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Abstract

The decay of the parameters {an, bn} for a Jacobi operator J on `2(N) is related to the

analyticity of the Jost function u(z; J) associated with J , which is in turn related to the

spectral measure dµ of J . Damanik and Simon demonstrated the equivalence between

the exponential decay of these parameters and the analyticity of the Jost function on a

disk whose radius is given by the rate of decay R. In this paper, these equivalences are

summarized, and an additional equivalence is shown in the case when the parameters

{an, bn} decay super-exponentially, so that |an − 1| + |bn| ≤ 1/nγn. In this case, the Jost

function will be an entire function with finite growth order no greater than 2/γ.
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Chapter 1

Introduction

The purpose of this thesis is to demonstrate several important results in the spectral theory of Jacobi

operators, and to demonstrate an important extension of these results. A Jacobi matrix J is a tri-

diagonal symmetric matrix with parameters {an, bn}∞n=1 which defines an operator on the Hilbert

space `2(N,C). It is well-known that there is a one-to-one correspondence J ←→ dµ between

bounded Jacobi operators and compactly supported probability measures on the the real line. The

forward direction is a direct application of the spectral theorem for self-adjoint operators on a

Hilbert space, while the reverse direction relies on the classical theory of orthogonal polynomials

on the real line.

There is also a correspondence between bounded Jacobi matrices and the Jost functions asso-

ciated with their solutions. The free Jacobi matrix J0 is defined with an ≡ 1 and bn ≡ 0. This

gives the exactly solvable system

un+1 + un−1 = λun

for n ≥ 1 which has solutions {zn}∞n=1, provided that λ = z + z−1. If the parameters obey∑
|an−1|+|bn| <∞, then the Jost solutions {un}∞n=1 of J are those solutions that asymptotically

look like the free ones for small z: z−nun(z) → 1 for |z| < 1. The Jost function u0(z) is defined

1



Chapter 1. Introduction

by (z + 1
z − J){un(z)}∞n=1 = u0(z)e0 and is connected to the measure dµ by

|u0(eiθ)|2Im

(∫
supp(dµ)

dµ(s)

2 cos θ − s

)
= sin θ,

where u0(z) = 0 if and only if z + z−1 is a point mass of dµ. If J has eigenvalues outside of the

interval [−2, 2]—i.e., u0(z) has zeros Ej = zj + z−1
j inside the unit disk—then u0(z) does not

uniquely determine dµ unless the weights wj = µ({Ej}) are taken into account.

It has long been known that the rate of decay at which an → 1 and bn → 0 controls the

analyticity of the Jost function associated with J . Damanik and Simon demonstrated in [1] that the

reverse implication also holds: If u0(z) is analytic on a disk of radiusR, then the Jacobi parameters

decay asR−2. The method of proof depends on whether or not there exist bound states of J . In this

paper, these results are extended to the case where the Jacobi parameters decay super-exponentially.

It will be shown that the condition |an − 1|+ |bn| ≤
1

nγn
implies that the Jost function is entire of

finite growth order, and more remarkably, the growth order is no greater that
2

γ
. In other words, the

faster the super-exponential decay of the parameters, the smaller the growth order of u0. A partial

inverse to this statement will also be demonstrated in the case of no bound states. These results are

similar to those derived by my thesis advisor Maxim Zinchenko in [12].

There is an interesting connection between these results and the classical theory of Fourier

transforms. There is a correspondence f ←→ f̂ between L2 functions on the real line and their

Fourier transforms. The Paley-Wiener theorems link the analyticity of a function to the decay of

its Fourier transform. If a > 0, then eb|k|f̂(k) ∈ L2(R) for all b < a if and only if f is analytic

on |Im(z)| < a and sup|y|<b
∫∞
−∞ |f(x + iy)|2 < ∞. This is analogous to the case of exponential

decay presented in this paper. Moreover, if a > 0 and f ∈ L2(R), then f has compact support

supp(f) ⊂ [−a, a], if and only if f̂ is entire and |f̂(z)| ≤ cea|Im(z)| for some c > 0 and all z ∈ C.

This is analogous to the case where J − J0 has finite range, so that u0(z) is a polynomial. For the

Fourier transform on the unit circle, we have the following version of the Paley-Wiener theorem:

If ρ ≥ 0, then for all α < 1/ρ there is a cα such that |f̂n| ≤ cα|n|−α|n| for all n ∈ Z if and

only if f is analytic on C \ {0} and for all α > ρ there is a cα such that |f(z)| ≤ cαe
|z|α for all

|z| > 1. This is analogous to the case where the Jacobi parameters decay super-exponentially with

the growth order of u0 related to the decay rate, and as such lies somewhere in between the case of

2



Chapter 1. Introduction

finite range (or finite support in the case of the Fourier transforms) and exponential decay. In this

way, the transform J 7→ u0 can be considered a non-linear analogue of the Fourier transform.

In chapter 2, the definition and essential properties of Jacobi operators on `2 are given, and a

detailed proof of the spectral theorem for these operators is given. We then demonstrate the funda-

mental importance of the Free Jacobi Matrix J0 and how it provides the setting for the discussion

that follows. The construction of the Jost functions are then given via the Geronimo-Case equa-

tions, which can be found in [4] and [3]. Other more classical methods for computing the Jost

function exist (e.g., variation of parameters), but for consistency with the presentation of Damanik

and Simon, this approach is not pursued (although variation of parameters is used in a different

context to derive the Weyl m-function). The method of Geronimo and Case is in any event an ele-

gant presentation, and these equations will provide the necessary estimates needed to demonstrate

the analyticity of u0 in chapter 3.

In chapter 3, the decay of the Jacobi parameters will be used to demonstrate the analyticity of

the Jost functions on various domains. In particular, the case of exponential decay is demonstrated

in detail, as the case of super-exponential decay follows readily from these results.

In chapter 4, the reverse direction is demonstrated in detail in the case of no bound states.

It requires a detailed analysis of the zeros of the Jost function and its related M -function, and

is interesting in its own right. The case of super-exponential decay follows from the machinery

developed for these results.

In chapter 5, future directions for research are discussed. Most obviously, the case of bound

states is considered in some detail.

Important results from functional analysis and measure theory are included in two appendices

at the end of the paper. These are summaries of topics that were independently researched by

the author as preliminaries to the main body of the paper, so they are included for the sake of

completeness, and as a reference for more esoteric results.
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Chapter 2

Jacobi Operators

2.1 Definition and Properties

Take the square summable sequences

`2(N,C) = {f : N→ C :
∞∑
n=1

|fn|2 <∞}.

with the standard inner product given by

〈f, g〉 =
∞∑
n=1

fngn.

This is a separable Hilbert space, abbreviated as just `2 that is complete in the norm ‖f‖ =

〈f, f〉1/2. The standard orthonormal basis for `2 is given by the vectors ek = (δkn), where δkn = 1

if k = n and is equal to zero otherwise, so that 〈em, en〉 = δmn.

Definition 2.1.1. A Jacobi operator J on `2 is a real symmetric linear operator defined via the

equations

[Jf ]1 = b1f1 + a1f2

and

[Jf ]n = an−1fn−1 + bnfn + anfn+1

4



Chapter 2. Jacobi Operators

for n > 1, where (bn)∞n=1 ⊂ R and (an)∞n=1 ⊂ (0,∞).

J has the matrix representation

J =


b1 a1 0 . . .

a1 b2 a2
. . .

0 a2 b3
. . .

...
. . . . . . . . .


with respect to the standard orthonormal basis. It is clear from this that J is self-adjoint, and we

note that we can write Jek = ak−1ek−1 + bkek + akek+1, so we have that 〈Jek, ek〉 = bk and

〈Jek, ek+1〉 = ak. We will always assume that ‖a‖∞ = supn |an| <∞ and ‖b‖∞ = supn |bn| <

∞, so that J is a bounded linear operator:

‖J‖ = sup
‖f‖≤1

‖Jf‖ ≤ sup
‖f‖≤1

sup
n≥1
|an−1fn−1 + bnfn + anfn+1|

≤ sup
‖f‖≤1

sup
n≥1

(‖a‖∞|fn−1|+ ‖b‖∞|fn|+ ‖a‖∞|fn+1|)

≤ ‖b‖∞ + 2‖a‖∞.

Note that it follows that the spectrum σ(J) of J is compact.

2.1.1 Eigenvalue Problems and τ -operators

We now want to look at solutions of (J − λ)f = 0 for f = (fn)∞n=1 in `2(N,C). The lemmas and

proofs in this section and the next are mostly standard; good overviews are found in [9] and [6].

For reasons that will become clear, it is convenient to work initially in a more generalized setting:

let τ be an operator on the set of complex-valued sequences S = {(fn)n≥0}, not necessarily `2,

defined by

[τf ]n = an−1fn−1 + bnfn + anfn+1,

for n ≥ 1, where we take a0 to be some positive real number, while (an)∞n=1 and (bn)∞n=1 are as

in Definition 2.1.1. From the recursion relations in Definition 2.1.1, we see that if f ∈ `2, then

5



Chapter 2. Jacobi Operators

[(τ − λ)f ]n = [(J − λ)f ]n for n ≥ 2, but

[(τ − λ)f ]1 = [(J − λ)f ]1 + a0f0. (2.1)

We shall enjoy the freedom of extending our `2 sequences by specifying the values at n = 0. First

we show a few elementary facts about solutions to eigenvalue problems.

Lemma 2.1.1. Given a, b ∈ C, the initial value problem given by (τ − λ)f = 0, f0 = a and

f1 = b, has a unique solution f ∈ S.

Proof. Since (τ − λ)f = 0, we have

an−1fn−1 + (bn − λ)fn + anfn+1 = 0

for all n. Since an > 0 for all n, we can write this as the recursion relation

fn+1 = − 1

an
(an−1fn−1 + (bn − λ)fn), (2.2)

so the value of f at any given n is determined completely by specifying its value at two consecutive

integers, and clearly this solution is unique.

We call the unique sequences s = (sn(λ))∞n=0 and c = (cn(λ))∞n=0 that solve (τ − λ)f = 0 with

initial conditions

a0s0 = 0, s1 = 1, a0c0 = −1, c1 = 0 (2.3)

the fundamental solutions of (τ−λ)f = 0. We shall see in section 2.1.3 that if we take pk, k ≥ 0,

to be the orthogonal polynomials associated with J via ek = pk−1(J)e1, then the sequence pk(λ)

satisfies (τ − λ)f = 0 by the three-term recurrence relation for orthogonal polynomials, provided

we take a0 = 1. Now equation (2.1) prompts us to define the transfer matrix Tn to be

Tn =
1

an

−bn + λ −an−1

an 0

 .

for n > 0. Note that det(Tn) = an−1/an 6= 0, so that Tn is non-singular for all n with inverse

T−1
n =

1

an−1

 0 an−1

−an −bn + λ

 .

6



Chapter 2. Jacobi Operators

These transfer matrices provide a convenient way to characterize the general solutions to the IVP

from Lemma 2.1.1. Another important quantity is the Wronskian: if g = (gn)∞n=0 and h =

(hn)∞n=0 are two sequences in S, then their Wronskian is defined to be

Wn(g, h) = an[gnhn+1 − gn+1hn].

Perhaps unsurprisingly, we have the following:

Lemma 2.1.2. If g and h both solve (τ − λ)f = 0, then their Wronskian is constant for all n.

Moreover, g and h are linearly independent if W (g, h) 6= 0.

Proof. First note that If f ∈ S solves the homogeneous equation (τ − λ)f = 0, then we have that

Tn

 fn

fn−1

 =
1

an

−bn + λ −an−1

an 0

 fn

fn−1

 =

fn+1

fn


and

T−1
n

fn+1

fn

 =
1

an−1

 0 an−1

−an −bn + λ

fn+1

fn

 =

 fn

fn−1

 .

From this it is clear that fn+1

fn

 = TnTn−1 . . . T2T1

f1

f0

 .

