and

create(). It takes the natural key and either returns an existing persistent object,

or returns a newly created object in the pending state. This is the default constructor.

• create_transient() - A constructor with normal transient object semantics that

always returns a new object in the transient state. It can take arbitrary arguments

and ignores the uniqueness constraints.

The get_or_create() constructor does whatever it takes to get a reference to the

unique object that has the provided natural key. It will find that object if it is in memory

and return a reference, or it will look in the database for an archived version and return it,

and if no such persistent object exists, it will construct a new object and make it persistent

by moving it to the pending state. In practice we found that the get_or_create() gives

the expected semantics in the vast majority of situations, and is thus the default constructor,

leading to particularly succinct code (e.g., in Python var=ClassName(...)).

The create() and get() constructors are used in cases where the existence or non-

existence of a particular NaturalEntityobject represent a logical error, and the program-

mer would like an exception to be raised so that the errors are not silently ignored.

Finally the create_transient() constructor has several uses when the normal se-

mantics of the natural entity construction are too rigid. Unlike the other constructors,

create_transient() does not need to be given the natural key, and does not use any

database connections or in-memory identity maps. This is useful for testing object behav-

145

Chapter 9. Object Relational Mapping and The Natural Entity Framework

ior without using a database. Transient objects are also useful when the user does not wish

to immediately pay the cost of the database query to check for archived objects. Further-

more, they support situations where not all of the natural key attributes are immediately

available, but it makes sense to partially construct a NaturalEntity object, and then fin-

ish filling in the natural key attributes later. This is often the case in GUI or web-based

applications where objects are built up sequentially by user actions. A transient object

can be made persistent by using the add() method, which will check that all natural key

attributes are specified and will raise an exception if the object already exists.

9.5.1 Identity map

When the (non-transient) constructors are called, they are provided with the complete

natural key for the desired object. If an object with that natural key already exists in

memory in the pending, expired, persistent clean, or persistent dirty states, it would be

incorrect to construct and return a new object. Instead we must return a reference to the

in-memory object. The ORM’s session manager is able to track the persistent state of

objects, but it also needs a way to look up objects by their natural key. This is a common

requirement for ORMs, which Fowler calls the identity map pattern [43]. The purpose

of an identity map is simply to map database keys to in-memory objects. When working

with persistent objects, sometimes different parts of the code need access to the same data

object without understanding whether that object is already in memory. The solution is

to keep a global registry (or identity map) of in-memory objects keyed by their primary

key. Normally, this identity map is stored in the session manager object, and it is used

for internal ORM lookups of foreign key mappings. However, when primary keys are

surrogates, it is awkward for a user to make use of this identity map, because the surrogates

by definition are meaningless and often obscured from the user. It is much more common

for a user to query using natural key attributes, and the constructors must be able to do

this efficiently for in-memory objects. Hence, the natural entity system implements an

146

Chapter 9. Object Relational Mapping and The Natural Entity Framework

auxiliary identity map, keyed on the natural key attributes. The identity map only stores in-

memory persistent objects, i.e., transient objects are excluded. If an object is removed from

the persistent store with the delete() method, it becomes transient. Thus, a constructor

will not return a reference to a deleted object, even if that object is still in memory.

9.5.2 Initialization

Since the NaturalEntity constructors have multiple possible mechanisms for retrieving

or creating objects, the concept of initialization also needs to be refined. For natural en-

tities there are three distinct ways a new in-memory object could be created and require

initialization: (1) it could be created as a transient object; (2) it could be retrieved from

an archived state in the database; or, (3) it could be created as a new persistent object in

the pending state. (In the case where the constructor already found the object in-memory

through the identity map, no initialization is needed.) The NaturalEntity class provides

three different initializers that will be called by the constructor in each of the three cases.

• initialize() – This method is called when a new persistent object is created. The

object will be in the pending state and the object’s (immutable) natural key attributes

will have been set to the values provided to the constructor.

• reinitialize() – This method is called when an archived object is brought into

memory by a constructor. The object will be in the persistent clean state and all

persisted attributes (including the natural key attributes) will have been set by the

ORM system.

• initialize_transient() – This method is called if and only if the object is con-

structed with the create_transient()method. The object will be in the transient

state, and any supplied natural key attributes will have been set, but those omitted

by the user (which is permitted for transient objects) will have no default value.

147

Chapter 9. Object Relational Mapping and The Natural Entity Framework

9.5.3 Comparison with other ORMs

The multiple constructors of the natural entity framework represent a departure from the

normal mechanism of persistent object creation presented by modern ORMs. In many

modern ORM systems, all objects are initially created as transients, and only after a call to

an add()method are they moved to a pending (or equivalent) state [73,96]. The difficulty

with this mechanism is that it does not allow the ORM to directly manage value-based

object uniqueness. In fact, the only way that a user will know if the in-memory objects

conflict with persistent archived objects is to issue a database flush. When concurrent

transactions attempt to make potentially conflicting changes, calls to flush() can hang

indefinitely until other transactions have commit or rollback. For maximal concurrency it

is best to flush infrequently or to also issue a commit (which cannot hang but may raise

an exception). Commits, however are expensive as they require the ORM to expire the

state of all in-memory objects, which must be subsequently reloaded from the database.

Furthermore, if a persistent process avoids the expenses of flushes and commits, but does

not guarantee consistency of object uniqueness, there is a potential for the process to do

significant amounts of work (perhaps large computational simulations) only to find out

when it finally issues a flush or commit that the constraints have been violated and the

entire computation must be scrapped. Thus, while forcing the ORM to manage value-base

object identity using natural keys imposes costs initially, particularly on object creation,

these costs are often amortized by the need for less frequent flushes and commits and the

reduced chances of database consistency constraint violations.

9.6 Mapping natural entity inheritance hierarchies

All natural entity classes must inherit from the NaturalEntity class, thus we must map

all the classes in each inheritance subtree rooted at NaturalEntity into a relational

schema. The natural entity system supports flexible mapping of hierarchies to relations,

148

Chapter 9. Object Relational Mapping and The Natural Entity Framework

that allows for polymorphic queries and associations, as well as allowing different natu-

ral keys for separate subtrees of the inheritance hierarchy. The user only needs to supply

minimal information about the desired inheritance mapping strategy and the ORM can au-

tomatically construct the appropriate tables and constraints. As an example we consider

a distributed computer simulation system, with two inheritance hierarchies: an abstract

Experiment class with two concrete subclasses; and an abstract Measurement class also

with two concrete classes (Figure 9.2). An Experiment has a one-to-many relationship

with measurements, so that each Measurement has a foreign key to the Experiment hi-

erarchies primary key–a polymorphic association. We examine natural keys in the relation

further in Section 9.6.2.

