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Abstract

Resonant interactions of a mode-locked pulse train with intracavity samples, namely

rubidium-87 (87Rb) vapor and Fabry-Perot etalon, placed inside a laser cavity are

studied in the light of developing ultra-sensitive laser sensors to measure a small

magnetic field and a minute change of index of refraction of a sample material,

respectively.

A 87Rb vapor provides an opportunity for a compact high-sensitivity atomic mag-

netometer due to its accessibility by the standard laser sources and to the large en-

semble magnetization. By employing the ultra-sensitive interferometric technique

utilizing the intracavity properties of a mode-locked laser, the performance of the

87Rb magnetometer can be further improved. The fundamental properties of coher-

ent interaction between a mode-locked pulse train and a 87Rb vapor are studied in

vii



numerical calculations of 3× 3 density matrix equations and the reduced wave equa-

tion, which are then examined in experiments. In particular, a coherent dark-state

is created by the pulse train and is further enhanced by means of spectral shaping or

polarization modulation of the excitation pulse train. Experiments performed inside

a laser cavity show that the atomic coherence is still preserved due to the coher-

ent nature of interaction between the 87Rb vapor and the ultrashort pulses occurred

within a short time scale compared to the atomic relaxation times, which results

in nonlinear propagation of the pulses as well as an observation of the dark-line

resonance inside the laser cavity.

A Fabry-Perot etalon is a type of optical cavity and serves as a tuning element of

the frequency of cw-lasers. By inserting a Fabry-Perot etalon inside a mode-locked

laser, the cavity resonance modes are modified due to a coupling between the two

cavities, which leads to unique temporal and spectral characteristics of the resultant

pulse train and its frequency comb. Both the temporal and spectral properties of the

pulse train are studied in detail in experiments as well as in numerical calculations.

In particular, it will be shown that the coupling between low frequency modes from

the laser repetition rate and high frequency modes from the Fabry-Perot pulse train

can be exploited for a new interferometric technique to measure a minute change in

the index of refraction of the etalon.
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Chapter 1

Introduction

1.1 Intracavity spectroscopy

1.1.1 Absorption measurement

Exploitation of the highly sensitive response of a laser spectrum to an intracavity

resonant medium began in the early times of laser development. The first demonstra-

tions of intracavity absorption spectroscopy were performed by placing an absorbing

gas inside a dye laser [6, 7]. Strong extinction of spectral components that over-

lap with an atomic absorption line was observed. An enhancement of sensitivity by

several orders of magnitude compared to extracavity spectroscopic techniques was

demonstrated. The underlying principle of absorption spectroscopy is the existence

of a multi-path configuration inside a cavity, which effectively increases the length of

the absorber. Due to a homogeneously broadened gain medium, the spectral power

lost in the absorber is distributed to surrounding modes, leaving a distinct fingerprint

in the resultant laser spectrum (Figure 1.1) [1].
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Chapter 1. Introduction

Figure 1.1: Concept of intracavity absorption spectroscopy. Borrowed from [1]

1.1.2 Phase measurement

The finite response time of the dipole oscillation implies that there is an associated

dispersion, which is a necessary consequence of causality. Mathematically, the real

and imaginary parts of the electronic susceptibility are related through the Kramers-

Kronig relations [8].

The response of the laser to an intracavity absorber is therefore not only limited

to the extinction of certain spectral components, but is also observed in terms of

the phase response. In the presence of an intracavity dispersive medium, the cavity

round-trip phase of a mode of the laser is modified according to [9]

ϕ(Ω) =
ΩP

c
×
[
1 +

d

2P
χ′(Ω)

]
= 2mπ (1.1)

where P is the perimeter of the cavity, d is the length of the dispersive medium, χ′

is the real part of susceptibility, c is speed of light and m is an integer. Therefore,

depending on the magnitude of χ′, the frequency is adjusted to keep the resonance

condition.

It is this property of lasers that will be exploited for an ultra-sensitive phase

spectroscopic sensor. It should also be noted that measurement of the frequency

shift employs heterodyne detection to measure a beat frequency between the shifted

and reference frequencies. As in the case of frequency-modulation (FM) radio signals,
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Chapter 1. Introduction

which are less noisy than amplitude-modulation (AM) radio signals, the measurement

is based on change in frequency rather than amplitude.

1.2 Mode-locked laser for sensing

1.2.1 Frequency comb

A mode-locked laser generates a broadband spectrum with a comb-like mode struc-

ture arising from a periodic train of ultrashort pulses, known as the frequency

comb [10]. To understand the properties of the frequency comb, let us begin with

the construction of a train of ultrashort pulses. With an envelope of a single pulse

defined as Ẽ(t) = E(t)exp(iϕe), a carrier frequency ω` and a delay between successive

pulses τRT , a pulse train can be expressed as

Etrain =
∞∑
q=0

Ẽ(t− qτRT )eiω`(t−qτRT )

= eiω`t
∞∑
q=0

Ẽ(t− qτRT )e−iqω`τRT

= eiω`t
∞∑
q=0

Ẽ(t− qτRT )e−iq(2Nπ−ϕp) (1.2)

where ω`τRT = 2Nπ−ϕp has been substituted to obtain the laser equation. The

Fourier transform of the first pulse (q = 0) of the pulse train defined in Eq. (1.2) is

Ẽ(Ω) =

∫ ∞
−∞
Ẽ(t)e−iΩteiω`tdt = Ẽ(Ω− ω`) (1.3)

and for the q-th pulse, delayed by qτRT ,

Ẽq(Ω) = Ẽ(Ω− ω`)e−iqτRT (Ω−ω`) (1.4)
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Summing over q, the infinite series of imaginary exponentials leads to a comb of

evenly spaced delta-functions (Dirac comb),

Ẽ(Ω) = Ẽ(Ω− ω`)
∞∑

p=−∞

δ

[
Ω− ω` −

2pπ

τRT

]
(1.5)

Since ω`τRT = 2Nπ − ϕp, the spectral locations of the delta functions are given by

Ωm =
1

τRT
(2Nπ − ϕp + 2pπ)

=
1

τRT
(2mπ − ϕp) (1.6)

where m = N+p. The last equation Eq. (1.6) indicates that the modes of a frequency

comb can be completely specified in terms of the mode spacing frep and an offset f0

as

fm = f0 +mfrep (1.7)

where

frep =
1

τRT
: Repetition rate (1.8)

f0 =
∆ϕ

2πτRT
: Carrier to envelope offset (CEO) (1.9)

Notice that the modes in a frequency comb is fully specified by only two parameters,

f0 and frep. The “carrier-to-envelope phase”, ∆ϕ, arises because of the difference

between the group and phase velocity in the cavity. Therefore, the carrier-to-envelope

offset frequency, f0, can be expressed as

f0 =
∆ϕ

2πτRT
=

(
1
vg
− 1

vp

)
ω`P

2πτRT
=

(ng − np)ω`P/c
2πτRT

(1.10)

where P is the perimeter of the cavity, and ng and np are respectively the group and

phase index of refraction of the cavity. A pictorial description of a frequency comb

is shown in Figure 1.2.
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Figure 1.2: A round-trip phase slippage, ∆ϕ, between the pulse envelope and the carrier
frequency in time domain results in the carrier-to-envelope offset frequency, f0, in frequency
domain. The mode spacing is determined by the repetition rate of the pulse train, frep.

1.2.2 Advantages of mode-locked lasers over free-running

lasers

By utilizing the broadband spectrum and the resolved individual modes of the fre-

quency comb, a simultaneous detection of resonance structures of multiple molecular

species has been demonstrated based on intracavity absorption measurements [11].

As discussed earlier in Section 1.1, the near-resonance dispersion of an intracavity

medium also modifies the resonance condition of the cavity, which results in a shift

of the modes of the frequency comb. For a frequency comb where there is a fixed

phase between the modes, all modes are shifted by the same amount determined

by the carrier-to-envelope offset f0. This property provides a tremendous advantage

over measurements based on free-running lasers, as following. A train of ultrashort

(ps ∼ fs) pulses with the repetition rate of the order of 100 MHz contains as many

as 104 ∼ 106 optical modes in its spectrum. By employing a heterodyne detection

against a reference frequency comb with the same mode spacing, but with f0 not nec-
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essarily equal, all the pairs of modes contribute to a single beat frequency. Therefore,

the signal-to-noise ratio is significantly increased.

1.2.3 Intracavity phase interferometry (IPI)

The remarkable property of the frequency comb that all the modes are strictly evenly

spaced by frep and shifted by f0, which completely characterize a frequency comb

as in Eq. (1.7), can be exploited for an ultra-sensitive measurement of a differential

intracavity phase shift.

Suppose there is a laser cavity in which two pulses are counter-propagating, shar-

ing the same cavity perimeter. When mode-locking is realized by a saturable ab-

sorber, the two counter propagating pulses cross each other at the saturable ab-

sorber, and mutually saturate the absorption. It is a known fact that the mutual

saturation couples the envelopes of the counter propagating pulses and locks their

average group velocity in the cavity, or equivalently the group index of refraction of

the cavity ng [12].

Now, suppose there is an intracavity element with length d and different phase

indices of refraction np between clock-wise (CW) and counter-clock wise (CCW)

propagation directions. Since the group indices of refraction are locked between the

CW and CCW pulse trains, the difference in the phase index of refraction results in

frequency combs with different f0 but with the same mode spacing, frep, according to

Eq. (1.10). As shown in Figure 1.3, when both pulse trains are picked out from the

cavity and overlapped on a photodetector, after a proper delay the beat frequency

between the pulse trains is generated:

∆ν = f01 − f02 =
(np1 − np2)d

λ`τRT
(1.11)

where λ` is the carrier wavelength. Therefore, the beat note carries the information

about the phase shift between the CW and CCW pulse trains.
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Figure 1.3: The differential phase shift between the CW and CCW pulse train sharing
the same cavity results in a beat note when they are overlapped on a photodetector.

This is a novel interferometric technique, known as the intracavity phase inter-

ferometry (IPI). IPI has been demonstrated to measure electro-optic coefficients, a

nonlinear index of refraction [13] and birefringence of circular polarization due to an

applied magnetic field [2], which is described next.

Demonstration of IPI for magnetic field sensing using a crystal

The Faraday effect is a magneto-optical phenomenon that rotates the polarization

plane of a linearly polarized beam propagating in a medium under a magnetic field.

The angle of polarization rotation φ is proportional to the magnetic flux along the

beam propagation direction:

φ = V Bd (1.12)

where V is the Verdet constant given in unit of degree per unit length per mag-

netic flux density and B is the magnetic flux density along the direction of beam
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propagation. The physical origin of the Faraday effect is a differential phase shift

between left-circular polarization (LCP) and right-circular polarization (RCP) in an

anisotropic medium possessing non-zero net magnetization.

An IPI magnetic sensor using a magnetizable crystal has been demonstrated as

a proof-of-principle experiment for IPI magnetometry [2]. In this experiment, a

Terbium Gallium Garnet (TGG) which is a common material for optical isolators

with Verdet constant of 4.5 × 103 ◦T−1, is placed between two quarter-wave plates

(λ/2) in a ring titanium-sapphire mode-locked laser cavity, as shown in Figure 1.4.

The laser is designed to have two counter propagating pulse trains with crossing

points made once at a saturable absorber and another time in air a half way around

the cavity. With one half-wave plate at a set position and two quarter-wave plates

at both sides of the TGG crystal, the counter propagating pulses become LCP and

RCP at the crystal.

In the presence of a current in the solenoid, a non-zero net magnetization of

the crystal causes a differential phase shift between LCP and RCP. The beat note

generated by overlapping the two pulse trains is given by

∆ν =
∆ϕ

2πτrt
=

V B`

(180◦)τrt
(1.13)

As shown in right panel in Figure 1.4, a linear relationship between the magnetic

field and the beat-note has been measured, as expected. The slope agrees with the

listed Verdet constant, and the resolution of the apparatus is measured to be 30

nT/Hz, which corresponds to 8× 10−9 rad.

Ultra-sensitive IPI magnetometer using atomic sample

A proof of principle experiment for IPI magnetometry using a magnetized crystal

demonstrates the superb performance of the IPI magnetometry scheme. Further
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Figure 1.4: Left: Experimental setup for IPI magnetometry using a TGG crystal (a blue
rectangle with yellow lines). Left: a measurement of beat frequency as a function of
magnetic field [2].

improvement of the sensitivity of an IPI magnetometer can be achieved with an

atomic vapor which has orders of magnitude larger Verdet constant compared to the

crystal sample.

The basic principle of atomic magnetometers is based on creating a net spin

polarization of an atomic ensemble by near-resonant light and subsequently measur-

ing the absorptive or dispersive response of a spin precession of the ensemble under

a magnetic field [14]. The study of responses of a precessing atomic ensemble to

near-resonant light field has a long history, starting with the pioneering work by

Dehmelt [15] and Bell and Bloom [16, 17].

One of the requirements for operating an ultra-high sensitivity atomic magne-

tometer is to create a long-lived ground state coherence. There are various types

of atomic magnetometers operating on different physical principles including coher-

ent population trapping (CPT) magnetometers [18, 19] and spin-exchange relaxation

free (SERF) [20] magnetometers. The CPT magnetometers exploit a sharp resonance

of a long-lived coherent dark-state formed between field-sensitive Zeeman sublevels.

The SERF magnetometers make use of a counter-intuitive property of a high den-

sity vapor where sufficiently rapid spin-exchange collisions increases the ground state
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coherence.

The ultimate sensitivity of atomic magnetometers when measurement is per-

formed for a time T with a vapor of volume V , density n with coherence time τ is

given by [14]

δB ' 1

gµB

~√
nV τT

(1.14)

where µB is the Bohr magneton, g is the ground state Landé factor, and ~ is the

Planck’s constant. Atomic magnetometers with sensitivity reaching sub-femtotesla

level have been demonstrated [21].

Higher sensitivity is usually obtained in experiments based on the dispersive

response of an atomic polarization, which can be measured by the rotation of polar-

ization or by an interferometric detection [22]. Since an atomic polarization exhibits

circular birefringence, it is feasible that IPI magnetometry provides an opportunity

for constructing an ultra-sensitive atomic magnetometer, which could in principle

exceed the performance of current state-of-the-art atomic magnetometers.

1.2.4 Intracavity measurement of refractive index in a cou-

pled cavity mode-locked laser

In the latter half of this dissertation, studies of a new class of coupled-cavity mode-

locked laser system will be presented. The novelty of the new coupled-cavity mode-

locked laser system is an intricate structure of the frequency comb generated through

a coupling of two cavities, namely an intracavity Fabry-Perot etalon and the laser

cavity. Since the lengths of the two cavities are different, the resultant comb is

composed of two different mode spacings. In addition, due to time-dependent gain

of the oscillator and due to the coupling of the resonance modes, the mode spacings

are coupled in counter-intuitive fashion. Despite those complications, however, it can
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be shown that it is possible to extract information about relative changes between

two cavities based on the fact that the modes are simultaneously resonant with both

cavities. An example of such measurement would be a measurement of small changes

of the index of refraction of the Fabry-Perot etalon.

1.3 Scope of this dissertation

As mentioned, the responses of mode-locked lasers to an intracavity phase pertur-

bation provides tremendous advantages for the frequency measurements, as oppose

to the traditional measurement of amplitude changes. The general motivation of

this dissertation is to perform fundamental studies towards realization of an ultra-

sensitive intracavity laser sensor based on the frequency measurement of an intra-

cavity differential phase shift. In particular, two systems are investigated: one is a

mode-locked laser with 87Rb atoms for the development of an ultra-sensitive magne-

tometer based on the IPI technique, and the other one is a coupled cavity mode-locked

laser for a measurement of a minute change in the index of refraction of an intra-

cavity Fabry-Perot etalon. In both cases, the sensitivity of the system is enhanced

because of the near-resonance feature of the respective media.

This dissertation is organized as following. In Chapter 2, the repetition rate

spectroscopy of coherent population trapping (CPT) of a 87Rb vapor, including the

response of the CPT resonance to a magnetic field in different geometry is presented.

In Chapter 3, a method to enhance the CPT signal contrast via spectral shaping is

presented. Observation of shifted CPT resonance is discussed. Chapter 4 is dedi-

cated to experimental investigations of the dynamical pumping of the CPT resonance

by sending a pulse train with alternating circular polarization, which simulates the

interaction scheme of an IPI magnetometer. Intracavity experiments of coherent

propagation of ultrashort pulses in a 87Rb vapor is presented in Chapter 5. Ob-
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servation of the CPT resonance excited by an intracavity pulse train is discussed.

Lastly, detailed studies of a new type of frequency comb, which is discovered during

experiments presented in Chapter 3, are presented in Chapter 6. A potential appli-

cation for the measurement of minute changes in the index of refraction of a sample

is discussed.
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Chapter 2

Coherent population trapping of

87Rb using a mode-locked laser

2.1 Introduction

The ground state in alkali-metal atoms, including sodium (Na), potassium (K), ru-

bidium (Rb) and cesium (Cs), has two hyperfine states [5, 23]. Together with an

excited state connected by a dipole transition a so-called Λ-system, due to its shape,

is formed [24]. The significance of the Λ-system is a narrow resonance of the ground

state hyperfine transition, which can be induced by a two-photon process. The

narrow resonance is the consequence of both the absence of a direct electric dipole

transition between the hyperfine states and the Doppler-free configuration. The Λ-

system of the ground state alkali metal atoms has been extensively exploited for

precision atomic spectroscopy [25], metrology [26, 27] and in various applications

of nonlinear optics [28, 29, 30, 31]. The narrow resonance of the ground state hy-

perfine transition also offer opportunities for implementing high-precision frequency

standards [26] and high-sensitivity optical magnetometers [22].
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Traditionally, the ground state hyperfine transition is induced by applying a res-

onant microwave to excite a magnetic dipole [32]. Since the invention of the laser,

optical excitation via two-photon transition has become an alternative approach [33].

In both cases, a strong coherence between the ground states is induced at the res-

onance. The optical approach is especially known as the phenomenon of coherent

population trapping (CPT). In CPT, the optically resonant fields applied on the two

optical transitions of the Λ system cause an inherent quantum destructive interfer-

ence of the transitions, leaving the atoms in the ground state coherence [25]. The

CPT resonance occurs when the difference frequency of the applied fields matches

the ground state hyperfine splitting. Since a direct dipole transition between the

ground states is forbidden, the coherence established between the ground state levels

last for a long time, leading to a very narrow resonance feature.

Recently, CPT of alkali-metal atomic vapor has drawn a great deal of attentions

due to combined benefit of its accessibility with inexpensive laser sources which can

be sufficiently stabilized without significant effort [34, 35, 36] and the potential for

miniaturization for field applications. High performance chip-scale atomic clocks [37]

and magnetometers [19] have been demonstrated.

On the other hand, it is interesting to realize that the first experimental demon-

stration of CPT was performed with a multi-mode laser [33]. Experimental demon-

stration of CPT by means of pulsed excitation was performed by applying a Q-

switched pulse train to a sodium (Na) vapor [38]. The pulse width was sufficiently

short such that the pulse spectrum overlaps with both the ground states to induced

coherence between them. The resonance was observed when the repetition rate of

the laser matched to a submultiple (i.e. 1/N where N = 1, 2, · · · ) of the ground state

sodium hyperfine splitting.

In the late 1990’s it was discovered that a mode-locked laser generated a so-

called frequency comb. The extraordinary properties of the frequency comb include
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the strictly equally spaced modes and their well-defined absolute positions [10]. The

frequency comb technology has then revolutionized the field of optical metrology as

it directly links optical frequency to radio frequency [39, 40]. Since then, efforts to

combine the best of the narrow resonance of CPT and the frequency comb technology

have been made. A theoretical analysis showed that when the period between sub-

sequent pulses was shorter than the relaxation time of the ground state coherence,

the atomic coherence accumulates over interaction with many pulses[41]. An exper-

imental demonstration using a picosecond mode-locked laser and a 87Rb vapor was

also preformed [42]. The authors identified that the CPT linewidth depended on the

experimental parameter “area” but not on the phase of the individual pulses. Using

this property, the authors proposed a potential application to auto-stabilization of

the repetition rate.

In this chapter, a previously demonstrated method to establish CPT in a 87Rb va-

por using a frequency comb, which is known as the repetition rate spectroscopy [42],

is briefly reviewed. Also, CPT with a frequency comb also has an advantage that it

can be integrated into the IPI scheme, as described in chapter 1. Therefore, for a po-

tential application for an ultra-sensitive magnetometry based on the IPI technique,

the responses of the CPT resonance to an applied magnetic field is also investigated.

2.2 Representation of 87Rb vapor

2.2.1 Rubidium-87 isotope

Rubidium can be found in the leftmost column on the periodic table, a member

of alkali metal atoms including Li, Na, K, Cs. Rubidium has 37 electrons, one of

which is an unpaired valence electron. There are two naturally occurring rubidium

isotopes; 85Rb (72.2% in natural abundance) which is stable and 87Rb (27.8% in
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natural abundance) which is weakly radioactive. Both isotopes provide a platform

for CPT experiments. In this work, CPT of 87Rb atoms is studied.

2.2.2 Energy structure of 87Rb atoms

Coarse value of the lowest energy of 87Rb atoms is determined by the distance be-

tween the nucleus to the orbit of the valence electron. Because of the quantum nature

of the electron orbit, the electron can only take discrete values of energy En where

n is the principle quantum number (n = 5 for the valence electron of ground-state

87Rb ).

The next coarse assignment of the energy arises due to the coupling of the electron

orbital angular momentum L and spin angular momentum S, known as the fine

structure [43]. The vector nature of angular momentum allows the total electron

angular momentum to be represented as a vector sum:

J = L+ S (2.1)

The upper-bound and lower-bound of the values of J are given by

|L− S| ≥ J ≥ L+ S (2.2)

Moreover, the quantum nature of the angular momentum restricts the values of J to

be discrete. For example, when L = 0 and S = 1/2, the total angular momentum

takes only one value: J = 1/2. For L = 1 and S = 1/2, there are two values of J :

J = 1/2 and J = 3/2. These different energy states are labelled by an alphabet and

numbers to indicated the angular momentum. An alphabet represents the value of

L: S for L = 0, P for L = 1, D for L = 2, and so on. The ground state 87Rb, where

L = 0 and J = L + S = 1/2, is denoted as 5S1/2 where the first number represents

the principle quantum number n and the subscript represents the value of J .
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The first two excited states are in the P -orbital with J = 1/2 and J = 3/2, or

using the short-hand notation just introduced, 5P1/2 and 5P3/2. The transition from

the ground state to the first P -orbital (5S1/2 → 5P1/2) is induced by exciting an

electric dipole with light at 795 nm (377 THz), which is dubbed the D1 line. The

transition to the second P -orbital (5S1/2 → 5P3/2), dubbed the D2 line, is excited

at 780 nm (384 THz). Since the fine structure splitting of 87Rb , which is approx-

imately 15 nm, is large enough to be resolved by many lasers including picosecond

mode-locked lasers, D1 and D2 transitions are treated separately. Throughout this

dissertation, only the interaction of light with the D1 line is considered.

Each of the fine structure is further split due to the coupling of the nuclear spin

I and the electron spin S, known is the hyperfine structure. The total angular

momentum of the atomic system is then given by

F = I + J (2.3)

The values of F are separated by integer steps in the range given by

|J − I| ≥ F ≥ J + I (2.4)

For 87Rb, I = 3/2. Thus, for example, the ground state 87Rb where J = 1/2, the

total atomic angular momentum takes two values, F = 1 and F = 2. Similarly, 5P1/2

state has two hyperfine states with F = 1 and F = 2.

The Hamiltonian describing the hyperfine structure in the D1 line is [5]:

Hfhs = AhfsI · J, (2.5)

and the corresponding energy splitting is given by

∆Ehfs =
1

2
AhfsK (2.6)

where

K = F (F + 1)− I(I + 1)− J(J + 1)) (2.7)
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where Ahfs is the magnetic dipole constant. The values of Ahfs for 5S1/2 and 5P1/2

are listed in Table 2.1. The hyperfine splitting of 5S1/2 state is 6.834 GHz, while

that of 5P1/2 is 0.814 GHz. The energy diagram of the D1 line of 87Rb is shown in

Figure 2.1.

Magnetic dipole constant, 5S1/2 A5S1/2
h · 3.417 341 305 452 145(45) GHz

Magnetic dipole constant, 5P1/2 A5P1/2
h · 404.24(77) MHz

Table 2.1: Rubidium 87 D1 transition hyperfine structure constants.

2.2.3 Simplification to a Λ-system

In an atomic vapor 87Rb atoms, each homogeneously broadened energy level is further

broadened due to the Doppler broadening. The Doppler width at room temperature

is approximately 500 MHz [43]. In the inhomogeneously broadened rubidium vapor,

the ground state hyperfine levels separated by 6.834 GHz are well resolved, as can

be seen in Figure 2.1. On the other hand, the excited hyperfine states separated

by 814 MHz are only partially resolved. Strictly speaking, a 87Rb vapor at room

temperature is thus a four-level system. However, a numerical calculation for CPT

in a four-level 87Rb shows that an inclusion of the second excited state does not

significantly change the basic principle of the phenomenon [44]. Therefore, in the

analysis treated in this chapter and in the rest of this dissertation, the D1 line is

reduced to a simple three-level system where there are two ground state hyperfine

states and a single excited state, forming a Λ-system, as shown in the right figure in

Figure 2.1. The name Λ-system comes from the shape of the transition schematic,

as in Figure 2.3.
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Figure 2.1: Energy diagram of D1 line. A 87Rb vapor at room temperature can be
simplified to a Λ-system.

2.3 Interaction with mode-locked pulses

2.3.1 Density matrix representation of a Λ-system

Interactions of an ensemble of quantum systems with optical fields are conveniently

described by the time evolution of the density matrix due to the energy transported

by the fields. An ensemble of three-level atoms is represented by a 3 × 3 density

matrix [45],

ρ̂ =


ρ11 ρ̃12 ρ̃13

ρ̃21 ρ22 ρ̃23

ρ̃31 ρ̃32 ρ33

 (2.8)

The diagonal elements ρii represent atomic population in the energy level |i〉 and

the off-diagonal elements ρ̃ij represent coherence between the two energy levels |i〉

and |j〉 which are written in a complex form. Time evolution of ρ̂ is given by the

Liouville-von Neumann equation:

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+ R̂ρ̂ (2.9)

where R̂ represents relaxation processes of the density matrix elements. The total

evolution Hamiltonian, Ĥ = Ĥ0 + Ĥint, consists of an unperturbed atomic Hamilto-
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nian Ĥ0 and a dipole interaction Hamiltonian Ĥint [45]:

Ĥ0 =
∑
i

~ωi |i〉 〈i| (2.10a)

Ĥint =
∑
i 6=j

〈i| (−p̂ · Ẽ) |j〉 |i〉 〈j| = −
∑
i 6=j

Vij |i〉 〈j| (2.10b)

where ~ωi is the eigenenergy of i state, pij is a dipole moment of the transition

between i and j states and Vij = pijẼ.