It follows that for any two solutions of g and h of (τ − λ)f = 0, their Wronskian is constant for

all n, since

det

gn+1 hn+1

gn hn

 = det(TnTn−1 . . . T2T1)det

g1 h1

g0 h0


=

n∏
i=1

ai−1

ai
det

g1 h1

g0 h0


=
a0

an
det

g1 h1

g0 h0

 ,

7



Chapter 2. Jacobi Operators

for all n, so that Wn(g, h) = W0(g, h), and we refer to the Wronskian of g and h as just W (g, h).

If g = ch for some c ∈ C, then

W (g, h) = an(gnhn+1 − gn+1hn) = can(hnhn+1 − hn+1hn) = 0,

so if W (g, h) 6= 0, then g and h are linearly independent.

Lemma 2.1.3. The null space Nλ(τ) = {f ∈ S : (τ − λ)f = 0} has dimension 2 for all λ ∈ C.

Proof. Define the map L : C2 → S by L(a, b) = f , where (τ − λ)f = 0 with f0 = a and

f1 = b. This map is well-defined since f exists and is unique by Lemma 2.1.1. It is linear since if

(τ − λ)f = 0 and (τ − λ)g = 0 with (f0, f1) = (a, b) and (g0, g1) = (c, d), then for any α ∈ C,

we have (τ −λ)(αf + g) = 0 with (αf + g)0 = αa+ c and (αf + g)1 = αb+ d. This shows that

L(α(a, b) + (c, d)) = L(αa+ c, αb+ d) = αf + g = αL(a, b) + L(c, d).

Moreover, if L(a, b) = f = L(c, d), then (a, b) = (f0, f1) = (c, d), so that L is injective.

Moreover, for any f ∈ Nλ(J), we have that L(f0, f1) = f , so that L is surjective. This shows that

L is a vector space isomorphism between C2 and Nλ(J), so in particular we have that Nλ(J) has

dimension 2.

Using the Wronskian, we now have a convenient characterization of the general solutions to the

IVP of Lemma 2.1.1 in terms of the fundamental solutions:

Lemma 2.1.4. If f solves (τ − λ)f = 0 and s and c are the fundamental solutions, we have

fn = f1sn − a0f0cn

for all n.

Proof. If (τ − λ)f = 0, then we can write

W (f, h)gn −W (f, g)hn = angn[fnhn+1 − fn+1hn]

− anhn[fngn+1 − fn+1gn]

= fnan[gnhn+1 − hngn+1]

= fnW (g, h),

8



Chapter 2. Jacobi Operators

whence

fn =
W (f, h)

W (g, h)
gn −

W (f, g)

W (g, h)
hn.

By equations (2.3), we see that W (c, s) = a0[c0s1 − c1s0] = −1, while W (f, c) = a0[f0c1 −

c0f1] = f1 and W (f, s) = a0[f0s1 − s0f1] = a0f0, so that

fn = f1sn − a0f0cn

for all n.

Note that in particular, this shows that every λ ∈ C is an eigenvalue of τ whose null space has

dimension 2, and we can take the fundamental solutions {c, s} as a basis. Further, the recurrence

relation gives

s2(λ) = −a−1
1 [a0s0(λ) + (b1 − λ)s1(λ)] = a−1

1 λ+O(1).

Similarly, we have

s3(λ) = a−1
2 [a1s1(λ) + (b2 − λ)s2(λ)] = −(a1a2)−1λ2 +O(λ).

Inductively, we can see that sn is a polynomial of degree n− 1:

sn(λ) = (−1)n−1(a1 . . . an)−1λn−1 +O(λn−2).

If we consider the finite matrix Jn−1 given by taking the {1, . . . , n−1}×{1, . . . , n−1} block of J ,

and suppose that sn(λ) = 0, then since s0(λ) = 0, we see that (Jn−1−λ)(s1(λ), . . . , sn−1(λ))T =

0, so that λ is an eigenvalue of Jn−1. The converse holds as well, so this shows that the determinant

of Jn−1 − λ and sn(λ) differ by a constant multiple:

sn(λ) = (−1)n−1 det(Jn−1 − λ)∏n−1
i=1 ai

.

The expression for cn can be computed similarly.

9



Chapter 2. Jacobi Operators

2.1.2 Solutions of (J − λ)f = 0

Now suppose that λ ∈ C with Im(λ) 6= 0. Since J is self-adjoint, we have that its spectrum is real,

σ(J) ⊂ R, so (J − λ)−1 is a bounded linear operator on `2. We have the following:

Lemma 2.1.5. For λ ∈ C with Im(λ) 6= 0, the equation (τ − λ)f = 0 has precisely one linearly

independent solution in `2.

Proof. Define the sequence u = (J−λ)−1e1. Clearly this sequence belongs to `2, and (J−λ)u =

e1. We have that [(τ − λ)u]n = [(J − λ)u]n = 0 for n ≥ 2, and by extending u to u0 = −1/a0,

we have by equation (2.2) that

[(τ − λ)u]1 = [(J − λ)u]1 + a0u0 = [e1]1 − 1 = 0.

This shows that u is an `2 solution of (τ − λ)f = 0. Since the solution space of (τ − λ)f = 0 is

two-dimensional, if we had a second linearly independent solution in `2, then all solutions would

belong to `2. However, this would imply the existence of an `2 solution w with w0 = 0, but in this

case we would have (J − λ)w = (τ − λ)w = 0, which would imply that J has an eigenvalue with

non-zero imaginary part, a contradiction. This shows that (τ − λ)f = 0 has precisely one linearly

independent solution in `2.

This now allows us to define the Titchmarsh-Weyl m-function: for all λ ∈ C+ = {λ ∈ C :

Im(λ) > 0}, there exists a unique number m(λ) such that w(λ) = c(λ) + m(λ)s(λ) ∈ `2(N,C).

To see this is well-defined, note that by Lemma 2.1.5, there is a unique (up to a constant) `2 solution

f of (τ − λ)f = 0. Since {c, s} is a basis for the entire solution space by Lemmas 2.1.3 and 2.1.4,

we must have that there exist unique a(λ) and b(λ) such that f(λ) = a(λ)c(λ) + b(λ)s(λ). If a(λ)

were zero, then s(λ) would have to be `2, but since s0 = 0, we would have that (J − λ)s = 0,

contradicting the fact that λ ∈ C+. So we may define w by w(λ) = f(λ)/a(λ) and take m(λ) =

b(λ)/a(λ). The m-function has two important properties:

Theorem 2.1.6. For all λ ∈ C+, if (τ − λ)u = 0, u 6= 0, and u ∈ `2, then

i) m(λ) = − u1(λ)

a0u0(λ)
;

10
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ii) m(λ) = 〈(J − λ)−1e1, e1〉.

Proof. To see (i), note that for w(λ) = c(λ) + m(λ)s(λ), we have immediately that w1(λ) =

c1(λ) + m(λ)s1(λ) = m(λ) and a0w0(λ) = a0c0(λ) = −1 by equations (2.3). For any u with

(τ − λ)u = 0 and u ∈ `2, we must have that u(λ) = cw(λ) for some c ∈ C \ {0}, so that

− u1(λ)

a0u0(λ)
= − cw1(λ)

a0cw0(λ)
= − w1(λ)

a0w0(λ)
= m(λ).

Property (ii) is more involved. We first note that if p is a particular solution of the inhomogeneous

equation (τ −λ)p = q, q = (qn)∞n=0 a complex-valued sequence, then the general solution is given

by y = αs+ βc+ p for α, β ∈ C. This follows since clearly (τ − λ)(y − p) = 0, and so y − p is

a linear combination of the fundamental solutions s and c for (τ − λ)f = 0. Now suppose that u

and v solve (τ − λ)y = 0 with W (u, v) = 1. We claim that

yn =

n∑
j=1

Kj
nqj

solves (τ − λ)y = q, where Kj
n = ujvn − unvj . To see this, we calculate

[(τ − λ)y]n = an

n+1∑
j=1

Kj
n+1qj + (bn − λ)

n∑
j=1

Kj
nqj + an−1

n−1∑
j=1

Kj
n−1qj

=
n∑
j=1

(anK
j
n+1 + (bn − λ)Kj

n + an−1K
j
n−1)qj − an−1K

n
n−1qn

=
n∑
j=1

(uj [(τ − λ)v]n − [(τ − λ)u]nvj)qj + an−1(un−1vn − unvn−1)qn

= Wn(u, v)qn = qn.

This method is known as variation of parameters. Define the Green function by G(m,n;λ) =

〈(J − λ)−1en, em〉. Fix n ∈ N and take g(n) = (J − λ)−1en with g(n)
0 = 0. Then g(n) solves

the inhomogeneous equation (τ − λ)g = en, and we see that G(m,n;λ) = 〈g(n), em〉 = g
(n)
m .

Applying variation of parameters with u = s and v = w, we have that

Kj
m =

m∑
j=1

(sjwm − smwj)δjn =

0 m ≤ n

snwm − smwn m > n

11
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solves the inhomogeneous equation. It follows that g(n) can be written in the form

g(n)
m = αcm + βsm +

0 m ≤ n

snwm − smwn m > n

for α, β ∈ C. Since g0 = αc0 + βs0 = αc0 = 0, we have immediately that α = 0. To determine

β, we note that since w and g(n) are `2,

g(n) − snwm = (β − wn)sm → 0

as m → ∞. Since sm is a polynomial, we cannot have sm → 0, so we must have β − wn = 0.

This shows that

G(m,n;λ) =

smwn m ≤ n

snwm m > n

.

Taking n = m = 1 gives

〈(J − λ)−1e1, e1〉 = G(1, 1;λ) = s1w1 = s1c1 +ms2
1 = m(λ),

as desired.

2.1.3 Spectral Theorem

In this section, we present a proof of a version of the spectral theorem specifically for Jacobi

operators. In particular, we will see that there is a one-to-one correspondence between Jacobi

operators and compactly supported probability measures on the real line. The presentation follows

the outline presented in chapter 2 of [2], but can also be found in [6]. We see that since J0e1 = e1

and J1e1 = b1e1 + a1e2, we have

J2e1 = b21e1 + a1b1e2 + a1(a1e1 + b2e2 + a2e3) = a1a2e3 + u2,

where u2 ∈ span(e1, e2). Inductively, we see that Jke1 = a1 · · · akek+1 + uk, where uk ∈

span(e1, . . . , ek). It follows that span(e1, . . . , ek+1) = span(e1, Je1, . . . , J
ke1), so that e1 is a

12
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cyclic vector. If we take µ = µe1 , then the spectral theorem (Theorem B.2.1) shows that for

z ∈ ρ(J), we have

〈(J − z)−1e1, e1〉 =

∫
σ(J)

1

λ− z
dµ(λ),

where supp(µ) = σ(J), since J has a simple spectrum (see appendix B.3). Moreover, Theorem

B.1.1 shows that µ(R) = ‖e1‖2 = 1, so that µ is a Borel probability measure on the real line, and

since µ is uniquely defined by (J, e1), we have that the map Φ given by J Φ7→ µ from the set of

bounded Jacobi matrices to the set of probability measures with compact support is well-defined.

We will refer to µ as the spectral measure of J . Note that if we restrict our attention to finite

Jacobi matrices on Cn for some n, then supp(µ) is a finite set with at most n elements, and so µ is

a finite sum of point measures. We wish to show that Φ gives a one-to-one correspondence.

We first note that for each ek, there is a unique polynomial pk with positive leading coefficient

(a1 · · · ak)−1 such that ek = pk(J)e1. We see that

〈em, en〉 = 〈pm(J)e1, pn(J)e1〉 =

∫
σ(J)

pm(λ)pn(λ)dµ(λ) = δmn,

so the polynomials pn, pm are orthogonal with respect to µ. If T is another Jacobi operator with

diagonal entries (dn) and off-diagonal entries (cn) such that Φ(T ) = µ, then clearly ek = qk(T )e1

implies that pk = qk by the uniqueness of orthogonal polynomials, whence

bk = 〈Jek, ek〉 = 〈Jpk(J)e1, pk(J)e1〉

=

∫
σ(J)

λ|pk(λ)|2dµ =

∫
σ(J)

λ|qk(λ)|2dµ = dk,

and similarly ak = 〈Jek, ek+1〉 = ck. This shows that T = J , and so Φ is injective.