9.6.1 Inheritance mapping strategies

The relational data model has no built-in concept of inheritance, but support for inheritance

and polymorphism can be enforced by appropriately structuring the relational schema and

queries. There are three standard methods for mapping inheritance hierarchies to a rela-

tional schema [43]: (1) the single table strategy maps all classes in an inheritance hierarchy

to a single table; (2) the class table strategy maps each class to its own table; and (3) the

concrete table strategy maps only concrete classes to tables.

The single and class table strategies are particularly useful for polymorphic queries

and associations as for every class in the hierarchy they store the class name (i.e., the type)

and a surrogate object id in a single top level table. Concrete table inheritance lacks these

properties and is not considered further.

Single and class table strategies are distinguished by the technique they use to represent

the differing attributes for classes in the hierarchy. Single table inheritance has a single re-

lation which includes all attributes of all classes in the hierarchy. It allows polymorphism

by permitting attributes to be null for objects that do not include them. In contrast, class

table inheritance only includes non-inherited attributes in each class table. It permits poly-

149

Chapter 9. Object Relational Mapping and The Natural Entity Framework

natural_key=("width")
width=Field(Float)

OneDimExperiment

max_time=Field(Float)
measurements=OneToMany("Measurement")
abstract=True

Experiment

natural_key=("width", "height")
width=Field(Float)
height=Field(Float)

TwoDimExperiment
inheritance="join"
time_step_size=Field(Float)
measure(max_time) = <<func>>

TimeMeasurement

natural_key=("experiment", "type")
experiment=ManyToOne("Experiment")
abstract=True

Measurement

inheritance="share"
dist_step_size=Field(Float)
measure(max_dist) = <<func>>

DistanceMeasurement

id:Int {PK}
type:Varchar {NotNull}
max_time:Float

table_experiment

id:Int {PK} {FK(table_expriment.id)}
width:Float {NK}

table_one_dim_experiment

id:Int {PK}
type:Varchar {NotNull} {NK}
experiment:Int {FK(table_experiment.id)} {NK}
dist_step_size:Float

table_measurement

(a)

(b)

id:Int {PK} {FK(table_expriment.id)}
width:Float {NK}
height:Float {NK}

table_two_dim_experiment

id:Int {PK} {FK(table_measurement.id)}
time_step_size:Float

table_time_measurement

Figure 9.2: (a) A simple example of a class schema with two inheritance hierarchies, abstract
classes, multiple natural key bases, polymorphic associations, and both shared and joined inheri-
tance mappings. The text in each class entry is close to the actual amount of code needed to specify
this hierarchy. We use syntax that is similar to our Python-based reference implementation of the
natural entity framework. (b) The relational schema generated by the natural entity framework
from the class schema in (a). The foreign key constraints are shown.

morphic queries by using joins on the primary surrogate key to retrieve attribute values

from all the relations that store an object’s state. These differences lead to quantifiable

performance and space trade-offs [60]. Modern ORMs allow the user to specify a mix-

ture of these strategies within a single inheritance hierarchy [24]. When mixing strategies,

the single table approach is called shared or horizontal mapping, while the class-table

approach is called joined or vertical mapping [88]. Shared table inheritance works best

when the cost of additional join operations needed to load rows is a limiting factor, or

when a portion of the class hierarchy shares almost all of the same persistent attributes.

Joined table inheritance works best when database space is constrained, or in portions of

150

Chapter 9. Object Relational Mapping and The Natural Entity Framework

the hierarchy where few persistent attributes are shared between classes.

In the natural entity framework each class in a hierarchy only needs to specify if it will

use the shared or joined inheritance strategy and the ORM can automatically derive the

relational schema.

9.6.2 Natural keys and inheritance

Every concrete class that derives from NaturalEntity must define or inherit a natural

key, so that the constructor can enforce the value-based uniqueness constraint. Abstract

classes need not define a natural key, and any class that has no natural key must be declared

as abstract.

Because of the option to use joined inheritance, an individual object can have its at-

tributes stored in several relations, but there is always a relation that stores the attributes

declared specifically in a class. This is the primary relation of the class.

Consider a class C that defines a natural key and that has no superclass which also

defines a natural key (i.e., it has only abstract superclasses). The natural key results in a

uniqueness constraint which is implemented by the database. A constraint can typically

only be defined on attributes in a single table and not on joined tables. It follows that

exactly one of the relations representing C must enforce this constraint. None of C’s

superclasses could have a natural key constraint, as enforcing a uniqueness constraint on

Super (C)’s primary relation would prevent other subclasses of Super (C) from defining

different natural keys. Hence, the natural key constraint for C must be enforced in C’s

primary relation. This implies that all C’s natural key attributes must be defined in C and

cannot be inherited, or they would not be present in C’s primary relation. Finally, note

that any subclass of C will inherit C’s natural key attributes, and because these attributes

have a uniqueness constraint defined on the relation that stores them, the subclass must

also inherit the natural key from C.

151

Chapter 9. Object Relational Mapping and The Natural Entity Framework

Therefore in any inheritance chain, i.e., starting at a concrete class and following the

super relation to a base class, there is exactly one class that declares a natural key. Such a

class is called a natural key base, as all classes that inherit from the natural key base share

the same natural key constraint and store their natural key attributes in the primary relation

of the natural key base.

Hence, when mapping a class hierarchy to a relational schema, the mapping will re-

quire: (1) a single table for the root class to store the primary key and object type; (2) a

table for each natural key base (unless the class is also the root); and (3) a table for each

class that uses joined inheritance (unless the class is a natural key root or the base class).

9.6.3 Type as a natural key attribute

A natural key base will pass on its natural key to all of its subclasses, and thus only one

object of any derived class may have a given natural key value. Sometimes this is too

restrictive a condition on the classes. Because the natural key distinguishes objects based

on their value, but not their type, it restricts cases where objects have identical values but

different behavior because their respective classes have different methods.