Calculating Eq. (2.9) with Eq. (2.10), the differential equations for each matrix

element are found as

dρ11

dt
= − i

~
(Ṽ ∗31ρ̃21 − ρ̃∗31Ṽ31) +

Γ3

2
ρ33

= −2p31

~
Im(Ẽ∗ρ̃31) +

Γ3

2
ρ33 (2.11a)

dρ22

dt
= − i

~
(Ṽ32ρ̃

∗
32 − ρ̃32Ṽ

∗
32)− Γ3

2
ρ33

=
2p32

~
Im(Ẽ∗ρ̃32)− Γ3

2
ρ33 (2.11b)

dρ33

dt
=

2p31

~
Im(Ẽ∗ρ̃31) +

2p32

~
Im(Ẽ∗ρ̃32)− Γ3ρ33 (2.11c)

dρ̃21

dt
= −i(ω2 − ω1)ρ̃21 + i

Ṽ ∗32

~
ρ̃31 − i

Ṽ31

~
ρ̃∗32 − Γ21ρ̃21

= −iω21ρ̃21 − i
p̃31Ẽ
~

ρ̃∗32 + i
p̃32Ẽ
~

∗

ρ̃31 − Γ21ρ̃21 (2.11d)

dρ̃31

dt
= −i(ω3 − ω1)ρ̃31 − i

V31

~
(ρ33 − ρ11) + i

Ṽ32

~
ρ̃21 − Γ31ρ̃31

= −iω31ρ̃31 − i
p31Ẽ
~

(ρ33 − ρ11) + i
p̃32Ẽ
~

ρ̃21 − Γ31ρ̃31 (2.11e)

dρ̃32

dt
= −i(ω3 − ω2)ρ̃31 − i

V32

~
(ρ33 − ρ22) + i

Ṽ31

~
ρ̃∗21 − Γ32ρ̃32

= −iω32ρ̃32 − i
p32Ẽ
~

(ρ33 − ρ22) + i
p̃31Ẽ
~

ρ̃∗21 − Γ32ρ̃32 (2.11f)

where Γi are the relaxation rate of population in |i〉 and Γij are the relaxation rate
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of coherence between |i〉 and |j〉. The following operations are also made; Im(z) =

−i(z − z∗)/2 and ωij ≡ ωi − ωj.

Since the time evolution of the system occurs in a time scale much longer than

optical oscillation, the electric field Ẽ and the matrix elements ρ̃31 and ρ̃32 can be

expressed in terms of their slowly varying envelope and the rapidly varying term

oscillating at ω` of the laser frequency:

ρ̃31 =
1

2
σ̃31e

iω` (2.12)

ρ̃32 =
1

2
σ̃32e

iω` (2.13)

Ẽ =
1

2
Ẽeiω` (2.14)

This transformation, known as the rotating wave approximation (RWA) [46], elimi-

nates the fast oscillating terms from the differential equations, Eq. (2.11):

dρ11

dt
= −κ

2
Im(Ẽ∗σ̃31) +

Γ3

2
ρ33 (2.15a)

dρ22

dt
= −κ

2
Im(Ẽ∗σ̃32) +

Γ3

2
ρ33 (2.15b)

dρ33

dt
=
κ

2
Im(Ẽ∗σ̃31) +

κ

2
Im(Ẽ∗σ̃32)− Γ3ρ33 (2.15c)

dσ̃31

dt
= (−Γ31 − i∆13)σ̃31 − iκẼ(ρ33 − ρ11) + iκẼ ρ̃21 (2.15d)

dσ̃32

dt
= (−Γ32 − i∆23)σ̃32 − iκẼ(ρ33 − ρ22) + iκẼ ρ̃∗21 (2.15e)

dρ̃21

dt
= (−Γ21 − i∆12)ρ̃21 − i

κ

4
Ẽ∗σ31 − i

κ

4
Ẽ σ̃∗32 (2.15f)

where κ = pij/~ and ∆ij = ωij − ω` is detuning between the optical frequency and

the corresponding atomic resonance. κẼ is identified as the Rabi frequency.

2.3.2 CPT via resonant repetition rate

The evolution of the density matrix elements in Eq. (2.15) can be solved numerically.

For excitation with a pulse train, the electric field E is given a standard pulse envelope
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function. A pulse train is simulated by giving a proper time period between the pulse

envelopes, τRT . A detailed analysis of the roles of various parameters appearing in

Eq. (2.11) has been presented in ref. [44]. In the following paragraphs, the main

results from the aforementioned reference are summarized.

Dark-line resonance

One of the important results is the observation of a dark-line resonance occurred

when the mode spacing of a frequency comb is brought into resonance. The left

panel in Figure 2.2 shows a result of numerical integration of Eq. (2.15) as a function

of pulse period τRT . When the inverse of the pulse interval becomes equal to a

submultiple of the ground state hyperfine splitting, the probability of atoms to be

in the excited state, ρ33, is significantly reduced. The resonance is observed as a

reduction of fluorescence, thus named dark-line resonance.

The physical origin of the dark-line resonance is a creation of a coherent super-

position of the ground state hyperfine states [25]. In the dressed atom basis [45], the

dark-state can be expressed as |ψ〉:

|ψ〉 =
p31E1 |1〉 − p32E2 |2〉√
|p31E1|2 + |p32E2|2

(2.16)

where E1 and E2 are the electric field components corresponding to the transitions

from each ground state to the excited state. It is easy to show that this superposition

state |ψ〉 has a vanishing eigenvalue for the Hamiltonian in Eq. (2.10). Physically,

the simultaneous excitations with the near-resonant optical fields, represented as E1

and E2, cause an interference of the probability amplitudes of the dipole transitions

induced by the fields. When the difference frequency of the two fields matches the

ground state hyperfine splitting, ω1 − ω2 = ∆12, a destructive interference of the

probability amplitudes occurs, and the excited state population vanishes; the atoms

are said to be coherently “trapped” in the ground state. Thus, the name coherent
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population trapping (CPT) has been given to this phenomenon [25]. Notice that since

the direct dipole transition between the ground state hyperfine states is forbidden,

the coherent superposition in Eq. (2.16) lasts for a long time, resulting in a very

narrow resonance.

Figure 2.2: Right: The excited state population ρ33 as a function of pulse period. Popu-
lation vanishes from the excited state, or trapped in the ground state when the inverse of
pulse period is an integer sub-harmonic of the hyperfine splitting. Here, the dark-resonances
corresponding to first 7 sub-harmonics are shown. Left: an experimental observation of
the dark-line when the repetition rate is tuned to 1/57th harmonic of hyperfine splitting.

Figure 2.3: A schematic of interaction of a frequency comb with ground state 87Rb atoms.
Not drawn to scale.

For excitation with a mode-locked pulse train, it is the modes of the frequency

comb that interact with the atomic lines, as shown in Figure 2.3. The right panel in
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Figure 2.2 shows an experimental observation of the dark-line resonance in a 87Rb va-

por. The repetition rate is scanned across 1/57th of the 6.8 GHz hyperfine splitting.

In this experiment, the vapor cell is not filled with buffer gas nor coated with anti-

relaxation coating. At room temperature (22 ◦C), the mean thermal velocity is 138

m/s, which implies that the transit-time of 87Rb atoms through a 2 mm laser beam is

τtransit = 14.5 µs, and therefore the linewidth is dominated by the transit-broadening

∆νtransit = 11 kHz.

Detuning of optical frequency

From a numerical simulation, it is found that the dark-line resonance does not cru-

cially depends on the one-photon detuning, ∆31 and ∆21. Figure 2.4 shows several

simulation results for different values of the one-photon detuning. The detuning

affects the depth of the dark-line resonance, but not the width nor the resonance

frequency.

Figure 2.4: One-photon detuning ∆ij does not affect the resonance characteristics such as
line width or resonance frequency, although it affects the depth of the resonance.
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Dependence on the area

An important parameter to characterize a pulse-matter interaction is the “area”,

which is defined as

θ ≡
∫ ∞
−∞

κEdt (2.17)

where the rotating-wave-approximation and zero detuning are assumed. The area is

a time integral of the Rabi frequency, thus dimensionless, and is a measure of the

strength of the interaction. Figure 2.5 shows the dependence of the dark resonance

on the area. For areas below 0.01 the dark resonance is only a small perturbation to

a weak fluorescence. For the area between 0.01 and 0.1 the narrow dark-line of the

dark resonance appears. As the area increases above 0.5 the dark resonance starts

broadening, leading to complete extinction of the dark resonance feature for an area

equal to 2 and larger.

Figure 2.5: The dependence of the dark resonance on the area reveals that the resonance
feature can be clearly observed for the areas between 0.01 ∼ 0.5. Below that range, it is
only a small perturbation to a weak fluorescence. Above the range, a power broadening
washes out the resonance feature.
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2.4 Dark-line resonance in a magnetic field

2.4.1 Zeeman splitting of magnetic sublevels

The total atomic magnetic moment of the atom is the sum of the electronic µe and

nuclear moments µI [43]:

µatom = µe + µI = −µB(gsS + gLL+ gII) (2.18)

where µB is the Bohr magneton, gs, gL and gI are the Landé g-factors for the electron

spin, electron orbital and nucleus. Under an external magnetic field, the atomic

magnetic moments precess with energy given by the Hamiltonian [5]

HB = −µatom ·B (2.19)

= µB (gsS + gLL+ gII) ·B

= µB (gsSz + gLLz + gIIz)Bz (2.20)

where in the last step the direction of the magnetic field is taken in z-direction;

B = Bz. The energy of the precessing magnetic moment thus depends on the

projection of the magnetic moment onto the direction of the applied magnetic field.

If the energy shift due to the magnetic field is small compared to the fine-structure

splitting, then J is a good quantum number and the interaction Hamiltonian becomes

HB = µB (gJJz + gIIz)Bz (2.21)

If the energy shift due to the magnetic field is even small compared to the hyper-

fine splitting, then F is also a good quantum number, so the interaction Hamiltonian

is further simplified to

HB = µBgFFzBz = µBgFmFBz (2.22)
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where the hyperfine Landé g-factor is

gF ' gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
= ∓0.5 (2.23)

for ground state 87Rb which has nuclear spin of I = 3/2 and electron angular mo-

mentum J = L + S = 1/2. The “-” and “+” signs correspond to F = 1 and F = 2

states.

mF in Eq. (2.22) denotes the magnetic quantum number which is the projection

of F onto the direction of the magnetic field. Due to the quantum nature of the

wave function and to a simple fact that a projection of a vector cannot exceed the

length of the vector itself, mF has an upper and a lower bound and are separated by

an integer:

−F ≥ mF ≥ F (2.24)

Therefore, there are 2F = 1 number of magnetic sublevels in each hyperfine state

with F . The energy shift of magnetic sublevels labelled as |F mF 〉 is

∆E|F mF 〉 = µBgFmFBz (2.25)

5S1/2 state of 87Rb has F = 1 and F = 2 hyperfine states, each of which has 3

and 5 magnetic sublevels, respectively. Under a weak magnetic field, they shift in

energy according to Eq. (2.25). With gF = −0.5 for F = 1 and gF = +0.5 for F = 2

hyperfine state, the corresponding frequency difference between adjacent magnetic

sublevels is given by ∓0.7 kHz/mG where “-” and “+” signs correspond to F = 1

and F = 2 states, respectively. For 5P1/2 state, the frequency difference is ∓0.23

kHz/mG, where “-” for F = 1 and “+” for F = 2 hyperfine state.

2.4.2 Selection rule for the Λ-system

The spectral location of the dark-line resonance is determined by the energy shift

of the sublevels forming the coherent dark-state. A specific pair allowed to form
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Figure 2.6: Zeeman splitting of the ground state 5S1/2 of 87Rb . The magnetic sublevels
in upper (F = 2) and lower (F = 1) hyperfine states shifts in opposite direction in a
magnetic field. The frequency difference between adjacent magnetic sublevels is ∆fm =
∓0.7 kHz/mG in the ground state.

the dark-state is dictated by the selection rule for two-photon transition in the Λ-

system, imposed by the conservation of angular momentum [47]. The two-photon

transition in the Λ-system takes place with simultaneous excitation and scattering

of photons [48]. The conservation of angular momentum restricts the change in the

angular momentum of the atoms to be equal to the total photon angular momenta

involved in the two photon interaction, namely

∆mF = me −ms (2.26)

where me and ms are the angular momenta of exciting and scattered photons, re-

spectively.

When the magnetic field is directed along the beam propagation, a circularly

polarized light has a projection of the angular momentum of m = ±1 along the

magnetic field with the sign determined by the “handness” of the polarization. The

photons in such light field are dubbed σ+ and σ− photons. A linearly polarized light

can be expressed as a linear combination of σ+ and σ− photons.

In an experiment where a magnetic field is applied along the beam direction, the

selection rule for two-photon transition is therefore satisfied when ∆mF = −2, 0, 2.

The pairs of the sublevels |F,mF 〉 for 87Rb that satisfy the selection rule are the
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following:

∆mF = 0 : |1,−1〉 ↔ |2,−1〉

|1, 0〉 ↔ |2, 0〉

|1, 1〉 ↔ |2, 1〉

∆mF = ±2 : |1,−1〉 ↔ |2, 1〉

|1, 0〉 ↔ |2, 2〉

|1, 0〉 ↔ |2,−2〉

|1, 1〉 ↔ |2,−1〉

which are depicted in Figure 2.7.
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Figure 2.7: The selection rule determines which pair of sublevels to form a coherent dark-
state. In the presence of a magnetic field along the beam propagation direction, σ+ photons
form the dark-state between the sublevels with the same mF such that ∆mF = 0 (left).
The same rule applies for σ− photons (right). When both σ± photons are present, as
in a linearly polarized light, the two-photon transition is accomplished when ∆mF = ±2
(center).
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2.4.3 Measurement of Zeeman splitting of the dark-line res-

onance

A circularly polarized light is generated by sending a linearly polarized light through

a quarter-wave-plate (QWP). By defining the angle θ between the fast axis of QWP

and the polarization axis of the input beam, as shown in Figure 2.8, the output beam

from QWP can be expressed as

E(θ) = E0 (cos θx̂+ i sin θŷ)

= E0

[
cos θ(L̂+ R̂) + sin θ(L̂− R̂)

]
= E0

[
(cos θ + sin θ)L̂+ (cos θ − sin θ)R̂

]
(2.27)

where x̂ and ŷ are decomposed in terms of circular unit vectors L̂ and R̂ as

R̂ =
x̂+ iŷ

2
L̂ =

x̂− iŷ
2

x̂ = L̂+ R̂ ŷ = −i(L̂− R̂)

A left circular polarization (LCP), denoted as L̂, carries the photon spin angular

momentum of −1 in unit of ~ (i.e. σ− photons). A right circular polarization (RCP),

denoted by R̂, carriers +1 spin angular momentum (i.e. σ+ photons).

Figure 2.8: A geometry of the experiment. An external magnetic field is applied along
the beam direction. θ is the relative angle between the plane of linear polarization of the
input beam and the fast axis of QWP.
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Figure 2.9 shows an experimental measurement of the Zeeman splitting of the

dark-line resonance when a 350 mG magnetic field is applied along the direction of the

beam propagation. The 87Rb cell is heated to approximately 45 ◦C. With By = 350

mG, each sublevel shifts by |∆fm| = mF × 245 kHz. In terms of the repetition

rate, which is 1/45th of the hyperfine splitting in this particular experiment1, each

sublevel appears to be shifted by mF × 5.5 kHz. The selection rule for the two-

photon transition in this case allows only those pairs shown in Figure 2.7 to form the

dark-state. There is one non-shifted dark-state and two shifted dark-states by ±11

kHz.

0° 11° 

22° 34° 45° 

0° -11° 

-22° -34° -45° 

Figure 2.9: Zeeman splitting and optical pumping of the dark-line resonace. A magnetic
field is applied along the beam direction. The angles indicate the angle between the fast-
axis of QWP and the input light polarization.

1The resonance repetition in this experiment is noticeably shifted from exactly 1/45th
of the hyperfine splitting. This effect is due to a modification to the laser spectrum which
will be discussed in more details in Chapter 3 and 6.

31



Chapter 2. Coherent population trapping of 87Rb using a mode-locked laser

2.5 Optical pumping of the dark-resonance

2.5.1 Optical pumping

A photon carries unit spin angular momentum along the propagation direction.

When an atom absorbs a photon, the spin angular momentum is transferred into

the atomic system. Suppose circularly polarized light is passed through an ensemble

of atoms whose quantization axis is defined along the beam propagation. Over a

number of absorptions of σ+ (or σ−) photons and emissions of randomly polarized

photons, the entire atomic population is slowly transferred into the magnetic sublevel

with maximum (minimum) quantum number. As a result, a net spin polarization of

the ensemble is established. This process of optical pumping [49] is an effective way

to create a macroscopic polarization, which has been exploited for high-sensitivity

magnetometers [20].

2.5.2 Optical pumping of the dark-line resonance

A long-lived macroscopic polarization can be achieved by preparing a spin polarized

CPT. The effect of optical pumping in CPT can be observed as an increase of the

dark-line resonance signal formed between mF = 1 or mF = −1 sublevels. The top

panels in Figure 2.9 show the dark-line resonance signals while the light polarization

is varied from RCP (left-most panel) to linear polarization (right-most panel). When

the light is RCP, more atoms are pumped into m=1 sublevels, and a larger dark-line

resonance is obtained from the |1, 1〉 ↔ |2, 1〉 superposition state. The effect of optical

pumping is also seen as a reduction of the overall fluorescence. This is because a fair

amount of atoms are trapped in the maximum angular momentum state mF = +2

where there is no excited state to be promoted by absorbing σ+ photons. As QWP is

rotated away from 45◦, the beam becomes a mixture of RCP and LCP. At θ = 0◦ the
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equal amount of RCP and LCP makes the dark-line resonances nearly symmetric. In

this case, there is no macroscopic spin polarization. By further rotating QWP into

negative θ, as shown in the bottom panels, the amount of LCP increases and the

population is pushed into the sublevels with negative magnetic quantum numbers.

At θ = −45◦, the largest dark-resonance signal is obtained from |1,−1〉 ↔ |2,−1〉

superposition. It is interesting to notice that optical pumping seems to be most

efficient when QWP is rotated at θ = ±22◦.

2.6 Conclusion

In this chapter, a method of CPT spectroscopy of 87Rb using a frequency comb is

reviewed. The CPT resonance occurs when the repetition is tuned to a sub-harmonic

of the hyperfine splitting of the ground state. A narrow dark-line with width on the

order of 10 kHz with respect to the repetition rate is measured in a vapor withtout

a buffer gas or in a cell with no anti-relaxation coating. Numerically solving the

density matrix equations for a simplified three-level Λ-system, the dark-line features

including the resonance frequency and the width are not affected by optical frequency

detuning. However, it is greatly dependent of the area. For areas larger than 2, the

dark-line severally disturbed by power broadening.

The dependence of the dark-line resonance on a magnetic field and the relative

orientation of the light polarization is studied. Due to the Zeeman splitting of the

magnetic sublevels, the observed dark-line resonance splits into multiple dips whose

frequency depend on the energy shift of the individual sublevels forming the coherent

dark-state. Under an external magnetic field applied along the beam propagation

direction, the selection rule for two-photon transition imposes a condition ∆mF =

0,±2. In excitation with σ+ or σ− photons, the optical pumping into the sublevels

with larger magnetic number is observed. The strongest dark-line is obtained from
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a coherent dark-state formed between mF = 1 sublevels when excitating with σ+

photons, and for excitation with σ− photons the strongest signal is obtained for the

superposition between mF = −1 sublevels. The optical pumping in CPT establishes

a long-lived atomic polarization, which opens a possibility for application in the IPI

atomic magnetometery.
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Chapter 3

Enhancement of CPT signal via

spectral shaping

3.1 A lack of spectral overlap between comb and

atoms

In Chapter 2, a method to create coherent population trapping (CPT) of ground

state 87Rb atoms using a frequency comb is presented. Pumping with circularly

polarized light, the atomic population is pumped into a superposition of sublevels

with large angular momentum. An ensemble of such atoms establishes a long-lived

spin polarization. By increasing the pumping power, a further enhancement of the

atomic spin polarization is expected.

Pumping with a frequency comb, however, poses an issue of small spectral overlap

between the frequency comb and atomic lines. A frequency comb generated form a

typical titanium-sapphire mode-locked laser spans between 102 ∼ 105 GHz. On

the other hand, an inhomogeneously broadened atomic linewidth is in a range of
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10−1 ∼ 100 GHz. The spectral components that overlap with the atomic lines are

thus only a fraction of the total spectral power contained in the entire frequency

comb.

3.2 Spectral shaping

The problem of a lack of spectral overlap can be circumvented by shaping the fre-

quency comb to match the shape of the atomic lines. An increased spectral overlap

is expected to improve the pumping efficiency of the atomic population into the mag-

netic field sensitive dark state. Here, a simple yet effective spectral shaping method

using an intracavity Fabry-Perot etalon (FPE) will be presented.

3.2.1 Spectral shaping using an intracavity Fabry-Perot

FPE transmission function

FPEs are commonly used inside a continuous-wave (CW) laser to force a laser to

oscillate in a selected single mode. The principle of this technique is a combination of

multiple beam interferences in FPE [50] with the existence of a saturable gain in the

laser cavity [9]. The effect of the multiple beam interferences provide a frequency

filter in the laser cavity, and the saturable gain selectively amplifies the spectral

components that experience maximum transmission through FPE.

The multiple beam interferences give rise to a transmission spectrum determined

by

T̃ (Ω) =
(1−R)e−iδ/2

1−Re−iδ
(3.1)

where R is the reflectivity of the interface and δ is a round-trip phase shift of an
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optical field in FPE. The intensity transmission function is then

T = |T̃ |2 =
(1−R)2

1 +R2 − 2R cos δ
(3.2)

which is a series of transmission peaks in the frequency domain. The maximum

transmission (T = 1) occurs when an optical field experiences a round trip phase

equal to an integer multiple of 2π for constructive interference:

δ = −4πf`npd cos θin
c

= 2πN (3.3)

where f` is the optical frequency, np is the phase index of refraction, d is the thickness

of FPE, θin is the internal angle of the beam with respect to the surface plane of

FPE and N is an integer. The spectral distance between the transmission peaks is

then given by

ffsr =
c

2npd
(3.4)

This is the free-spectral-range (fsr) of FPE. It is also the inverse of the time a phase

front takes to make a round-trip in FPE. When the reflectivity is not too high,

Eq. (3.2) fits well to a sinusoidal function. With higher reflectivity, each transmission

peak can be approximated by a Lorentzian with its width given by [51]

∆1/2 =
1−R√
R

(3.5)

The higher the reflectivity, the narrower the transmission peaks become, as shown

in Figure 3.1.

Effect of a saturable gain

In an inverted homogeneous gain medium, the stimulated emission rate is propor-

tional to the photon numbers (intensity) [9]. Thus, the spectral components that

experience maximum transmission through FPE, that is the resonance frequencies,
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Figure 3.1: Intensity transmission through FPE for various values of R.

have a larger chance to create photons of the same kind. Since the gain can only store

a finite amount of energy, it saturates and leaves less chance to be amplified for other

spectral components that are off-resonance to FPE. This positive feedback process

continues until the laser reaches the steady-state and sets the oscillating modes of

the laser. By solving Eq. (3.3) for the laser frequency f`,

f` =
cN

npd cos θin
(3.6)

Or, in terms of wavelength:

λ` =
npd cos θin

N
(3.7)

As mentioned earlier, an intracavity FPE thus serves as a frequency tuner.

Shaping of a pulse spectrum

When the pulse spectrum is wider than ffsr, there are multiple transmission peaks

overlapping with the pulse spectrum, which gives rise to a periodic spectral amplitude

modulation in the transmission spectrum. If a pulse spectrum is sufficiently wide,

the spectral width is not significantly modified by FPE transmission function. In

the time domain, the transmitted intensity profile comprises a train of pulses with
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unchanged width and decaying intensity. The period of the pulse train is determined

by ffsr, and the rate of intensity decay is determined by ∆1/2. In order to maximize

the spectral overlap between the pulse spectrum and the atomic lines, ffsr needs

to match the spectral spacing of the atomic transitions desired to be excited. The

concept of the spectral shaping of a pulse train using an intracavity FPE is depicted

in Figure 3.2.

Atomic transitions

Pulse train spectrum

Before After ~ ffsr

freq.

freq.

Figure 3.2: The concept of spectral shaping of a pulse train using an intracavity FPE.
The FPE tranmission function results in a spectral amplitude modulation which increases
the spectral overlap with the atomic transitions.

3.3 Experimental setup

3.3.1 Home-built titanium-sapphire laser

Experiments are performed using a home-build linear Titanium-Sapphire mode-

locked laser shown in Figure 3.3. Mode-locking is assisted by a multiple quantum

well saturable absorber (MQW-SAM) mounted on a Bragg reflecting mirror which

serves as the cavity end mirror. The output coupler is mounted on a translation

stage which allows for scanning the cavity length. A pair of prisms and a birefrin-

gent filter are used for tuning the laser frequency near 795 nm. They also limit the
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spectral bandwidth to attain picosecond pulses. A reflected beam from one of the

prisms is sampled by a 25 GHz high-speed InGaAs photodetector (New Focus 1437)

to characterize the pulse train. The temporal profile is monitored on an 8 GHz dig-

ital oscilloscope (Tektronix DPO 70804). The spectrum is monitored on a 25 GHz

digital radio frequency (RF) spectrum analyzer (Agilent MXA N9020).

cw pump

OC

MWQ
SAM

BFTi:Saph

L

FPE

Freq. count.
PD

Spec. analyz.

Digital 
oscilloscope

To extracavity
experiments

HS-PD

Figure 3.3: Home-build Ti:Sapphire mode-locked laser with an intracavity Fabry-Perot
etalon (FPE). OC: output coupler, BF: birefringent filter, HS-PD: high-speed photodetec-
tor, PD: photodetector, MQW-SAM: multiple quantum well saturable absorber mirror.

3.3.2 Intracavity FPE

The FPE is a 15.12 mm fused-silica slab with parallel and uncoated surfaces. The

free spectral range of this FPE is

∆f =
c

2nd
' 6.82 GHz (3.8)

where c = 2.998 × 1011 mm/s and np = 1.4534 at 795 nm. The FPE is mounted

on a standard mirror mount (Newport Ultima 100A) with one of the adjustment

screws replaced with a motorized micrometer and inserted near the output coupler.

The exact location of the FPE with respect to the output coupler does not affect
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the characteristics of the laser. Tilt angles of FPE with respect to the beam axis is

controlled and monitored remotely by a data acquisition system.

3.3.3 CPT spectroscopy apparatus

The main output of the laser is sent to a spectroscopy apparatus including a vapor

cell, a Helmholtz coil and data acquisition instruments as shown in Figure 3.4. The

vapor cell is an evacuated Pyrex cylinder filled with enriched rubidium-87 isotope,

wrapped with bifilar heating wires. It is heated to approximately 45 ◦C and placed

in the center of a three-axis Helmholtz coil. The cell assembly has a 3 mm ×

4 mm rectangular access window that allows monitoring of a fluorescence signal,

which is collected by a photomultiplier tube (PMT) (Hamamatsu R928) with an

interference filter for 795 nm. The signal from the PMT is sent to a lock-in amplifier

and mixed with a reference chopper frequency. The lock-in signal is then sent to a

data acquisition system.