To show that Φ is onto, we construct explicitly a map Θ from the set of probability measures

with compact support to the set of bounded Jacobi matrices such that Φ ◦ Θ is the identity. This

can be done with orthonormal polynomials. Let µ be a probability measure with compact support

Σ = supp(µ). First note that if {1, λ, . . . , λk} is a linearly dependent set in L2(R, dµ), then there

exist a non-zero polynomial p with deg(p) ≤ k such that
∫

Σ p dµ = 0. Since p 6≡ 0, we must

have that Σ is the zero set of the polynomial p. Since p has at most k zeroes, say {xi}ki=1, we

have that µ must be a finite sum of point measures: µ =
∑k

i=1 αiδxi , with
∑k

i=1 αi = 1. This

13
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gives one direction of the correspondence between such measures and finite Jacobi matrices on Ck.

Otherwise, we must have {1, λ, . . . , λk} is linearly independent for all k.

Applying the Gram-Schmidt procedure to {1, λ, . . . , λk}, we find a sequence (pk(λ))∞k=0,

deg(pk) = k, of orthonormal polynomials with positive leading coefficients such that p0 ≡ 1

and ∫
Σ
pm(λ)pn dµ(λ) = δmn.

We can take λpk(λ) =
∑k+1

i=0 cipi(λ), so we have

∫
Σ

(λpk(λ))pl(λ) dµ(λ) =

k+1∑
i=0

ci

∫
Σ
pi(λ)pl(λ) dµ(λ) = cl

by orthonormality. But since∫
Σ

(λpk(λ))pl(λ) dµ(λ) =

∫
Σ
pk(λ)(λpl(λ)) dµ(λ) = 0

for l < k−1, we have that cl = 0 for l < k−1, and the remaining coefficients yield the three-term

recurrence relation

λpk(λ) = ck−1pk−1(λ) + ckpk(λ) + ck+1pk+1(λ),

for k > 0 and λp0(λ) = c1p1(λ) + c0p0(λ). We can define the sequences

bk =

∫
Σ
λpk−1(λ)2 dµ(λ) and ak =

∫
Σ
λpk(λ)pk−1(λ) dµ(λ),

so that our recurrence relation becomes

λp0(λ) = b1p0(λ) + a1p1(λ)

λpk(λ) =ak+1pk+1(λ) + bk+1pk(λ) + akpk−1(λ),

for k > 1. Comparing the (k + 1)-st coefficients shows that ak is the ratio of the leading terms for

pk(λ) and pk+1(λ), and so ak > 0 for all k. This yields a Jacobi matrix J . We have the bound

|bk| ≤ sup
λ∈Σ
|λ|
∫

Σ
|pk−1(λ)|2 dµ(λ) = sup

λ∈Σ
|λ| <∞

14
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for all k, and the same bound of course also works for each ak. Hence, J is a bounded Jacobi

matrix, and we take Θ(µ(λ)) = J . From the definition of J , we have that ek = pk(J)e1 for each

k. Writing λk =
∑k

i=0 γkipi(λ), we see that Jk =
∑k

i=0 γkipi(J), and so orthonomality gives

〈Jke1, e1〉 =
k∑
i=0

γki〈pi(J)e1, e1〉 = γk0 =
k∑
i=0

γki

∫
Σ
p0(λ)pi(λ) dµ(λ) =

∫
Σ
λk dµ(λ).

This in turn implies that for all z ∈ ρ(J) we have

〈(J − z)−1e1, e1〉 =

∫
Σ

dµ(λ)

λ− z
,

so that µ = Φ(J) = (Φ ◦Θ)(µ), which was to be shown. We have shown the following:

Theorem 2.1.7. (Spectral Theorem for Jacobi Operators) There is a one-to-one correspondence

between bounded Jacobi matrices and probability measures on the real line with compact support.

If J is a Jacobi matrix and µ the corresponding spectral measure, then

〈(J − z)−1e1, e1〉 =

∫
σ(J)

dµ(λ)

λ− z
, ∀z ∈ ρ(J).

Moreover, e1 is cyclic under J in `2, and so there is a unitary map U such that (UJU−1ψ)(λ) =

λψ(λ) for all ψ ∈ L2(dµ).

If we consider finite Jacobi matrices over Cn, then µwill be a sum of point measures corresponding

to the eigenvalues of J . It is notable that the classical theory of orthonormal polynomials was

essential to the construction of the correspondence in the infinite case.

2.2 Free Jacobi Operator

We define the free Jacobi matrix J0 by taking an = 1 and bn = 0 for all n, so that J0 has the

matrix representation

J0 =


0 1 0 . . .

1 0 1
. . .

0 1 0
. . .

...
. . . . . . . . .

 .
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This matrix represents the discrete Laplacian and can be used to model a discrete version of a free

(zero potential) quantum mechanical particle on the half line.

2.2.1 The Spectrum of J0

Taking the equation J0u = λu gives the recurrence relation

un+1 + un−1 = λun,

for n > 1 and u2 = λu1. We shall use the associated τ -operator τ0 to show that J0 has no

eigenvalues. Many of these results are also summarized in [9] and [6]. First we show:

Lemma 2.2.1. There exist z±(λ) such that the sequence un(λ) = [z±(λ)]n solve (τ0 − λ)u = 0

with z+(λ)z−(λ) = 1. Moreover, we have:

i) if λ ∈ C \ [−2, 2], then we can choose z± such that |z+(λ)| > 1 and |z−(λ)| < 1;

ii) if λ ∈ (−2, 2), then |z±| = 1 and z−(λ) = z+(λ);

iii) if λ = ±2, then the fundamental solutions are {(±1)n, (±1)nn}.

Proof. Using the ansatz un = zn, we have that un+1+un−1 = λun is equivalent to λ = z+z−1, or

z2−λz+1 = 0. Defining u0 ≡ 1, we have that u(z±(λ)) = ([z±(λ)]n)∞n=1 solves (τ−λ)u(λ) = 0,

provided that we pick a0 = 1, where

z±(λ) =
λ±
√
λ2 − 4

2
.

To verify this for n = 1, we note that

u2 + u0 =

(
λ±
√
λ2 − 4

2

)2

+ 1 =
2λ2 ± 2λ

√
λ2 − 4− 4

4
+ 1 = λu1.

We see that

z+(λ)z−(λ) =
λ+
√
λ2 − 4

2
· λ−

√
λ2 − 4

2
=
λ2 − (λ2 − 4)

4
= 1,
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and

W (u+, u−) = z+(λ)nz−(λ)n+1 − z+(λ)n+1z−(λ)n

= (z+(λ)z−(λ))nz−(λ)− (z+(λ)z−(λ))nz+(λ)

= z−(λ)− z+(λ)

=
√
λ2 − 4,

so that u+ and u− are linearly independent by Lemma 2.1.2 since λ 6= ±2. To prove (i), we see

that |z+(λ)| = 1 if and only if z+(λ) = eiθ if and only if

λ = eiθ + e−iθ = 2 cos θ

if and only if λ ∈ [−2, 2], and similarly for z−(λ). So if λ ∈ C \ [−2, 2], then we can take z+(λ)

such that |z+(λ)| > 1 and z−(λ) such that |z−(λ)| < 1. To prove (ii), we see that if −2 < λ < 2,

then

z±(λ) =
1

2
(λ± i

√
4− λ2),

so that |z±(λ)|2 =
1

4
(λ2 + (4 − λ2)) = 1 and z−(λ) = z+(λ). To prove (iii), we note that if

λ = ±2, then z = ±1, so that (±1)n is one solution. We can then take (±1)nn as our second

solution, since we have

W (u+(±2), u−(±2)) = (±1)n(±1)n+1(n+ 1)− (±1)n+1(±1)nn = (±1)2n(±(n+ 1)∓ n) = ±1.

Now we have

Lemma 2.2.2. J0 has no eigenvalues.

Proof. Since τ0 extends J0, parts (ii) and (iii) of Lemma 2.2.1 show that there are no possible

`2 solutions for λ ∈ [−2, 2]. If λ ∈ C \ [−2, 2], then there is exactly one solution u(λ) in the

unit disk, which is clearly `2. By Lemma 2.1.5, this solution is unique (up to a constant). Take

z(λ) = z+(λ) in the unit disk, and denote the solution by un(λ) = [z(λ)]n. This is the only option

for an eigenvalue of J0, but since u0 = 1, we have that u2 = λu2 − 1 6= λu1, so that this solution

does not solve (J0 − λ)u = 0.
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From Theorem 2.1.6(i), we have that

m(λ) = − u1(λ)

a0u0(λ)
= −u1(λ) = −λ+

√
λ2 − 4

2
.

Then Theorem 2.1.6(ii) and Theorem 2.1.7 show that

m(λ) = 〈(J − λ)−1e1, e1〉 =

∫
σ(J0)

dµ(ζ)

ζ − λ
,

where µ is the spectral measure of J0. We see that for x ∈ R:

m(x) = lim
ε→0+

m(x+ iε) = lim
ε→0+

−
x+ iε±

√
(x+ iε)2 − 4

2

=
1

2


−x+ i

√
4− x2 x ∈ [−2, 2]

−x−
√
x2 − 4 x < −2

−x+
√
x2 − 4 x > 2

,

so that Im(m) =
1

2
χ[−2,2]

√
4− x2. Since m(x) has no singularities, part (i) of Theorem B.3.3

shows that µs = 0. Furthermore, part (ii) shows that

µac =
1

π
Im(m)dx =

1

2π
χ[−2,2]

√
4− x2 dx.

This shows that σ(J0) = [−2, 2] and must be purely continuous. Under the transformation λ =

2 cos θ, this can also be expressed as

dµ =
2

π
χ[0,π] sin2 θ dθ.

2.2.2 Uniformization

Consider the transformation f(z) = z + z−1. Using z = reiθ, we see that

f(z) = u+ iv = reiθ +
1

r
e−iθ

=

(
r +

1

r

)
cos θ + i

(
r − 1

r

)
sin θ.

This gives

u2

(r + 1/r)2
+

v2

(r − 1/r)2
= 1.
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This shows that circles of the form |z| = r < 1 in D are mapped to ellipses in C \ [−2, 2], and

evidently 0 7→ ∞. This is exactly the resolvent set of J0. We see that f has the derivative

f ′(z) = 1− 1

z2
=
z2 − 1

z2
,

so it is conformal everywhere except z = ±1. We conclude that z 7→ λ = z + z−1 is a conformal

map from D to (C∪{∞}) \ [−2, 2]. It is important to note that in the case of J0, we have from the

proof of Lemmas 2.2.1 and 2.2.2 the existence of a z ∈ D such that un(f(z)) = un(λ) = [z±(λ)]n

is `2 and solves (τ0 − λ)un(f(z))∞n=1 = 0.

2.3 Jost Solutions and Jost Functions

We want to consider `2 sequences un(z) that solve

(J − λ)(un(z))∞n=1 = −u0(z)e1

with λ = z+ z−1. This is equivalent to finding `2 solutions (un)∞n=0 of the homogeneous equation

(τ − λ)(un)∞n=0 = 0. The solutions (un(z; J))∞n=1 are called the Jost solutions of J and the

function u(z; J) := u0(z; J) on D is called the Jost function of J . An equivalent characterization

is

lim
n→∞

zn

[(λ− J)e1]n
= u(z; J),

so that (un(z; J))∞n=1 = −u0(z; J)(J −λ)−1e1. In other words, we are interested in Jost solutions

that asymptotically look like those for J0. In the free case, we have the Jost solutions un(z) = zn

for n ≥ 0 and the Jost function is u(z; J0) ≡ 1, and we shall see that u(z; J) satisfies the asymptotic

un(z; J))

zn
→ 1

for z ∈ D.