For example, consider the class structure of the distributed simulation system in in

Figure 9.2. The Measurement class defines a simple natural key as a foreign key rela-

tionship to the Experiment it measures. An experiment should be able to include both

a TimeMeasurement and DistanceMeasurement instance. However, because these ob-

jects have the same natural key this becomes impossible. The two measurement subclasses

have the same attributes, but the meaning of the attributes differs due to different method

implementations. Thus, it can make sense to have more than one measurement object

with the same natural key, provided they belong to different classes. This can be accom-

plished by adding the implicit type attribute to the natural key base’s primary relation and

thus adding the type to the uniqueness constraint. This allows multiple Measurements to

belong to a single Experiment, provided they are from different classes.

152

Chapter 9. Object Relational Mapping and The Natural Entity Framework

In the natural entity framework the type can optionally be declared to be part of the

natural key of a class to allow this distinction when it is required. The type attribute is

automatically managed by the ORM, since it is always present as an attribute of any object

in the OO programming language.

9.7 Conclusion

The natural entity framework is composed of general OO concepts and semantics that can

be implemented in any OO language that supports strong concept of object identity. Object

and class introspection, and the ability to instrument object construction and destruction

are helpful features in making the implementation easy to use. Our reference implementa-

tion in Python is built on top of the SQLAlchemy ORM, and the Elixir extension.

Any persistence library that attempts to enforce value-based uniqueness constraints

through natural keys and that allows polymorphic queries and associations will have to

share several properties: (1) the objects will have to use a dual key representation with

surrogate primary key and auxiliary natural key; (2) the ORM must maintain an identity

map using the natural keys to avoid creating duplicate objects in memory; (3) the ORM

must restrict inheritance hierarchies so that at most one class defines a natural key in each

inheritance chain; and (4) the ORM must keep all the natural key attributes for a natural

key base in a single table so that the RDBMs can enforce a uniqueness constraint on them.

The constructor methods of natural entities provide a consistent interface which distin-

guishes the different mechanisms by which a persistent class may be created and initial-

ized. These constructors prevent the ORM from representing the same conceptual entity

with different in-memory objects by ensuring that the value-based natural key constraints

are maintained for all natural entity objects in the execution environment.

Enforcing value-based object identity changes the semantics of object models in the

context of OO languages. However, these constraints only apply to objects from classes

153

Chapter 9. Object Relational Mapping and The Natural Entity Framework

that inherit from NaturalEntity. Thus natural entities can coexist with objects of other

less-strict persistent classes, as well as normal transient objects. Hence the natural entity

framework makes it easier for a programmer to reason about object uniqueness for those

entities which require it, but does not otherwise constrain the expressiveness of programs

or programming languages. Our experience tells us that a natural key is present in most

situations, and easily enforcing it has been an invaluable tool in writing correct scientific

software.

154

Part III

Perspective and Conclusion

155

Chapter 10
Executable Biology

Continuous-time Markov processes describe systems in terms of discrete states and state

transitions—concepts that are ubiquitous in models of computation. The structure of the

kinetic Monte Carlo approach is essentially a direct mapping between samples of a Markov

process and execution traces of a computer simulation. The state of the simulation process

encodes the state of the Markov process, and the execution path of the simulation emu-

lates the transitions of the Markov process from state to state. This relationship becomes

insightful for models such as the MVRW model where the states and transitions represent

an approximation of the actual physical states and dynamics of the system. A computer

simulation of a CTMP model such as the MVRW model represents a hypothetical execu-

tion of the physical or chemical system, rather than just an abstract computational solution

to a mathematical function.

Fisher and Henzinger have recently introduced the idea of executable biology [41]

as an approach to biological modeling focusing on computational models that “present a

recipe—an algorithm—for an abstract execution engine to mimic a design or natural phe-

nomenon.” For Fisher and Henzinger, a computational model is described principally by

operational semantics, and the execution of the model parallels the hypothetical physical

and chemical evolution of the system. This is in contrast to mathematical models that

describe a system as a set of equations, where the procedure for numerically estimating

the solution of the equations has no semantic connection to the physical and chemical

processes that give rise to the system dynamics. As an example of such a mathematical

model, consider the standard deterministic model of the mass action kinetics of a chemical

system (Section 3.1). This model uses differential equations derived from the law of mass

action to describe the species concentrations over time. The model is accurate for most

chemical reactions in large, well-mixed volumes of dilute solutions. Finding a solution to

the equations allows one to accurately predict the dynamics of the system. However, any

156

Chapter 10. Executable Biology

numerical estimation of the differential equations follows an execution pattern that has no

direct relation to the actual molecular events that drive the system. The goal of computa-

tion in such a model is to obtain the best approximation to the solution of the mathematical

system in the most efficient manner. This approach is functional and practical, but it does

not shed any light on how the dynamics of the system result from the elementary chemical

events.

Fisher and Henzinger’s definitions of mathematical models and computational models

are compelling, but suffer from a narrow focus on process calculi and interacting state

machine models. For them, an essential feature of a computational model is that it is de-

scribed algorithmically and is intrinsically executable with no ambiguity in the intended

implementation. However, the real advantage of the computational model is not in the lan-

guage of its description, but in the form of its assumptions. In a computational model, we

view a system in terms of its physical and chemical constituents and assume that the state

of the system is the state of its parts. Furthermore, we assume that temporal evolution of

the system is governed by interactions of the constituents through a sequence of elemen-

tary events leading to discrete changes in the system state. Any model that characterizes a

system in such a manner represents an executable understanding of the system, regardless

of the language in which it is described. The real advantage of computational models is

that their execution follows a sequence of events that correspond to an approximation of

the real physical and chemical events driving the system at relevant time scales. Develop-

ing, running, and observing simulations gives us direct insight into the way natural laws

give rise to complex effects through stochastic sequences of elementary events. Visualiz-

ing the execution of such a simulation is the virtual equivalent of watching a real physical

system evolve, and allows the user to develop an operational understanding of the system

in ways not possible with other models.

With a more fundamental description of a computational model in terms of the assump-

tions made about the system, we find that there is no longer a strict dichotomy between

157

Chapter 10. Executable Biology

mathematical and computational models. In fact, most models based on CTMPs are both

mathematical and computational. Clearly, a CTMP is a formal mathematical description

of a system and hence a mathematical model. However, through the KMC algorithm,

any such model also gives rise to an executable description of the system. Many famous

examples of this class of models exist, for example, the Ising model of magnetism [18],

Gillespie’s stochastic model of chemical kinetics [48], and the random walk model of

diffusion.