For transmission measuremetns, the incident and transmitted beams are com-

pared. Two different avalanche photodiodes (APDs) are employed to monitor each

of the beam components. Each APD signal is demodulated at the repetition rate of

the laser using RF lock-amplifier. The difference between the signals generated from

the two lock-in amplifiers is calculated and recorded using LabVIEW.
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Figure 3.4: CPT spectroscopy apparatus for fluorescence measurement (left) and for trans-
mission measurement (right).

3.4 Spectrally shaped pulse train

3.4.1 Generation of a modified pulse train

A typical output of the mode-locked laser with 15 mm fused silica FPE is shown in

Figure 3.5. In the absence of the intracavity FPE, the laser operates as a standard

mode-locked laser. It generates a continuous mode-locked pulse train with a pulse

period of approximately 6.4 ns. On the other hand, in the presence of the intracavity

FPE, a Bell-shape “bunch” of pulses is formed and repeated in every round trip

of the laser cavity. The temporal extension of the bunch is approximately 1.3 ns

(FWHM) and there are at least 13 pulses in each bunch. The appearance of the

bunches seen on the oscilloscope trace in Figure 3.5 resembles an interferometric

auto-correlation of a train of femtosecond pulses. However, what may appear as an

optical oscillation is partially resolved intensity envelopes of the individual pulses.

From an actual auto-correlation of the bunch, the pulse width and inter-pulse period

are respectively found to be 2 ps and 148 ps, agreeing with the group round trip time

of the 15.12 mm fused-silica, τFP = 2ngd/c with ng ≈ 1.46, where ng is the group

index of refraction.
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Figure 3.5: Temporal profile of an output of the mode-locked laser with a 15 mm intra-
cavity FPE. Left: An oscilloscope trace acquired with a 25 GHz photodetector and an 8
GHz oscilloscope shows a generation of multiple pulses forming 1.3 ns wide bunch. Right:
An interferometric auto-correlation trace reveals the individual 2 ps pulses in the bunch,
with pulse period of 148 ps.

3.4.2 Modified RF spectrum

The RF spectrum of the spectrally shaped pulse train shows a set of modes in the

neighborhood of 6.8 GHz, as shown in the left panel in Figure 3.6. The central 6.8

GHz mode corresponds to the inverse of 148 ps inter-pulse period. The modes around

the 6.8 GHz mode are spaced evenly by the inverse of the cavity round trip time of

the center of gravity of the bunch. It is found that the process of multiple reflections

in FPE causes a back-ward flow of energy among the pulses within a bunch, which

reduces the average velocity of the bunch during a cavity round trip.1 Since the

pulse bunch envelope travels at much slower velocity than individual pulses, the

cavity repetition rate is significantly reduced from that of a standard single pulse

mode-locked laser. Consequently, the difference between the bunch and the group

(pulse) velocity results in a phase slippage between the bunch envelope and pulses

in every round trip, giving rise to an offset frequency in the RF spectrum. The right

panel in Figure 3.6 shows a comparison with the RF spectrum of a standard single

1More details on the slow bunch velocity are presented in Chapter 6.
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pulse mode-locked pulse train. Their repetition rates are adjusted to be equal in

order to indicate the presence of the offset frequency. The RF modes of the pulse

bunch train is shifted by approximately 10 MHz. This offset frequency is analogous to

the carrier-envelope offset (CEO) f0 in optical frequency arising from the difference

between the carrier and group velocity (see Section 1.2.1 for the definition of f0).

The spectral location of the RF modes shown in the figure is empirically found to be

fN = fPBO +Nfrep (3.9)

where N is an integer and fPBO is the offset frequency. The subscript PBO stands

for “pulse-to-bunch offset”.
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Figure 3.6: Left: The RF spectrum of the spectrally shaped pulse train due to the intra-
cavity FPE. Right: A comparison of RF spectra of a pulse train of a standard mode-locked
laser (top) and of the spectral shaped pulse train (bottom). Repetition rate of both lasers
are set equal. Inset: A zoom of the 6.8 GHz region to indicate a shift of the spectrum,
which is a consequence of the propagation velocity of the bunch envelop being slower than
the constituent pulses.

3.4.3 Wavelength tuning

The interferences amongst multiple pulses in FPE give rise to wavelength tunability

of the laser, as described by Eq. (3.7). Figure 3.7 shows a measured fluorescence
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from the D1 line of 87Rb vapor as a function of the internal angle of the intracavity

FPE, overlaid with a calculated laser wavelength using Eq. (3.7). The peaks of the

fluorescence are observed when the laser spectrum coincides with the D1 lines in the

neighboorhood of λ` = 795 nm. Since FPE is designed to match its free-spectral-

range to the 6.8 GHz ground state hyperfine splitting of 87Rb, a single peak of the

fluorescence appears every time the round trip phase in the FPE, δ, changes by

2π. The behaviour of the fluorescence excellently agrees with the dependence of the

wavelength on the FPE angle.

In addition, each fluorescence peak appears to be composed of two sub-peaks, as

can be seen as a shoulder-like structure on each peak. By calibrating with the spacing

between the fluorescence peaks, which is 6.83 GHz, the frequency difference of the

sub-peaks is found to be approximately 815 MHz. This value is close to the excited

state hyperfine splitting of 814.52 MHz. The relative transition strength between the

ground state and excited state hyperfine levels are shown in Table 6.1 [5]. It is clear

that the lower frequency transition (|g〉 → |e, F ′ = 1〉) is half as strong as the higher

frequency transition (|g〉 → |e, F ′ = 2〉), provided that the equal amount of optical

power is applied to those transitions. In the observed fluorescence signal, the smaller

sub-peaks in the shoulder-like structure appear at smaller angles. Since the frequency

increases with the FPE angle, the sub-peaks are indeed from the transitions to the

excited hyperfine manifolds.

D1 (52S1/2 → 52P1/2)
S22 1/2 S12 5/6
S21 1/2 S11 1/6

Table 3.1: Relative strength SFF ′ of the hyperfine transitions for 87Rb D1 line [5]. F and
F ′ represent the ground state and excited state hyperfine manifold, respectively.
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Figure 3.7: A fluorescence signal from D1 line of 87Rb as a function of the FPE angle. A
blue dot-dashed line is the wavelength calculated using Eq. (3.7).

3.5 CPT spectroscopy using the spectral shaped

pulse train

3.5.1 Shift of the repetition rate resonance

When applying the spectrally shaped pulse train, the CPT resonance, measured with

respect to the repetition rate, appears to be shifted from that observed when using a

standard mode-locked pulse train. Figure 3.8 shows the D1 fluorescence of 87Rb as a

function of the repetition rate for both cases of a standard and the spectral shaped

pulse train. Without an intracavity FPE, in case of a standard mode-locked pulse

train, the CPT resonance occurs at a repetition rate which is a sub-harmonic of

the hyperfine splitting, given by fCPTrep = fHFS/N . In the particular measurement

presented in the figure, the resonance repetition rate corresponds to 1/44th of the

hyperfine splitting, for which fCPTrep = 155.333 MHz.

With the spectral shaped pulse train, the CPT resonance appears to be reduced

by approximately 200 kHz. Three CPT resonance profiles measured in the presence

of an intracavity FPE are shown on the left in the figure, measured at angles where
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the fluorescence is maximum, corresponding to the fluorescence peaks similar to those

in Figure 3.7. The resonance repetition rates are 155.097, 155.111 and 155.123 MHz,

respectively.

Figure 3.8: A comparison of CPT resonance induced with a standard pulse train (black)
and with the spectral shaped pulse train with the intracavity FPE set at three different
angles (color).

The reason for the observed shift of resonance is explained by the modification to

the spectral location of the RF modes described by Eq. (3.9). For the CPT resonance

to be induced, it is required that the separation between the optical modes to match

the hyperfine splitting. That is to say, it is only required to have one of the RF

modes to be equal to the hyperfine splitting:

fN = fPBO +Nfrep = fHFS (3.10)

Solving for frep, we have

fCPTrep =
fHFS − fPBO

N
. (3.11)

Compare to the case for a single pulse mode-locked laser, the resonance repetition

rate is reduced by a factor of fPBO/N . As will be discussed later in Chapter 6, fPBO
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varies with the FPE angle. Figure 3.9 shows fPBO as a function of the FPE angle.

The values of fPBO at angles where the fluorescence peaks occur are indicated in the

figure. These angles also correspond to where the three fluorescence signals shown in

Figure 3.8 are measured. With those values of fPBO, N = 44 and fHFS = 6.83468261

GHz, the resonance repetition rates using Eq. (3.11) are calculated. The results are

summarized in Table 3.2. A good agreement between the measured and calculated

CPT resonance repetition rate is obtained.

PBO

PBO

PBO

P
B
O

Figure 3.9: The angular dependence of the offset frequency, fPBO. The values correspond-
ing to the location of the fluorescence peaks are used to calculate the resonant repetition
rate for CPT resonance using Eq. (3.11).

Peak 1 Peak 2 Peak 3

fPBO 10.04 9.85 9.33

frep (meas.) 155.097 155.111 155.123

frep (calc.) 155.0973 155.1098 155.1216

Table 3.2: CPT resonance is measured for each of the fluorescence peaks. The values
of fPBO at the angles corresponding to the fluorescence peaks are shown in the first row.
The CPT resonance repetition rates measured for each fluorescence peak are shown in the
second row. The calculated repetition rates to have fN = fHFS for given fPBO are shown
in the third row.
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3.5.2 Enhancement of the CPT signal

The motivation of inserting FPE in the mode-locked laser cavity is to increase the

CPT signal by shaping the pulse spectrum to maximize the spectral overlap between

the pulse spectrum and the D1 lines of 87Rb. The enhancement of the CPT signal

is found to be quite significant. In the left panel of Figure 3.10, the CPT signals

obtained with and without the spectral shaping are compared. First, an overall

fluorescence is increased nearly as much as a factor of 2, due to an increased spectral

overlap. Second, the CPT signal contrast is increased from 15% up to 45%, measured

in terms of a ratio of the depth of the CPT signal to the maximum fluorescence above

the signal floor. Due to the increased optical power interacting with the hyperfine

transitions, the CPT resonance is significantly broadened. By reducing the input

power or expanding the beam cross-section, the linewidth comparable to the value

obtained without a spectral shaping is obtained. The difference in the resonance

repetition rate in the two cases is due to the presence of the offset frequency fPBO

as mentioned above.

The feature of the CPT resonance is also clearly observed in a transmission mea-

surement, as shown in the right panel in Figure 3.10. The increased CPT signal

contrast implies that more optical power contributes to pumping of the atomic pop-

ulation into the coherent dark-state through the two-photon process. An increased

transmission at the CPT resonance clearly indicates that the input pulse train renders

the 87Rb atoms with reduced absorption or transparent. The narrow transparency

window implies that there is a large dispersion, which can result in a reduction of

group velocity, or a slow-light [30].
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Figure 3.10: Enhancement of the CPT signal. Left: In a fluorescence measurement, the
contrast of the resonance is increased from 15% to 45%. The resonance width is broadened
due to the power-broadening, which can be suppressed by reducing the input power or
expanding the beam area. Right: In a transmission measurement, a transparency peak is
clearly measured. A 87Rb vapor displaying the narrow transparency window should possess
a large nonlinear dispersion to generate a slow-light.

3.5.3 Increased efficiency of optical pumping

Creating a long-lived ensemble polarization is an essential requirement for the devel-

opment of ultra-sensitive magnetometers, as indicated in Eq. (1.14) which is char-

acterized with the phase coherence time. In section 2.5 in the previous chapter, the

optical pumping of CPT resonance is presented, as a method to create the long-

lived ensemble polarization using a mode-locked pulse train. In order to pump more

atomic population into larger magnetic moment states (i.e. |mF | ≥ 1), thus to cre-

ate a larger ensemble magnetization, a further improvement of the optical pumping

efficiency is desired. Since the efficiency of optical pumping generally improves with

optical power at the atomic resonances [52], an enhancement of the optical pumping

effect is expected with the spectrally shaped pulse train having an increased spectral

overlap with the atomic resonance of 87Rb atoms.

Figure 3.11 compares two cases of optically pumped CPT resonance obtained with

a standard continuous pulse train (left) and the spectrally shaped pulse train (right).

In both cases, a magnetic field of 350 mG is applied along the beam propagation
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direction at the 87Rb cell. The pulse trains are polarized in RCP (σ+), thus the two-

photon transition for the Λ-system does not allow the magnetic quantum number

to change; the coherent dark-states are formed between the sublevels with the same

magnetic number, mF = m′F . The energy of the dark-state formed between mF = −1

sublevels is down-shifted (left dip in the figures), while that of mF = +1 sublevels

is up-shifted (right dip) from the unshifted energy of the magnetic field independent

dark-state formed between mF = 0 sublevels (middle dip).

The optical pumping of the atomic population into the the coherent dark-state

formed between the field sensitive sublevels can be seen in both plots. Although

there are still substantial population in m=-1 and m=0 sublevels, the CPT signal

from the dark-state formed between mF = +1 sublevels is the strongest. The overall

fluorescence level in the excitation with the spectrally shaped pulse train is increased

due to the increased spectral overlap for the one-photon dipole transition to 5P1/2.

Comparing the relative strength of the middle dip and right dip, it is clear that the

optical pumping is more efficient with the spectrally shaped pulse train.
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Figure 3.11: A comparison of optically pumped CPT resonances induced by a standard
mode-locked pulse train (left) and the spectral shaped mode-locked pulse train (right). The
optical pumping is enhanced with the spectral shaped pulse train.
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3.6 Conclusion

A simple and effective method to enhance the interaction of a mode-locked pulse train

and the 87Rb atoms via intracavity spectral shaping using a glass FPE is presented. A

spectral overlap between the pulse spectrum and the atomic lines is increased due to

the spectral shaping. An increased overall fluorescence and the CPT signal contrast

are achieved. The optical pumping of the atomic population into the magnetic field

sensitive CPT resonance is improved.

By-products of the spectral shaping are also presented. Due to the modifications

to the pulse spectrum, the shift of spectral location of the CPT resonances is ob-

served. The wavelength tunability and a high-resolution spectroscopy of the excited

state hyperfine states are presented.
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Push-pull optical pumping with a

mode-locked laser

4.1 How does a train of alternating circular po-

larizations affect CPT?

As presented in the previous chapters, a train of circularly polarized pulses can pro-

duce a long-lived macroscopic magnetization through the process of optical pumping

in CPT of the atomic population between the magnetic field sensitive sublevels. Such

spin polarized coherent medium can be a host for the high-sensitivity magnetometers,

such as in the case of the IPI magnetometer.

In a ring laser cavity constructed for an IPI magnetometer, there are two pulse

trains with left and right circular polarizations circulating in the cavity. Each circu-

larly polarized pulse train hits the atomic sample at the repetition rate of the cavity,

with one polarization followed by another with a delay τ , as depicted in Figure 4.1.

If there were only one circularly polarized pulse train, the atoms could be prepared
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in the spin polarized dark-state by tuning the repetition rate into the CPT reso-

nance. The presence of a RCP pulse which intercepts a train of LCP pulses disrupts

the coherence being established by the LCP pulse train, and vice versa. How do

different experimental parameters, including the delay between RCP and LCP (τ in

the figure) pulses and the relative intensity between them, play a role in establishing

CPT in the presence of two pulse trains with RCP and LCP? In the development of

an IPI magnetometer based on CPT, these questions must be addressed.

σ+

σ-

τ

Figure 4.1: Two pulse trains, one polarized to be σ+ light and the other to be σ− light,
interacting with a 87Rb vapor. A delay τ between the two pulse trains plays an important
role in establishment of CPT.

4.2 CPT with a buffer gas

4.2.1 Improved efficiency of optical pumping

The degree of magnetization of the ensemble one can achieve depends on the overall

efficiency of optical pumping. The cells used in the experiments presented in this

chapter contain a buffer gas which is known to enhance the process of optical pumping

through modifications to the relaxation rate of the excited state and ground state [49].

In the presence of a buffer gas, collisions with the buffer gas perturb the electron
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wave function of the excited state of 87Rb atoms, which result in faster decay rate

of the excited state (pressure broadening). A thorough experimental investigation of

the pressure broadening of the D1 line of 87Rb in the presence of different kinds of

buffer gases is performed by Romalis et. al. [53]. At typical buffer gas pressures in

the experiments presented in this chapter (∼ 20 Torr), the excited state relaxation

rate Γ3 (Figure 2.1) is of the order of 3× 109 s−1 as compared to a free space decay

rate (spontaneous emission) of the order of 3 × 107 s−1 [54]. This is particularly

advantageous for excitation with a broadband radiation as in our case, since spectral

overlap between the pulse spectrum and the atomic line is significantly increased. In

the ground state, the spin relaxation is caused by diffusion of the atoms to the cell

wall, collision with the buffer gas and spin-exchange collisions among 87Rb atoms,

which amount to the spin relaxation rate of the order of 1000 s−1 at ∼ 20 Torr.

Therefore, when the laser intensity corresponding to excitation rates exceeds the

ground state relaxation rate, strong optical pumping can be achieved. When a

quenching gas, such as N2, is used as a buffer gas, depolarization due to absorbing

a randomly polarized photon can be suppressed, which further enhances the optical

pumping.

4.2.2 Narrow CPT linewidth

In a vapor cell, 87Rb atoms fly across the beam section at their mean thermal ve-

locity. A finite interaction time contributes to the linewidth of the CPT resonance

when all the other relaxation times are longer than the interaction time (transit-time

broadening). In a typical experimental condition at room temperature (22 ◦C), the

mean thermal velocity is 138 m/s, which implies that with a 2 mm beam diameter,

the transit-time is τtransit = 14.5 µs, and the linewidth is ∆νtransit = 11 kHz.

Addition of a buffer gas slows down the atomic motion through collisions with
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this buffer gas and increases the duration of interaction between the atoms and the

beam. Of course, a buffer gas also induces relaxation due to collision. Therefore,

there is an optimum value for the buffer gas pressure. Under an approximation for

small laser beam diameter (d � D, where d and D area the diameter of the laser

beam and of the vapor cell), the ground state relaxation rate is given by [25];

γ0 = 2.4052D

a2

1

1 + 6.8λ/a
+ 2σdpvTnb (4.1)

where a = d/2 is the laser beam radius, D is the diffusion coefficient, λ = 3D/vT is

the mean free path, σdp is the ground-state relaxation cross-section, vT =
√

2kBT/M

is the average thermal velocity of the 87Rb atoms (kB is the Boltzmann constant, T

is the temperature of the cell and M is the molar mass of a 87Rb atom), nb is the

density of the buffer gas atoms. For a room temperature 87Rb vapor cell filled with

20 Torr N2, as in our experiments, the minimum linewidth of the order of 1 kHz

should be achieved. In more rigorous experiments, a very narrow linewidth below 50

Hz has been achieved in a cesium cell filled with 30 Torr neon buffer gas [55].

4.2.3 Modification to the selection rule

In the presence of a buffer gas at sufficiently high pressure, collisions between the

buffer gas and atoms in an excited state cause a mixing of the excited state sublevels

and modifies the selection rule for the Λ-system [3]. Figure 4.2 shows the dependence

of the CPT signal on the light polarization at different buffer gas pressure in the

absence of an external magnetic field. With linearly polarized light (at ϕ = 0 of the

waveplate axis angle), the CPT signal is significantly reduced. At 13 mbar (≈ 10

Torr) or higher pressure, the signal nearly vanishes. On the other hand, the maximum

CPT signal occurs when the light is circularly polarized (ϕ = 45◦). For this reason,

circularly polarized light is used to prepare CPT in a cell with a buffer gas.
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Figure 4.2: CPT signal as a function of light polarization at different buffer gas pressure.
A magnetic field is set to zero. CPT signal is minimum (nearly vanished at higher buffer gas
pressure) when the light is linearly polarized (ϕ = 0◦). This maximum signal is obtained
with circularly polarized light (ϕ = 45◦). The figure is borrowed from Wynands et. al. [3].

4.2.4 “Trapping” the atomic population in the end state

When pumping with circular polarized light, a large portion of the atomic population

is pumped towards sublevels with the maximum (or minimum) magnetic quantum

number mF . In the presence of a buffer gas, with a broadband excitation field, the

optical pumping is more efficient because of the increased spectral overlap between

the atomic resonance and the pulse spectrum as discussed above. This is beneficial

for atomic magnetometers, as has been demonstrated in optically pumped magne-

tometers [20]. On the other hand, it may be detrimental for CPT-based atomic clocks

which exploit the field-independent superposition, dubbed 0-0 superposition, formed

between the sublevels with mF = 0 magnetic quantum number. The strong optical

pumping leaves little atomic population in the mF = 0 sublevels. Consequently,

the 0-0 CPT signal is significantly reduced, hindering the performance of the atomic

clock operating on the 0-0 CPT signal.
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4.3 Push-pull optical pumping

4.3.1 CPT preparation with polarization modulated light

Developed by Jau and Happer to improve the performance of the CPT-based atomic

clocks, the push-pull optical pumping (PPOP) is an effective technique to optically

pump a large portion of the atomic population into the 0-0 superposition states [4].

PPOP also addresses the issue encountered in the CPT-based IPI magnetometery:

the effect of a sequence of alternating LCP and RCP pulses on a preparation of CPT.

The principle of PPOP is analogous to the synchronous optical pumping scheme,

first demonstrated by Bell and Bloom [17]. In the Bell-Bloom optical pumping

experiments, a precession of macroscopic spin polarization is synchronously driven

by a circularly polarized near-resonant light which is amplitude modulated at the

Larmor frequency. In PPOP, the 0-0 superposition is coherently driven by a train

of light pulses resonant with the D1 line in 87Rb which alternates between LCP and

RCP at the Bohr frequency, ω00 = (Ea,0 − Eb,0)/~, where a and b are the upper

(F = 2) and lower (F = 1) hyperfine states, respectively (see Figure 2.1 for the

energy diagram of the D1 line of 87Rb). If the temporal separation between RCP

and LCP light matches to one half of the oscillation period of the 0-0 superposition,

τ = T00/2, where T00 = 2π/ω00, a very large portion of atoms is pumped into the

superposition state.

4.3.2 0-0 superposition dark-state

The superposition between the sublevels with mF = 0 can be expressed as

|ψ00〉 =
|a 0〉 e−iEa0t/~ + |b 0〉 e−iEb0t/~√

2
(4.2)
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where Ea,0 and Eb,0 are the eigenenergy of the upper and lower hyperfine states, a

and b, respectively. By choosing a relative phase between |a 0〉 and |b 0〉 such that

〈a 0|Sz |b 0〉 = 1/2, the expectation value of the spin polarization along the beam

direction (z-axis) is given by

〈Sz〉 =
1

2
cosω00t (4.3)

The probability P of exciting a spin-polarized atom with a photon with spin s is:

P ∝ 1− 2s · 〈S〉 (4.4)

RCP and LCP light pulses in the propagation direction are σ+ and σ− photons and

carry angular momentum with magnitude of s = +1 and s = −1 (in units of ~),

respectively. Therefore, a relative probability of exciting the atoms prepared in the

0-0 superposition is given by

p+ = sin2 ω00t

2
(4.5a)

p− = cos2 ω00t

2
(4.5b)

If a RCP pulse arrives at the atoms which has been prepared in the 0-0 superpo-

sition state at t = 0, T00, 2T00, · · · , there is no probability for the atoms to absorb

RCP light and to be excited. Likewise, if a LCP pulse arrives a half period later

than RCP light at t = 1
2
T00, 3

2
T00, 5

2
T00, · · · , there is no probability for the atoms to

absorb LCP light and to be excited. Therefore, a sequence of RCP and LCP light

separated by a half period of the atomic oscillation therefore does not interact with

the atoms in the 0-0 superposition state: the atoms are in a coherent dark-state for

the sequence of RCP and LCP pulses. Atoms in other states absorb either RCP and

LCP light, and are “pushed” and “pulled” between the sublevels with opposite po-

larity. Over time, the atoms accumulated in the mF = 0 sublevels will be eventually

pumped into the 0-0 superposition dark-state and trapped there for the decoherence

time. A pictorial description of the PPOP scheme is shown in Figure 4.3. When
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the pumping rate exceeds the spin decoherence rate, a large portion of the atomic

population is pumped into the 0-0 superposition. A large CPT signal, which is 1 to 2

orders of magnitudes larger than those observed under the same conditions with con-

ventional pumping, can be obtained from the 0-0 superposition dark-state in PPOP

scheme [4].

Figure 4.3: Push-pull optical pumping (PPOP) of the 0-0 superposition dark-state. The
transition probability with LCP light (p+) vanishes at every full oscillation period. For
RCP, the probability (p−) vanishes at every half oscillation period. By constructing a
pulse train with RCP and LCP pulses with appropriate delay between each polarization,
the atoms are pumped into the 0-0 superposition dark-state. This figure is borrowed from
[4].

4.4 Experiment with a mode-locked pulse train

4.4.1 Experimental setup

Mode-locked laser

A pulse train is generated from a standard titanium-sapphire mode-locked laser. The

pulse width is approximately 20 ps. The repetition rate is set closed to 126.6 MHz,

which is 54th submultiple of the 6.8 GHz hyperfine splitting of 87Rb and satisfies the

condition for CPT, as described in chapter 2. In this case, the pulses arrive at the

atoms in every 54 oscillation periods, which is 54× T00 ≈ 7.9 ns.
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Polarization modulator

In order to generate a sequence of pulses with alternating circular polarizations and

with an appropriate delay between them, the output of the laser is sent to a polar-

ization modulator which is constructed from a Michelson interferometer and a set of

wave plates, as shown in Figure 4.4. The p-polarized output beam from the laser is

first rotated to 45◦ by a half-wave plate (HWP) at the entrance of the modulator.

A polarizing beam splitter (PBS) splits the p-polarized and s-polarized components

with equal intensity and sends them into the arms of the Michelson interferometer.

Each arm contains one QWP, thus the output of the Michelson interferometer con-

sists of a pulse train with orthogonal linear polarizations with a delay determined by

the relative path length between the arms. Passed through another QWP at the exit

of the modulator, each linear polarization becomes circularly polarized with opposite

handness.

The delay can be varied over ∆L = 5 cm or τ = c/2∆L = 300 ps, which covers

approximately 2 periods of the ground state coherent oscillation (T00 = 146 ps for

87Rb). The zero delay is calibrated with respect to the peak of an intensity auto-

correlation of the pulse train.

PBS QWP

QWP

CC

CC

HWP

QWP

τ

Figure 4.4: A sketch of the polarization modulator. HWP: half-wave plate, PBS: polarizing
beam splitter, QWP: quarter-wave plate, CC: corner cube
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Buffer gas cell

The 87Rb vapor cells at different buffer gas pressure are prepared by a group lead

by Prof. Gaetano Mileti at Université de Neuchâtel. The cells are made of 2 cm

long Pyrex cylinder with 1.2 cm diameter windows made of a 1 mm thick parallel

Pyrex plate with no anti-reflection coating. The cells (#3290 and #3291) are filled

with 25 Torr and 40 Torr N2 buffer gas. Their spectroscopic characteristics of CPT

resonance are summarized in Table 4.1.