2.3.1 Truncated Jacobi Operators

For a given Jacobi matrix J and fixing λ = z + z−1, we define J̃l by taking J̃l = J for an, bn ≤ l

and an = 1, bn = 0 for n ≥ l+1. So J̃l agrees with J up to index l and agrees with J0 for n ≥ l+1.
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Note that this implies that J̃l − J0 is finite range. We denote the Jost solutions of (J̃l − λ)u = 0

by un(z; J̃l), n ≥ 1. Clearly since J̃l and J0 agree for n ≥ l + 1, we have that un(z; J̃l) = zn

for n ≥ l + 1. Considering these operators is standard (see [1] and [10]) since the particular

Jacobi matrices that we will consider are compact perturbations of J0. Let pn−1(z + z−1; J̃l) be

the orthogonal polynomials associated with J̃l. To simplify notation, we write un(z) = un(z; J̃l)

and pn−1(λ) = pn−1(z + z−1; J̃l) unless otherwise stated. We first have

Lemma 2.3.1. The Jost function of J̃l is the Wronskian of the Jost solutions and the orthogonal

polynomials associated with J̃l.

Proof. The Wronskian of un and pn−1 is

u(z; J̃l) = Wn(un(z), pn−1(λ); J̃l) = an(un(z)pn(λ)− un+1(z)pn−1(λ)).

Since these are solutions of J̃l, we have that the Wronskian is constant with respect to n. Taking

n = 1 and using the relation

a1u2(z) + (b1 − λ)u1(z) = u0,

we see that

u(z; J̃l) = a1(u1(z)p1(λ)− u2(z)p0(λ))

= u1(z)(a1p1(λ))− a1u2(z)

= u1(z)(λ− b1)− (λ− b1)u1(z) + u0(z)

= u0(z; J̃l),

since p0(λ) = 1 and a1p1 = (λ− b1) (as in the proof of Theorem 2.1.7).

We would like to characterize the Jost function of J , so since the truncated matrices J̃l approach J

as l→∞, we can use the Jost functions/solutions for the J̃l to extract information about u0(z; J).

2.3.2 The Geronimo-Case Equations

For the truncated Jacobi operators J̃l, we can derive a nice set of equations to describe the evolution

of their Jost functions. These were introduced in [4] and [3], and were also used in the presentation
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of Simon and Damanik (see [1]). From the recurrence relation and the fact that an = 1, bn = 0 for

n ≥ l + 1, we see that

al+2ul+2(z) + (bl+1 − λ)ul+1(z) + alul(z) = zl+2 − (z + z−1)zl+1 + alul(z)

= alul(z)− zl = 0,

so that ul(z) = a−1
l zl. Now taking the Wronskian at n = l, we see that

u(z; J̃l) = al(ul(z)pl(λ)− ul+1(z)pl−1(λ))

= al(a
−1
l zlpl(λ)− zl+1pl−1(λ))

= zl(pl(λ)− alzpl−1(λ)).

Since we must have that pm(λ; J) = pm(λ; J̃l) for all m ≤ l, it is natural to define the following

sequences:

gn(z) = zn(pn(z + z−1)− anz2pn−1(z + z−1))

and

cn(z) = znpn(z + z−1),

for the orthogonal polynomials associated with J . Clearly gn and cn are polynomials, with

deg(gn) ≤ 2n and deg(cn) = 2n, and by definition, we see that gn is the Jost function for J̃n,

and clearly g0(z) = c0(z) ≡ 1. We see that

gn+1(z) = cn+1(z)− an+1z
2cn(z).

The recurrence relation for pn shows that

an+1pn+1(z + z−1) = (z + z−1 − bn+1)pn(z + z−1)− anpn−1(z + z−1).

Multiplying through by zn+1, we see that

an+1z
n+1pn+1(z + z−1) = (z2 + 1− zbn+1)znpn(z + z−1)− anzn+1pn−1(z + z−1),
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or

an+1cn+1(z) = (z2 + 1− zbn+1)cn(z)− anz2cn−1(z)

= (z2 − zbn+1)cn(z) + cn(z)− anz2cn−1(z)

= (z2 − zbn+1)cn(z) + gn(z).

Using this equation and the definition of gn(z), we see that

an+1gn+1(z) = an+1cn+1(z)− a2
n+1z

2cn(z)

= (z2 − zbn+1)cn(z) + gn(z)− a2
n+1z

2cn(z)

= [(1− a2
n+1)z2 − zbn+1]cn(z) + gn(z).

The two recurrence relations

an+1cn+1(z) = (z2 − zbn+1)cn(z) + gn(z)

an+1gn+1(z) = [(1− a2
n)z2 − zbn+1]cn(z) + gn(z)

are known as the Geronimo-Case equations (or GC equations for short). Defining the update

matrix

Un(z) =

 z2 − zbn+1 1

(1− a2
n)z2 − zbn 1

 ,

we see that cn+1

gn+1

 =
1

an+1
Un+1

cn
gn

 .

Taking Tn = Un . . . U1, we have thatcn+1

gn+1

 =

(
n+1∏
i=1

ai

)−1

Tn+1

1

1

 .

For what follows, it is more convenient to work with the functions

Cn(z) =

(
n+1∏
i=1

ai

)−1

cn(z)

Gn(z) =

(
n+1∏
i=1

ai

)−1

gn(z),
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with G0(z) = C0(z) ≡ 1, so that Cn
Gn

 = Tn

1

1

 .

In the next chapter, we will extract information about the analyticity of the Jost function from

assumptions regarding the decay rates of the Jacobi parameters. As an example, we first prove

Lemma 2.3.2. If J − J0 is finite range, then the Jost function u(z; J) is a polynomial with real

coefficients.

Proof. If J − J0 is finite range, then J = J0 for all indices greater than some index l, so that

an = 1 and bn = 0 for all n ≥ l + 1. In this case, we have that

u(z; J) = gl(z) = a−1
l [(1− a2

l )z
2 − blz]cl−1(z) + a−1

l gl−1(z)

is a real polynomial.

We can even determine the degree of u: We know that deg(gl−1) ≤ 2l − 2, and we know that

cl−1 = (
∏l+1
i=1 ai)

−1z2l−2 + lower order. So if al 6= 1, then deg(u) = 2l, and if al = 1 and bl 6= 0,

then deg(u) = 2l − 1.
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Determining the Jost Function from the

Jacobi Parameters

In this section, we will use a series of successively stronger hypotheses on the Jacobi parameters

(bn)∞n=1 and (an)∞n=1 to determine the behavior of the Jost function u(z; J). This is essentially a

summary of the work of Damanik and Simon in [1].

3.1 Decay Rates of Jacobi Parameters

Now we make a series of hypotheses on the rate of convergence of the Jacobi parameters of J . First

we assume that
∞∑
n=1

|a2
n − 1|+ |bn| <∞. (3.1)

Note first that since
∑∞

n=1 |an − 1| is finite, we have that
∏∞
n=1 an converges. This means that the

partial products are uniformly bounded, so it suffices to look at Cn and Gn instead of cn and gn. In

this case we have

Lemma 3.1.1. If the Jacobi parameters satisfy (3.1), then |Cn(z)|+ |Gn(z)| is uniformly bounded

over n on compact subsets of z ∈ D \ {±1}.
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Chapter 3. Determining the Jost Function from the Jacobi Parameters

Proof. Since we know that Cn(z)

Gn(z)

 = Tn

1

1

 ,

it suffices to show that supn ‖Tn‖∞ <∞. First note that we can write

Un(z) =

 z2 − zbn 1

(1− a2
n)z2 − zbn 1


=

z2 1

0 1

+

 −zbn 0

(1− a2
n)z2 − zbn 0


= U (0)(z) +An(z).

As z 6= ±1, we see that U (0) is diagonalized by

L(z) =

1
−1

1− z2

0 1

 ,

so we take

K0(z) = L(z)U (0)(z)L(z)−1 =

z2 0

0 1

 .

Taking Bn(z) = L(z)An(z)L(z)−1, we see that since

K0(z) +Bn(z) = L(z)U (0)L(z)−1 + L(z)An(z)L(z)−1

= L(z)[U (0) +An(z)]L(z)−1

= L(z)Un(z)L(z)−1,

we have that

L(z)Tn(z)L(z)−1 = [L(z)Un(z)L(z)−1] . . . [L(z)U1(z)L(z)−1]

= [K0(z) +Bn(z)] . . . [K0(z) +B1(z)].

Since |z| ≤ 1, we see that

‖K0(z) +Bn(z)‖∞ ≤ 1 + ‖L(z)‖∞‖L(z)−1‖∞‖An(z)‖∞

≤ 1 +

(
1 +

1

|1− z2|

)2

(|a2
n − 1|+ |bn|).
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This shows that

‖Tn‖∞ ≤ ‖L(z)‖2∞
n∏
i=1

(‖K0(z) +Bi(z)‖∞)

≤
(

1 +
1

|1− z2|

)2 n∏
i=1

(
1 +

(
1 +

1

|1− z2|

)2

(|a2
n − 1|+ |bn|)

)

for all n, so that

sup
n
‖Tn‖∞ ≤

(
1 +

1

|1− z2|

)2 ∞∏
i=1

(
1 +

(
1 +

1

|1− z2|

)2

(|a2
i − 1|+ |bi|)

)

Since
∑∞

n=1(|a2
n − 1| + |bn|) < ∞ by hypothesis, we must have that the product on the right

converges, and taking z on compact sets ensures that (1 + |1 − z2|−1)2 is uniformly bounded as

well. This gives a uniform bound A(z) and thus establishes the result.

Now suppose we have the slightly stronger condition that

∞∑
n=1

n(|a2
n − 1|+ |bn|) <∞. (3.2)

In this case we have

Lemma 3.1.2. If the Jacobi parameters satisfy (3.2), then there exists M <∞ such that

sup
n,z∈D̄

|Gn(z)| ≤M

and

sup
n,z∈D̄

|Cn(z)|
n+ 1

≤M.

Proof. By the hypothesis, we know that

M =
∞∏
i=1

(1 + i(|a2
i − 1|+ |bi|)) <∞,

so it suffices to establish that

|Gn(z)| ≤
n∏
i=1

(1 + i(|a2
i − 1|+ |bi|))
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and

|Cn(z)| ≤ (n+ 1)

n∏
i=1

(1 + i(|a2
i − 1|+ |bi|))

for all n. We see that |G0(z)| = |C0(z)| ≤ 1, so the case n = 0 is trivial. If the inequalities hold

for n = k, then since |z| ≤ 1we have that

|Gk+1(z)| ≤ |(1− a2
k+1)z2 − bk+1z||Ck(z)|+ |Gk(z)|

= (|(1− a2
k+1|+ |bk+1|)(k + 1) + 1)

k∏
i=1

(1 + i(|a2
i − 1|+ |bi|)

=

k+1∏
i=1

(1 + i(|a2
i − 1|+ |bi|).

Similarly, we see that

|Ck+1(z)| ≤ [(k + 1)(1 + |bk+1|) + 1]
k∏
i=1

(1 + i(|a2
i − 1|+ |bi|),

which is certainly less than (k + 2)
∏k+1
i=1 (1 + i(|a2

i − 1|+ |bi|)), since

(k + 1)(1 + |bk+1|) + 1 = (k + 2) + (k + 1)|bk+1|

≤ (k + 2) + (k + 2)(k + 1)(|a2
k+1 − 1|+ |bk+1|),

as all quantities are positive.