A model that is both mathematical and computational has the advantages of both

classes. A purely mathematical model with no direct description of the elementary ob-

jects and events is conceptually opaque; we can use it to predict the system dynamics,

but it provides no insight into the causes of the dynamics. On the other hand, a purely

computational model described algorithmically lacks context. Such a model is difficult to

compare with other models that do not share a common language of description in math-

ematics. Phrasing a model in terms of mathematics often helps to extract commonalities

among models and suggest relationships and connections that may not be obvious from

an executable algorithm. Also, a mathematical model will often admit some analytical re-

sults. Even if the full dynamics of the model is not analytically tractable, we can establish

results regarding asymptotic behavior or identify conservation relations. Additionally, the

formality with which mathematical models are described allows them to be derived from

physical laws and assumptions in a rigorous and logically justifiable manner.

The ability to describe a system both mathematically and computationally represents

a more fundamental understanding of the system than a model that fits in only one class

or the other. Such a model requires understanding the fundamental mathematical relation-

ships of the system, as well as how those relationships govern the execution of the system

in terms of its constituent parts. It is easy to propose ad hoc computational models with

no physical justification or to propose mathematical relationships observed empirically

through experiment, but understanding how the relationships and dynamics result from

158

Chapter 10. Executable Biology

the elementary interactions is much more enlightening. Thus we take this approach in our

MVRW model of molecular transport.

159

Chapter 11
Conclusion

In many ways the molecular spiders and the MVRW model exemplify the challenges of

understanding the detailed kinetics of molecular-scale systems. While the overall struc-

ture of the spiders is simple and they interact with their environment under a set of simple

rules, these rules are necessarily stochastic because of the natural thermal fluctuations on

these scales. The stochasticity and the multitude of simultaneous physical and chemi-

cal processes operating make it very difficult to qualitatively or quantitatively understand

how the spiders will move through analytical methods. In addition, the inadequacy of

spatial-temporal resolution of current microscopy techniques also makes experimental in-

vestigations difficult. In such situations computational models and computer simulations

are essential. Moreover, we shave shown that unanticipated effects and complex mecha-

nisms emerge from the simple physical and chemical rules that govern the dynamics of the

spiders.

Furthermore, computational thinking is required to arrive at a model that is both phys-

ically plausible and computationally feasible. The assumptions made in the MVRW are

simple and are chosen to lead to a model that is practical to simulate with modern desktop

computing resources. We take advantage of the Markovian nature of physical and chem-

ical systems on the timescales of interest, which leads to an executable understanding of

the MVRW system via the KMC algorithm.

160

Glossary of Symbols

A The attached leg sites completely define the state of
the walker. In general, A = [ai ∈ S ∪ {�}]k

i=1. In
the special case of point-bodied walkers all k legs are
identical and A can be replaced by the unordered set
of attached legs written as A.

34

B The random variable describing the body’s equilib-
rium distribution over positions (v, θ). This random
variable depends on the current value of A.

37

�̂ The set of feasible canonical configurations. 65
Cb = �2 The space of 2D coordinates in the walker body’s ref-

erence frame.
34

Ce = �2 The space of 2D coordinates in the environment’s ref-
erence frame.

34

χ : Σ→ Σ The species transformation resulting from catalysis
for each species.

37

� A detached state for a leg. 34

∆E(b) = ∆E f (b) The change in potential energy of the walker at posi-
tion b as it moves from original position b0 under the
load of conservative force f .

45

� The set of environment states. 32
Exp(λ) The exponential distribution with parameter λ. 54

F The set of feasible body positions (v, θ). 38
f i
B(s) The feasibility probability of leg i attaching to site s,

given body distribution B.
43

Fpt(d; t) The first passage time—the distribution of the time to
first reach distance d from the origin.

83

∆G The change in Gibbs free energy 17

H The hip locations H = [hi]k
i=1 in the body’s coordi-

nates Cb.
34

161

Glossary of Symbols

I i
b(s) The feasibility indicator function for leg i binding to

site s from fixed body position b. This determines the
attachment kinetics of an unattached leg from a fixed
body position.

43

k The number of legs. 34
kB Boltzmann’s constant is 1.38 × 10−23J K−1. At T =

300 K, we have kBT = 4.14 pN nm, which is the aver-
age amount of thermal energy available to a walker.

18

kcat : Σ→ �+ The rate of leg catalysis for each species. When work-
ing with Σ = {S,P}, only substrates can be catalyzed
and we let kcat = kcat(S).

37

k− : Σ→ �+ The rate of the leg dissociation reaction for each
species. When working with Σ = {S,P}, we write
k−P = k−(P), and k−S = k−(S).

36

k+ : Σ→ �+ The rate of the leg binding reaction for each species.
When working with Σ = {S,P}, we write k+

P = k+(P),
and k+

S = k+(S).

36

` The length of the legs. 34

Ω = � ×� The set of all states for the Markov process defined by
the MVRW model.

36

pB(v, θ) The probability of the body position being (v, θ) at
equilibrium.

38

Φ̂C The canonical mapping for attached leg configuration
C takes the leftmost of the lowermost sites, cLL, and
translates it to the origin. This gives the unique canon-
ical representative for an attached leg configuration C.

65

π : S → Σ The site species function: a mapping from a site to the
species displayed at that site.

32

P [E] The probability of event E. 38

r i
B(s) The attachment transition rate for leg i attaching to

site s, given body distribution B.
44

162

Glossary of Symbols

S The set of chemical sites in coordinates Ce. 32
S
�̂

The set of all possible canonical lattice coordinates,
defined as the set of all coordinates from any canonical
configuration in �̂.

65

S i
F (A) The set of feasible sites s ∈ S that are within distance

` of hi from some feasible body position in F(A).
45

Σ The set of chemical species. Typically we have Σ =

{S,P}.
32

T Absolute temperature in Kelvin. We fix T = 300 K for
the isothermal walker systems modeled by the MVRW
model.

17

T (v, θ) A 2D rigid body transform from the body’s coordi-
nates Cb to the environment’s coordinates Ce. This
defines the location of the body. For point-bodied spi-
ders T (v, θ) = T (v), as they are rotationally symmet-
ric.

34

U(v, θ) The energy associated with body position (v, θ). This
determines the equilibrium distribution via the Boltz-
mann distribution.