In order to achieve a good signal-noise ratio, the cells are heated to ≈ 40◦C to

increase the number density of 87Rb atoms. To prevent 87Rb atoms from depositing

on the windows, a pair of heaters is mounted on an extension tube which protrudes

from each side of the cell body. A special care is given to remove ambient magnetic

field generated from the heaters. The heaters initially used are a bifilar resistive

heating wire which is very difficult to handle. For this experiment, the heating wire

is replaced by a pair of commercial Kapton flexible heating tape (Omega KHLV-

0504/10). It has an imprinted zigzag heating wire which eases the cell construction

and generates sufficiently small magnetic field for this experiment. By reversing the

currents in the two heaters, the magnetic field in the cell is minimized. The cell

assembly is placed in a magnetic field of approximately 100 mG applied along the

beam propagation, as shown in Figure 4.4.

Cell Nominal N2 pressure Experimental N2 pressure Intrinsic linewidth

3290 33.3 mbar (25 Torr) 23.9 mbar (18 Torr) 1.059(5) kHz

3291 53.3 mbar (40 Torr) 51.7 mbar (39 Torr) 0.91(5)

Table 4.1: Specifications of the vapor cells provided by the Neuchâtel group.
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4.4.2 Experimental results

Dependence of the CPT signal on delay between RCP and LCP

The first experiment is to investigate the dependence of the CPT signal strength

on a delay τ between the RCP and LCP pulses. According to Eq. (4.5), the 0-0

superposition dark-state is formed when the delay is tuned to an integer multiple of

a half period of the ground state oscillation. In this experiment, the D1 fluorescence

is measured as a function of the delay, while the laser repetition rate is set at 54th

submultiple of the ground state hyperfine splitting. The zero-delay is calibrated with

an auto-correlation of the pulse train. Figure 4.5 shows the depth of CPT signal,

which is defined as the height of the fluorescence signal at CPT resonance subtracted

from the background signal, as a function of the delay between RCP and LCP. As

expected from Eq. (4.5), the CPT strength periodically varies with the delay at a

frequency corresponding to the ground state hyperfine splitting. The maximum CPT

signal occurs when the delay is at every half integer of the ground state oscillation

period, τ = M × T00/2 ≈ M × 73/2 ps, where M is an integer. When the delay

is an integer multiple of the oscillation period, the CPT signal vanishes completely.

The zero-delay is equivalent to a train of linearly polarized pulses. As mentioned in

Section 4.2.3, the modification to the selection rule in the presence of a buffer gas

at sufficiently high pressure removes the dark-state for linearly polarized light. The

extinction of the CPT signal also occurs at every integer multiple of τ = M × T00.

The oscillation of the CPT signal with the delay is expected to continue over many

periods, because the ground state coherence time is several orders of magnitude

longer than the temporal periods of the pulse train.
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Figure 4.5: Depth of CPT signal as a function of delay between RCP and LCP pulses while
the laser repetition rate is set to a submultiple of the 0-0 resonance. An auto-correlation
of the pulse train is shown in the top panel for a calibration of the delay.

Line-shape of of CPT resonance

Figure 4.6 shows the CPT signal profile from the 0-0 superposition state measured

for delays corresponding to the maximum (left) and minimum (right) CPT strength.

In these measurements, the repetition rate is scanned across 1/54th of the ground

state hyperfine splitting, while the delay between RCP and LCP is fixed at τ = 73

ps for the maximum CPT signal and τ = 146 ps for the minimum CPT signal. The

average power of the excitation pulse train is reduced to a few mW using neutral

density filters. The fluorescence signals are plotted with respect to the 54th harmonic

of the repetition rate (54× frep).

With τ = 73 ps for the maximum CPT strength, narrow CPT resonance occurs at

the resonance for the 0-0 superposition dark-state. Because of the push-pull optical

pumping scheme, the dark-state is primarily formed between the 0-0 superposition

state. A zoom of the 0-0 superposition dark-state is shown in Figure 4.7, which

reveals a narrow linewidth of 4.5 kHz. By further decreasing the average power of

the excitation pulse train, 1 kHz linewidth is achieved, which is comparable to the

measurement using a CW laser by the Neuchâtel group as listed in Table 4.1.
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There are also small CPT resonances appeared on both sides of the 0-0 resonance

at frequencies corresponding to the superposition between mF = −1 and mF = +1

sublevels. Apart from a broadened linewidth compared to the 0-0 resonance, which is

due to an inhomogeneous magnetic field, the line-shape is different from Lorentzian

and asymmetric. Similar asymmetric CPT line-shape has been reported in both nu-

merical and experimental studies where two excitation fields applied to each optical

transition of the Λ-system are detuned from the optical resonance and have un-

equal intensities (different Rabi frequencies) [56]. In the experiment presented here,

the atoms in mF = ±1 sublevels are driven by RCP and LCP pulses, with RCP

pulses driving transitions to m′F = mF + 1 sublevels and LCP driving transitions to

m′F = mF + 1 sublevels. Since the magnitude of the Clebsh-Gordan coefficients are

different between those transitions driven by RCP and LCP [5], the Rabi frequencies

associated with each polarization are different. That is the origin of the asymmet-

ric line-shape. As a matter of fact, the 0-0 resonance in which the Crebsh-Gordan

coefficients are equal in magnitude for transitions driven by RCP and LCP, the sym-

metric line-shape is obtained. As the average power is increased, both the depth and

linewidth increase, and the asymmetric resonance structure becomes indistinguish-

able.

With τ = 146 ps for the minimum CPT strength (right panel in Figure 4.6),

there is absolutely no dark-resonance. The slight increase of the fluorescence level

with delay is merely due to misalignment of the Michelson interferometer over the

long delay scan.

Power dependence

The dependence of the contrast and the linewidth on the average power of the ex-

citation pulse train is characterized. The input power, measured at the entrance of

the vapor cell, is controlled with neutral density filters. The contrast is measured as
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Figure 4.6: CPT signal from the 0-0 superposition state as a function of radio frequency
(RF) which is 54× frep, where frep is the repetition rate of the laser, for the delay between
RCP and LCP fixed at 73 ps for maximum CPT strength (left) and at 146 ps for minimum
CPT strength (right).
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Figure 4.7: A zoom into the region of the dark resonance in the left panel in Figure 4.6,
corresponding to τ = 73 ps delay between RCP and LCP.

the ratio of the depth of the CPT resonance to the off-resonance fluorescence level

above noise floor. The linewidth is measured as FWHM of the resonance.

Left panel in Figure 4.8 shows the CPT contrast as a function of the average laser

power. The contrast increases linearly at low power, begins to saturate approximately

at 20 mW and starts to decrease with the power at 40 mW. This trend is consistent

with the result reported in ref. [54], although a CW laser was used in the study.
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The decreasing contrast at higher power is due to a loss of population out of the

0-0 superposition state by the optical pumping, which is evident from the increased

CPT depth from the superposition state between m = +1 and m = −1 sublevels at

higher power (not shown in the figure).

The right panel in Figure 4.8 shows the power dependence of the CPT linewidth.

The linewidth increases linearly with the average power of the excitation pulse train,

which agrees with the linear dependence on the Rabi frequency given by the solution

of the density matrix equations [54]. The minimum linewidth is 1.3 kHz at less than 1

mW input power, is comparable with the nominal linewidth measured by Neuchâtel

group.
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Figure 4.8: Power dependence of 0-0 resonance contrast (left) and linewidth (right) excited
by a mode-locked pulse train using the push-pull optical pumping.

4.5 Conclusion

The question of the effect of alternating RCP and LCP pulses in a preparation of a

spin polarized CPT medium is addressed experimentally. By scanning the repetition

rate around 54th submultiple of the ground state hyperfine splitting while tuning a

delay between equal intensity RCP and LCP pulses to a half period of the inverse of
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the Bohr frequency, a large CPT signal is obtained from the 0-0 superposition state.

Since the atomic population is pumped out of sublevels with mF 6= 0, a very small

CPT signal is obtained from the superposition state of the magnetic filed sensitive

sublevels. For characterization of the 0-0 resonance, the power dependence of CPT

contrast and the linewidth are analysed, which is consistent with previously reported

results.

In conclusion, this optical pumping scheme, known as the push-pull optical pump-

ing (PPOP), is an effective approach to enhance the performance of the CPT-based

atomic clock, however is not suitable for implementation of a magnetometer as it

leaves the magnetic sublevels nearly empty.
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Intracavity interaction between

mode-locked pulses and 87Rb vapor

5.1 Introduction

Towards the ultimate goal of realizing a high-sensitive atomic magnetometer based

on the IPI technique, it is important to understand the interaction between a mode-

locked pulse train and the atomic sample inside a mode-locked laser cavity, and its

effect to the dynamics of the mode-locking operation.

According to the density matrix equations, a resonant electric field induces an

instantaneous polarization of an ensemble of atoms. In a time scale of the ultra-

short pulses (10−14 ∼ 10−11 second), which is comparable or shorter than the phase

coherence time, the induced ensemble polarization evolves coherently with the ap-

plied electric field (i.e. the phase between the ensemble polarization and the field

is preserved). According to the Maxwell’s equations, such polarization radiates into

the field and induces absorption (or amplification) and dispersion which depend on

the local field strength. Consequently, resonant propagation of ultrashort pulses of-
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ten hosts the exotic nonlinear optical effects, including transparency of an absorbing

medium [57] and generation of a slow-light [30] whose velocity is significantly less

than in linear optics. Taking place inside a mode-locked laser cavity, those nonlinear

propagation effects can impact the operation of the laser sensor based on IPI.

This chapter presents new studies of coherent propagation of a mode-locked pulse

train in a 87Rb vapor which is placed in a mode-locked laser cavity. The chapter be-

gins with providing a theoretical background based on the Maxwell-Bloch equations

for descriptions of coherent pulse propagation in a resonant medium, followed by nu-

merical simulations of picosecond pulse propagation in a three-level system. Exper-

imental observations of the intracavity coherent propagation phenomena, including

a pulse shaping effect and slow-light propagation, are presented. Those effects are

characterized by “area” of the pulses. Lastly, a demonstration of intracavity coherent

populatiotrapping (CPT) of 87Rb atoms is presented.

5.2 Coherent propagation of ultrashort pulses

5.2.1 Maxwell-Bloch equations

Propagation of an electromagnetic field in an atomic ensemble is described by the

Maxwell’s wave equation [58]. When a propagation in z-direction is considered,(
∂2

∂t2
− 1

c2

∂2

∂t2

)
E(t, z) = µ0

∂2

∂t2
P (t, z) (5.1)

where the real electric field E(t, z) and the ensemble polarization P (t, z) are defined

as

E(t, z) =
1

2
Ẽeiω`t + c.c. (5.2)

P (t, z) =
1

2
P̃eiω`t + c.c. (5.3)
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Ẽ and P̃ are complex slow varying envelopes of the electric field and polarization,

respectively.

For propagation of ultrashort pulses whose duration is longer than a few optical

cycles, Eq. (5.1) is simplified to the reduced wave equation [58],

∂

∂z
Ẽ(t, z) = −iµ0ω`c

2n
P̃(t, z) (5.4)

where the slowly varying envelope approximation (SVEA) and the transformation

of the time coordinate into a retarded frame of reference which is moving with the

pulse envelope have been made.

In a general case, the complex electric field and polarization envelope may be

expressed as

Ẽ = Eeiϕ (5.5)

iP̃ = Q̃ = (iu+ v)eiϕ (5.6)

where u and v are the real quantities of the complex polarization that oscillate out-

of-phase and in-phase with the electric field, respectively. ϕ accounts for a variation

of optical phase. The reduced wave equation in Eq. (5.4) can be written as

∂

∂z
Ẽ(t, z) = −µ0ω`c

2n
Q̃(t, z) (5.7)

which is a statement that the action of the polarization is to oppose the electric field.

In terms of the real quantities, the equations for the envelope and phase are give by

∂E
∂z

= −µ0ω`c

2c
v (5.8a)

∂ϕ

∂z
= −µ0ω`c

2n

u

E
(5.8b)

Eq. (5.8a)-(5.8b) indicate that v is responsible for absorption (or gain), and u is

responsible for phase retardation (or advancement).
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The ensemble polarization P (t, z) in Eq. (5.1) is given by

P = N̄ 〈p̂〉 = N̄Tr(ρ̂p̂) (5.9)

where N̄ is the number density of the atomic ensemble, 〈p̂〉 is the expectation value

of the quantum mechanical dipole operator p̂, which is given by a trace of the matrix

product of p̂ with the density matrix operator ρ̂. Time evolution of the density

matrix is given by the density matrix equation, Eq. 2.9 in Section 2.3. The set of

equations in Eq. (5.4) and Eq. (2.9) is known as the Maxwell-Bloch equations, which

provides theoretical basis for the experiments presented in this chapter.

5.2.2 Two-level atoms

Optical Bloch equations

Despite its simplicity, the two-level system model captures most of the important

physics of light-atom interaction [46]. An ensemble of two-level atoms is represented

by a 2× 2 density matrix

ρ̂ =

 ρ11 ρ̃12

ρ̃21 ρ22

 (5.10)
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Time evolution of each matrix element is given by

dρ11

dt
= − i

~
(Ṽ ∗21ρ̃21 − ρ̃∗21Ṽ21) + Γ2ρ22

= −2p21

~
Im(Ẽ∗ρ̃21) + Γ2ρ22 (5.11a)

dρ22

dt
= − i

~
(Ṽ21ρ̃

∗
21 − ρ̃21Ṽ

∗
21)− Γ2ρ22

=
2p21

~
Im(Ẽ∗ρ̃21)− Γ2ρ22 (5.11b)

dρ̃21

dt
= i(ω2 − ω1)ρ̃21 − i

Ṽ ∗21

~
(ρ22 − ρ11)− Γ21ρ21

= iω21ρ̃21 − i
p21Ẽ

∗

~
(ρ22 − ρ11)− Γ21ρ21 (5.11c)

dρ̃12

dt
= −iω21ρ̃12 + i

p12Ẽ

~
(ρ22 − ρ11)− Γ12ρ12 =

dρ̃∗21

dt
(5.11d)

where Γ2 is the relaxation rate of the population in |2〉 and and Γ21 = Γ12 is the

relaxation rate of the coherence between |1〉 and |2〉. To simplify their form, Im(z) =

−i(z − z∗)/2 and ω21 = ω2 − ω1 are used.

Since the time evolution in a scale much longer than optical oscillation is only

relevant here, ρ̃21 and Ẽ are expressed in terms of a slowly varying envelope and

rapidly varying oscillating term:

ρ̃21 =
1

2
σ̃21e

iω` (5.12)

Ẽ =
1

2
Ẽeiω` (5.13)

By doing this transformation, the fast oscillating terms can be eliminated from

Eq. (5.11), a procedure known as the rotating wave approximation (RWA). The

equations of population and the slowly varying envelopes of coherence become

dρ11

dt
= −1

2
Im(κẼ∗σ̃21) + Γ2ρ22 (5.14a)

dρ22

dt
=

1

2
Im(κẼ∗σ̃21)− Γ2ρ22 (5.14b)

dσ̃21

dt
= −(Γ21 − i∆)σ̃21 + iκẼ∗(ρ22 − ρ11) (5.14c)
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where κ = pij/~ and ∆ = ω21−ω` is the detuning between the optical frequency and

the atomic resonance. κẼ is identified as the Rabi frequency.

Pseudo-polarization vector

There is a geometrical representation of the two-level system undergoing a coherent

evolution, the concept first applied to describe a precession of nuclear spins in nuclear

magnetic resonance experiments [59]. From Eq. (5.6) and Eq. (5.9), it can be shown

that in RWA,

(iu+ v)eiϕ = ipN̄ σ̃21 (5.15)

Now, a new variable w is introduced for the normalized population inversion:

w = pN̄(ρ22 − ρ11) (5.16)

Substituting into Eq. (5.14), and ignoring the relaxation terms, a set of differential

equations for three orthogonal variables, u, v and w is derived:

u̇ = ∆ωv (5.17a)

v̇ = −∆ωu− κEw (5.17b)

ẇ = κEv (5.17c)

where ∆ω = ∆ − ϕ̇. Eq. (5.17a)-(5.17c) are known as the optical Bloch equations.

They can be compactly written as a cross-product of two vectors:

∂ ~W
∂t

= ~Efic × ~W (5.18)

where a pseudo-polarization vector, also known as the optical Bloch vector, is defined

as

~W = (u, v, w) (5.19)
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and a fictitious torque electric field vector is defined as

~Efic = (κE , 0,−∆ω) (5.20)

Eq. (5.18) is mathematically equivalent to the equation for a precession of an angular

momentum vector around a torque vector, e.g. a precession of a spin polarization.

Indeed, a coherent interaction between a two-level system and an electric field can

be interpreted in terms of a precession of the pseudo-polarization vector ~W about a

fictitious electric field vector ~E . From Eq. (5.18), the precession frequency (the Rabi

frequency) can be identified as

ΩRabi =
√

(κE)2 + ∆ω2 (5.21)

For a resonant interaction, in which ∆ = 0, the optical Bloch equations in

Eq. (5.17a)-(5.17c) reduce to a simple coupled equations of v and w

v̇ = −κEw (5.22a)

ẇ = κẼv (5.22b)

If the system is initially in the ground state, the solution of Eq. (5.22) is

v = − sin θ(t) (5.23a)

w = − cos θ(t) (5.23b)

where

θ(t) =

∫ ∞
−∞

κE(t′)dt′ (5.24)

which defines the “area” of a resonant pulse. It can be shown that in the frequency

domain θ is defined as

θ = κE(ω`) (5.25)
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where ω` is the center frequency of the pulse. θ can be also identified as the tipping

angle of the pseudo-polarization vector ~W , since

θ = tan−1
( v
w

)
= tan−1

(
− sin θ

− cos θ

)
(5.26)

Therefore, the action of a resonant pulse on a two-level system is to rotate the pseudo-

polarization vector ~W in the vw plane by the angle determined by Eq. (5.24).

Since the cross-product of two vectors is orthogonal to both vectors, ~̇W · ~W = 0,

which indicates that | ~W|2 is constant. The conservation of population also implies

that | ~W|2 = 1. Therefore, in the absence of relaxation processes, the length of the

pseudo-polarization vector is a constant of motion and unity:

| ~W|2 = |u|2 + |v|2 + |w|2 = 1 (5.27)

The tip of ~W traverses on the surface of a sphere with unit radius, known as the

Bloch sphere.

In general, the energy can be dissipated into the bath and the atomic popula-

tion can be lost outside of the system. Those relaxation processes are customarily

described in terms of phenomenological relaxation time constant, T1 for the energy

relaxation, and T2 for the phase relaxation. In the absence of relaxation processes,

except for collisions among the atomic themselves, the phase relaxation time is twice

the energy relaxation time: T2 = 2T1. With the phenomenological relaxation con-

stants, the optical Bloch equations become

u̇ = ∆ωv − u

T2

(5.28a)

v̇ = −∆ωu− κEw − v

T2

(5.28b)

ẇ = κEv − w − w0

T1

(5.28c)

where w0 is the population inversion at equilibrium.
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To include inhomogeneous line broadening due, for example, to a distribution

of thermal velocities of atoms (Doppler broadening), other sets of optical Bloch

equations with different detuning ∆′ = ∆ + δih are considered and integrated over

the inhomogeneous linewidth.

Steady-state solutions

If the temporal variation of the envelope of a pulse is much slower than T2 ≈ 1/(2π×

500 MHz) for 87Rb , Eq. (5.17a) and Eq. (5.17b) reach a steady state in the time

scale of the pulse1. Solving for u and v for the steady state;

us.s = − κET
2
2 ∆ωw

1 + T 2
2 ∆ω2

(5.29)

vs.s = − κET2w

1 + T 2
2 ∆ω2

(5.30)

Substituting into Eq. (5.28c), the equation for the population inversion is obtained:

ẇ = −E
2(κ2T1T2)

1 + ∆ω2T 2
2

w

T1

− w − w0

T1

(5.31)

Eq. (5.31) is identical to the rate equation that is often encountered in laser textbooks

where w is replaced with ∆N [60]. The saturation field is defined as

Es0 =
1

κ
√
T1T2

(5.32)

for on-resonance case. For off-resonance case it is increased by

Es = Es0
√

1 + ∆ω2T 2
2 (5.33)

The steady-state solution for w is give by

ws.s =
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + (κE)2T1T2

w0 (5.34)

1In the experiments presented in this chapter, the atomic system does not reach a
steady-state for interaction with a picosecond pulse. However, the steady-state solution
provides α0 which is an important parameter in the area theorem in Section 5.2.3.
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From Eq. (5.29), Eq. (5.30) and Eq. (5.34), it is clear that linear optics is described

by the steady-state solutions.

Absorption coefficient

Now, if both sides of Eq. (5.8a) are multiplied by E∗ and substituted with the steady-

state solutions in Eq. (5.29)-(5.30) and Eq. (5.34), the Beer’s law of linear absorption

is found:

∂|E|2

∂z
= −µ0ω`c

2n
vs.sE∗

=
µ0ω`cT2κw0

2n

|E|2

1 + ∆ω2T 2
2 + (Eκ)2T1T2

= α0
|E|2

1 + ∆ω2T 2
2 + (Eκ)2T1T2

(5.35)

where

α0 =
µ0ω`cT2κw0

2n
(5.36)

is the unsaturated absorption coefficient.

5.2.3 Pulse propagation in two-level atoms

Self-induced transparency

Self-induced transparency (SIT) is a remarkable example of nonlinear transparency

effect observed in the propagation of an ultrashort pulse in an absorbing medium.

SIT was discovered by McCall and Hahn [57] in late 1960’s. They demonstrated

anomalously low loss propagation of an intense resonant optical short pulse in a

cryogenically cooled ruby crystal. It was found that the transparency occurs if a

resonant pulse was sufficiently short and intense such that a full cycle of energy
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exchange between the pulse and crystal’s ions took place before the system dissi-

pated energy into the bath. They also formulated a propagation law of the area θ

in an inhomogeneously broadened medium. They discovered a self-consistent solu-

tion to the Maxwell-Bloch equations, from which a stable pulse envelope shape was

derived. Since its discovery, a number of both experimental and theoretical studies

have been carried out with different medium including atomic gases [61] and semi-

conductors [62]. Intracavity SIT has been also studied theoretically in the context

of development of new laser sources [63].

Area theorem

A propagation of a short pulse in an inhomogeneous resonant two-level system is

described by the reduced wave equation with an inhomogeneous broadening line-

shape function ginh(ω
′
0 − ωih);

∂Ẽ
∂z

= −µ0ω`c

2n

∫
ωih

Q̃(ω′0)ginh(ω
′
0 − ωih)dω′0 (5.37)

where∫ ∞
−∞

g(ω′0 − ωih)dω′0 = 1 (5.38)

The equations for the amplitude and phase are

∂E
∂z

= −µ0ω`c

2c

∫
ωih

v(ω′0)ginh(ω
′
0 − ωih)dω′0 (5.39a)

∂ϕ

∂z
= −µ0ω`c

2n

∫
ωih

u(ω′0)

E
ginh(ω

′
0 − ωih)dω′0 (5.39b)

When the pulse duration is shorter than both relaxations times, T1 and T2, no

energy is dissipated into a bath in the time scale of the pulse. In addition, if the

pulse duration is longer than the inhomogeneous relaxation time T ∗2 = 1/∆ih, the

inhomogeneous line shape does not vary significantly over the pulse spectrum. In
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this limit, there is a conservation law for the area, known as the area theorem[57], as

following.

The propagation equation for the field envelope in Eq. (5.39a), after multiplying

both sides by κ and integrating in time, leads to the propagation equation for the

area,

dθ

dz
=
α0

2
sin θ (5.40)

which has the general solution

θ(z) = 2 tan−1
[
tan(θ0/2)e−α0z/2

]
(5.41)

where θ0 is the initial area at the entrance to the medium (z=0) and α0 is the

absorption coefficient given in Eq. (5.36). With a small initial area (θ � 1), Eq. (5.41)

turns into the propagation law for a low intensity or incoherent pulse, i.e. the Beer’s

law:

I(z) = I0e
−α0z (5.42)

The graphical representation of the solution in Eq. (5.41) is shown in Figure 5.1. A

remarkable prediction of the area theorem is that the area evolves towards an even

integer multiple of π (0, 2π, 4π, · · · ) in an absorber and an odd integer multiple of π

(π, 3π, 5π, · · · ) in an amplifier. An input pulse with the area of an even integer of π

preserves its area in an absorber, that is the steady-state solution to Eq. (5.40), while

a pulse with the area of an odd integer of π is the steady-solution in an amplifier

with opposite sign of α in Eq. (5.40).

2π-pulse

In particular, there is a self-consistent stable solution of the Maxwell-Bloch equations

in Eq. (5.7) and Eq. (5.17a)-(5.17c) for a pulse with θ = 2π, dubbed a “2π-pulse”.
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αz

Figure 5.1: Graphical representation of Eq. (5.41) showing the evolution of area over many
absorption length.

The self-consistent solution for propagation of a 2π-pulse in an absorber is given by

E(t, z) =
2

κτs
sech

(
t

τs
− z

τsV

)
(5.43)

where τs is the width of a hyperbolic secant pulse envelope and V = 2/(α0τs) � c

is the envelope velocity. It is clear that the envelope experiences a delay, in the

retarded frame, given by

τ = α0τsL/2 (5.44)

Thus, propagating over one absorption length (L = α−1
0 ), a 2π-pulse will delay by

as much as a half of its width. The cause of the slow-light propagation is explained

by an exchange of energy between the 2π-pulse and the atomic system. The first

half of the 2π-pulse is absorbed by the atoms, which rotates the pseudo-polarization

vector by π. It is followed by a coherent radiation of the pseudo-polarization, which

adds to the rear end of the pulse, while rotating the pseudo-polarization vector by

another π. Therefore, a 2π-pulse experiences significant reduction of its propagation

velocity, while rotating the atomic polarization by a full 2π and leaving the entire

population in the ground state.
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0π-pulse

Another interesting propagation is one for a 0π-pulse. It is more common for narrow

lines (tp � T ∗2 ), for which it is somewhat trivial, because it is a linear effect. For

broad lines, there is still and anomalous absorption. A 0π-pulse has zero spectral

component at the atomic resonance frequency:

θ = κE(ω`) = 0 (5.45)

Numerical integration of the Maxwell-Bloch equations

Figure 5.2 shows numerical solutions of the Maxwell-Bloch equations for a long pulse

(T ∗2 < tp) for three different values of input area. The input envelope is a hyperbolic

secant with width of τp = 2.5 ns, with no detuning ∆ω = 0. For an input area smaller

than 2π, the pulse experiences a significant absorption after propagating over one

absorption length, as shown in the left panel. Its area evolve towards θ = 0, as

predicted by the area theorem Eq. (5.40), which is evident by a small pulse created

sometime later with a π shifted phase.

When an input area is greater than 2π, the pulse is shaped such that the area

evolves towards 2π, as shown in the right panel. A pulse with initial area 2.5π

experiences a pulse compression, while the peak intensity increases. The time integral

of the field envelope times κ shows that the area evolve towards 2π in agreement with

the area theorem.

For a 2π-pulse as shown in the middle panel, no pulse shaping occurs since it is

the stable solution, except for a delay on the order of the pulse width, as predicted

by Eq. (5.44). The area is a constant of motion in this case.