Now suppose that there is an N such that for all n ≥ N , we have the estimate

|a2
n − 1|+ |bn| ≤ CR−2n, (3.3)

for some C > 0 and R > 1, so the Jacobi parameters decay exponentially. Then we have

Lemma 3.1.3. If the Jacobi parameters satisfy 3.3, then there exists K <∞ such that

|Gn(z)|+ |Cn(z)| ≤ K[max (1, |z|)]2n

for all z such that |z| < R.
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Proof. If |z| < 1, then the estimate in the proof of Lemma 3.1.3 gives the bound. For |z| > 1, we

note that |z| < |z|2, so that

‖K0(z) +Bi(z)‖∞ ≤ |z|2 +

(
1 +

1

|1− z2|

)2

(|a2
i − 1||z|2 + |bi||z|)

≤ |z|2
(

1 +

(
1 +

1

|z|2 − 1

)2

(|a2
i − 1|+ |bi|)

)
.

Since Cn(z) and Gn(z) are analytic, the maximum modulus principle allows us to only check the

estimate for |z| = R− ε > 1. Taking products from 1 to n, we see that

‖Tn(z)‖∞ ≤ |R− ε|2n
(

1 +
1

|R− 1|2 − 1

)2 n∏
i=1

(
1 +

(
1 +

1

|R− 1|2 − 1

)2

[|a2
i − 1|+ |bi|]

)

= |R− ε|2nβ
n∏
i=1

(1 + β[|a2
i − 1|+ |bi|]).

For n ≥ N , this becomes

‖Tn(z)‖∞ ≤ |R− ε|2nβ
N∏
i=1

(1 + β[|a2
i − 1|+ |bi|])

n∏
i=N

(1 + βCR2i).

But since
∑∞

i=1R
−2i is geometric, it must converge for R > 1, so the product on the right is

uniformly bounded by some B > 0. Taking α =
∏∞
i=1(1 + β[|a2

i − 1|+ |bi|]), we get

‖Tn(z)‖∞ ≤ K|R− ε|2n,

where K = αβB.

3.2 Analyticity of the Jost Function

Evidently, the Jost solutions for J and J̃n agree for j ≤ n. So we have that the Jost function for J

satisfies

u(z; J) = lim
n→∞

u(z; J̃n) = lim
n→∞

gn(z),

provided that the limit exists. We show now that on the regions given for the bounds in the previous

theorems, we have that gn(z)→ u(z; J) locally uniformly, which will imply that u(z; J) is analytic

on those regions.
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Theorem 3.2.1. If the Jacobi parameters satisfy any of (3.1), (3.2), or (3.3), then

u(z; J) = lim
n→∞

gn(z)

exists for all z on the regions given in the conclusions of Lemmas 3.1.1, 3.1.2, and 3.1.3, respec-

tively.

Proof. By the remarks preceeding the statement of the theorem and the fact that gn(z) and Gn(z)

differ by a uniform bound over n, it suffices to prove the convegence of Gn(z) for all z in the

appropriate regions. Then the limit function G∞(z) will differ from u(z; J) by that same bound.

We note that Gn(z) converges locally uniformly if |Gn+1(z)−Gn(z)| → 0 locally uniformly. So

it is suffcient to prove the convergence of
∑∞

n=1 |Gn+1(z) − Gn(z)| on compact sets. The GC

equations give the bound

|Gn+1(z)−Gn(z)| = |([(1− a2
n+1)z2 − bn+1z]Cn(z) +Gn(z))−Gn(z)|

≤ (|1− a2
n+1||z|2 + |bn+1||z|)|Cn(z)|.

If z is contained in any compact set in z ∈ D̄ \ ±1 and
∑∞

n=1 |1 − a2
n| + |bn| < ∞, then Lemma

3.1.1 shows that there is a uniform bound A for |Cn(z)| over n, so that

|Gn+1(z)−Gn(z)| ≤ (|1− a2
n+1|+ |bn+1|)A.

Summing over n gives the result. If z ∈ D̄ and
∑∞

n=1 n(|1− a2
n|+ |bn|) <∞, then Lemma 3.1.2

shows that

|Gn+1(z)−Gn(z)| ≤ (|1− a2
n+1|+ |bn+1|)(n+ 1)M

for all n. Summing over n gives the result again. If |z| ≤ R−ε for 0 < ε << 1 and |a2
n−1|+|bn| ≤

CR−2n for all n, then Lemma 3.1.3 shows that

|Gn+1(z)−Gn(z)| ≤ (R− ε)2(|1− a2
n+1|+ |bn+1|)K[max (1, |z|)]2n

≤ CK(R− ε)2

(
max (1, |z|)

R

)2n

.

As |z| < R, summing over n gives a convergent geometric series on the right, which shows the

result.
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3.3 The Case of Super-exponential Decay

This section presents the first half of our contribution to the topic. We suppose that the Jacobi

parameters satisfy

|a2
n − 1|+ |bn| ≤

α

nγn
(3.4)

for all n and some γ > 0. These results are analogous to those proved for CMV operators found in

[12]. We wish to demonstrate the following

Theorem 3.3.1. If the Jacobi parameters satisfy (3.4), then u(z; J) is an entire function of finite

growth order no greater than
2

γ
; that is, u(z; J) satisfies

|u(z; J)| ≤ AeBR2/γ
,

for |z| > R, where A and B are constants that do not depend on R.

Proof. For any R, there is an N such that

α

nγn
≤ 1

R2n

for n ≥ N . But then we have that

|a2
n − 1|+ |bn| ≤

1

R2n

for all n ≥ N . By Lemma 3.1.4, we must have that u(z; J) is analytic for |z| < R. Since this

holds for all R > 1, we must in fact have that u(z; J) is entire. To compute the growth order ρ of

u, let |z| = R. By Lemma 3.1.4 and the definition of growth order, it suffices to show that

|Gn+1(z)| < AeBR
2
γ+ε

+ C

for all n and ε > 0, where A, B, and C are positive constants that do not depend on R. For ease of

notation, we note that it suffices to derive this bound with
2

β
in place of

2

γ
+ ε, where β < γ. Then

since we have

α

nγn
≤ α

nβn
,
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we see that from the proof of Theorem (4) that

|Gn+1(z)−G0(z)| ≤
n+1∑
k=1

|Gk(z)−Gk−1(z)|

≤
n+1∑
k=1

KR2k(|a2
k+1 − 1|+ |bk+1|)

≤ K0

n+1∑
k=1

R2k

kβk
,

where K0 = Kα. We see that if take N =
⌊
(2R2)β

−1
⌋

, then

R2k

kβk
≤ 1

2k
,

for all k ≥ N , so we get

|Gn+1(z))| ≤ K0

N∑
k=0

R2k

kβk
+K0

n∑
k=N+1

1

2k
+ |G0(z)|

≤ K0

N∑
k=0

R2k

kβk
+ (K0 + 1),

sinceG0(z) ≡ 1. Maximizing the function
R2x

xβx
for x > 0 gives x = e−1R

2
β . This gives the bound

N∑
k=1

R2k

kβk
≤ N R2e−1R

2
β

(
e−1R

2
β

)βe−1R
2
β

= N
R2e−1R

2
β

e−βe−1R
2
β R2e−1R

2
β

= Ne
β
e
R

2
β
.

However, since N ≤ (2R2)β
−1

and lnx < x for x > 0, we get

K0

N∑
k=1

R2k

kβk
≤ K0(2R2)

1
β e

β
e
R

2
β

= K02
1
β e

β
e
R

2
β +lnR

2
β

< K02
1
β e

β
e
R

2
β +R

2
β

= AeBR
2
β
,
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where A = K02
1
β and B = 1 +

β

e
. Letting n→∞ and taking C = K0 + 1, we get

|u(z; J)| ≤ AeBR
2
β

+ C.

This for all β < γ, so it follows that u(z; J) has growth order no greater than
2

γ
.
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Controlling Decay of Jacobi Parameters

through Analyticity of Jost Functions

In the previous section, we demonstrated how assumptions on the decay rates of the Jacobi param-

eters allows one to draw conclusions about the analyticity of the Jost functions. In this section, we

shall prove a partial converse. To this end, we first state and prove a number of lemmas that help

to characterize the roots of u(z; J) for a given Jacobi matrix J , and relate it to the function

M(z; J) := −m
(
z +

1

z

)
= −

∫
σ(J)

dµ(λ)

λ− (z + z−1)

defined on D. Note that this is the Weyl m-function composed with the uniformization discussed

in section 2.2.2. We wish to construct partial inverses to Theorems 3.2.1 and 3.3.1. These results

were summarized in [1], but we follow more closely the presenation in [8], since it is a bit more

streamlined.
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4.1 Characterization of the M -function and the Zeros of

the Jost Function

Since the m-function is related to the Jost function by Theorem 2.1.6, there is a relationship to

explore between M(z; J) and u(z; J). In particular, we shall see that constructing an analytic

continuation of u is—at least under certain assumptions—equivalent to extending M(z; J) mero-

morphically. In what follows, we define J (l) to be the Jacobi operator defined by a(l)
n = an+l and

b
(l)
n = an+l, and in turn define the Jost solutions

un(z; J) = a−1
n znu(z; J (n)).

We will show that these solutions coincide with the Jost solutions for J = J̃l defined at the begin-

ning in section 2.3. Evidently, if the parameters of J satisfy any of the hypotheses of Lemmas 3.1.1

- 3.1.3, then so do the parameters of each of the J (l), and if all of the J (l) satisfy those hypotheses,

then so does J . So in the following theorems, when a statement is made about the behavior of the

un(z; J), it is understood to hold in the regions given in the statements of Lemmas 3.1.1 - 3.1.3,

depending on which hypothesis is satisfied. First we have

Lemma 4.1.1. The Jost solutions un(z; J) satisfy the Jacobi relation

anun+1(z; J) + (bn − λ)un(z; J) + an−1un−1(z; J) = 0

on the appropriate region.

Proof. It suffices to prove that the un(z; J̃l) coincide with the Jost solutions defined in section 2.3,

so first let the original Jost solutions be written as vn(z; J̃l). For n ≥ 1 and k ≥ l + 1, we have

vn(z; J̃l
(k)

) = zn = z−kzn+k = z−kvn+k(z; J̃l).

Since J (n) shifts by n steps, this in fact holds for k ≥ 1. For n = 0, we see that vn(z; J̃l
(k)

) uses

a0 = ak, while vn(z; J̃l) uses a0 = 1, so we must have

v0(z; J̃l
(k)

) = akz
−kvk(z; J̃l),
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which implies

vk(z; J̃l) = a−1
k zkv(z; J̃l

(k)
) = uk(z; J̃l).

Now, taking l→∞ we know that v(z; J̃l) = gl(z; J)→ u(z; J), so we have

vk(z; J) = a−1
k zkv(z; J (k)) = uk(z; J),

as desired.

The following lemma verifies the intuitive idea that the Jost solutions of J should asymptotically

look like the free ones:

Lemma 4.1.2. We have

lim
n→∞

z−nun(z; J) = 1

on the appropriate region.

Proof. Since z−nun(z; J) = a−1
n u(z; J (n)) and an → 1, it suffices to show that G∞(z; J (n))→ 1

as n→∞. In all cases, we have by the proof of Lemma 3.1.4 that

|G∞(z; J (n))− 1| ≤
∞∑
k=0

(|(a(n)
k+1)2 − 1| · |z|2 + |b(n)

k+1| · |z|)|Ck+1(z, J (n))|

=
∞∑

k=n+1

(|a2
k − 1| · |z|2 + |bk| · |z|)|Ck−n(z, J (n))|.

We have a uniform bound for |Ck−n(z; J (n))| over k. Since the sum converges for fixed z, its

remainder tends to zero.

Since we will consider extensions of u beyond the unit disk, we must investigate its possible be-

havior in these regions. First we have

Lemma 4.1.3. The only possible zeros of u(z; J) on ∂D are z = ±1. If this is the case, then they

must be simple.