38

Uniform(a, b) The uniform distribution over real interval [a, b]. 54
�̂ The set of unique canonical configurations, �̂ ⊆ �̂ is

the set of minimal elements of the unique canonical
configuration ordering � over �̂.

67

U : �̂→ �̂ The unique canonical mapping takes a canonical con-
figuration Ĉ to its equivalent unique canonical config-
uration Û = U(Ĉ), which is the minimal element of
the chain of Ĉ in the canonical equivalent mapping �.

67

� The set of walker states. 35
w?(f) The mean peak work a walker does moving

against a force f . This is defined as w?(f) =

maxt∈[0,tmax] 〈∆E(t; f)〉 − ∆E∞(f), where ∆E∞(f) is the
equilibrium energy of the spider system under force f .

92

163

Glossary of Symbols

Z The partition function in the Boltzmann distribution. 39

164

References

[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial prob-
lems. Science, 266(5187):1021–1024, 1994.

[2] Ashutosh Agarwal and Henry Hess. Biomolecular motors at the intersection of
nanotechnology and polymer science. Progress in Polymer Science, 35(1–2):252–
277, 2010.

[3] Francesc Alted and Mercedes Fernández-Alonso. PyTables: Processing and ana-
lyzing extremely large amounts of data in Python. In PyCon 2003, 2003.

[4] Scott W. Ambler. Agile Database Techniques. Wiley, Indianapolis, IN, 2003.

[5] Pier Lucio Anelli. A molecular shuttle. Journal of the American Chemical Society,
113:5131–5133, 1991.

[6] Tibor Antal and Paul L. Krapivsky. Molecular spiders with memory. Physical
Review E, 76(2):021121, 2007.

[7] R. Dean Astumian. Design principles for Brownian molecular machines: how
to swim in molasses and walk in a hurricane. Physical Chemistry and Chemical
Physics, 9:5067–5083, 2007.

[8] R. Dean Astumian. Thermodynamics and kinetics of molecular motors. Biophysical
Journal, 98(11):2401–2409, 2010.

[9] R. Dean Astumian and Imre Derényi. A chemically reversible brownian motor:
application to kinesin and Ncd. Biophysical Journal, 77(2):993–1002, 1999.

[10] Heiko Bauke. Tina’s random number generator library, August 2011.

[11] Heiko Bauke and Stephan Mertens. Random number generators for large-scale
distributed Monte Carlo simulations. Physical Review E, 75(6):066701, 2007.

[12] Yaakov Benenson, Benyamin Gil, Uri Ben-Dor, Rivka Adar, and Ehud Shapiro. An
autonomous molecular computer for logical control of gene expression. Nature,
429(6990):423–429, May 2004.

[13] Jorge Berger. From randomness to order. Entropy, 6(1):68–75, 2004.

[14] Veronika Bierbaum and Reinhard Lipowsky. Chemomechanical coupling and motor
cycles of myosin V. Biophysical Journal, 100(7):1747–1755, 2011.

[15] Kurt Binder, Jürgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik.
Molecular dynamics simulations. Journal of Physics: Condensed Matter,
16(5):S429, 2004.

165

References

[16] Gerd Binnig, Calvin F. Quate, and Christoph Gerber. Atomic force microscope.
Physical Review Letters, 56:930–933, 1986.

[17] Benjamin Block, Peter Virnau, and Tobias Preis. Multi-GPU accelerated multi-spin
Monte Carlo simulations of the 2D Ising model. Computer Physics Communica-
tions, 181(9):1549–1556, 2010.

[18] Alfred B. Bortz, Malvin H. Kalos, and Joel L. Lebowitz. A new algorithm for
Monte Carlo simulation of Ising spin systems. Journal of Computational Physics,
17(1):10 – 18, 1975.

[19] Ronald R. Breaker and Gerald F. Joyce. A DNA enzyme that cleaves RNA. Chem-
istry & Biology, 1(4):223–224, 1994.

[20] Ronald R. Breaker and Gerald F. Joyce. A DNA enzyme with Mg2+-dependent
RNA phosphoesterase activity. Chemistry & Biology, 2(10):655–660, 1995.

[21] Christian Brunner, Christian Wahnes, and Viola Vogel. Cargo pick-up from en-
gineered loading stations by kinesin driven molecular shuttles. Lab on a Chip,
7(10):1263–1271, 2007.

[22] Petra Burgstaller and Michael Famulok. Synthetic ribozymes and the first deoxyri-
bozyme. Angewandte Chemie Int. Ed., 34(11):1189–1192, 1995.

[23] Carlos Bustamante, Yann R. Chemla, Nancy R. Forde, and David Izhaky. Mechan-
ical processes in biochemistry. Annual Review of Biochemistry, 73:703–748, 2004.

[24] Luca Cabibbo. Managing inheritance hierarchies in object/relational mapping tools.
In CAiSE Conference on Advanced Information Systems Engineering, pages 135–
150, 2005.

[25] Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings
algorithm. The American Statistician, 49(4):327–335, 1995.

[26] Edgar F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377–387, 1970.

[27] Edger F. Codd. Extending the database relational model to capture more meaning.
ACM Transactions on Database Systems, 4(4):397–434, 1979.

[28] Shirley Cohen, Patrick Hurley, Karl W. Schulz, William L. Barth, and Brad Benton.
Scientific formats for object-relational database systems: A study of suitability and
performance. SIGMOD Record, 35(2):10–15, 2006.

166

References

[29] Chris M. Coppin, Jeffrey T. Finer, James A. Spudich, and Ronald D. Vale. Detec-
tion of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy.
Proceedings of the National Academy of Sciences, 93(5):1913–1917, 1996.

[30] Chris M. Coppin, Daniel W Pierce, Long Hsu, and Ronald D. Vale. The load
dependence on kinesin’s mechanical cycle. Proceedings of the National Academy
of Sciences, 94(16):8539–8544, 1997.

[31] Enrique M. De La Cruz, Amber L. Wells, Steven S. Rosenfeld, E. Michael Ostap,
and H. Lee Sweeney. The kinetic mechanism of myosin V. Proceedings of the
National Academy of Sciences, 96(24):13726–13731, 1999.

[32] John R. Dennis, Jonathan Howard, and Viola Vogel. Molecular shuttles: directed
motion of microtubules along nanoscale kinesin tracks. Nanotechnology, 10(3):232,
1999.