For propagation of an ultrashort pulse (tp � T ∗2 ), the Maxwell-Bloch equations

in Eq. (5.7) and Eq. (5.17a)-(5.17c) must be numerically integrated simultaneously.
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Figure 5.2: Coherent propagation of a 2.5 ns pulse with the area (left) θ = 1.5π,
(middle) θ = 2π and (right) θ = 2.5π over one absorption length (αz = 1).

Figure 5.3 shows numerical solutions of the Maxwell-Bloch equations for an ultra-

short pulse for three different values of input area. An ultrashort pulse whose width

is much shorter than the inhomogeneous relaxation time, tp � T ∗2 , takes much

longer propagation distance to reshape, because its spectral overlap with an inho-

mogeneously broadened atomic line is much less than the long-pulse case. For a 30

ps 2π-pulse, it take approximately 40 absorption length to experience pulse shaping

effect to a similar extent to the narrow-line limit case.
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Figure 5.3: Coherent propagation of an ultrashort (ps) pulse with the area (left)
θ = 1.5π, (middle) θ = 2π and (right) θ = 2.5π over many absorption lengths
(αz = 40).
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5.2.4 Pulse propagation in a 87Rb vapor

Maxwell-Bloch equation for three-level atoms

In reality, 87Rb has more than two energy levels. For interaction with a picosecond

pulse at room temperature or at higher temperatures, 87Rb is well represented by a

three-level Λ-system. The density matrix equation is then

dρ11

dt
= −κ

2
Im(Ẽ∗σ̃31) +

Γ3

2
ρ33 (5.46a)

dρ22

dt
= −κ

2
Im(Ẽ∗σ̃32) +

Γ3

2
ρ33 (5.46b)

dρ33

dt
=
κ

2
Im(Ẽ∗σ̃31) +

κ

2
Im(Ẽ∗σ̃32)− Γ3ρ33 (5.46c)

dσ̃31

dt
= (−Γ31 − i∆13)σ̃31 − iκẼ(ρ33 − ρ11) + iκẼ ρ̃21 (5.46d)

dσ̃32

dt
= (−Γ32 − i∆23)σ̃32 − iκẼ(ρ33 − ρ22) + iκẼ ρ̃∗21 (5.46e)

dρ̃21

dt
= (−Γ21 − i∆12)ρ̃21 − i

κ

4
Ẽ∗σ31 − i

κ

4
Ẽ σ̃∗32 (5.46f)

The propagation of a pico-second pulse in a 87Rb vapor is described by the the

reduced wave equation,

∂Ẽ
∂z

= −µ0ω`c

2n

∫ ∞
0

Q̃(ω′0)ginh(ω
′
0 − ωih)dω′0

= −iµ0ω`c

2n
N̄

∫ ∞
0

ginh(ω
′
0 − ωih)[σ13(ω′0)p13 + σ23(ω′0)p23]dω′0 (5.47)

where

Q̃ = iN̄ [σ̃13p13 + σ̃23p23] (5.48)

is the atomic polarization of 87Rb in the rotating frame.
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5.3 Intracavity experiments with 87Rb vapor

5.3.1 Experimental setup

Experiments are performed using a home-built linear Ti:Sapphire mode-locked laser,

shown in Figure 5.4. The laser cavity is designed to produce a train of 1 ∼ 5 ps

pulses at a repetition rate between 121 MHz and 127 MHz. The average output

power of the laser is on the order of 100 mW. With a R = 96% output coupler, the

intracavity power should be on the order of several watts.

A 87Rb vapor cell is constructed from a cylindrical Pyrex tube (6.5 cm long, 1.2

cm diameter) with a 1 cm long cold-stem and Brewster windows (Opthos, Inc)2.

The cell contains pure 87Rb metal and no buffer gas. In order to control the number

density of 87Rb atoms, a double-path heating wire (California Fine Wire Stablohm

800) wrapped around the cell is used to heat the cell. Temperature of the cell is

monitored at the center and near one of the windows by thermocouple sensors. The

cell is housed inside a two-layer cylindrical µ-metal shield without end caps in order

to shield ambient magnetic fields. A small access hole is punctured on the side of the

shield to monitor a fluorescence. The entire cell assembly is placed near the output

coupler.

The center frequency of the laser is tuned using a 3-plate birefringent filter near

795 nm of the D1 line. The fluorescence from the vapor is collected by a photo-

multiplier tube (Hamamatsu R928) with a bandpass filter for 795 nm. By monitoring

the fluorescence, the center frequency is tuned across the resonance.

2Other types of cell windows are also tested for a use in this intracavity experiment.
Details on the design considerations for the window piece are presented in Appendix B.
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Figure 5.4: Home-built linear Ti:Sapphire laser hosting an intracavity 87Rb cell. Cavity
elements include a multiple quantum well saturable absorber mirror (MQW-SAM), 3-plate
birefringent filter (BF), a pair of Brewster prisms, an output coupler (OC) on a translation
stage and a 87Rb vapor cell enclosed in a µ-metal shield (dashed box). The repetition rate
is sampled from a prism reflection, using a 500 MHz photodetector and a frequency counter
(FC). Fluorescence is collected by a photomultiplier tube (PMT). Both signals from FC
and PMT are send to a data acquisition system.

5.3.2 Intracavity propagation

Pulse shaping

When the center frequency is detuned off atomic resonance, the laser generates a

mode-locked train of 1 ∼ 5 ps pulses. When it is tuned on-resonance, significant

pulse shaping is observed. The degree of pulse shaping seem to strongly depend on

the pulse characteristics off resonance, including pulse energy and the bandwidth of

the cavity. In the following, the pulse shaping effects are examined with different

input pulse parameters.

Figure 5.5 shows auto-correlation traces of a pulse train off resonance (left) and
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on-resonance (right). In off-resonant case, 4.3 ps pulses at 126.6492 MHz are gener-

ated. No significant deviation from a transform-limited pulse is present. The laser

is pumped at 4.8 W pump power and generates 197 mW output power, measured

immediately after the R = 96% output coupler. When the laser is tuned on reso-

nance, a significant pulse broadening is observed as shown in the right figure. The

pulse width of 54 ps is obtained, which is more than 10 fold broadening from the

off-resonant case. In addition, the repetition rate is reduced by more than 4 kHz,

which implies a delay of approximately 300 fs over the length of the 6.5 cm cell.
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Figure 5.5: Auto-correlation of a pulse train off-resonance (left) and on-resonance (right).

To show how sensitive the coherent propagation effects are to experimental pa-

rameters, auto-correlation traces of a pulse train of the laser with different power

are compared in Figure 5.6. The off-resonant pulse (left) is τp = 1.2 ps with a near

transform-limited envelope (inset), which is slightly shorter than the off-resonance

pulse train shown in the previous figure. The pulse shaping effects on resonance are

shown in the middle and right panels. The auto-correlation in the middle panel is

obtained when the laser is pumped at 4.0 W, while the one in the right panel is

obtained when pumped at 4.8 W. The on-resonance pulse shaping effect exhibits a

strong modulation of the pulse envelope.
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Figure 5.6: Pulse shaping effect due to coherent interaction between a picosecond pulse and
87Rb vapor. Auto-correlation of a pulse train off-resonance (left) shows a near transform-
limited pulse shape with 1.2 ps width (inset). Power-dependent pulse shaping occurs
on-resonance when pumping at 4.0 W (middle) and 4.8 W (left).

Slow-light propagation

Coherent interaction is accompanied with slow propagation of the pulse envelope,

which is caused by absorption in the front portion of the pulse, followed by coherent

emission to the rear end. For example, in the long pulse limit, a 2π-pulse experi-

ences a delay on the order of the pulse width as given by Eq. (5.44). This delay is

proportional to the absorption length which is proportional to the atomic number

density.

In this experiment, a change in the repetition rate is measured while the atomic

number density is controlled by the cell temperature. The pulse delay is deduced

from a change in the repetition rate. A relation between the change in repetition

rate and a delay in the vapor is given by

τ = −∆frep
f 2
rep

(5.49)

where frep and ∆frep are repetition rate and its change, respectively. Experimental

result is plotted in Figure 5.7. A linear dependence of the pulse delay on the number

density is observed.

To compare with a prediction of the Maxwell-Bloch equation, a result of a nu-
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Figure 5.7: Pulse delay as a function of the number density of the 87Rb vapor. Experimen-
tal results (blue-circles) are presented along with a numerical result (red-squares) obtained
from the solution of Eq. (5.46) and the analytical solution (green-triangles) obtained from
Eq. (5.44) for a two-level system in the limit of inhomogeneous broadening larger than the
pulse spectrum, and pulse shorter than the homogeneous dephasing time.

merical integration of the Maxwell-Bloch equation is also plotted in the figure. The

numerical data is obtained by simultaneously integrating Eq. (5.46) and Eq. (5.47)

using the Butcher predictor-corrector method, which is known to be the most stable

integrator for Schrödinger type ODEs. The integration is carried over z = 13.0 cm,

twice the length of the vapor cell, since a pulse traverses the cell twice per round

trip in the linear cavity. The area in this series of calculations is set to θ = 2π. The

pulse width is set to τs = 25 ps. A pulse delay is measured as a delay of the peak

of the output pulse with respect to the input pulse. A linear dependence of group

delay on the number density observed in the experiment is reproduced.

However, there is nearly a factor of two difference in the slope of the experiment

and the numerical results. One possible source of the discrepancy is the presence of

the laser gain in the experiment, which is not included in the numerical analysis. As
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will be discussed in the next section, the presence of a gain can cause the value of

the stable area to be different from 2π. Therefore, it is possible that the observed

phenomenon of slow pulse propagation cannot simply be modelled by propagation

of a 2π-pulse. Another possibility is an exclusion of 4-th level of 87Rb atoms in the

numerical modelling. This simplification can also affect the proper definition of the

area which is applicable to the present experimental conditions.

To qualitatively gauge a degree of the discrepancy, the analytical solution for

a delay in Eq. (5.44) obtained for a stable 2π-pulse is plotted in the same figure.

The analytical solution is obtained in the long pulse limit (T ∗2 < τp < T1), which

is applicable to a nanosecond pulse propagating in a two-level system. Arguably,

there are significant differences in terms of physics between interaction of two-level

atoms with nanosecond pulses and that of three-level-atoms with picosecond pulses,

which give rise to a large gap between the analytical solution and both experimental

and numerical results obtained for a system of picosecond pulses and a three-level

system. Therefore, the simple model based on a three-level system interacting with

a picosecond 2π-pulse provides at least a coarse description of the experimental

observations and an insight into the coherent nature of the intracavity interaction

between 87Rb atoms and a resonant picosecond pulse.

Area evolution in the presence of a gain

Resonant interaction between atoms and a resonant pulse critically depends on the

area θ. An ideal two-level system with very long relaxation times (T1, T2 → ∞),

and large inhomogeneous broadening (T ∗2 � τ), there exists a stable area which

is found to be 2π. A 2π-pulse propagates in an absorber without attenuation or

distortion. Input pulse areas other than 2π evolve towards the closest even integer of

2π. The degree of pulse shaping critically depends on the input area. For example,

a 4π-pulse evolves into two 2π-pulses, a 3π pulse evolves towards a 2π pulse through
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compression, and a pulse of initial area slightly over π will stretch towards a stable 2π

pulse. These trends apply for media that are initially in the ground state (absorbers).

The area theorem applies as well to amplifying media, with a reversal of sign

for α. Previous numerical calculations have shown that in the amplifier case, the

2π pulse is no longer a stable solution. A π pulse on resonance [64], a π
√

2 pulse

off resonance and any other solutions [65] have been found numerically, but none

of them has been demonstrated to be stable. What is most often observed is an

evolution towards a 0π pulse [64], such that the time integral of the electric field

vanishes, while the energy (and intensity) grows indefinitely.

A case of a two-level system inside an amplifying cavity has not been studied

previously, and it may be considered intermediate between the absorbing and am-

plifying two-level system. While the same area-dependent pulse shaping takes place

in the interaction with a 87Rb vapor, there is the additional complexity that 87Rb is

a three-level system with finite relaxation times. To characterize those observed

pulse shaping effects and slow propagation, it is important to identify the area of the

pulses.

Determination of the area

The area can be determined from parameters measured in experiments as following.

The average energy per pulse is given by

〈U〉pulse = P × τrt (5.50)

where P is the average power and τrt is the repetition rate.

Energy density per pulse is then

W =
P × τrt
σ

(5.51)
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where σ is a beam cross-sectional area. For a Gaussian beam profile (TEM00),

σ =
πw2

2
=
πD2

8
(5.52)

where w is the half-width at 1/e2 and D is the diameter of Gaussian beam profile

measured with a beam profiler (Spiricon).

On the other hand, a time integral of intensity over the duration of the pulse also

gives the energy density per pulse:

W =
1

2
√
µ0/ε0

∫
|E|2dt =

|E0|2

2
√
µ0/ε0

∫
sech2(t/τs)dt =

|E0|2τs√
µ0/ε0

(5.53)

By setting Eq. (5.51) equal to Eq. (5.53),

P × τrt
π(D2/8)

=
|E0|2τs√
µ0/ε0

|E0| =

[
8
√
µ0/ε0
π

Pτrt
D2τs

]1/2

(5.54)

The area, as defined in Eq. (5.25) in the frequency domain, is

θ = κE(ω`)

where E(ω`) is a spectral amplitude on resonance, which is given by

E(ω`) = πE0τs (5.55)

for a hyperbolic secant envelop with width τs.

Combining Eq. (5.25), Eq. (5.54) and Eq. (5.55), the area of a pulse measured in

the laboratory is thus

θ = πκτs

[
8
√
µ0/ε0
π

Pτrt
D2τs

]1/2

=

(
8π
√
µ0/ε0

1.7627

)1/2
p

~

√
Pτrtτp

D
(5.56)
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where τp = 1.7627τs.

The dipole moment p of 87Rb D1 line is 2.5373× 10−29 Cm. For a three-level Λ

system, the dipole moment of each transition, |1〉 ↔ |3〉 and |2〉 ↔ |3〉, is reduced by

a half. In calculating the area Eq. (5.56), we will use p = 1/2× 2.5373× 10−29 Cm.

Other parameters including the average power P , pulse width τp, pulse period τrt

and beam diameter D are experimentally measured. Among these parameters, the

pulse period can be measured with great accuracy using a RF counter. The rest of

the parameters are always accompanied with uncertainties, among which the average

power is least accurately measured due to an uncertainty in the reflectivity of the

output coupler and an uncertainty in the amount of loss introduced in the cell. An

uncertainty in measurement of the beam diameter also significantly affects the calcu-

lation of the area, because the area is inversely proportional to the beam diameter,

as seen in Eq. 5.56. The measured experimental parameters and the calculated area

using Eq. (5.56) with those parameters are summarized in Table 5.1.

Measurement 1 Measurement 2 Measurement 3

τs (ps) 39 30 36

1/τrt (MHz) 127 127 121

P (W) 1.7 ∼ 2.0 3.7 ∼ 3.9 1.7 ∼ 1.9

D (µm) 390 ∼ 420 450 ∼ 560 670 ∼ 740

θ/π 2.3 ∼ 2.6 2.4 ∼ 3.2 2.3 ∼ 2.6

Table 5.1: Measured laboratory parameters and the area calculated using Eq. (5.56).
Three different data sets and corresponding area are shown.

0π-pulse component

The values of experimentally measured areas in Table 5.1 are larger than the stable

area of θ = 2π. In an auto-correlation trace of the output pulse train as shown in
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Figure 5.6, the output pulses have a strong phase modulation which is dependent of

the input power. Such phase modulation can be introduced by a pulse component

evolving towards 0π. If that is the case, Eq. (5.56) would generate an area large

than 2π. In order to examine the presence of the 0π-pulse component, it is required

to measure a spectrum of the output pulse. As the area in frequency domain is

defined as θ = κE(ω`) in Eq. (5.25), a spectrum of 0π-pulse has no component at

the resonant frequency. A spectrum of the phase modulated pulse such as the one in

Figure 5.6 would display a vanishing spectral component near the atomic resonance.

The correct value for the area can be obtained for the spectral amplitude multiplied

by κ at the resonance.

A measurement of the output spectrum can be done by employing a high reso-

lution spectroscopy. The atomic line width is only on the order of 10−1 ∼ 100 GHz

while a picosecond pulse spectrum spans approximately 103 ∼ 104 GHz. By using

a high-resolution optical spectrometer, such as a stabilized Michelson interferometer

or a high-finesse Fabry-Perot interferometer, it is feasible to experimentally measure

the spectral amplitude of the output pulse spectrum at the atomic resonance, which

will be a future subject of the research.

5.3.3 Coherent population trapping of 87Rb

Intracavity CPT

One of the motivations for the intracavity experiment is to examine whether the

dark-line resonance (presented in chapter 2) can be observed in a mode-locked laser

cavity under high power environment. To this end, the condition for observing the

intracavity dark-line resonance is established by tuning the repetition rate to a sub-

harmonic of the ground-state hyperfine splitting while a 87Rb cell is in the cavity.
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Figure 5.8 shows a fluorescence signal as a function of the repetition rate. A

distinct reduction of the fluorescence is clearly visible, indicating an occurrence of

dark-line resonance. By fitting a Lorentzian function to the data, the resonance

repetition rate is found to be 126.569 MHz, which is very close to 54th sub-harmonic

of 6.835 GHz hyperfine splitting. FWHM of the measured resonance is approximately

13 kHz, determined from the fit Lorentzian.

Figure 5.8: Intracavity dark-line resonance. A reduction of fluorescence occurs as the
resonance repetition rate is tuned to 54th sub-harmonic of the ground-state hyperfine
splitting.

It is surprising that the dark-line resonance shows that the shape, position and

width of the resonance structure are very similar to those obtained in the extracavity

experiment presented in Chapter 2. Only the signal contrast is somewhat smaller. In

fact, the area in the extracavity experiments is very small (θ � 1), whereas the area

in this intracavity experiment is on the order of 2π. A previous numerical simulation

for the dependence of the dark-line resonance on the area shows that the resonance

feature diminishes with the area larger than 2.
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Based on the results obtained throughout this chapter, it is possible to explain the

intracavity observation of the dark-line resonance as a result of coherent interaction

with a train of intense ultrashort pulses; when the area is close to 2π, the coherent

rotation of the atomic polarization brings the entire population back to the ground-

state while preserving the ground state coherence. Small area pulses as well as 2π

pulses share in common the final state of population, which is near ground state.

5.4 Conclusion

The work presented in this chapter is to investigate the nature of resonant interaction

between a picosecond mode-locked pulse train and a 87Rb vapor inside a laser cavity.

When a 87Rb vapor cell is placed in a mode-locked laser cavity, coherent prop-

agation phenomena, including pulse shaping and slow group velocity, are observed.

These observations are similar to the characteristics of the self-induced transparency.

In an investigation of the dependence of the delay on the atomic number density,

a fair agreement between the experimental data and a numerical calculation is ob-

tained. The measurement of area, however, remains as an unsolved piece of the

problem, as it is found to be 1.5 to 2 times larger than the area of the stable 2π

pulse. Auto-correlation traces show a strong phase modulation, which indicates that

the pulse may have evolved to have both 2π and 0π component. In order to deter-

mine the area of the generated pulses more accurately, a high resolution spectrum is

required.

Despite the unsettled value of the area, a dark-line resonance is observed when

the repetition rate is tuned to a sub-harmonic of the ground state hyperfine splitting

of 87Rb . This observation can be understood as resulting from coherent interaction

with a train of intense ultrashort pulses whose area is on the order of 2π.
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The results obtained in this chapter will be useful information in the future

development of the IPI magnetometer.
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Chapter 6

Interwoven frequency comb from a

nested-cavity mode-locked laser

6.1 Overview

6.1.1 Fabry-Perot etalon

Fabry-Perot etalon (FPE) is a type of optical cavity constructed from two parallel

interfaces, separated with vacuum, air or a transparent dielectric medium such as

glass [66]. An incident optical field into FPE bounces back and forth multiple times

between the interfaces before exiting, resulting in multiple beam interference of the

output field. When the relative phase between the interfering fields is an integer

multiple of 2π, a constructive interference occur. This is the case when the optical

path-length npd, where np is the phase index of refraction of the medium filling the

cavity and d is the cavity length, is an half integer multiple of the wavelength λ0 of

the field. With all the fields interfere constructively, a resonance transmission occurs

with the transmission equal to unity, that is all the energy is transmitted. The width
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of the resonance peak is determined by the number of interfering beams, thus depends

on the reflectivity of the interfaces. The higher the reflectivity of the interfaces is,

the narrower the transmission resonance becomes. Because of its simple construction

and high resolution achieved by the multiple beam interference configuration, FPE

has been widely used as both a high-resolution spectrometer and a high performance

optical filter. Quantitative descriptions of the characteristics of FPE are given in

Section 6.2.

6.1.2 Intracavity spectral shaping

Operated as an optical filter, FPE has been used as an intracavity spectral filter for

continuous-wave (cw) lasers to achieve single-mode operation [60]. The single-mode

operation is achieved by matching the spectral location one of the narrow transmis-

sion peaks of FPE to one of the laser cavity modes while introducing sufficiently large

loss for other cavity modes to keep them from oscillating. In general, an insertion of

FPE inside a laser cavity introduces a spectral modulation of the laser output. The

initial motivation for the study presented in this chapter is to demonstrate a “cheap

man” method to shape the pulse spectrum in order to improve the contrast of the

dark-line of the repetition rate spectroscopy of 87Rb , as presented in Chapter 3.

When the experiments are performed, however, intriguing behaviors of the laser and

of the generated frequency comb are observed, in addition to the desired improve-

ment of the spectroscopy. Those observations have led us to further scrutinize the

properties of this new type of mode-locked laser, dubbed the nested-cavity mode-

locked laser . The general descriptions of the experiments are given in Section 6.4. A

demonstration of tuning of the laser frequency is presented in Section 6.5. Observa-

tion and characterization of a formation of a high frequency pulse train are presented

in Section 6.6.
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6.1.3 Coupling of two frequency combs

One of the intriguing properties of the nested-cavity mode-locked laser is its spec-

trum which constitutes a new class of frequency comb having two characteristic mode

spacings - the high repetition rate of FPE and low repetition rate of the laser cav-

ity - dubbed the interwoven frequency comb. Through various experiments, it is

revealed that the high and low repetition rates interact with each other through the

resonance conditions of the laser cavity and FPE. Experimental observations and a

semi-quantitative analysis of the cavity coupling effect are presented in Section 6.7.

6.1.4 Application of the interwoven frequency comb for pre-

cision phase interferometry

Lastly, a potential application of the nested-cavity mode-locked laser for a precision

phase interferometry is described in Section 6.8. By exploiting the coupling of the

high and low repetition rate, it is possible to perform a precision measurement of a

change in the index of refraction of FPE. An application for a radiation dosimeter is

proposed.

6.2 Fabry-Perot etalon

6.2.1 Transmission function

Let us consider a transmission of a monochromatic optical field through FPE with

symmetric interface characterized by transmission coefficients t̃ij and reflection co-

efficients r̃ij at an interface between medium i and medium j. The incident field

Ẽin from one of the two interfaces undergoes internal multiple reflections at each
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interface inside FPE before exiting from the other interface. The transmitted field

Ẽt is composed of all the multiple reflected components at the exit interface, and

given by their sum [51];

Ẽt = [t̃12t̃21e
−iδ/2 + t̃12t̃21e

−iδ/2(r̃21r̃21e
−iδ) + t̃12t̃21e

−iδ/2(r̃21r̃21e
−iδ)2 + · · · ]Ẽin

= t̃12t̃21e
−iδ/2 1

1− r̃2
21e
−iδ Ẽin

=
(1−R)e−iδ/2

1−Re−iδ
Ẽin (6.1)

where δ is the round-trip phase shift between each transmitted field component:

δ(Ω) = 2k0npd cos θin = 2Ωnpd cos θin/c (6.2)

with k0 the wave number, Ω the frequency of the field, np the phase index of refraction

of the medium inside FPE, d the length of FPE, and θin the internal incident angle

of the field. In deriving Eq. (6.1), the following properties of a symmetric interface

have also been applied:

t̃12t̃21 − r̃12r̃21 = 1 (6.3)

r̃12 = −r̃∗21 (6.4)

t̃12t̃21 = 1 + r̃12r̃21 = 1− |r12|2 = 1−R (6.5)

The transmission function T̃ is therefore

T̃ (Ω) =
(1−R)e−iδ/2

1−Re−iδ
= |T̃ |e−iψ (6.6)

where ψ is the overall phase shift of the transmitted field which is found as

ψ = tan−1

[
1 +R

1−R
tan(δ/2)

]
(6.7)

The intensity transmission function is

T = |T̃ |2 =
(1−R)2

1 +R2 − 2R cos δ
=

1

1 + F sin2 δ/2
(6.8)
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where

F =
4R

(1−R)2
(6.9)

The intensity transmission function T as a function of δ for various values of R

is presented in Figure 3.1 in Section 3.2.1. When the round-trip phase shift δ is an

integer multiple of 2π, all the transmitted field components interfere constructively

and a resonance occurs. At the resonance, the peak value of T is unity independent

of R. For low reflectivity (F � 1), Eq. (6.8) can be approximated as

T ≈ 1− F sin2 δ/2 = 1− F

2
(1− cos δ) (6.10)

which is characteristic of a fringe pattern of two-beam interference, such as Michelson

interferometer. For high reflectivity close to unity, T drops quickly like a Lorentzian

as δ is detuned from a multiple of 2π. The sharpness of the transmission peaks

is conveniently characterized by the finesse F , which is the ratio of the spacing

between the transmission peaks, the free-spectral-range (fsr), to the full-width-at-

half-maximum (FWHM) of the transmission peak. From Eq. (6.8), the transmission

intensity drops to one half at δ1/2 = 2/
√
F . Since fsr is 2π, the finesse is given by

Finesse : F =
fsr

FWHM
=
π
√
F

2
(6.11)

For the use as a spectrometer or frequency filter, it is more practical to express

T as a function of frequency. The resonant frequencies are determined by setting,

δ =
4πfnpd cos θin

c
= 2πN (6.12)

where N is an integer, which gives

fN = N
c

2ndp cos θin
(6.13)

The free-spectral-range in frequency is then

ffsr =
c

2npd cos θ
(6.14)
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6.2.2 Pulse propagation in a Fabry-Perot

Unlike a case of continuous-wave (cw), propagation of a short pulse through FPE

depends on relative duration between the pulse width and the round-trip time of

FPE. When the pulse width τp is comparable or longer than the round trip time of

FPE τfp (τp ≥ τfp), an interference between different portions of a single pulse occurs.

On the other hand, when the pulse duration is much shorter than the round trip time

of FPE (τp << τfp), no interference occurs because any portion of the pulse does not

overlap in FPE after each round trip. Difference in the pulse propagation velocity

(group velocity) between those two cases is discussed in the following paragraphs.