35



Chapter 4. Controlling Decay of Jacobi Parameters through Analyticity of Jost Functions

Proof. Suppose z ∈ ∂D. Since un(z; J) and un(z−1; J) both satisfy Ju = (z + z−1)u, we must

have that their Wronskian

W [un(z; J), un(z−1; J)] = an[un+1(z; J)un(z−1; J)− un(z; J)un+1(z−1; J)]

is constant. But since an → 1 and un(z; J) tends to zn, we have that this expression tends to

zn+1z−n − znz−n−1 = z − z−1.

Since W [un(z; J), un(z−1; J)] = u1(z; J)u0(z−1; J)− u1(z; J)u0(z−1; J), we must have

u1(z; J)u0(z−1; J)− u0(z; J)u1(z−1; J) = z − z−1.

Since u(z; J) is real analytic on the real line, the Schwartz Reflection Principle implies that

u(z̄; J) = u(z; J) on ∂D. Since z−1 = z̄, we get

u1(z; J)u0(z; J)− u1(z; J)u0(z; J) = −2Im(u1(z; J)u0(z; J)) = −2Im(z),

or taking z = eiθ:

Im(u1(eiθ; J)u0(eiθ; J)) = sin θ.

It follows that unless θ = 0 or θ = π, we must have u0(eiθ; J) 6= 0. If u0(±1; J) = 0, then we see

that

−Re
(
u1(eiθ; J)

u0(e−iθ; J)

−iθ

)
=

sin θ

θ
→ 1 (or − 1),

as θ → 0 (or π), since u1(±1; J) and u0(±1; J) cannot both be zero. Then u′0(±1; J) 6= 0, so

z = ±1 must be simple.

Note that it follows as an immediate corollary of u1(z; J)u0(z−1; J) − u0(z; J)u1(z−1; J) =

z − z−1 that if u0(z; J) = 0 for 0 < |z| < 1, then u0(z−1; J) 6= 0. We now show that M(z) can

be extended meromorphically:

Lemma 4.1.4. M(z) has a continuation to ∂D \ {±1} that is finite and non-zero on ∂D \ {±1},

and

|u(eiθ; J)|2Im(M(z; J)) = sin θ.
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Proof. From the previous lemma, we have that

|u0(eiθ; J)|2Im

(
u1(eiθ; J)u0(eiθ; J)

|u0(eiθ; J)|2

)
= |u0(eiθ; J)|2Im

(
u1(eiθ; J)

u0(eiθ; J)

)
= sin θ,

but then Lemma 4.1.3 shows that

|u(eiθ; J)|2Im(M(z; J)) = sin θ,

which suffices to define a continuation of M on ∂D. By Lemma 4.1.3, this continuation has at

worst simple poles at z = ±1, since Theorem 2.1.6(a) shows that the poles of M coinide with the

zeroes of u, and the orders must be the same.

This formula will allow us to extend M beyond the unit disk in the next section.

4.2 The Case of Exponential Decay with No Bound States

Since J̃n−J0 is finite range for all n, and since clearly J̃n converges in norm to J , we must have that

J is a compact perturbation of J0. Then by Weyl’s theorem, it follows that since J = (J−J0)+J0

and J − J0 is compact, we must have

σess(J) = [−2, 2] = σess(J0).

However, even though J0 has no isolated (or indeed, any) eigenvalues, it is possible that the discrete

spectrum of J intersects R \ [−2, 2]. Eigenvalues of J on this interval are known as bound states

of J . As per Appendix A.3, the spectral measure for J can be decomposed as

dµ = dµac + dµs =
1

π
Im(m)dx+ dµs,

where m is the Weyl m-function for J . Since the support for dµs corresponds to the discrete

spectrum of J , we have that if λ is a bound state for J , then dµs({λ}) > 0. In what follows, we

shall assume that J has no bound states. This case is much simpler than the general case, where

appropriate weights for the point masses must be considered. This implies that u(z; J) has no

zeroes in D, and we will see that then M(z) has no singularities. In the case of bound states, these
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singularities would have to be appropriately weighted for the following proof to extend to this case.

In what follows, we are going to assume that u is in fact the Jost function for a Jacobi matrix J

with parameters {an, bn} and that M(z) satisfies

M(z)

z

∣∣∣∣
z=0

= 1,

but it is possible to prove that u does in fact correspond to a unique Jacobi that gives this condition,

using an appropriate normalization of the spectral measure dµ. This is outside the scope of this

paper, so we shall take this as given. So our goal in this section is to prove the following partial

inverse to Theorem 3.2.1:

Theorem 4.2.1. Let R > 1. Suppose u(z) is analytic on {z | |z| < R} and real analytic on the

real line, such that u is non-zero on D \ {±1}, and if u(±1) = 0, then these zeros are simple. Then

we have for each ε > 0 that

|an − 1|+ |bn| ≤
Kε

(R− ε)2n
,

for some Kε not depending on n.

This is the inverse of Lemma 3.1.4 under the hypothesis of Lemma 3.1.3. If u is entire with finite

growth order ρ, then this theorem will give a similar inverse to Theorem 3.3.1. We define

u(n)(z) = u(z; J (n))

and

M (n)(z) = M(z; J (n))

with u(z) = u(z; J) = u(0)(z) and M(z) = M(z; J) = M (0)(z). Then Lemma 4.1.1 and

Theorem 2.1.6(a) give

M (n)(z) =
a−1
n+1zu(z; J (n+1))

u(z; J (n))
=
a−1
n+1z(an+1z

−n−1un+1(z; J))

anznun(z; J)
=
un+1(z)

anun(z)
.

This gives

u(n+1)(z) = u(z; J (n+1)) = an+1z
−n−1un+1(z)

= an+1z
−1(anz

−nun(z)M (n)(z))

= an+1z
−1u(n)(z)M (n)(z),
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as well as

[M (n)(z)]−1 =
anun(z)

un+1(z)
=

(z + z−1 − bn+1)un+1(z)− an+1un+2(z)

un+1(z)

= z + z−1 − bn+1 − a2
n+1

un+2(z)

an+1un+1(z)

= z + z−1 − bn+1 − a2
n+1M

(n+1)(z),

by the recurrence relation for the un. For small z, we see that

(z + z−1 − J)−1 = z(1− z(J − z))−1 = z(1 + z(J − z) + z2(J − z)2 + . . . ),

so that near z = 0 we have

M (n)(z)

z
= 1 +O(z).

Combining this with the above update equation we get(
M(z)

z

)−1

= 1− zbn+1 + z2 − z2a2
n+1(1 +O(z)) = 1− bn+1z − (a2

n+1 − 1)z2 +O(z3),

or

M(z)

z
= 1 + bn+1z − [(a2

n+1 − 1)2 − bn+1]z2 +O(z3).

Note that this shows that for small |z| ≤ 1/2, we must have

1

4
(|bn+1|+ |a2

n+1 − 1|2) ≤ sup
|z|≤1/2

∣∣∣∣M(z)

z
− 1

∣∣∣∣ ,
so since |an−1| ≤ |a2

n−1| ≤ |a2
n−1|2, it suffices to find an appropriate bound on z−1Mn(z)−1.

Lemma 4.1.4 shows that M(z) can be extended to the boundary of the unit disk minus {±1}. If

we wish to extend M outside of the boundary, we define f#(z) = f(1/z̄). Then f : R → C is

analytic on an open set R ⊂ C if and only if f# : {z̄−1 : z ∈ R} → C is analytic as well. It now

makes sense to define

M(z)−M#(z) = [u(z)u#(z)]−1(z − z−1).

This coincides with the extension of M on the unit disk given in Lemma 4.1.4, and in fact this

extends M outside the unit disk wherever u is analytic. In general, we even have:
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Lemma 4.2.2. For each R > 1, M has a continuation to {z : |z| < R} if and only if u does, and

the above holds on the annulus R−1 < 1 < R.

Proof. The function

g(z) =
z − z−1

M(z)−M#(z)

satisfies g# = g, and since Lemma 4.1.4 shows that M(z) −M#(z) 6= 0 on ∂D \ {±1}, g must

be meromorphic and real there. Since g(eiθ) = |u(eiθ)|2 and u is uniformly bounded on D, we

must in fact have that g is analytic there, and so in a neighborhood of the annulus. It follows that in

this neighborhood, an analytic continuation of u is given by ũ(z) = g(z)/u#(z) and the Schwarz

reflection principle, since ũ(eiθ) = u(eiθ), and the above formula continues this extension to the

annulus. Conversely, if u is analytic in {z : |z| < R}, then since u does not vanish on ∂D \ {±1},

we have that

M̃(z) = [u(z)u#(z)]−1(z − z−1) +M#(z)

is analytic near ∂D and bounded away from z = ±1. So since again M̃(eiθ) = M(eiθ), the

Schwarz reflection principle gives the continuation to a neighborhood of ∂D, and the above formula

continues this extension to the annulus.

We wish to find a bound on M(z)z−1 in terms of the u(n), so we must verify that they behave

nicely on the same region as u. This is the content of the following lemma. Note in the proof that

it is critical that u have no zeroes in the unit disk.

Lemma 4.2.3. If u(z) is real analytic on an open disk of radius R > 1 with no zeros on D \ {±1},

and at most simple zeros at z = ±1, then the same is true for each u(n)(z). Similarly, M (n)(z) is

meromorphic wherever M is.

Proof. Inductively, it suffices to prove this for u(1)(z) andM (1)(z). We see thatM can be extended

to {z | 1 < |z| < R} since u(z) is analytic for |z| < R. Since

u(1)(z) = a1z
−1u(z)M(z),
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and we are assuming z−1M(z)|z=0 = 1, the only possible singularities of u(1) are at±1. However,

u has at most simple zeros at these points, and the extension ofM above shows that any poles must

be simple, so in fact u(1) must be analytic on D by the factor u(z)M(z). Since we also have

u(1)(z) = a1z
−1u(z)M(z) = a1(1− z−2)(u#(z))−1 + a1z

−M#(z),

and since u#(z) andM#(z) are analytic for 1 < |z| < R, we must in fact have that u(1) is analytic

on the same region as u. Moreover, u(1) is non-vanishing on D by our hypothesis that u has no

zeros (and so M has no poles) in the unit disk, and Lemma 4.1.4 takes care of the boundary. Since

[M(z)]−1 = z + z−1 − b1 − a2
1M

(1)(z),

we see that M (1) must be meromorphic wherever M is.

We require one final lemma. The proof of this statement depends on a theorem of Killip and Simon

in [5], the proof of which is very non-trivial and requires machinery far beyond the scope of this

paper, so we state the lemma here without proof:

Lemma 4.2.4. If u(z; J) has finitely many zeros in D and the only zeros of u on the boundary are

simple ones at z = ±1, then

|an − 1|+ |bn| → 0

and

M (n)(z)→ z

uniformly on compact subsets of the unit disk.

Note that this implies

sup
|z|≤ρ

∣∣∣∣∣M (n)(z)

z

∣∣∣∣∣→ 1
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as n → ∞ for all ρ < 1. We can now combine the formula for u(n+1)(z) and the extension of

M(z) to get

u(n+1)(z) = an+1z
−1u(n)(z)M (n)(z)

= an+1z
−1u(n)(z)([u(n)(z)u(n)#(z)]−1(z − z−1) +M (n)#(z))

= an+1(1− z−2)u(n)#(z)−1 + an+1z
−2u(n)(z)N#

n (z),

where Nn(z) = M (n)(z)/z. By Lemma 4.2.3, if u(z) is analytic for |z| < R, then so is u(n)(z),

and so the Laurent series of (1−z−2)u(n)#(z) about |z| = R−ε, for ε > 0 such that 1 < R−ε <

R, contains only non-positive powers. Let R1 = R − ε. Consider the space L2(R1∂D, dθ/2π). If

f has the Laurent series

∞∑
n=−∞

anz
n =

∞∑
n=−∞

bne
inθ

around |z| = R1, then the same series taken from n = 1 defines an L2 function f+ on R1∂D,

and these functions clearly form a closed subspace of L2. We can now define a projection P+ onto

positive powers {einθ}. Since u(n) is analytic about |z| = R1, this projection acts as identity on

u(n+1)(z)−u(n+1)(0), and since (1−z−2)u(n)#(z) has only non-positive powers, using the above

equation and applying the projection P+ gives

u(n+1)(z)− u(n+1)(0) = an+1P+

[
(R1e

iθ)−2[u(n)(R1e
iθ)− u(n)(0)]N#

n (z)
]
.