[33] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems.
Addison Wesley, Boston, MA, 2004.

[34] Akihiro Enomoto, Michael Moore, Tadashi Nakano, Ryota Egashira, Tatsuya Suda,
Atsushi Kayasuga, Hiroaki Kojima, Hitoshi Sakakibara, and Kazuhiro Oiwa. A
molecular communication system using a network of cytoskelatal filaments. NSTI-
Nanotech, 1:725–728, 2006.

[35] Baptiste Essevaz-Roulet, Ulrich Bockelmann, and Francois Heslot. Mechanical
separation of the complementary strands of DNA. Proceedings of the National
Academy of Sciences, 94(22):11935–11940, 1997.

[36] Richard Levery et. al. A systematic molecular dynamics study of nearest-neighbor
effects on base pair and base pair step conformations and fluctuations in B-DNA.
Nucleic Acids Research, 38(1):299–313, 2010.

[37] Evan Evans and Ken Ritchie. Strength of a weak bond connecting flexible polymer
chains. Biophysical Journal, 76(5):2439–2447, 1999.

[38] Nick P. Ferenz, Alyssa Gable, and Pat Wadsworth. Mitotic functions of kinesin-5.
Seminars in Cell & Developmental Biology, 21(3):255–259, 2010.

[39] Alan M. Ferrenberg, D. P. Landau, and Y. Joanna Wong. Monte Carlo simulations:
Hidden errors from “good” random number generators. Physical Review Letters,
69(23):3382–3384, 1993.

[40] A Fischer, S Seeger, K H Hoffmann, C Essex, and M Davison. Modeling anomalous
superdiffusion. Journal of Physics A: Mathematical and Theoretical, 40(38):11441,
2007.

167

References

[41] Jasmin Fisher and Thomas A. Henzinger. Executable cell biology. Nature Biotech-
nology, 25(11):1239–1249, November 2007.

[42] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An
overview of the HDF5 technology suite and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, pages 36–47, 2011.

[43] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
Boston, MA, 2003.

[44] Ronald F. Fox. Rectified Brownian movement in molecular and cell biology. Phys-
ical Review E, 57(2):2177–2203, 1998.

[45] Charles J. Geyer. Practical Markov chain Monte Carlo. Statistical Science,
7(4):473–483, 1992.

[46] Charles J. Geyer. Introduction to Markov chain Monte Carlo. In Handbook of
Markov Chain Monte Carlo, pages 3–47. CRC, 2011.

[47] Michael A. Gibson and Jehoshua Bruck. Efficient exact stochastic simulation of
chemical systems with many species and many channels. Journal of Physical Chem-
istry A, 104(9):1876–1889, March 2000.

[48] Daniel T. Gillespie. A general method for numerically simulating the stochastic
time evolution of coupled chemical reactions. Journal of Computational Physics,
22(4):403–434, 1976.

[49] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81(25):2340–2361, 1977.

[50] Lawrence S. B. Goldstein and Alastair Valentine Philp. The road less traveled:
emerging principles of kinesin motor utilization. Annual Review of Cell and Devel-
opmental Biology, 15:141–183, 1999.

[51] Solomon W. Golomb. Polyominoes. Princeton University Press, Princeton, NJ, 2nd
edition, 1994.

[52] Jim Gray. Scientific data management in the coming decade. SIGMOD Record,
34(4):34–41, 2005.

[53] Eric Green, Mark J. Olah, Tatiana Abramova, Lance R. Williams, Darko Stefan-
ovic, Tilla Worgall, and Milan N. Stojanovic. A rational approach to minimal
high-resolution cross-reactive arrays. Journal of the American Chemical Society,
128(47):15278–15282, 2006.

168

References

[54] W. Keith Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, April 1970.

[55] Shlomo Havlin and Daniel Ben-Avraham. Diffusion in disordered media. Advances
in physics, 51(1):187–292, 1987.

[56] Paul Helman. The Science of Database Management. Richard D. Irwin Inc., Burr
Ride, IL, 1994.

[57] Niels E. Henriksen and Flemming Y. Hansen. Theories of Molecular Reaction Dy-
namics. Oxford University Press, New York, NY, 2008.

[58] Henry Hess, John Clemmens, Christian Brunner, Robert Doot, Sheila Luna,
Karl-Heinz Ernst, and Viola Vogel. Molecular self-assembly of nanowires and
nanospools using active transport. Nano Letters, 5(4):629–633, 2005.

[59] Kent L. Hill, Natalie L. Catlett, and Lois S. Weisman. Actin and myosin function
in directed vacuole movement during cell division in saccharomyces cerevisiae.
Journal of Cell Biology, 135(6):1535–1549, 1996.

[60] Stefan Holder, Jim Buchan, and Stephen G. MacDonell. Towards a metrics suite for
object-relational mappings. In Model-Based Software and Data Integration, pages
43–54. Springer, 2008.

[61] Jiří Homola, Sinclair S. Yee, and Günter Gauglitz. Surface plasmon resonance
sensors: review. Sensors and Actuators B: Chemical, 54(1–2):3–15, 1999.

[62] Joe Howard. Molecular motors: structural adaptations to cellular functions. Nature,
389(6651):561–567, 1997.

[63] Jonathan Howard. Mechanical signaling in networks of motor and cytoskeletal
proteins. Annual Reviews in Biophysics, 38:217–234, 2009.

[64] Bo Huang, Mark Bates, and Xiaowei Zhuang. Super resolution fluorescence mi-
croscopy. Annual Review of Biochemistry, 78:993–1016, 2009.

[65] A. F. Huxley. Muscle structure and theories of contraction. Progress in Biophysics
and Biophysical Chemistry, 7:255–318, 1957.

[66] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. A classi-
fication of object-relational impedance mismatch. In Proceedings of the 2009 First
International Conference on Advances in Databases, Knowledge, and Data Appli-
cations, pages 36–43. IEEE Computer Society, 2009.

169

References

[67] Jae-Hyung Jeon and Ralf Metzler. Inequivalence of time and ensemble averages in
ergodic systems: exponential versus power-law relaxation in confinement. Physical
Review E, 85(2):250602, 2012.

[68] Malvin H. Kalos and Paula A. Whitlock. Monte Carlo Methods. John Wiley &
Sons, New York, NY, 1986.

[69] David Keller and Carlos Bustamante. The mechanochemistry of molecular motors.
Biophysical Journal, 78(2):541–556, 2000.