Long pulse limit: τp � τfp

From Eq. (6.6), the transmitted field through FPE is given by

Ẽt(Ω) = T̃ (Ω)Ẽin(Ω) = |T̃ (Ω)|Ẽin(Ω− ω`)e−iψ(Ω) = Ẽt(Ω− ω`)e−iψ(Ω) (6.15)

When the pulse spectrum is narrow compared to the width of the resonance trans-

mission peak, the phase factor ψ(Ω) can be expanded in a power series about the

carrier frequency ω`:

ψ(Ω) = ψ(ω`) +
dψ

dΩ

∣∣∣∣
ω`

(Ω− ω`) +
1

2

d2ψ

dΩ2

∣∣∣∣
ω`

(Ω− ω`)2 + · · · (6.16)

The inverse Fourier transform of Eq. (6.15) with Eq. (6.16) leads to the transmitted

field in the time domain:

Ẽt(t) ≈
∫ ∞
−∞
Ẽt(Ω− ω`)e

−i[ψ(ω`)+
dψ
dΩ |ω` (Ω−ω`)]eiΩtdΩ

= e
i
(
dψ
dΩ
− ψ
ω`

)
ω`

∫ ∞
−∞
Ẽt(Ω− ω`)eΩ(t− dψ

dΩ
)dΩ

= e
i
(
t− ψ

ω`

)
ω`

∫ ∞
−∞
Ẽt(Ω′)eΩ′(t− dψ

dΩ
)dΩ′

= e
i
(
t− ψ

ω`

)
ω` Ẽ(t− dψ/dΩ) (6.17)

103



Chapter 6. Interwoven frequency comb from a nested-cavity mode-locked laser

where a new variable Ω′ = Ω − ω` has been made. From Eq. (6.17), the phase and

group delay can be defined as

Phase delay : τph =
ψ

ω`
(6.18)

Group delay : τgr =
dψ

dΩ
≈ ∂ψ

∂Ω
+
∂ψ

∂n

∂n

∂Ω
(6.19)

In general, a frequency-dependent index of refraction (dispersion) results in the dif-

ference between the phase and group delay.

The near-resonance response of FPE can be found by expanding Eq. (6.6) about

δ = 2π. Keeping the lowest order in δ, it is left with

T̃ (δ) =
(1−R)e−iδ/2

1−Re−iδ
≈ e−iδ/2

1 + i R
1−Rδ

≈ e−iδ/2
[
1− i R

1−R
δ

]
(6.20)

The phase shift in single passage is

ψ = −δ
2

[
1 +

2R

1−R

]
(6.21)

Using Eq. (6.18) and Eq. (6.19), the single-passage phase and group delay occurred

in near-resonance transmission are given by;

Phase delay : τph =
ψ

ω`
= −npd cos θin

c

[
1 +

2R

1−R

]
(6.22)

Group delay : τgr =
dψ

dΩ
= −1

2

[
1 +

2R

1−R

]
dψ

dΩ

≈ −1

2

[
1 +

2R

1−R

](
∂δ

∂Ω
+
∂n

∂Ω

)
=
npd cos θin

c

[
1 +

2R

1−R

](
1 + ω`

dn

dΩ

∣∣∣∣
ω`

)
(6.23)

The last two expression are only valid near a single resonance peak of FPE, implying

therefore that the spectrum of the light incident on that FPE is narrower than the

transmission linewidth of FPE.
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Ultrashort pulse limit: τp � τfp

Most mode-locked lasers generate femtosecond to picosecond pulses whose spatial ex-

tension is no more than a few hundred microns which is considerably short compared

to commonly used FPEs of the order of a few millimeters or longer. In this case,

since the input pulse spectrum of an ultrashort pulse is much broader than the free

spectral range of FPE, the transmitted spectrum consists of a comb of transmission

peaks with their width determined by the reflectivity of the interfaces. In the time

domain, the transmitted field consists of a train of multiply reflected pulses with

their amplitudes decaying with the number of round trips.

To find a delay between transmitted pulses, let us look at the path those pulses

take in FPE. Referring to Figure 6.1, the delay, τfp, is a time difference between path

BCD and path BE. The length of those paths are

BCD =
2d

cos θin

BD = 2d tan θin

BE = 2d tan θin sin θout =
2npd sin2 θin

cos θin

The delay between the transmitted pulses is then given by

τfp =
ng(BCD)− (BE)

c

=
2d

c cos θin

(
ng − np sin2 θin

)
=

2npd cos θin
c

+
2d(ng − np)
c cos θin

(6.24)

The second term of the last equation is a correction to the phase delay due to the

difference between group and phase velocity.
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Figure 6.1: A schematic of pulse propagation in FPE when the pulse duration is much
shorter than the FPE round trip time. In the ultrashort pulse limit, no interference occurs,
and the delay between the transmitted pulses is given by Eq. (6.24)

Transmission of pulse train: the machine gun out of the Fabry-Perot

Consider a propagation of a single pulse entering FPE, with a field given by E0(t) =

Ẽ0(t) exp(iωt). The sequence of N pulses is a total field E(t):

E(t) = eiωtT
N∑
p=0

RpẼ0(t− pτfp) (6.25)

The Fourier transform of that expression is:

E(Ω) = T Ẽ0(Ω− ω)T
[
1 +ReiΩτfp + . . . RNeNiΩτfp

]
= T Ẽ0(Ω− ω)

1−R(N+1)e(N+1)iΩτfp

1−ReiΩτfp
(6.26)

Notice that the dependence of the phase factor in the numerator on the number of

pulses N . For N →∞:

E(Ω) =
T Ẽ0(Ω− ω)

1−ReiΩτfp
(6.27)

Expression in Eq. (6.25) is in the time domain, while Eq. (6.26) is the corresponding

expression in the frequency domain.
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6.3 Intracavity Fabry-Perot etalon

6.3.1 General properties

Evolution of transmission function over many passages

When a transmitted field is recycled and injected back to FPE, for example by

constructing a cavity around FPE, the field transmission function after p-th passage

is given by p-th power of the single-pass transmission function in Eq. (6.6):

T̃p(Ω) =

[
(1−R)e−iδ/2

1−Re−iδ

]p
(6.28)

Figure 6.2 shows an evolution of the transmission function over 50 passages for

R = 0.034. After the first passage, the transmitted function is weakly modulated

sinusoidally, as expected for small R in Eq. (6.10). As the number of passages p

approaches 50, the modulation depth increases to 100 % and each transmission peak

becomes more like a Gaussian. As p → ∞, the transmission function becomes a

comb of Delta functions (Dirac comb). The same phenomenon occurs for large R,

in which the initial Lorentzian line-shape becomes a Gaussian-like line-shape as the

number of passages increase. In time domain, it implies that the envelope function of

a train of transmitted pulses evolves from single-sided exponential to Gaussian over

many passages through FPE. This is confirmed in the experiment presented below.

Effective finesse

Due to the feedback and amplification of the pulse energy by means of a laser cavity

enclosing FPE, the apparent finesse of the uncoated glass FPE is significantly in-

creased. As seen in Figure 6.2, the finesse of the transmission peaks increases with

the number of passages. The amplification by the laser gain in the feedback cavity
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Figure 6.2: Evolution of the transmission function Eq. (6.28) over 50 passages. The surface
reflection is R = 0.034 for an uncoated fused-silica FPE.

compensates for the loss caused in the transmission through FPE, and therefore con-

tributes to further increasing the finesse. The upper limit is determined by a finite

energy stored in the gain medium. In experiments, as many as 16 pulses has been

observed in a steady-state cavity.

Interference of ultrashort pulses

Unlike the single-passage case (p = 1), interference of ultrashort pulses (τp � τfp)

occurs in the multi-passage transmission through a thick FPE, because the pulse

period of the input pulse train is guaranteed to match the round-trip time of FPE.

This is an important aspect of the intracavity Fabry-Perot etalon, and gives rise to
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a double-resonance condition for the nested cavity system, as described below.

Resonance modes

Laser oscillation of the nest-cavity laser occurs when the resonance condition of both

cavities are satisfied simultaneously. This simultaneous resonance condition couples

the modes of the two resonant cavities. However, since the number of pulses interfer-

ing through FPE transmission is finite, the resonance width of the FP transmission is

rather broad, as shown above in Figure 6.2. This broad or “soft” resonance condition

allows the resonance modes of one cavity to follow those of the other. In Section 6.7,

a coupling between the high frequency (HF) modes of FPE and the low frequency

(LF) modes of the laser repetition rate is described in more details.

Modified group velocities

Another intriguing property of the intracavity FPE is that the group velocities are

no longer determined by the dielectric constant of the intracavity elements, but are

dominated by distribution of the pulse energy in a pulse train. During transmission

though FPE, the energy of a pulse is transferred to following pulses. Looking over

a pulse train, there is an overall recession of the energy front, which results in a

slow propagation the “center of gravity” of the pulse train in the laser cavity. On the

other hand, the saturation of the laser gain has an opposite effect. Pulses in the front

edge of the pulse train receive a gain proportional to their intensities while depleting

the gain medium. Within a time scale of the pulse train (∼ ns), the gain medium

does not recover completely, thus leaves less gain for the pulses in the latter part of

the pulse train. As a result, the center of gravity of the pulse train is accelerated.

These effects are quantitatively verified by the numerical simulation of evolution of

the high frequency pulse train, which is presented in Section 6.6.
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6.3.2 FPE inside a ring laser cavity

An actual laser contains a gain medium, so the combined effect of the intracavity

FPE and gain will be analyzed here. In particular, their effects on the transmission

phase and resonance frequencies will be investigate. Consider transmission of a pulse

train through FPE placed inside a ring laser cavity. There are N pulses in the train.

The difference from a linear cavity is that FPE is traversed once in each round-trip

in the laser cavity. Let Ẽn be the field amplitude just before FPE, at the round-trip

n. The first value of Ẽn is the single pulse Ẽ0. The n-th value in frequency is given

by Eq. (6.26):

Ẽn(Ω) = Ẽn−1(Ω)
1−R(N+1)e(N+1)iΩτfp

1−ReiΩτfp
T (6.29)

where Ẽn−1 represents the pulse train at the n−1 cycle of the ring cavity, and AN(Ω)

is the transmission function of FPE:

AN(Ω) =
1−R(N+1)e(N+1)iΩτfp

1−ReiΩτfp
T (6.30)

Notice that the phase up on transmission depends the number of pulses N . The

inverse Fourier transform of Eq. (6.30) is given by

AN(t) =

∫ ∞
−∞

1−R(N+1)e(N+1)iΩτfp

1−ReiΩτfp
eiΩtdΩ. (6.31)

Remember that N is a fixed number, while n is the running index for the round-trips

in the ring cavity. The inverse Fourier transform of Eq. (6.29) is the convolution:

Ẽn(t) = Ẽn−1(t) ∗ AN(t) (6.32)

During a round-trip in a ring cavity, the pulse train goes once through the se-

quence [gain → cavity propagation exp(−ikL) → Fabry-Perot]. L is the length

(perimeter) of the ring cavity excluding FPE. For simplicity of the analysis, the gain
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is considered to be a constant in time. In the time domain, the infinite train Ẽ(t) is

the sum:

Ẽ(t) =
{
Ẽ0(t) ∗ AN(t)

+
[
Ẽ1(t− τrt) ∗ AN(t− τrt)

]
× g × e−ikL

+
[
Ẽ2(t− τrt) ∗ AN(t− 2τrt)

]
× g2 × e−2ikL (6.33)

The Fourier transform of the expression in Eq. (6.33) is:

Ẽ(Ω) =
{
Ẽ0(Ω)AN(Ω)

+
[
Ẽ1(Ω)AN(Ω)

]
× g × eiΩτrt−ikL

+
[
Ẽ2(Ω)AN(Ω)

]
× g2 × e2iΩτtrt−2ikL

}
=

{
n=∞∑
n=1

[
AN(Ω)geiΩτrt−ikL

]n} Ẽ0AN(Ω) (6.34)

where the Ω dependence of k is neglected, which is a reasonable assumption since

the modes of the mode-locked laser are equally spaced. The geometric sum can be

made:

Ẽ(Ω) =
Ẽ0AN(Ω)

1− [AN(Ω)geiΩτrt−ikL]
. (6.35)

where

AN(Ω) =
1−R(N+1)e(N+1)iΩτfp

1−ReiΩτfp
T

This is a qualitative expression of the Fabry-Perot transmission of the laser cavity

with gain and FPE for finite number of pules. It can be observed by inspecting

the functional form of Eq. (6.35) and AN(Ω) that the transmission phase depends

on N , τfp, τrt and L. In order to determine a more accurate transmission function,

a nonlinear time-dependent gain g(t, I), where I is the pulse intensity, needs to
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be determined. In that case, the finite life-time of the gain keeps the Fabry-Perot

transmission peaks from collapsing to a narrow resonance, and there will also be an

additional phase due to the time-dependence of the gain.

6.4 General experimental setup

6.4.1 Nested-cavity mode-locked laser

The nested-cavity mode-locked laser is constructed from a linear titanium-sapphire

mode-locked laser and an intracavity glass FPE, as shown in Figure 3.3 in Sec-

tion 3.3.1. Mode-locking is assisted by a multiple quantum well saturable absorber

integrated on a Bragg reflecting mirror (MQW-SAM), placed at one end of the cav-

ity. A pair of intracavity prisms is used for dispersion control and for frequency

tuning. A birefringent filter placed between the prisms serves both as a frequency

tuner and as a bandpass filter which limits the spectral width to have picosecond

pulses for an application in 87Rb spectroscopy. The output coupler is mounted on a

translation stage with a motorized micrometer to allow cavity length scanning over

a range of a few tens of MHz of the repetition rate. A typical output of the laser

consists of a train of picosecond pulses with repetition rate of 120 ∼ 150 MHz. The

Laser frequency is tuned near 795 nm, which corresponds to the D1 line of 87Rb .

FPE is mounted on a standard mirror mount (Newport U100). The lever arm of

the mirror mount (a distance between the tip of an alignment screw and the pivot)

is 38.1 mm. The alignment screw for vertical angle adjustment is replaced with a

motorized micrometer which allows for precision control of the tilt angle θ using

LabVIEW. The mounted FPE is placed near the output coupler. Its exact position

is not critical since it is tilted so slightly (< 1 mrad) with respect to the beam axis

in order to prevent a formation of cavities with other intracavity elements. There
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are several different types of FPE used throughout the experiments presented in this

chapter, including UV graded fused-silica and calcium fluoride (CaF2) with various

thickness ranging from 6.5 mm to 15 mm.

6.4.2 Alignment of laser with an intracavity FPE

Alignment of the nested-cavity mode-locked laser requires special care. Since the tilt

angle of FPE with respect to the beam axis is a critical parameter in almost all the

experiments in this chapter, an accurate and repeatable method to set a reference

angle must be established. For the best result, the normal incident (θ = 0) is chosen

as the reference. The normal incident (θ = 0) can be found by searching for an angle

where the threshold pump power is minimum. The value of the lowest threshold

power is often less than that of a bare cavity (without an intracavity FPE). This is

the case when the surfaces of the end mirrors and the FPE are aligned parallel and

form multiple coupled resonant cavities (Fabry-Perot effect) where the total cavity

loss is minimized. Mode-locking will not start, however, unless the couplings between

various surfaces are removed. In order to break the cavity couplings, FPE is tilted

slightly from the normal (θin ≥ 1 mrad). For this reason, data points at θin < 1

mrad are missing in all the experimental data.

6.4.3 Monitoring the optical frequency

Two detection schemes are employed to monitor the optical frequency of the laser

output. One of them is an optical spectrometer (Ocean Optics 2000). The spec-

trometer has a resolution of ∆λ = 0.5 nm, or in terms of frequency ∆f ≈ 240 GHz.

Thus, it is only used for coarse tuning of the laser frequency.

For better resolution, a fluorescence spectroscopy of 87Rb is employed. 87Rb has
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an optical resonances at 795 nm (D1 line) and 780 nm (D2 line) with a Doppler

broadened linewidth of approximately 500 MHz. A fluorescence signal from the D1

line is monitored using a photomultiplier tube (PMT, Hamamatsu R928) with an

interference filter for 795 nm.

6.4.4 Monitoring the repetition rate and the frequency of

FPE

The pulse train is sampled by two detectors with different bandwidth. The first is

a 500 MHz silicon photodetector (Thorlab DET210) which is connected to a 500

MHz frequency counter (HP 5335A). It is employed to measure the laser repetition

rate which is on the order of 100 MHz. The second is a 25 GHz high-speed InGaAs

photodetector (New Focus 1437) which is connected to either a 13 GHz RF spec-

trum analyzer (HP 8562E) or a 8 GHz digital oscilloscope (Tektronix DPO 70804),

depending on the domain of measurement, and is employed to monitor fast temporal

structures on the order of ∼ 10 GHz of a pulse train generated from the nested-cavity

mode-locked laser.

6.5 Tuning the laser frequency with intracavity

FPE

6.5.1 Resonance transmission due to multiple pulse interfer-

ence

As discussed in Section 6.2, there are two cases when an interference of ultrashort

pulses occur in FPE. The first case is when the pulse width is comparable or longer
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than the round-trip time of FPE such that temporal overlap between different por-

tions of the pulse occurs after each round-trip. This is certainly not the case for

picosecond pulses propagating in a centimeter thick FPE (τrt ∼ 102 ps). The second

case is when the round-trip time matches an integer multiple of the inter-pulse pe-

riod. In this case, the multiply reflected pulses interfere with each other after every

round trip. Pulse propagation in the nested-cavity mode-locked laser fits to this

case, since the intracavity FPE generates a train of pulses whose inter-pulse period

is equal to the round-trip time of the pulses in FPE.

When interference is present, there is resonance transmission as given by the

transmission function Eq. (6.6). The maximum transmission (T = 1) occurs for

frequencies for which the round-trip phase satisfies the resonance condition;

δ = −2k0npd cos θin = 2Nπ (6.36)

A laser with an inhomogeneously broadened gain, such as ti:sapphire, preferentially

oscillates at frequencies for which the net gain (minus loss) per round-trip is max-

imum, while suppressing other modes that are competing for the gain within the

homogeneous linewidth. Therefore, the resonant modes of the nested-cavity mode-

locked laser is expected to satisfy the condition given in Eq. (6.36). Then, it follows

that the resonant frequencies (and wavelength) are give by

fres =
cN

npd cos θin
(6.37)

λres =
npd cos θin

N
(6.38)

which imply that the frequency of the laser can be tuned with the angle of the

intracavity FPE.
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6.5.2 Fluorescence spectroscopy of 87Rb

The prediction of the angular dependence of the laser frequency (wavelength) in

Eq. (6.37) (and Eq. (6.38)) is examined by fluorescence spectroscopy of a 87Rb vapor.

The D1 line of 87Rb consists of four transitions between two ground state hyperfine

states, separated by 6.8 GHz, and two excited state hyperfine states, separated by

814 MHz (referred to Figure 2.1 in Section 2.2 for the energy diagram of 87Rb ). At

room temperature, those transitions are inhomogeneously broadened due to Dopper

effect, making only the ground state hyperfine manifold fully resolved. As a result,

a spectrograph of the D1 line shows two resonant peaks separated at 6.8 GHz, each

corresponding to transitions between the ground state and excited state hyperfine

states: F = 1 → F ′ = 1, 2 and F = 2 → F ′ = 1, 2. Depending on the resolution

of spectroscopic apparatus being used, the excited state hyperfine structure may or

many not be visible. The relative hyperfine transition strength factors for the D1

line of 87Rb are given in Table 6.1.

D1 (52S1/2 → 52P1/2)
S22 1/2 S12 5/6
S21 1/2 S11 1/6

Table 6.1: Relative hyperfine transition strength factors for 87Rb D1 line (from Steck).

The nested-cavity mode-locked laser with a 15.12 mm fused-silica intracavity

FPE generates a frequency comb with 6.8 GHz modulation with nearly 100% depth.

Since the modulation period of the comb matches to the ground state hyperfine

splitting, both transitions from ground state are excited when the laser frequency is

tuned on-resonance. On the other hand, if the laser is tuned off-resonance, neither

transitions are excited. Consequently, when the frequency is scanned across the

atomic resonance, only one resonance peak will appear. The next resonance peak

appears when the frequency is tuned over one free-spectral-range (ffsr ≈ 6.8 GHz).

As will be described below, the frequency tunability of the nested-cavity mode-locked
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laser is demonstrated based on this property. Notice that a standard frequency comb

does not have either resolution or frequency tunability to perform such spectroscopy.

Figure 6.3 shows a measured fluorescence signal from the D1 line as a function

of the internal angle θin of the intracavity FPE. The fluorescence signal increases

when the laser spectrum has maximum overlap with the D1 line, which occurs when

λ` = 795 nm, where λ` is laser wavelength. There are also two smaller peaks with

different strength inside each fluorescence peak. Figure 6.4 is a zoom of a single

fluorescence peak (R1 in Figure 6.3). The internal FPE angles at all the fluorescence

peaks are summarized in Table 6.2.

Figure 6.3: D1 fluorescence from a 87Rb vapor as a function of FPE internal angle. The
number and letter on the label on each fluorescence peak indicate respectively the order
and the side of the plot from the origin (θin = 0) they show up: “L” for left and “R” for
right. Their values are summarized in Table 6.2.

To examine whether the laser wavelength follows the resonance condition of FPE,

the round-trip phase shift is calculated using Eq. (6.36). The fluorescence peaks occur

when δ is a multiple of 2π. Using a listed value of the resonant wavelength of the

D1 line (λD1 = 794.978851 nm [5]), the number of wavelength N fitted inside FPE
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Figure 6.4: Fluorescence profile of a single peak. Laser power is attenuated to suppress
power broadening of the transition. The average power is 7 mW.

Peak L tall L short R tall R short Ni

1 -5.93006 -5.55357 5.94632 5.57236 55277
2 -8.45868 -8.2003 8.45542 8.20337 55276
3 -10.3954 -10.18471 10.38255 10.1728 55275
4 -12.01819 -11.83404 12.01145 11.83707 55274
5 -13.43735 -13.27599 13.43675 13.28332 55273
6 -14.72229 -14.57682 14.71896 14.5771 55272
7 -15.90748 -15.76924 15.898 15.7686 55271

Table 6.2: Measured values of θin at the location of spikes in each fluorescence peak in
Figure 6.3. “Peak” corresponds to the numbers to label the peaks in the figure. “L” and
“R” indicates the the negative angles and positive angles, respectively. “tall” and “short”
indicate the relative height of the spikes within the peak. “Ni” is an integer corresponding
to the number of wavelength fitted inside the d = 15.119 mm fused-silica FP, as calculated
in Eq. (6.39). Unit of the angles is mrad.

is calculated for each fluorescence peak. For d = 15.119 mm and n = 1.4534 at λD1,

Ni = mod(δ/2π) = 2npd cos θin/λ (6.39)

Using the values of θin and Ni, the differences of the round-trip phase shift between

adjacent fluorescence peaks are calculated as

∆δ = δi+1 − δi = 2k0npd(cos θi+1
in − cos θiin) (6.40)
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Table 6.3 summarizes the difference in the round-trip phase shift ∆δ between adjacent

tall peaks and adjacent short peaks shown on the left side of Figure 6.3. Similarly,

Table 6.4 summarizes ∆δ for adjacent peaks on the right side. The values are given

in the unit of 2π. The percent errors are calculated as

% error =
(measured ∆δ)− 2π

2π
(6.41)

The result shows that the average percent error is below 1 %, indicating an excellent

agreement of the behavior of the laser wavlength with Eq. (6.38).

∆δ L tall % error L short % error

δ2 − δ1 -1.0056 -0.56 -1.006 -0.61
δ3 − δ2 -1.0092 -0.92 -1.0084 -0.84
δ4 − δ3 -1.0053 -0.53 -1.0037 -0.37
δ5 − δ4 -0.9985 0.16 -1.0007 -0.07
δ6 − δ5 -1.0000 0.00 -1.0014 -0.14
δ7 − δ6 -1.0033 -0.33 -1.0001 0.00

Table 6.3: Phase difference between adjacent fluorescence peaks on the left (θ < 0) in
Figure 6.3, calculated using Eq. (6.40) and the values in Table 6.2. The phase differences
are calculated separately between the tall spikes and the short spikes. Other parameters
used in the calculations include k0 = 2π/794.978851 nm−1, np = 1.4534 and d = 15.119
mm. Unit of ∆δ is 2π.

∆δ R short % error R tall % error

δ2 − δ1 -0.9987 0.13 -1.0017 -0.17
δ3 − δ2 -1.0034 -0.34 -1.0003 -0.03
δ4 − δ3 -1.0082 -0.82 -1.0124 -1.24
δ5 − δ4 -1.0025 -0.25 -1.0041 -0.41
δ6 − δ5 -0.9978 0.22 -0.9962 0.38
δ7 − δ6 -0.9977 0.23 -0.9993 0.07

Table 6.4: Phase difference between adjacent fluorescence peaks on the right (θ > 0) in
Figure 6.3.
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Excited state hyperfine splitting

In order to examine the sub-peak structure in the fluorescence peaks, the frequency

differences between the sub-peaks are calculated as

∆fspike =
cN

2nd

(
1

cos θtall

− 1

cos θshort

)
(6.42)

The results are summarised in Table 6.5. Comparing with the excited state hyperfine

splitting of 814.52 MHz, the measured values match quite well. However, there is

a relatively large discrepancy. The primary source of error is associated with the

instrumental instability. For example, the measurement of fluorescence as a function

of FPE angle as shown in Figure 6.3 takes over minutes. Over the course of the

measurement, the center frequency drifts due to fluctuations of the cavity alignment,

which in turn affects the relative connection between the FPE angle and the laser

frequency.

Peak L % error R % error

1 815.16 0.1 812.15 -0.3
2 811.56 -0.4 791.67 -2.8
3 817.54 0.4 812.92 -0.2
4 828.18 1.7 784.12 -3.7
5 812.74 -0.2 773.00 -5.1
6 803.64 -1.3 783.62 -3.8
7 825.69 1.4 772.64 -5.1

Mean 816.36 790.02
Stdv. 8.44 6.80

Table 6.5: Frequency difference ∆fspike between the spikes in each fluorescence peak in
Figure 6.3, calculated using Eq. (6.42). The % error is calculated based on the value of the
excited state hyperfine splitting of 814.52 MHz. Unit is MHz.
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6.6 High frequency pulse train formation

6.6.1 Temporal profile

A typical temporal profile of a standard mode-locked pulse train and of the nested-

cavity mode-locked laser with a 15 mm fused-silica FPE are shown in Figure 6.5. In

the standard mode-locked laser, a continuous mode-locked pulse train is generated.

The pulse period is determined by the cavity round trip time of the pulses in the laser

cavity. In the nested-cavity mode-locked laser, on the other hand, a Bell-shape “pulse

bunch” is formed and repeated at the round trip time. The temporal extension of this

high frequency pulse train is approximately 1.5 ns wide (FWHM). There are at least

14 pulses housed in a single bunch. The appearance of the pulse bunches resembles

an interferometric auto-correlation of a train of femtosecond pulses. Although an

analogy to the femtosecond pulse dynamics is found to be useful, what may appear

as an optical oscillation in Figure 6.5 is actually the partially resolved intensity profile

of individual pulses. From an auto-correlation shown in Figure 3.5 in Section 3.4,

the pulse width and inter-pulse period are found to be 2 ps and 148 ps, respectively.