Defining

|||g|||R1
=

(∫ 2π

0
|g(R1e

iθ)− g(0)|2 dθ
2π

)1/2

,

we see that since ‖P+‖ = 1 we must have∣∣∣∣∣∣∣∣∣u(n+1)
∣∣∣∣∣∣∣∣∣
R1

=

(∫ 2π

0

∣∣∣an+1P+

[
(R1e

iθ)−2[u(n)(R1e
iθ)− u(n)(0)]N#

n (z)
]∣∣∣2 dθ

2π

)1/2

≤ an+1R
−2
1 ‖N

#
n (z)‖∞

(∫ 2π

0

∣∣∣u(n)(R1e
iθ)− u(n)(0)

∣∣∣2 dθ
2π

)1/2

= an+1R
−2
1 ‖N

#
n (z)‖∞

∣∣∣∣∣∣∣∣∣u(n)
∣∣∣∣∣∣∣∣∣
R1

.

We are now ready to prove Theorem 4.2.1.
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Proof of Theorem 4.2.1:

We see that

sup
θ
|N#

n (R1e
iθ)| = sup

θ
|R1e

iθM (n)(R−1
1 eiθ)| = sup

θ

∣∣∣∣∣M (n)(R−1
1 eiθ)

R−1
1

∣∣∣∣∣ ≤ sup
|z|≤R−1

1

∣∣∣∣∣M (n)(z)

z

∣∣∣∣∣ .
By Lemma 4.2.4, both this quantity and the an approach 1 as n→∞. This shows that

lim
n→∞

n−1∏
j=0

aj+1‖N#
j (R1e

iθ)‖∞

 <∞,

so the nth roots tend to 1:

lim
n→∞

n−1∏
j=0

aj+1‖N#
j (R1e

iθ)‖∞

1/n

= 1.

Now we see that

n−1∏
j=0

∣∣∣∣∣∣∣∣∣u(j+1)
∣∣∣∣∣∣∣∣∣
R1

≤
n−1∏
j=0

(
aj+1R

−2
1 ‖N

#
j (R1e

iθ)‖∞
∣∣∣∣∣∣∣∣∣u(j)

∣∣∣∣∣∣∣∣∣
R1

)

= R−2n
1

n−1∏
j=0

(
aj+1‖N#

j (R1e
iθ)‖∞

) n−1∏
j=0

(∣∣∣∣∣∣∣∣∣u(j)
∣∣∣∣∣∣∣∣∣
R1

)
,

so that

∣∣∣∣∣∣∣∣∣u(n+1)
∣∣∣∣∣∣∣∣∣1/n
R1

≤ R−2
1

n−1∏
j=0

(
aj+1‖N#

j (R1e
iθ)‖∞

)1/n (
|||u|||R1

)1/n
.

By Lemma 4.1.2. and the remarks above, the n-th roots on the right tend to 1 as n → ∞, so we

can pick a uniform bound Cε over n such that these quantities are less than Cε(1 + ε)n. Then we

have ∣∣∣∣∣∣∣∣∣u(n+1)
∣∣∣∣∣∣∣∣∣
R1

≤ C̃ε(R− ε)−2n,

where C̃ε = Cε(1 + ε) does not depend on n. Under the assumption that M(z)/z|z=0 = 1 and

Lemma 4.2.2, we have that M (n)(z)/z|z=0 = 1 for each n. Then the recurrence relation for u(n)

shows that

u(n)(0) = an+1un(0).
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This shows that

M (n)(z)

z
=
u(n+1)(z)/u(n+1)(0)

u(n)(z)/u(n)(0)
,

and that un(0) = [an . . . a1]u(0). Since Lemma 4.2.3 shows that u(n)(z) has no zeroes in D, we

see that |u(n)(z)| ≥ α for some positive α. Taking β as a uniform bound on
∏∞
i=1 ai, this and the

above show that∣∣∣∣∣M (n)(z)

z
− 1

∣∣∣∣∣ ≤ 1

u(0)αβ

∣∣∣[βu(0)]u(n+1)(z)− u(n+1)(0)
∣∣∣

≤ |u(n+1)(z)− u(n+1)(0)|


1

u(0)αβ
if βu(0) ≤ 1

1

α
if βu(0) > 1

.

In either case, we call the bound constant A and note that it does not depend on n. By the Cauchy

integral formula, for |z| = R1 we must have

|u(n)(z)− u(n)(0)| ≤ 1

2π

∮
∂R1D

|u(n)(w)− u(n)(0)|
|z − w|

dw

=

∫ 2π

0

|u(n)(R1e
iθ)− u(n)(0)|

|z −R1eiθ|
dθ

2π

≤ sup
|z|<R1

1

|z −R1eiθ|

∣∣∣∣∣∣∣∣∣u(n)
∣∣∣∣∣∣∣∣∣
R1

,

for any ε > 0, so that

sup
|z|≤1
|u(n)(z)− u(n)(0)| ≤M

∣∣∣∣∣∣∣∣∣u(n)
∣∣∣∣∣∣∣∣∣
R1

,

where M =
1

|R0 − 1|
. Combining this with the above and recalling the remark before the state-

ment of Lemma 4.2.2, we see that

|bn|+ |an − 1| ≤ 4MA
∣∣∣∣∣∣∣∣∣u(n+1)

∣∣∣∣∣∣∣∣∣
R
≤ Kε(R− ε)−2n,

where Kε = 4MAC̃ε does not depend on n, as was to be shown. �
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4.3 The Case of Super-exponential Decay with No Bound

States

This section presents the second half of our contribution to the topic, and follows closely the pre-

sentation in [12], which allows for a very clean proof of the following theorem. If u(z) is an entire

function with growth order ρ, then by the definition of growth order we have for all β > ρ that

|u(z)| ≤ AeBR
β

for |z| = R, where A and B are positive constants that do not depend on R. We

wish to prove the following:

Theorem 4.3.1. Suppose u(z) is an entire function of finite growth order ρ that is real analytic on

the real line, such that u is non-zero on D \ {±1}, and if u(±1) = 0, then these zeros are simple.

Then we have for all β > ρ that

|an − 1|+ |bn| ≤
C

n
2
β
n

where C is a constant depending only on β (and not n). In other words, the Jacobi parameters

decay super-exponentially at a rate no more than 2/ρ.

Proof. For ease of notation, we take αn = |an−1|+ |bn|. First we note that it is sufficient to prove

lim sup
n→∞

n lnn

− lnαn
≤ β

2

for all β > ρ. For simplicity, we will suppose that |u(z)− u(0)| ≤ CeR
β

, where R = |z|, β > ρ,

and C is a constant depending on β (it will be clear how to modify the proof to accomodate the

general case). We have from the proof of Theorem 4.2.1 that

αn ≤ K
∣∣∣∣∣∣∣∣∣u(n+1)

∣∣∣∣∣∣∣∣∣
R
≤ R−2nNn|||u|||R

for any disk of radius R, and Nn is uniformly bounded over n. As u is entire, we are free to choose

R = n1/β , so that a Cauchy estimate gives

αn ≤ n−
2
β
n
Nn

(∫ 2π

0
|u(Reiθ)− u(0)|2dθ

π

)1/2

≤MNnn
− 2
β
n
en,
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where M =
√

2C. Inverting and taking logs gives

− lnαn ≥
2

β
n lnn− lnM − lnNn − n.

If we take γn = lnM + lnNn + n, then since Nn is uniformly bounded over n, we must have that
γn
n
→ 1 as n→∞. Then we have

n lnn

− lnαn
≤ n lnn

2
β (n lnn− β

2γn)

=
n lnn− β

2γn + β
2γn

2
β (n lnn− β

2γn)

=
β

2
+

β
2γn

2
βn lnn− γn

=
β

2
+

β
2
γn
n

2
β lnn− γn

n

.

Evidently the fraction on the right tends to 0 for large n thanks to the presence of the lnn term, so

we must have that

lim sup
n→∞

n lnn

− lnαn
≤ β

2
.

This for all β > ρ, so the result follows.
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Future Work

5.1 The Case of Bound States

The proof of Lemma 4.2.2 relies on the fact that u has no bound states. If u(z) = 0 for some

z ∈ D, then there is no guarantee that the extension ofM(z) to |z| < R will agree with the weights

wj that are required to determine dµ from u. In the third section of [1] (as well as [8]), Damanik

and Simon extend their result to the case where u has bound states. It should be possible to use

their results in the case where u is entire of finite growth order. The possible values of the weights

wj are given by ∑
j

wj +
2

π

∫ π

0

sin2 θ

|u(eiθ)|2
dθ = 1.

Suppose u is analytic on a neighborhood of D̄ and real analytic on the real line. If all of the zeros of

u occur on (D̄∩R) \ {0}, and these are simple zeros, then there is a unique measure for which u is

the Jost function and the wj are the weights. In this case, M(z) can be extended meromorphically

to a neighborhood of D̄ in a way consistent with the weights for u. In particular, we may take

wj =
zj − z−1

j

zju′0(zj)u
#
0 (zj)

.

These are known as the canonical weights for u0. The methods of section 4 can then be applied to

show the result in the case of bound states. The relevant theorems can be found in [8, p. 918].
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Appendix A

Measure Theory

A.1 Borel Measures and Distributions

The results in this section are fairly standard and summarized in [11]. The main result is an appli-

cation of vague convergence of Borel measures. First we let µ be a measure on R and define the

Borel algebra to be the smallest σ-algebra on R that contains all open intervals. These sets are

called the Borel sets of R. The measure µ is called a Borel measure if µ(C) <∞ for all compact

sets C in R. For any Borel measure µ, its distribution is defined to be the function

d(x) =


−µ((x, 0]) x < 0

0 x = 0

µ((0, x]) x > 0

.

By the monotonicity of the measure, d must be non-decreasing. Suppose that a > 0. Then since

µ is continuous from above, we have that Bn+1 ⊂ Bn implies that µ(Bn) → µ(∩nBn), provided

that µ(B1) is finite. Since Borel measures assign finite measure to closed intervals, monotonicity

implies that µ assigns finite measure to any finite interval. So if (an) is a monotone decreasing

sequence converging to a, then we see that (0, a] ⊂ (0, an+1] ⊂ (0, an] implies

lim
n→∞

d(an) = lim
n→∞

µ((0, an]) = µ((0, a]) = d(a),
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which shows that d is right-continuous. The cases for a ≤ 0 are shown similarly. Also note

µ begin continuous from above and below implies that d(x) → µ((−∞, 0]) as x → −∞ and

d(x)→ µ((0,∞)) as x→∞. In the other direction, let T be the algebra of finite unions of disjoint

intervals of the form (a, b] together with the empty set. Take A = ∪ni=1Ai where Ai = (ai, bi] are

disjoint. For every right-continuous and non-decreasing function d on the real line, we define

µ∗(A) =

n∑
i=1

[d(bi)− d(ai)].

This is well-defined since any partition of A can be expressed in the form A′ = ∪ni=1A
′
i where the

ai are distinct from the bi. Then since the sum is telescoping at those points where ai+1 = bi, we

get µ∗(A) = µ∗(A
′). Now we can show the following:

Lemma A.1.1. Every right-continuous, non-decreasing function d : R → R defines a unique

Borel measure µ such that µ = µ∗ on T . Two functions d1 and d2 both generate µ if and only if

d1 = d2 + C for some constant C.