[70] Setrag Khoshafian and George P. Copeland. Object identity. In OOPSLA Object-
Oriented Programming, Systems, Languages, and Applications, pages 406–416,
1986.

[71] Donald E. Knuth. Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, 3rd edition, 1993.

[72] Anatoly B. Kolomeisky and Michael E. Fisher. Molecular motors: a theorist’s
perspective. Annual Reviews of Physical Chemistry, 58:675–695, 2007.

[73] Thomas Kowark, Robert Hirschfeld, and Michael Haupt. Object-relational map-
ping with squeaksave. In Proceedings of the International Workshop on Smalltalk
Technologies, IWST ’09, pages 87–100, New York, NY, 2009. ACM.

[74] Akihiro Kusumi, Yasushi Sako, and Mutsuya Yamamoto. Confined lateral diffusion
of membrane receptors as studied by single particle tracking (nanovid microscopy).
effects of calcium-induced differentiation in cultured epithelial cells. Biophysical
Journal, 65(5):2021–2040, 1993.

[75] Pierre L’Ecuyer. Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation, 68(225):249–260, 1999.

[76] Chih-Kung Lee, Yu-Ming Wang, Long-Sun Huang, and Shiming Lin. Atomic
force microscopy: determination of unbinding force off rate and energy barrier for
protein-ligand interaction. Micron, 38(5):446–461, 2007.

[77] Steffen Liepelt and Reinhard Lipowsky. Kinesin’s network of chemomechanical
motor cycles. Physical Review Letters, 98(25):258102, 2007.

[78] Sebastian Link, Ivan Lukovic, and Pavle Mogin. Performance evaluation of natural
and surrogate key database architectures. Technical report, Victoria University of
Wellington, Wellington, NZ, 2010.

170

References

[79] Reinhard Lipowsky and Steffen Liepelt. Chemomechanical coupling of molecular
motors: Thermodynamics, network representations, and balance conditions. Jour-
nal of Statistical Physics, 130(1):39–67, 2008.

[80] Ariel Lubelski, Igor M. Sokolov, and Joseph Klafter. Nonergodicity mimics in-
homogeneity in single particle tracking. Physical Review Letters, 100(5):250602,
2008.

[81] Kyle Lund. personal communication, 2008.

[82] Kyle Lund, Anthony J. Manzo, Nadine Dabby, Nicole Michelotti, Alexander
Johnson-Buck, Jeanette Nangreave, Steven Taylor, Renjun Pei, Milan N. Stojan-
ovic, Nils G. Walter, Erik Winfree, and Hao Yan. Molecular robots guided by
prescriptive landscapes. Nature, 465:206–210, May 2010.

[83] Joanne Macdonald, Yang Li, Marko Sutovic, Harvey Lederman, Kiran Pendri,
Wanhong Lu, Benjamin L. Andrews, Darko Stefanovic, and Milan N. Stojanovic.
Medium scale integration of molecular logic gates in an automaton. Nano Letters,
6(11):2598–2603, 2006.

[84] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30, 1998.

[85] Stephan Mertens. Lattice animals: A fast enumeration algorithm and new perimeter
polynomials. Journal of Statistical Physics, 58(5–6):1095–1108, 1990.

[86] Stephan Mertens. Random number generators: A survival guide for large scale
simulations. Otto-von-Guericke University Magdeburg, 2009.

[87] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing ma-
chines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

[88] Peter Mork, Philip Bernstein, and Sergey Melnik. Teaching a schema translator to
produce O/R views. In Conceptual Modeling - ER 2007, volume 4801 of LNCS,
pages 102–119. Springer, 2007.

[89] Dan V. Nicolau, Dan V. Nicolau, Jr., Gerardin Solana, Kristi L. Hanson, Luisa
Filipponi, Lisen Wang, and Abraham P. Lee. Molecular motors-based micro- and
nano-biocomputation devices. Microelectronic Engineering, 83(4-9):1582–1588,
2006.

171

References

[90] Dan V. Nicolau, Jr., Kevin Burrage, and Dan V. Nicolau. Computing with motile
bio-agents. In Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-
ence Series, volume 6416, Dec. 2007.

[91] Masayoshi Nishiyama, Hideo Higuchi, and Toshio Yanagida. Chemomechanical
coupling of the forward and backward steps of single kinesin molecules. Nature
Cell Biology, 4:790–797, 2002.

[92] Mark J. Olah, David Mohr, and Darko Stefanovic. Representing uniqueness con-
straints in object-relational mapping: The natural entity framework. In Objects,
Models, Components, Patterns, volume 7304 of Lecture Notes in Computer Sci-
ence, pages 236–251. Springer Berlin / Heidelberg, 2012.

[93] Mark J. Olah and Darko Stefanovic. Multivalent random walkers: A model for
deoxyribozyme walkers. In DNA Computing and Molecular Programming, vol-
ume 6937 of Lecture Notes in Computer Science, pages 160–174. Springer Berlin /

Heidelberg, 2011.

[94] Mark J. Olah and Darko Stefanovic. Superdiffusive transport by multivalent molec-
ular walkers moving under load. in submission 2012.

[95] Mark J. Olah and Darko Stefanovic. Kinetic Monte Carlo simulation for multivalent
random walkers. in preparation.

[96] Elizabeth J. O’Neil. Object/relational mapping 2008: Hibernate and the entity data
model (EDM). In Proceedings of the 2008 ACM SIGMOD international conference
on management of data, pages 1351–1356, 2008.

[97] Renjun Pei, Aihua Shen, Mark J. Olah, Darko Stefanovic, Tilla Worgall, and Mi-
lan N. Stojanovic. High-resolution cross-reactive array for alkaloids. Chemical
Communications, pages 3193–3195, 2009.

[98] Renjun Pei, Steven K. Taylor, Darko Stefanovic, Sergei Rudchenko, Tiffany E.
Mitchell, and Milan N. Stojanovic. Behavior of polycatalytic assemblies in
a substrate-displaying matrix. Journal of the American Chemical Society,
39(128):12693–12699, 2006.

[99] Charles S. Peskin, Garry M. Odell, and George F. Oster. Cellular motions and
thermal fluctuations: the Brownian ratchet. Biophysical Journal, 65(1):316–324,
1993.