The inter-pulse period matches approximately the group round-trip time of the 15.12

mm fused-silica, τFP = 2ngd/c with ng ≈ 1.48.

6.6.2 Group velocities study

The classical textbook description of group velocity applies to transparent systems

that can be fully described by their transfer function in the frequency domain [58].

As a pulse traverses an optical system characterized by a complex transfer function

T̃ (Ω) = T (Ω) exp(ψ(Ω), it can be shown that the center of gravity of the pulse suffers

a group delay τd given by:

τd =
d2ψ

dΩ2
. (6.43)
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Figure 6.5: Temporal profile of an output of the nested-cavity mode-locked laser (bottom),
in comparison to a pulse train from a standard mode-locked laser with the same cavity
length (top). Both measurements are acquired using a 25 GHz photodetector and a 8 GHz
oscilloscope.

Such a simple equation does not apply to systems with time dependent gain or

absorption, however. A typical example is that of a pulse traveling in a medium

with saturable gain. The decreasing gain from the leading edge of the pulse to the

trailing edge results in a pulse velocity exceeding the speed of light [58]. In the case

of the laser with the intracavity Fabry-Perot, the group velocities are dominated by

the energy transfer from one pulse to the next as well as the time dependent gain

(saturable gain), as discussed in Section 6.3.1.

The inclination angle of FPE has also an impact of the group velocity. Successive

passages shift the pulse in space as well as in time, resulting increasing losses. There

is therefore a large impact of the FPE angle on the group velocity that is dominated

by non dispersive effects.
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Group velocity reduction through Fabry-Perot

The quantitative understanding of the non-dispersive contributions to the group

velocity is completed by a numerical simulation of pulse dynamics in the presence of

the intracity FPE. The numerical model of the mode-locked laser includes a saturable

gain, linear and saturable loss and FPE. Details of this numerical calculation are

presented in Appendix C.

In each passage through FPE, an input pulse experiences multiple reflections and

creates a group of trailing pulses with quickly decaying intensity, as expected for

R = 3.4 %. Every member of the trailing pulses subsequently creates its own group

of trailing pulses after one round trip though FPE and recombines with pulses of

another group. Consequently, the pulse energy is transferred from the pulses ahead

in time to the ones later in time through multiple reflections. Figure 6.6 shows the

evolution of a bunch during first 50 round trips in the nested-cavity mode-locked

laser. The initial pulse is given by a 2 ps Gaussian envelope. After the first passage

(upper-left panel), a high frequency pulse train with inter-pulse period τfp = 148 ps

with quickly decaying intensity is generated. Since the energy flows from the front

edge to the rear edge of a bunch, a symmetric bunch envelope starts forming after

∼ 30 passages. In this simulation, the time axis is in a retarded frame of reference

moving with the original pulse. A shift of the center of gravity of the bunch from

the origin (t = 0) represents the group delay associated with the energy transfer.

A near steady-state evolution of the pulse bunch shown in Figure 6.7 displays more

clearly the slower velocity of the bunch envelope compared to the constituent pulses.

The shift of the bunch envelope to the right (towards latter times) with increasing

round-trips indicates the retardation of the center of gravity of the bunch in every

round-trip with respect to the constituent pulses. Figure 6.8 shows the center of

gravity of the bunch as a function of the number of round-trips for the first 300

round-trips. A positive slope indicates the retardation of the center of gravity of the
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bunch with respect to the constituent pulses.
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Figure 6.6: A numerical simulation showing the birth of the high frequency pulse train
during the first 50 round trips. Time axis is in the retarded frame of reference moving with
the pulses. The intensity profile of the pulse train initially decaying exponentially becomes
more symmetric bell-shape after many passages through FPE placed inside a laser cavity.
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Figure 6.7: A near-steady state evolution of the high frequency pulse train. The envelope
of a pulse bunch formed by at least 15 pulses moves slower than the constituent pulses,
which can be seen as the motion of the envelope to the right.

The temporal retardation of the center of gravity of the bunch in every round-

trip results in a reduced repetition rate. Compared to the repetition rate of a cavity

without an intracavity FPE, the reduction is as much as 1.4 MHz, which is significant
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Figure 6.8: Evolution of the center of gravity (COG) of a bunch with the number of round-
trips. The steady-state rate of change is 8.5 ps/rt is found in the numerical simulation.
The effective life time Tp (Eq. (6.46)) is 22 ns.

compared to 250 kHz reduction expected for an addition of the path-length due to

the 15.12 mm fused-silica FPE in the meter-long laser cavity.

Group velocity acceleration through Gain

As mentioned previously, a pulse group velocity is accelerated by a saturable gain.

The same acceleration effect applies to the center of gravity of the bunch of pulses

generated by FPE, as can be verified by the simple two-level rate equation approxi-

mation outlined below. The temporal evolution of a pulse in a gain medium is given

by Eq. (6.44) and Eq. (6.45);

d∆N

dt
= −I∆N

Ws

− ∆N −∆Ne

Tp
(6.44)

dI

dz
= σ∆NI (6.45)

where ∆N = N2 − N1 is the population inversion, ∆Ne is the population inversion

at equilibrium, Ws is the saturation energy density, σ is the absorption cross section

and the effective decay rate of the laser transition determined by the natural lifetime
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T1 and the pump rate R is given by

1

Tp
=

1

T1

+
R
2
. (6.46)

The main parameter in this model appears to be the effective gain lifetime, Tp, if it is

larger than the temporal extension of the high frequency pulse train, or the number

of pulses in that bunch. This dependence is illustrated in the theoretical plot of

Figure 6.9.

22.0 21.5 21.0
0.0

0.5

1.0

1.5

2.0

C
ha

ng
e 

in
 re

p 
ra

te
 (k

H
z)

Effective gain lifetime (ns)

 No FP x10
 With FP

Figure 6.9: Numerical study of gain saturation effect. Changes in the laser repetition rate
are calculated as a function of the effective life time of gain medium.

Group velocity dependence on pump intensity

The group velocity in a mode-locked laser cavity is influenced by the gain, a fact

that has been exploited for laser stabilization. An electro-optic device [67] or an

acousto-optic modulator [68] is placed to modulate the pump beam as a means to

control the repetition rate of the laser without affecting the phase velocity.

Figure 6.10 shows an experimental measurement of the laser repetition rate as

a function of the pump power, in presence or absence of an intracavity FPE. The
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dependence on pump power is considerably enhanced when FPE is present in the

cavity. The effective gain lifetime Tp decreases with increasing pumping rate, and

therefore the plot of Figure 6.10 could serve as an explanation of the observed en-

hanced dependence of the group velocity brought in by the intracavity FPE. The

effect of pump is however a little more complex. As will be shown in the next

Section, as the gain increases, the number of pulses created by FPE also increases,

modifying the delay of the center of gravity.
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Figure 6.10: Experimental study of gain saturation effects. Changes in the laser repetition
rate are measured as a function of pump power.

Group velocity dependence on Fabry-Perot angle

As mentioned above, group velocities associated with variations of optical path and

index of refraction are dwarfed by gain and loss dynamics. Another example can be

found in the repetition rate dependence of the nested-cavity mode-locked laser on the

angle of a 15 mm intracavity etalon, as plotted in Fig. 6.11. An increase by as much

as 30 kHz over 12 mrad angle range is measured. A model based solely on material

dispersion and path length changes predicts approximately 300 Hz reduction of the
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repetition rate over the range of angles in the figure.

Figure 6.11: Experimental measurement of the repetition rate of the nested-cavity mode-
locked laser as a function of the FPE internal angle θin.

To explain this unusual dependence of the repetition rate on the FPE angles, a

loss of the laser cavity introduced by a tilted FPE is considered. Refraction in a

tilted FP displaces a beam further from the optical axis as the angle increases. The

left panel in Figure 6.12 shows the amount of displacement of the beam from the

optical axis after one passage through FPE of different thickness as a function of

the angle. Since the cavity mode has a finite width in the transverse direction, the

cavity loss increases with the beam displacement. The right panel in Figure 6.12

shows measured laser threshold power as a function of the FPE angle, measured

for a 15 mm and 10 mm fused-silica FPE. The threshold power increases with the

angle as the cavity loss increases. It is noted that the threshold power for the thicker

FPE increases more rapidly with the angle, since the beam displacement distance is

proportional to the thickness.

Simulation of the repetition rate dependence of FPE angle: To simulate the

group velocity influenced by the loss due the beam displacement, a simple numerical
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Figure 6.12: Left: Beam displacement as a function of FPE angle after a single pas-
sage through a 10 mm and 15 mm fused-silica FPE. Right: Angular dependence of laser
threshold power for 15 mm and 10 mm fused-silica FPE.

model is developed. The key feature is an inclusion of an additional loss factor in

the Fabry-Perot transmission function in Eq. (6.6).

θin

θout

x1

d

x2

Optical

axis

τFP

Figure 6.13: Multiple reflections in a tilted FPE cause beam displacements from the
optical axis.

Referring to Figure 6.13, the center of the beam is displaced from the optical axis

(i.e., the path of the beam transmitted without reflections) by

xN = N × 2d tan θin cos θout (6.47)

where N is the number of round-trips. Assuming a fundamental Gaussian beam

(TEM00), the field amplitude of a Nth reflected beam evaluated at the optical axis
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is given by

AN = e−x
2
N/w

2

= e−2 ln 2(xN/∆)2

(6.48)

where w is the half-width of the field at 1/e and ∆ is the intensity FWHM. A modified

FP transmission function is then given by

T̃mod = (1−R)eiδ/2(A0 + A1Re
iδ + A2R

2ei2δ + A3R
3ei3δ + · · · ) (6.49)

As for the derivation of the standard Fabry-Perot transmission function, the sum

could run to infinity. However, from a practical point of view, only finite terms are

required to obtain sufficient accuracy. This simplification is particularly applicable

to a low reflectivity FPE for which the intensity of the reflected beams is nearly

vanished after a few round-trips, and contributions of the higher order terms to the

sum are negligible. A truncated version of the transmission function is then

T̃mod = (1−R)eiδ/2
N ′∑
N=0

AN(Reiδ)N (6.50)

Eq. (6.50) is readily incorporated into a numerical calculation.

Figure 6.14 shows a numerical simulation of the repetition rate as a function of

the FPE tilt angle, where the repetition rate is defined as the center of gravity of

the bunch. In this simulation, the following parameters are used: a laser cavity

of L = 1.2 m, the FPE thickness d = 15.12 mm, np = 1.4534, ng = 1.4673 and

∆ = 400 µm. The sum in (6.50) is determined up to N = 10. By comparing with

the experimental measurement in Figure 6.11, this simple model based on the cavity

loss due to beam displacement is in good agreement.

From these results, the anomalous increase of the repetition rate with the angle

can be interpreted as increased cavity loss for the pulses in the tailing edge of the

bunch with the FPE angle. As a result, the center of gravity of the bunch shifts

forward in time, and the repetition rate increases.

130



Chapter 6. Interwoven frequency comb from a nested-cavity mode-locked laser

0 2 4 6 8 10 12

125.17

125.18

125.19

125.20

125.21

125.22

R
ep

et
iti

on
 ra

te
 (M

H
z)

in (mrad)

27.6 kHz

Figure 6.14: A numerical simulation of the angular dependence of the bunch velocity. An
inclusion of the loss factor due to beam displacement into the modified FPE transmission
function (6.50) reproduces an experimental observation in Figure 6.11.

6.6.3 Transition to single-pulse mode-locking

When the FPE angle is increased to a sufficiently large angle, the cavity loss exceeds

the gain for all the multiply reflected pulses, and the laser starts operating in the

single pulse mode-locking. It is interesting to observe how the repetition rate behaves

when the laser make a transition from the nested-cavity mode-locking to the single-

pulse mode-locking.

For the single pulse mode-locking, a transmission of an ultrashort pulse though

a thick FPE is characterized by a group delay τgr = dψ/dΩ. Using Figure 6.15, the

repetition rate is expected to vary with the FPE angle according to

f ′rep =
c

2

[
n̄gl + ngAB + n̄g(L− l − AC)

]−1

=
c

2

[
n̄gL+

d

cos θin
{ng − n̄g cos(θout − θin)}

]−1

=
c

2
[n̄gL+ δL]−1 (6.51)

where d and L are respectively physical length of FPE and the laser cavity, ng

is the group index of refraction of FPE, and n̄g is the average group index of
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the laser cavity. The change in the laser cavity length is given by δL, where

δL = d {ng − n̄g cos(θout − θin)} / cos θin. The internal and external angle are re-

lated though sin θout = np sin θin where np is the phase index of refraction of FPE.

Therefore, insertion of FPE into the laser cavity would reduce the repetition rate by

δfrep = −δL
L
frep (6.52)

in the absence of the bunch formation. For example, with L = 1000 mm, d = 15

mm, ng = 1, np = 1.4534, ng = 1.4673 at normal incident θout = θin = 0 rad, a

change in the repetition rate would be δfrep ≈ −1.05 MHz.

θout

θin

M1 M2

l A
C

B
L-l-AC

Figure 6.15: Geometry of a simplified laser cavity with an intracavity FPE.

Figure 6.16 shows the repetition rate around the angles where the transition from

the multiple pulse to single pulse mode-locking takes place. For smaller angles, the

repetition rate increases with the FPE angle, as presented above for the case of the

nested-cavity mode-locked laser (left side of a dashed line). The transition occurs

at approximately θ = 59◦. As soon as the laser switches to the single-pulse mode,

the repetition rate starts following Eq. (6.51), as expected for the group velocity of

a single pulse in the cavity.
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(6.51)

Figure 6.16: Repetition rate around the transition between the mode of operation. A red
line is a fit given by Eq. (6.51), which agrees with the measurement.

6.6.4 Behavior of group velocity from a point of view of

cavity resonance

So far in this section, the behavior of group velocity (repetition rate) of the nested-

cavity mode-locked laser is explained in terms of the intrinsic energy transfer in FPE

and the gain-loss balance. Here, a different view of the group velocity behavior based

on the FPR transmission function is to be introduced. As discussed in Section 6.3,

the phase of a transmitted pulse train with a finite number of pulses through FPE

depends on the number of pulses and the gain, as shown in Eq. (6.48). The group

velocity of the bunch should also depend on those parameters.

For simplicity of discussion, the gain is assumed to be linear and uniform in the

frequency range around a Fabry-Perot resonance of interest. The gain factor a at

each round-trip can be incorporated into the phase factor δ: δ̃ = δ − ia, where δ̃

is the previously defined complex phase factor, and δ is the real part of this phase

factor.
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The transmission function with gain is then given by

T̃ (Ω) =
(1−R)ea/2e−ikd

1−Reaeiδ
(6.53)

Since a near-resonance transmission is considered1, T̃ (Ω) can be expanded in series

of δ = −2ikd = −2iΩn/c, limiting to first order, to find:

T̃ (Ω) = (1−R)ea/2

[
ei
δ
2

(1−Rea)iReaδ

]
. (6.54)

Consistent with these approximations, the phase angle is:

ψ = δ/2 + arctan

[
Reaδ

1−Rea

]
(6.55)

The group delay is the derivative of ψ with respect to Ω:

dψ

Ω
= −nd

c
− 1

1 + S2δ2
S
nd

c
(6.56)

where

S =
Rea

1−Rea
. (6.57)

The expression (6.56) is a function of frequency. The goal is to find the group delay

near resonance, which means δ = 0 or Ω = 0. Therefore, a good approximation for

the group velocity of the bunch is:

dψ

Ω
= −nd

c

[
1 +

Rea

1−Rea

]
. (6.58)

It is interesting to note that, the smaller the difference (1−Rea), the the narrower the

Fabry-Perot resonance and the larger the number of pulses in the bunch, and also the

larger the difference between group and phase velocity. This result is consistent with

the experimental observations presented above, but derived in a different principle.

1Although the width of individual pulses is on the order of a few picosecond with a
spectrum covering many transmission peaks, this approximation seems to work. The reason
is that transmission of a train of picosecond pulses extending over a couple of nanosecond
is equivalent to transmission of a single nanosecond pulse whose spectrum is narrower than
the free-spectral-range of a centimeter FPE.
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6.6.5 Comb structures

Radio frequency (RF) spectrum of the laser output is measured using a 13 GHz

spectrum analyzer. Top plot in Figure 6.17 shows a RF spectrum of a standard

mode-locked laser in the neighborhood of 6.8 GHz spectral region. The standard

mode-locked train produces a flat-top RF spectrum with its mode spacing given by

the repetition rate of the laser:

fM = M × frep (6.59)

where M is an integer.

The spectrum of the nested-cavity mode-locked laser shown in the bottom plot

in Figure 6.17 displays a bunch of modes in the neighborhood of 6.8 GHz. In com-

parison to the time domain profile in Figure 6.5, the mode structure around 6.8 GHz

corresponds to inter-pulse period, τfp = 148 ps, which is determined by the round-

trip time of a pulse in the 15 mm fused-silica FPE. The width of spectral envelope

is determined by the temporal extension of the bunch.

With the cavity length adjusted such that the mode spacing is equal to the

standard mode-locked laser, the presence of an offset frequency is clearly visible, as

can be seen more clearly in the inset plot. The offset is measured to be approximately

10 MHz.

This offset frequency is a direct consequence of the difference between the veloc-

ity of bunch envelope and the constituent pulses. As mentioned in the numerical

simulations presented in Section 6.6.2, the bunch envelope travels slower than the

constituent pulses. The slope of Figure 6.8 gives a relative delay, to be labelled as

∆τPB, between the bunch envelope and pulses per round-trip. The difference in their

velocities results in a round-trip phase slippage between the bunch envelope and the

pulses. In the frequency domain, a constant change in a phase becomes a frequency.
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Figure 6.17: RF spectra of a single-pulse mode-locked laser with no FPE (top) and of the
nested-cavity mode-locked laser with a 15 mm intracavity FPE (bottom). Both lasers are
set to the same repetition rate. Inset: a zoom to indicate a shift of the spectrum of the
pulse bunch train, resulted from the formation of the pulse bunches.

By deliberately applying the formula for the carrier-envelope offset (CEO) in the

optical frequency comb arising from the difference between the carrier and group

velocity [69], the offset frequency fPBO can be given by

fPBO =
∆φPB
2πτrt

=
∆τPB/τFP

τrt
(6.60)

To verify Eq. (6.60), fPBO is estimated from the value of ∆τPB obtained from the

numerical simulation in Figure 6.8. For τrt = 1/155 MHz = 6.4 ns and τFP =

1/6.8 GHz = 148 ps, and ∆PB = 8.5 ps, fPBO = 9.0 MHz is obtained, which is in

good agreement with the measured offset in the RF spectrum in Figure 6.17.
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6.7 Resonance condition of the nested-cavity

6.7.1 Link between high and low frequencies

The interference in FPE sets the resonance modes of FPE. Since these modes must

add constructively at FPE after one round-trip in the laser cavity, they satisfy the

resonance conditions of both the laser cavity and FPE simultaneously:

4πfLnpL
c

= 2πNL (6.61)

4πfdnpFP
c

= 2πNFP (6.62)

where f is the frequency of the mode, L and d are respectively length of the laser

cavity and FPE, npL is the phase index of the laser, npFP is the phase index of FPE,

and NL and NFP are integers. A ratio of Eq. (6.61) to Eq. (6.62) gives

npL
npFP

L

d
=

NL

NFP

(6.63)

which is not necessarily an integer. The product of the repetition rate of FPE fFP

by the round-trip time in the laser cavity τrt gives a ratio of the high frequency (HF)

component corresponding to fFP and the low frequency (LF) component correspond-

ing to frep of the RF spectrum:

fFP × τrt =
c

2dngFP
× 2LngL

c
=

ngL
ngFP

npFP
npL

NL

NFP

=
fFP
frep

(6.64)

where ngL and ngFP are the group indices of the laser cavity and of FPE. Notice that

both ngL and ngFP are different from the ordinary group indices determined by the

material index of refraction, rather they are determined by the propagation though

the nested-cavity as discussed in Section 6.6.2.

The ratio in Eq. (6.64) is very close to an integer. As outlined in Section 6.3.1,

many round-trips (p > 50) are required to form the bunch of the high frequency

(HF) pulse train. The construction of the high frequency pulse train can take place
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only if the repetition rate of the HF train is near resonance with the laser cavity.

This extraordinary additional resonance condition implies that the repetition rate of

the laser, and that of the pulses constituting the HF train, are linked. The resonance

condition of the HF train with the laser cavity can be expressed as

2fFPngLL

c
= M (6.65)

where M ∼ L/d is very close to an integer, and the dependencies on the group index

ngL and the length L of the laser cavity are indicated explicitly. In the following

sections, experimental observations of the coupling of HF and LF are presented.

6.7.2 Angular dependence

As described in Section 6.6.2, the group index of refraction of the laser cavity ngL

decreases with increasing angle of FPE, which dominates the angular dependence

of the repetition rate (LF) that increases with the angle. Figure 6.18 shows the

angular dependence of four modes of the RF (radio frequency) spectrum selected in

the region around 6.8 GHz when a 15 mm fused-silica is placed in the laser. The

ratio is approximately L/d ∼ 55. In this plot, only every 5 modes are shown in order

to indicate a change in the mode spacing. The high frequency mode corresponding

to fFP is centered around 6.8 GHz. The low frequency corresponding to the laser

repetition rate is the spacing between the adjacent modes. The link between HF and

LF is clearly seen. As LF increases with the angle, therefore with decreasing ngL,

HF increases in accordance with Eq. (6.65).

6.7.3 Dependence on the laser cavity length

If there were no coupling between the modes of the two cavities, HF would be un-

affected by a change in the laser cavity length. However, due to the simultaneous
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Figure 6.18: Angular dependence of high frequency modes around 6.8 GHz.

resonance conditions leading to Eq. (6.65), HF is affected by the laser cavity length.

Figure 6.19 shows measurements of HF (left) and LF (right) while scanning the cav-

ity length over 20 mm. LF, the laser repetition rate, varies linearly with the cavity

length. Its slope agrees with the linear relationship between the repetition rate and

the cavity length, given by frep = c/2L, as expected. Almost counter-intuitively, the

HF mode also exhibits a linear dependence on the cavity length. The slope is found

to be

∆fFP
∆L

= −fFP
L

(6.66)

which is in excellent agreement with Eq. (6.65).

Direct time domain measurement

From Eq. (6.65), it is clear that when the laser cavity length is changed over one

“wavelength (= c/fFP )”, M changes by ±1. During a scan of the cavity length

over several wavelength, therefore, an oscillatory behavior of the inter-pulse period,

1/fFP , should be observed. With a 1 m long laser cavity and a 6.5 mm long calcium
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- - - - - - - -

- -

Figure 6.19: High frequency (left) and low frequency as a function of the cavity length.

fluoride (CaF2) FPE, a maximum change in the inter-pulse period is approximately

0.5 ps. This value is close to the resolution of an auto-correlator available in our

laboratories, therefore it is possible to measure the change in the inter-pulse period

directly in the time-domain.

Figure 6.20 shows the inter-pulse period (τfp) of the HF train measured both in

the time-domain and frequency-domain as a function of the laser cavity length. The

time-domain measurements (red squares) are obtained by measuring the inter-pulse

period using an auto-correlator. An 8 RPM synchronous motor is employed to scan

the delay line over 5 cm, corresponding to a total scanning range of 330 ps. With

a 6.5 mm CaF2, the inter-pulse period is approximately τfp = 61.5 ps. Therefore,

5 peaks of interferometric auto-correlation of the HF train are obtained in a single

scan. The temporal separations between the peaks are determined by the maximum

likelihood fitting method. The points plotted in the figure is the average of the 4

values determined by the method described above.

The frequency measurements are obtained for three RF modes around the HF

mode of FPE (fFP ≈ 16.2 GHz), labelled as f126, f127 and f128. In order to compare

with the time-domain measurements, the measured frequencies are converted into

their inverse.
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The time and frequency domain measurements seem to agree quite well. This

result further supports our conclusion that the inter-pulse period is coupled to the

laser cavity length. A systematic discrepancy between the two measurements, seen

as lower values of the frequency measurements, is due to a calibration of the RF

spectrum analyzer. By referencing it to a RF standard, this error should be removed.
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Figure 6.20: Experimental measurements of the inter-pulse period τFP of the HF pulse
train, measured both in time-domain (solid squares) and in the frequency-domain.

6.8 Application for precision measurement of a

change in index of refraction

6.8.1 Concept

The goal is to exploit the coupling of the high frequency of FPE and the low frequency

of the repetition rate of the laser for a high resolution measurement of a small change

in the index of refraction of FPE. As described above in Section 6.7, the coupling

of HF and LF arises because of the simultaneous resonance of the two cavities. The
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ratio of HF to LF as given as

fFP
frep

=
ngL
ngFP

npFP
npL

NL

NFP

(6.67)

must be very close to an integer in order for the HF pulse train to form. The first

term of the right hand side is a ratio of the group index of the laser cavity to that

of FPE, which are predominantly determined by pulse dynamics due to gain-loss

balance (Section 6.6.2) and to the condition for the build-up of the HF pulse train.

The third term is a ratio of integers which are determined by the physical dimension

of the cavities, L and d. Therefore, the first and the third terms remain the same as

long as the cavity conditions, including pump power, alignment, and cavity length,

are unchanged. Now, the second term is a ratio of the phase index of refraction of

FPE to that of the laser cavity, which are unique physical quantities to the material

of the object. Assuming the cavity conditions are unchanged, if there is a change in

the index of refraction of FPE, it will be reflected to the ratio of HF to LF.

Index change due to radiation damage

It is known that a bombardment of high-energy particles, such as photons, neutrons,

electrons and protons, onto an optical glass causes defects in the crystal structure

and induces a change in the index of refraction [70, 71, 72]. For trial experiments,

several samples of CaF2 are to be irradiated by neutrons from a PuBe neutron source

with different dosages.

6.8.2 Initial experiments

A detection of a change in the index due to radiation damage is based on differ-

ence of the HF-LF ratio between pre- and post-irradiation. Therefore, all the cavity

conditions, including the cavity gain (loss) and cavity alignment, must be kept con-
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stant over the course of measurement. The purpose of the initial experiments is to

test the system’s consistency. Three CaF2 FPEs to are used for these experiments.

Their physical thickness, measured based on mechanical measurement, are listed in

Table 6.6. The mode-locked laser used in this experiment is the same as described

throughout this chapter. Each FPE sample is placed on a mount which is fixed in

the cavity, and the FPE high frequency mode and the laser’s repetition rate are

recorded using a 26 GHz RF spectrum analyzer and a frequency counter for 1 min.

An example of the measurement of FPE mode is shown in the left panel in Fig. 6.21.

After recording the two frequencies with one sample, another FPE sample is replaced

without touching cavity optics, and the same measurements are repeated. Data for

three samples comprises one data set. This procedures is repeated to make a total

of 5 sets. Results are shown in the right panel of Figure 6.21. Over the course of the

measurement, there is a systematic shift of the frequency of all three samples.

Sample # Thickness (mm)
1 6.4727
2 6.4740
3 6.5120

Table 6.6: Mechanically measured thickness of CaF2 FPE samples.

Differential measurement is more advantageous because it is less dependent on

the cavity misalignment. Difference frequencies are calculated between the FPE high

frequency mode for each sample within the same measurement set. For example, the

difference frequency between the sample #1 and #3 in the measurement set #1 is

f13 ≡ f1f3. The result is shown in the left panel in Fig. 6.22. The same analysis is

done for the repetition rate, shown in the right panel.
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Figure 6.21: Measurements of the FPE high frequency mode for each sample, measured
with a 26 GHz spectrum analyzer over 1 min. Left: a data from one set of the measurement.
Right: data for all 5 measurement sets.
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Figure 6.22: Difference of the high frequencies (left) and the repetition rate (right) between
the the samples for each measurement set.

Results

The thickness of sample #3 is different from other two samples by approximately

0.5% of its thickness. From the high frequency measurement in Figure 6.22, the

resolution can be determined as

R ' f13

∆f13

=
267.16kHz

3.24kHz
= 82.46 (6.68)
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In principle, it should be able to resolve 0.5%/82.5 = 0.006% change in thickness

or equivalently in the index of refraction. For CaF2 with n = 1.4305, it should be

able to detect a change of

∆n = 0.00006× 1.4305 ≈ 10−4 (6.69)

The width ∆fij is currently limited by the inaccuracy between the measurement

sets. This can be improved by building more stable apparatus. If this was done, the

ultimate width is given by the fluctuation of the measurement within a set, which in

my current data is ≈ 300 Hz at best. With this value, the resolution improves by a

factor of 10.

6.8.3 A method for better sensitivity

In Figure 6.23, the ratio of HF to LF is plotted as a function of the FPE angle for two

different FPEs of the same index but with slightly different thickness. The angular

dependence of the ratio is due to the change in the cavity group index (the first term

in (6.67)), which is affected by the gain-loss balance. What is remarkable in this

measurement is that the two curves are nearly parallel. It means that the angular

dependence of the gain-loss balance has not been changed between the two measure-

ments. The only change made between the two measurements are the thickness of

the FPEs. The remarkable performance of this method implies that the sensitivity

can be further improved by two orders of magnitude (∆n ∼ 10−6).
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Figure 6.23: Ratio between the high RF and low RF as a function of the FPE angle.

6.9 Conclusion

In this chapter, the generation of the interwoven frequency comb from the nested-

cavity mode-locked laser is demonstrated. The interwoven frequency comb is com-

posed of two frequency combs with different mode spacing, with the low frequency

from the repetition rate of the laser cavity and the high frequency from the mini-pulse

train generated due to an intracavity FPE. The properties of the new class of mode-

locked laser, including the frequency tunability, dependence of the comb spacing on

the gain and loss, and the intricate coupling between the low and high frequencies

due to a coupled-cavity resonance condition, are scrutinized. An exploitation of the

relation between the high and low frequencies through the cavity resonance to a

measurement of the index of refraction of FPE is proposed. A potential to measure

a small change in the index of refraction due to a structural damage in a crystal by

nuclear radiation is demonstrated.
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Conclusions

The contributions presented in this dissertation are centered around the development

of ultra-sensitive mode-locked laser sensors based on a measurement of intracavity

phase shift. Towards the realization of Intracavity Phase Interferometry (IPI) atomic

magnetometor, experimental studies of interaction of a mode-locked pulse train with

a 87Rb vapor are performed in both extra- and intra-cavity configurations. Also, a

new class of the frequency comb, the interwoven frequency comb, which is invented

during this dissertation work, is extensively studied both experimentally and nu-

merically, and its application for a precision measurement of index of refraction is

presented.

Coherent population trapping (CPT) of a 87Rb vapor is introduced as a method

to prepare a long-lived macroscopic magnetization in the vapor using a mode-locked

laser. CPT of 87Rb occurs because of a strong coherence between the ground-state

hyperfine sublevels which renders the atoms to be decoupled from the excitation

electric field. With a mode-locked pulses, CPT of a 87Rb vapor is realized when the

repetition rate matches to a submultiple of the ground-state hyperfine splitting. Us-

ing a vapor cell with no buffer gas or anti-relaxation coatings, shielded from ambient
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magnetic fields, a dark-line resonance (a dip in a fluorescence signal) with 11 kHz

linewidth is observed when the repetition rate is scanned across the CPT resonance.

By applying a longitudinal static magnetic field and using a train of circularly po-

larized pulses, optical pumping of the atomic population into a superposition of the

magnetic field sensitive sublevels is achieved.

Further enhancement of the optical pumping is demonstrated by means of a

spectral shaping using an intracavity Fabry-Perot etalon (FPE) which is placed in

the mode-locked laser cavity. By choosing a FPE with low surface reflectivity and

the free-spectral-range closely matching to the ground-state hyperfine states of 87Rb,

spectral overlap between the excitation pulse train and the atomic transitions is

significantly increased. As a result, more spectral power is utilized in the preparation

of CPT, and the contrast of the dark-line is improved by nearly a factor of 3. An

improvement of the optical pumping is also achieved. Due to a emergence of an offset

frequency in the spectrally shaped frequency comb, the resonance repetition rate is

shifted by as much as 200 kHz compared to the resonance frequency induced by a

standard mode-locked pulse train.

Preparation of CPT of a 87Rb vapor using a sequence of pulses with alternating

right and left circular polarizations is experimentally investigated. This pumping

scheme, known as the push-pull optical pumping, simulates the pulse sequence en-

countered in a CPT-based IPI atomic magnetometer. With a delay between two

orthogonal circular polarizations set to a half integer multiple of the inverse of the

ground-ground state hyperfine splitting, a large fraction of the atomic population is

pumped into the 0-0 superposition state using a cell containing N2 buffer gas placed

in a longitudinal static magnetic field. Consequently, a strong and narrow (∼ 4 kHz)

dark-line signal is obtained from the 0-0 superposition state which is insensitive to

magnetic field, while a very small signal obtained from the field sensitive superpo-

sition states. This result suggests that an alternative pumping scheme, for example
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pumping with a pulse train with unequal intensity between RCP and LCP, needs to

be investigated for an application for a magnetometer.

Following the extracavity studies, coherent propagation of resonant picosecond

pulses in a 87Rb vapor inside the laser cavity are studied both experimentally and

numerically. When the laser frequency is resonant with the D1 transition frequency,

significant pulse shaping effects, including pulse broadening and amplitude and/or

phase modulation, are observed. By varying the number density of the vapor, a

linear dependence of the pulse group velocity, which is measured based on the laser

repetition rate, is also observed. Those observations are consistent with the char-

acteristics of coherent propagation of a resonant optical pulse in a two-level atomic

system, particularly, the well-known nonlinear optical phenomenon of self-induced

transparency. A simple numerical model based on propagation of a resonant picosec-

ond pulse in a three-level atomic system agrees reasonably well with the experimental

observation of the slow light propagation, although a discrepancy between the ex-

perimental and numerical data is not negligible. There is also a disparity between

the measured area and the expected value of 2π which is known to be stable in some

experimental conditions, which may not be applicable to the experiments presented

in this dissertation.

A dark-line is observed in the intracavity vapor cell when the repetition rate

is tuned to the CPT resonance. Surprisingly, the resonance line-shape is not very

different from the dark-line observed in the extracavity experiments, despite the fact

that the intracavity intensity is nearly 2 orders of magnitude larger. The occurrence

of the intracavity CPT can be attributed to a return of the atomic population to the

ground-state after coherent interaction with a picosecond pulse having sufficiently

large area.

Finally, a new type of frequency comb, the interwoven frequency comb, is demon-

strated. By placing a centimeter long Fabry-Perot etalon in a meter long laser cavity,
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termed as the nested-cavity mode-locked laser, a frequency comb composed of 7 GHz

high frequency modes surrounded by 100 MHz low frequency modes is generated.

The counter-intuitive properties of the comb include the pronounced dependences of

the group velocity on the FPE angle and the laser gain, the presence of an offset

frequency and coupling of the high and low frequency modes. By exploiting the cou-

pling of the modes, which arises because of the simultaneous resonance of the two

cavities, a method to extract a relative change of the index of refraction of FPE is

proposed, and a proof of principle measurement is demonstrated for its feasibility.
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Appendix A

Parameters in coherent interaction

with 87Rb

A.1 Dopper broadening of 87Rb vapor

For a vapor state 87Rb atoms, the inhomogeneous broadening is dominated by the

Doppler broadening. A Doppler broadened inhomogeneous lineshape is represented

by a Gaussian:

g(ω′0 − ωih) =
2

∆ωD

√
ln 2

π
e−(ω′

0−ωih)2/∆ω2
D (A.1)

where ∆ωD is FWHM of the Doppler broadening width. The lineshape function g

in Eq. (A.1) satisfies the normalization condition;∫ ∞
−∞

g(ω′0 − ωih)dω′0 = 1 (A.2)

The Doppler width ∆ωD at a given temperature T is given by [73],

∆ωD = 2ω

√
2 ln 2

kBT

mc2
=

4π

λ

√
2 ln 2

RT

M
(A.3)
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The parameters in Eq. (A.3) for 87Rb are summarized in Table A.1. For example, at

T = 297 oK, the Doppler width is ∆ωD = 2π × 499.3 MHz.

Symbol Relation Value Unit Description
kB - 1.381× 10−23 J/oK Boltzmann const.
Nav - 6.022× 1023 mol−1 Avogadro’s num.
R Nav × kB 8.3143× 103 m2 · g/s2 ·oK · mol -
M - 86.91 g/mol Molar mass
m M/Nav - g Atomic mass
c - 2.997925× 108 m/s Speed of light
λ - 795× 10−9 m Wavelength of light
ν c/λ 377× 1012 Hz Frequency of light

Table A.1: Parameters used to calculated the Doppler width in Eq. (A.3) of 87Rb.

A.2 Absorption coefficient

A simple approximation to find the absorption coefficient α for an inhomogeneously

broadened medium is to replace T2 by T ∗2 in the expression for the absorption coef-

ficient. The absorption cross-section is then

σ =
p2T2µ0ε0ω

2c

ε0ωn~
=
p2T2ω

ε0cn~
=

2πp2T2

ε0λn~
(A.4)

For a 87Rb vapor at room temperature, and taking T ∗2 = 1/(2π× 500 MHz) = 0.318

ns, we have

σ = 0.175× 10−10cm2 (A.5)

where p = 2.54 × 10−29 C·m is the electric dipole moment of D1 transition of 87Rb

and n = 1 is the index of refraction of the 87Rb vapor in vacuum.

The vapor pressure is calculated according to [5]:

log10Pv = 2.881 + 4.857− 4215

T
(A.6)
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At a room temperature, T = 297 K,

Pv = 3.575 · 10−7Torr = 4.766 · 10−5Pa (A.7)

From the ideal gas law,

N =
Pv

kBT
=

4.766 · 10−5

1.381 · 10−23 × 297
= 1.161 · 1010 /cm3 (A.8)

The absorption coefficient is then,

α0 = σ0 × N = 0.20 cm−1 (A.9)

For a 7 cm long cell, αL = 0.2 cm−1 × 7.0 cm = 1.4.
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Design consideration for a vapor

cell for an intracavity use

B.1 Effects of the window design on mode-locking

operation

There are several requirements for the design of the 87Rb vapor cells used in the

intracavity experiments. The most important one is a scattering loss on the windows,

which must be minimized for a use inside a laser cavity. Several types of windows

are examined; including Brewster-cut windows, anti-reflection (AR) coating on both

outer and inner surfaces, a thin 1 mm window and a large-angle wedged window with

AR coating only on the outer surfaces.

The Brewster-cut and the double-sided AR coating windows introduce the least

loss and require less pumping power. However, it is found that both window types

cause the laser frequency to become unstable and strongly dependent of the angle

between the window surface and the beam. For the Brewster-cut window, it is most
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likely due to the polarization-dependent bandwidth of the laser, which makes the

laser frequency very sensitive to the incident angle of the beam. For the double-

sided AR coated cell, it is due to a generation of multiple pulses, despite a very low

reflectivity (< 1%). The generation of intracavity multiple pulses is almost always

encountered in intracavity experiments, therefore is treated in great detail in Chapter

xx.The same effect of the multiple pulse generation is also observed with a thin 1mm

windwo. Both effects of the polarization-dependent instability and the multiple pulse

generation make a fine-tuning of the laser frequency to the atomic resonance very

challenging. Figure B.1 shows auto-correlation traces of a pulse train when a cell with

the double-sided AR coated widow (left) and the 1 mm thin-plate (right) windows

is inserted in the laser cavity. Multiple pulses separated by a round-trip time of the

respective windows are clearly visible in both cases.

To prevent the interference of the cell windows with the laser frequency, a cell

with one-sided AR coated wedged widows is designed. The window has a wedge at 3◦

and AR coated on the outer surface only. Due to the wedge surfaces and one-sided

AR coating, the cell does not generate multiple pulses or cause the polarization-

dependent instability, although the large wedge produces more cavity loss. Only by

pumping at high power (> 5 W), the laser can be mode-locked.
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Figure B.1: Left: Intensity auto-correlation of a pulse train when a cell with 4.2 mm fused-
silica windows with double-sided AR coating is placed in the cavity. Despite the double-
sided AR coating on both outer and inner surfaces, the multiple pulses are generated,
causing the intracavity Fabry-Perot interference effect. Right: The same multiple pulse
generation is observed with a cell with 1 mm thin Pyrex windows.
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Numerical simulation of the

Fabry-Perot high frequency pulse

train

C.1 Introduction

The goal of this numerical simulation is to study how a pulse bunch is formed from

a single pulse in the presence of an intracavity FPE and how different parameters of

both FPE and the laser affect its intracavity evolution and dynamics.

For simplicity, the nested-cavity mode-locked laser is modeled by the cavity ele-

ments including FPE, laser gain, saturable absorber, a bandpass filter and a linear

loss of the whole cavity. A flow-chart of the simulation is shown in Figure C.1. Since

some elements are described more conveniently in the time domain, while others in

the frequency domain, the simulation domain is switched back and forth between

time and frequency domain by using Fast Fourier Transform (FFT) functions.
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Figure C.1: A diagram indicating the cavity elements and a flow-chart of the numerical
simulation of FPE pulse train.

C.2 Fabry-Perot etalon

For the purpose of our study, where only the forward propagation have a dominant

effect, the transmitted fields are only considered and ignore the reflected fields. The

linear transmission function of a Fabry-Perot etalon is described in the frequency

domain as

ẼFP = Ẽ(Ω)T̃ (Ω) (C.1)

where

T̃ (Ω) =
(1−R)e−iδ/2

1−Re−iδ
= |T̃ |e−iψ (C.2)

where δ = 2ω0npd cos θin/c. Here, np is a linear phase index of refraction of the

material, which is given by the Sellmeir’s dispersion formula [50]:

n2(λ) = 1 +
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

(C.3)

Eq. (C.3) is an empirical formula and only applies to the wavelength region where

the absorption is negligible.
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As described in section 6.6.2, the additional loss term due to beam displacement

must be included in order to accurately capture the effects of FPE inside the laser

cavity. Repeating the procedures described in section 6.6.2, the initial transmitted

beam is displaced with respect to the incoming beam by

X0 =
d sin(θout − θin)

cos θin
(C.4)

The displacement of N -th transmitted beam with respect to the position of the initial

transmitted beam is given as

XN = N × 2d tan θin cos θin (C.5)

Here, two assumptions simplify the problem. First, the beams have the funda-

mental Gaussian profile (TEM00). Second, lasing action can only occur along the

optical path of the initial transmitted beam. These assumptions are of course a

coarse approximation and maybe oversimplifying the problem. However, as shown

in section 6.6.2, they are surprisingly good ones and capture the mechanism leading

to the angle dependence of the repetition rate.

With these approximations, the coefficients accounting for the additional loss of

the N -th beam can be identified as the amplitude of the Gaussian beam centered at

XN evaluated at the position of the initial transmitted beam:

AN = e−X
2
N/w

2

(C.6)

When θin = 0, XN = 0 and therefore AN = 1, as expected for the case when all the

multiply reflected beams are aligned along the optical path of the initial transmitted

beam.

To find a modified transmission function containing the additional loss factor due

to the beam displacement, all the transmitted fields are summed up:

T̃mod = (1−R)eiδ/2(1 + A1Reiδ + A2R2ei2δ + A3R3ei3δ + · · · ) (C.7)
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As in the case of usual FPE transmission, the sum could be run infinity. However,

it would be mathematically involved because of the exponential factor in Eq. (C.6).

The problem is greatly simplified in a practical point of view. Instead of summing

up to infinity, it can be truncated after finite terms. This is especially legitimate

for a low reflectivity FPE, since after a few round-trips through the low-reflectivity

FPE the intensity of the beam is nearly vanished and its contribution to the sum is

negligible. A truncated version of the transmission function is then

T̃N = AN(1−R)eiδ/2
N ′∑
N=1

(Reiδ)N−1 (C.8)

C.3 Gain medium: rate equation

The gain dynamics is described by the rate equations for the population of the laser

medium. Our focus here is on the titanium-sapphire crystal. Titanium-sapphire is

represented as a four-level system [74]. A green pump laser at 532 nm promotes

the ground state population to the upper excited state, immediately followed by

transition to the lower excited state via lattice relaxation. The lower excited state

has a long lifetime of the order of microsecond before de-excited by spontaneous

emission of a photon to the upper ground state which in turn quickly decays to the

lower ground state. Therefore, suitable for creating population inversion. Ti:sapphire

lasers operates on the transition from this lower excited state to the upper ground

state. Once reaching the upper ground state, the population quickly decays to the

lower excited state and is recycled in the process.

In a model of a cw mode-locked laser, the long period between pulses (∼ns) and

the ultrashort pulse width (fs ∼ ps) make the population in the fast decaying levels

irrelevant. In those cases, the gain medium is represented as an effective two-level

system. Moreover, a cw mode-locked pulse train has a constant intensity profile
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from pulse to pulse. Thus, the saturation and recovery of the medium, which can be

replaced by the effective lifetime, are also invariant from pulse to pulse basis. This

is also true for a multi-GHz pulse train. On the other hand, if one of the following

conditions is met:

• The pulse period is comparable to lifetime of short lived levels

• Inter-pulse intensity variations exist within the lifetime of these short-lived

levels,

such as a pulse train generated from the nested-cavity mode-locked laser, then the

two-level representation is no longer a good approximation.

In order to construct an accurate model for the interaction of the pulse bunch

train with a Ti:Sapphire crystal, a short-lived third level must be added to the model.

Figure C.2 shows the three level representation of Ti:sapphire being discussed here,

along with relevant excitation and relaxation passages. The rate equation is then

given as

dN1

dt
=

I

Ws

(N2 −N1)− Ip
Wp

(N1 −N3) +
N2

T1

dN2

dt
= − I

Ws

(N2 −N1)− N2

T1

+
N3

τ3

dN3

dt
= − Ip

Wp

(N1 −N3)− N3

τ3

(C.9)

where Wp = hνp/σp and Ws = hνl/σl are the saturation energy densities for the

pump and for the laser, with νp, νl and σp, σl the cyclic frequency and the absorp-

tion (emission) cross-section of the pump and laser field, respectively, h the Plank’s

constant, 1/T1 the spontaneous emission rate of the upper laser level and 1/τ3 the

relaxation rate of 3→ 2 transition, which is assumed to be very fast, of the order of

τFP . The laser field is amplified according to:

dI

dz
= σ(N2 −N1)I = σ∆NI (C.10)
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where σ is the gain cross-section and ∆N = N2 −N1 is the population inversion.

1

2

3

21

32

31
st

R

Figure C.2: Energy levels and transitions passages in a simplified Ti:sapphire.

Eq. (C.9) can be solved numerically. However, since the simulation involves a

wide range of time scales, ranging from sub-picosecond for the structure of individual

pulses to a few nanosecond of the cavity round trip time, to solve the differential

equations for each smallest time step is computationally expensive and inefficient.

Fortunately, owing to the nature of a pulse train, the rate equation can be greatly

simplified and can be solved more efficiently. Our approach is to divide the problem

into three different parts based on the time scale. In particular, inside a train of pulse

bunches, there are three different time scales corresponding to 1) between bunches:

∼ 7 ns, 2) between pulses: ∼ 150 ps and 3) for the duration of a single pulse: ∼ 4

ps. The following is our treatment of the rate equation in each regions.

Region I: Between bunches

Since there is no pulse in the gain medium during this period, I = 0. Then,

dN1

dt
= − Ip

Wp

(N1 −N3) +
N2

T1

dN2

dt
= −N2

T1

+
N3

τ3

dN3

dt
=

Ip
Wp

(N1 −N3)− N3

τ3

(C.11)
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However, since Ip
Wp
� 1/τ3, which practically leaves the level 3 empty (N3 ≈ 0), it is

reduced to two equations:

dN1

dt
= − Ip

Wp

N1 +
N2

T1

dN2

dt
=

Ip
Wp

N1 −
N2

T1

(C.12)

By taking the difference of the two equations above and setting ∆N = N2 − N1, a

differential equation for the population inversion is given by

d∆N

dt
= −2Ip

Wp

N1 −
2

T1

N2

= −2Ip
Wp

∆N +
2Ip
Wp

N2 −
2

T1

N2

= −2Ip
Wp

∆N +
2Ip
Wp

(
1− Wp

IpT1

)
N2

= −2Ip
Wp

∆N +
2Ip
Wp

∆Ne (C.13)

where ∆Ne = N s.s
2 −N s.s

1 is the steady-state population inversion. To find ∆Ne, the

left-hand side in Eq. (C.12) is set equal to zero and the fact that the total population

is conserved, i.e Ntot = N1 +N2 is invoked. A relation between the total population

and the steady-state population inversion is found as

∆Ne =

(
1− Wp

IpT1

1 + Wp

IpT1

)
Ntot (C.14)

The solution of Eq. (C.13) is

∆N(t) = (∆N0 −∆Ne)e
− 2Ip
Wp

t
+ ∆Ne (C.15)

with ∆N0 is the initial population inversion which is determined by the final value

in the previous region.
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Region II: Between pulses inside a bunch

Between pulses inside a bunch, I = 0. However, the slow decay rate of the level 2 does

not contribute to the population dynamics during the pulse period, i.e. τFP/T1 �

1, which eliminates the terms proportional to 1/T1 in Eq. (C.11). Then, the rate

equation is reduced to

dN1

dt
= − Ip

Wp

(N1 −N3)

dN2

dt
=
N3

τ3

dN3

dt
=

Ip
Wp

(N1 −N3)− N3

τ3

(C.16)

The first and last equation make a simple system of first-order differential equations

that can be solved analytically:

Ṅ1 = − Ip
Wp

N1 +
Ip
Wp

N3 (C.17)

Ṅ3 =
Ip
Wp

N1 −
(
Ip
Wp

+
1

τ3

)
N3 (C.18)

Rearranging Eq. (C.17) gives the solution form of N3,

N3 =
Wp

Ip
Ṅ1 +N1 (C.19)

Our task now is to find the solution for N1. By taking the derivative on both sides

of Eq. (C.17) and using Eq. (C.18) and Eq. (C.19), one can obtain the equation for

N1,

N̈1 + (α + β)Ṅ1 +
αβ

2
N1 = 0 (C.20)

where

α = 2Ip/Wp (C.21)

β = 1/τ3 (C.22)

165



Appendix C. Numerical simulation of the Fabry-Perot high frequency pulse train

The solution of Eq. (C.20) has a form of

N1(t) = Aem1t +Bem2t (C.23)

with

m1,2 =
−(α + β)± γ

2
(C.24)

γ =
√
α2 + β2 (C.25)

The initial condition, N1(0) ≡ N10 = A+B, gives

A = N10 −B (C.26)

where N10 is determined by the final value from the previous region. Substituting

into Eq. (C.19), the solution for N3 is obtained:

N3(t) =
2

α

[
m1Ae

m1t +m2Be
m2t
]

+ Aem1t +Bem2t (C.27)

With the initial condition,

N3(0) ≡ N30 =

(
2

α
+ 1

)
A+

(
2

α
m2 + 1

)
B, (C.28)

and Eq. (C.26) gives

B =
1

m2 −m1

[α
2
N30 −

(α
2

+m1

)
N10

]
(C.29)

Finally, using the conservation of population, N2 is obtained:

N2(t) = Ntot −N1 −N3 (C.30)

Case III: For the duration of the pulse

During the pulse duration, the spontaneous rate T1 of the upper level has negligible

contribution to the population dynamics. Furthermore, since τp � τ3 for which the
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population dynamics is dominantly driven by the pulse energy, the variation of the

pulse intensity can be neglected. In this case, the pulse energy, W =
∫
I(t)dt, is a

relevant parameter. Integrating Eq. (C.9) over the pulse duration gives1,

∆N1 =
W

Ws

(N20 −N10)− Ip
Wp

(N10 −N30)τ

∆N2 = −W
Ws

(N20 −N10) +
N30τ

τ3

∆N3 =
Ip
Wp

(N10 −N30)τ − N30τ

τ3

(C.31)

where ∆N1, ∆N2 and ∆N3 are the changes in population of the levels induced by

a pulse of duration τ and energy W , N10, N20 and N30 are the values of N before

the pulse’s arrival. Note that the equations still satisfy the conservation of total

population; ∆N1 + ∆N2 + ∆N3 = 0. To calculate the time-dependent gain, only the

first two equations are required. Since the gain varies linearly in time

G(t) = σ∆z

[(
N20 +

∆N2

τ
t

)
−
(
N10 +

∆N1

τ
t

)]
, (C.32)

the change in intensity is

∆I(t) = G(t)I0 = σI0∆z

[(
N20 +

∆N2

τ
t

)
−
(
N10 +

∆N1

τ
t

)]
(C.33)

The intensity is then given as

I(t,∆z) = I(t, 0) + ∆I(t) = I0e
(t/τ)2

+ ∆I(t) (C.34)

Eq. (C.34) indicates that the time-dependent gain shifts the center of gravity of

1Integration is run over the full period of the pulse which is approximately 4 times longer
than the intensity FWHM. Integration over the intensity FWHM will result in ∼ 25% less
energy.
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a pulse given as

〈t〉 =

∫∞
−∞ tI(t,∆z)dt∫∞
−∞ I(t,∆z)dt

= 0 +

∫∞
−∞ t∆I(t)dt∫∞
−∞ I(t,∆z)dt

≈ σI0∆z(∆N2 −∆N1)

W

∫ τ/2

−τ/2

t2

τ
dt

=
σI0∆z(∆N2 −∆N1)2τ 2

3W

=
2σ∆z(∆N2 −∆N1)τ

3
(C.35)

One can substitute the values of ∆N1 and ∆N2 from Eq. (C.31). The numerator

in Eq. (C.35) should be equal to the energy lost by the medium: ∆W = −(∆2 −

∆1)/2(~ω). The time shift is simply 〈t〉 = 2τ∆W/3W .

This time shift is a fraction of the pulse duration, and therefore can be quite

large if the inversion is large. The size of the inversion depends on τ3. The inversion

is largest if τ3 = 0, and that makes also the largest shift of 〈t〉. If τ3 is larger than

the interpulse period, or even as large as the nanosecond pulse bunch, but smal

compared to the cavity round-trip time, the gain recovery will vary along the pulse

train, causing a decrease in the value of |〈t〉|. With realistic values of the parameters,

Eq. (C.31) shows that ∆N1 is positive, and ∆N2 is negative.
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