[100] Richard D. Piner, Jin Zhu, Feng Xu, Seunghun Hong, and Chad A. Mirkin. “Dip-
pen” nanolithography. Science, 283(5402):661–663, 1999.

172

References

[101] Andre V. Pinheiro, Dongran Han, William M. Shih, and Hao Yan. Challenges and
opportunities for structural dna nanotechnology. Nature Nanotechnology, 6:763–
772, 2011.

[102] Hong Qian, Michael P. Sheetz, and Elliot L. Elson. Single particle tracking: analysis
of diffusion and flow in two-dimensional systems. Biophysical Journal, 60(4):910–
921, 1991.

[103] Adrian E. Raftery and Steven M. Lewis. Implementing MCMC. In Walter R. Gilks,
Sylvia S. Richardson, and J. D. Spiegelhalter, editors, Markov Chain Monte Carlo
in Practice, pages 115–130. Chapman and Hall, 1996.

[104] D. Hugh Redelmeier. Counting polyominoes: yet another attack. Discrete Mathe-
matics, 36:191–203, 1981.

[105] Sidney Redner. A Guide to First-Passage Times. Cambridge University Press,
Cambridge, UK, 2001.

[106] Ken Ritchie, Xiao-Yuan Shan, Junko Kondo, Kokoro Iwasawa, Takahiro Fujiwara,
and Akihiro Kusumi. Detection of non-brownian diffusion in the cell membrane in
single molecule tracking. Biophysical Journal, 88(3):2266–2277, 2005.

[107] Christian Robert and George Casella. A short history of MCMC: Subjective recol-
lections from incomplete data. In Handbook of Markov Chain Monte Carlo, pages
49–61. CRC, 2011.

[108] Robert Ross, Daniel Nurmi, Albert Cheng, and Michael Zingale. A case study in
application I/O on Linux clusters. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing, New York, NY, USA, 2001. ACM.

[109] Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440:297–302, 2006.

[110] Michael J. Saxton and Ken Jacobson. Single-particle tracking: Applications to
membrane dynamics. Annual Review of Biophysics and Biomolecular Structure,
26(1):373–399, 1997.

[111] Tim P. Schulze. Efficient kinetic Monte Carlo simulation. Journal of Computational
Physics, 227(4):2455–2462, 2008.

[112] Oleg Semenov, Mark J. Olah, and Darko Stefanovic. Mechanism of diffusive trans-
port in molecular spider models. Physical Review E, 83(2):021117, Feb 2011.

173

References

[113] Oleg Semenov, Mark J. Olah, and Darko Stefanovic. Multiple molecular spiders
with a single localized source – the one-dimensional case. In DNA Computing
and Molecular Programming, volume 6937 of Lecture Notes in Computer Science,
pages 204–216. Springer Berlin / Heidelberg, 2011.

[114] Oleg Semenov, Mark J. Olah, and Darko Stefanovic. Cooperative linear cargo trans-
port with molecular spiders. Natural Computing, 2012. In publication.

[115] Alexander Slepoy, Aidan P. Thompson, and Steven J. Plimpton. A constant-time ki-
netic Monte Carlo algorithm for simulation of large biochemical reaction networks.
The Journal of Chemical Physics, 128(20):205101, 2008.

[116] Milan N. Stojanovic, Tiffany Elizabeth Mitchell, and Darko Stefanovic.
Deoxyribozyme-based logic gates. Journal of the American Chemical Society,
124(14):3555–3561, 2002.

[117] Milan N. Stojanovic and Darko Stefanovic. A deoxyribozyme-based molecular
automaton. Nature Biotechnology, 21(9):1069–1074, September 2003.

[118] Milan N. Stojanovic, Darko Stefanovic, Thomas LaBean, and Hao Yan. Computing
with Nucleic Acids, pages 427–455. Wiley, 2005.

[119] Karel Svoboda, Christoph F. Schmidt, Bruce J. Schnapp, and Steven M. Block.
Direct observation of kinesin stepping by optical trapping interferometry. Nature,
365(6448):721–727, 1993.

[120] Michio Tomishige, Nico Stuurman, and Ronald D Vale. Single-molecule observa-
tions of neck linker conformational changes in the kinesin motor protein. Nature
Structural & Molecular biology, 13(10):887–894, 2006.

[121] Erdal Toprak, Ahmet Yildiz, Melinda Tonks Hoffman, Steven S. Rosenfeld, and
Paul R. Selvin. Why kinesin is so processive. Proceedings of the National Academy
of Sciences, 106(31):12717–12722, 2009.

[122] Ronald D. Vale and Ronald A. Milligan. The way things move: looking under the
hood of molecular motor proteins. Science, 288:88–95, 2000.

[123] Koen Visscher, Mark J. Schnitzer, and Steven M. Block. Single kinesin molecules
studied with a molecular force clamp. Nature, 400(6740):184–189, 1999.

[124] Arthur Voter. Introduction to the kinetic Monte Carlo method. In Kurt Sickafus,
Eugene Kotomin, and Blas Uberuaga, editors, Radiation Effects in Solids. Springer,
2007.

174

References

[125] Brian Walsh. Markov chain Monte Carlo and Gibbs sampling. Lecture Notes for
University of Arizona class EEB 581, 2004. http://nitro.biosci.arizona.
edu/courses/EEB596/handouts/Gibbs.pdf.

[126] Roel Wieringa and Wierbren de Jonge. Object identifiers, keys, and surrogates—
object identifiers revisited. Theory and Practice of Object Systems, 1(2):101–114,
1995.

[127] Oscar H. Willemsen, Margot M. E. Snel, Alessandra Cambi, Jan Greve, Bart G. De
Grooth, and Carl G. Figdor. Biomolecular interactions measured by atomic force
microscopy. Biophysical Journal, 79(6):3267–3281, 2000.

[128] Torsten Wittmann, Anthony Hyman, and Arshad Desai. The spindle: a dynamic
assembly of microtubules and motors. Nature Cell Biology, 3(1):E28–34, 2001.

[129] Wenxia Ying, Gabriel Huerta, Stanly Steinberg, and Martha Zúñiga. Time series
analysis of particle tracking data for molecular motion on the cell membrane. Bul-
letin of Mathematical Biology, 71(8):1967–2024, 2009.

[130] Matthew A. Young, G. Ravishanker, and D. L. Beveridge. A 5-nanosecond molec-
ular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation.
Biophysical Journal, 73(5):2313–2336, 1997.

175