Proof. Since extensions of pre-measures are unique, it will suffice to show that µ∗ defines a pre-

measure for µ, and then we will check regularity. We first need to show that T generates the

Borel algebra on R. Clearly T is contained in the Borel algebra, so by definition the σ-algebra

σ(T ) generated by T must be contained in the Borel algebra. Since every open set in R can be

expressed as a union of open intervals, and any open interval (a, b) has the form ∪n≥1(a, b− 1/n],

the σ-algebra generated by T must contain all the open sets. But by definition, the Borel algebra

is the smallest σ-algebra with this property, so we must in fact have that σ(T ) is exactly the Borel

algebra. We now need to see that µ∗ defines a pre-measure on T . We see that µ∗(·) ≥ 0 since d

is a non-decreasing function, and µ∗(φ) = µ∗((a, a]) = d(a) − d(a) = 0. It suffices (by taking

countable unions of countable unions) to check σ-additivity in the case that A = ∪∞n=1An = (a, b],

where An = (an, an−1], so that a0 = b and an → a+ as n→∞. We see that

µ∗(A)− µ∗(∪Nn=1An) = d(b)− d(a)−
N∑
n=1

[d(an−1)− d(an)]

= d(b)− d(a) + d(aN )− d(a0)

= d(aN )− d(a)→ 0
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as N → ∞ by the right-continuity of d. It follows that µ∗ extends to a unique Borel measure µ.

This extension preserves regularity, so it suffices check that µ∗ is regular. For simplicity, we check

inner and outer regularity for A = (a, b]. Since A is open on the left and closed on the right, we

may take our open sets to be of the form Oε = (a, b + ε) and our compact sets to be of the form

Cε = [a+ ε, b]. We see that monotonicity of the pre-measure µ∗ gives

d(b)− d(a) = µ∗(A) ≤ µ∗(Oε) ≤ µ∗((a, b+ ε)) = d(b+ ε)− d(a)

and

d(b)− d(a+ ε) = µ∗((a+ ε, b]) ≤ µ∗(Cε) ≤ µ∗(A) = d(b)− d(a),

so since d is right-continuous, µ∗(Oε)− µ∗(Cε) can be made as small as we like, so we have that

µ∗ is regular. The last statement of the lemma is clear from the definition of µ∗.

If µ is finite, it is usually more convenient to work with the non-negative function F defined by

F (x) = µ((−∞, 0]) + d(x).

Clearly F is also right-continuous, and we see that

F (x) =


µ((−∞, 0])− µ((x, 0]) x < 0

µ((−∞, 0]) x = 0

µ((−∞, 0]) + µ((0, x]) x > 0

,

so that F (x) = µ((−∞, x]). In particular, we have that the continuity of µ from above and below

gives F (−∞) = limx→−∞ F (x) = 0 and F (∞) = limx→∞ F (x) = µ(R). We refer to F as the

normalized distribution of µ. Furthermore, we call x a point of continuity of the measure µ if

µ({x}) = 0. We see that x is a point of continuity for µ if and only if F is continuous at x:

µ({x}) = µ(∩n≥1(x− 1/n, x]) = lim
n→∞

µ((x− 1/n, x])

= lim
n→∞

(µ(−∞, x])− µ((−∞, x− 1/n]))

= lim
n→∞

(F (x)− F (x− 1/n)).
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In particular this means that since F can only have countably many discontinuities, the same is true

for µ. This is also true in the general case with d in place of F . Now suppose that µn is a sequence

of Borel measures and suppose that µ is another Borel measure such that∫
R
f dµn →

∫
R
f dµ

for all compactly supported continuous functions f . Then we say that the µn converge vaguely to

the measure µ. We have the following lemma:

Lemma A.1.2. A sequence of Borel measures (µn) on R converges vaguely to a Borel measure µ

on R if and only if the distributions of the µn converge to the distribution of µ at every point of

continuity of µ.

Proof. Suppose that the µn converge vaguely to µ. For any bounded interval I = (a, b], we can

find continuous functions f and g with compact supports satisfying f ≤ χI ≤ g. Then∫
R
f dµn ≤ µn(I) ≤

∫
R
g dµn,

and similarly for µ. Then we have that∫
R
f dµn −

∫
R
f dµ−

∫
R

(g − f) dµ ≤ µn(I)− µ(I) ≤
∫
R

(g − f) dµ+

∫
R
g dµn −

∫
R
g dµ,

so the vague convergence of the µn shows that

lim sup
n→∞

|µn(I)− µ(I)| ≤
∫
R

(g − f) dµ.

This for any f, g ∈ Cc(R), so in particular we can choose fk and gk with |gk − fk| ≤ χ(a−δ,a+δ),

for δ > 0 fixed, such that fk → χ(a,b] from below and gk → χ[a,b] from above pointwise. Then the

Lebesgue dominated convergence theorem shows that
∫
R(gk − fk)dµ converges to µ({a}). Thus

we have that

lim sup
n→∞

|dn(a)− d(a)| ≤ lim sup
n→∞

|µn(I)− µ(I)| ≤ µ({a}),

so that dn(a) → d(a), provided that a is a point of continuity of µ. Conversely, suppose that

dn(x) → d(x) wherever µ({x}) = 0, and let f ∈ C0(R). Since the support of f is compact and

f is continuous, f must be uniformly continuous. Fix ε > 0. Then there is a δ > 0 such that
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|f(x)− f(y)| < ε for |x− y| < δ. Find an interval I = (a0, aN ) containing the support of f and

a partition a0 < a1 < · · · < aN−1 < aN of I such that ai+1 − ai < δ for 0 ≤ i ≤ N . Since the

discontinuities of µ are countable, we can arrange things so that µ({ai}) = 0 for each i. Then for

large enough n, we have |dn(xi)− d(xi)| < ε/(2N), so that

µn((ai−1, ai]) = |dn(ai−1)− dn(ai)| < |d(ai−1)− d(ai)|+
ε

N
= µ((ai−1, ai]) +

ε

N
.

From this and supp(f) ⊂ (a0, aN ), we see that∣∣∣∣∣
∫
R
f dµn −

N∑
i=1

f(ai−1)µn((ai−1, ai])

∣∣∣∣∣ ≤
N∑
i=1

∫
(ai−1,ai]

|f(x)− f(ai−1)| dµn

< ε

N∑
i=1

∫
(ai−1,ai]

dµn

= ε

N∑
i=1

µn((ai−1, ai])

< ε(µ((a0, aN ]) + ε).

So we have∣∣∣∣∫
R
f dµn −

∫
R
f dµ

∣∣∣∣ ≤ N∑
i=1

∫
(ai−1,ai]

|f(x)− f(ai−1)| dµn

+
N∑
i=1

∫
(ai−1,ai]

|f(x)− f(ai−1)| dµ

+
N∑
i=1

|f(ai−1)| · |µn((ai−1, ai])− µ((ai−1, ai])|

< ε · (µ((a0, aN ]) + ε) + ε · µ((a0, aN ]) + ε · max
1≤i≤N

|f(ai−1)|

= ε · [2µ((a0, aN ] + max
1≤i≤N

|f(ai−1)|+ ε],

which establishes that µn → µ vaguely.

We are now in a position to prove the following theorem:

Theorem A.1.3. If (µn) is a sequence of finite Borel measures on the real line with µn(R) ≤ M

for all n, then there exists a subsequence (µk) that converges vaguely to a unique measure µ with
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µ(R) ≤M . Moreover, we have that ∫
R
f dµn →

∫
R
f dµ

for all f ∈ C0(R).

Proof. Since the µn are all finite measures, we can consider the normalized distributions Fn(x) =

µn((−∞, x]). By lemma A.1.2, it suffices to show that there is a subsequence whose distri-

butions converge pointwise to another distribution F , since then lemma A.1.1 then shows that

F (x) = µ((−∞, x]) gives the desired measure, provided that the distributions of the subsequence

converge to F wherever F is continuous. Now let {ri}∞i=1 be an enumeration of the rationals.

Since Fn(r1) ∈ [0,M ], by the Heine-Borel theorem there exists a subsequence n(1)
k ⊂ n such that

that F (1)
nk (r1) → H(r1). However, since F (1)

nk (r2) ∈ [0,M ], we have the existence of a subse-

quence n(2)
k ⊂ n

(1)
k such that F (2)

nk (r2) → H(r2). Moreover, since n(2)
k ⊂ n

(1)
k , we must have that

F
(2)
nk (r1) ⊂ F (1)

nk (r1)→ H(r1) as well. In general, we can find subsequences n(j)
k satisfying

n
(j)
k ⊂ n

(j−1)
k ⊂ · · · ⊂ n(1)

k ⊂ n

and

F (j)
nk

(ri)→ H(ri)

for i ≤ j. It follows that the diagonal function H(ri) = lim
k→∞

F (k)
nk

(ri) is non-decreasing since

ri ≤ rj implies that F (k)
nk (ri) ≤ F

(k)
nk (ri) for all k. Now for any x ∈ R we can define the function

F by

F (x) = inf
ri≥x

H(ri).

Then F is non-decreasing, because x ≤ y implies that inf
ri≥x

H(ri) ≤ inf
ri≥y

H(ri) since H is non-

decreasing. If we suppose that ε > 0, then it is clear that

lim
ε→0+

F (x+ ε) = inf{H(ri) : ri ≥ x+ δ , 0 < δ < ε}

= inf{H(ri) : ri ≥ x} = F (x),
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so that F is continuous from the right. So F is a distribution, and we have the existence of a unique

Borel measure µ defined by µ((−∞, x]) = F (x). We see that

µ(R) = lim
x→∞

F (x) = lim
r→∞
r∈Q

H(r) ≤M.

Now we must verify that F
n
(k)
k

(x) → F (x) for all x such that F is continuous. Let ε > 0 and

suppose that F is continuous at x. Then we can find a y < x such that F (x)− ε < F (y). We can

find rational r1 and r2 such that y < r1 < x < r2 and F (x) + ε > H(r2). Then

F (x)− ε < F (y) < H(r1) < H(r2) < F (x) + ε.

Since F
n
(k)
k

(ri)→ H(ri) as k →∞, for large enough k we have that H(r1) ≤ F
n
(k)
k

(x) ≤ H(r2),

and then

|F
n
(k)
k

(x)− F (x)| < ε,

which shows that F
n
(k)
k

(x)→ F (x) as k →∞. For the last statement of the theorem, assume that

f is continuous and vanishes at infinity. Let ε > 0 and write f = f1 + f2, where f1 has compact

support σ = supp(f1) and f2 ≤ ε. Then since µn converges vaguely to µ, we have that∣∣∣∣∫
R
f dµn −

∫
R
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫
σ
f1 dµn −

∫
σ
f1 dµ

∣∣∣∣+

∣∣∣∣∣
∫
R\σ

f2 dµn −
∫
R\σ

f2 dµ

∣∣∣∣∣
≤
∣∣∣∣∫
σ
f1 dµn −

∫
σ
f1 dµ

∣∣∣∣+ 2ε

→ 2ε

as n→∞. This for all ε > 0, so the claim follows.

A.2 Herglotz Functions and the Stieltjes Inversion For-

mula

The results in this section follow from previous one, and can also be found in [11]. Theorem A.1.3

can now be used to prove the following important theorem:
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Theorem A.2.1. If F : C+ → C+ is a holomorphic function on the upper-half plane (i.e., F is a

Herglotz function) and satisfies

|F (z)| ≤ M

Im(z)

for all z ∈ C+, then there exists a unique Borel measure µ such that µ(R) ≤M and

F (z) =

∫
R

1

λ− z
dµ(λ)

(i.e., F is the Borel transform of µ).

Proof. Suppose that F is a Herglotz function, so that F (z)Im(z) ≤ M for some M > 0. For a

fixed z = x+ iy ∈ C+, define the contour

Γ = {x+ iε+ t : t ∈ [−R,R]} ∪ {x+ iε+Reiθ : θ ∈ [0, π]} = Γ1 ∪ Γ2.

By construction, we have that z is interior to Γ while z̄+2iε is exterior to Γ. Then since F (ζ)/(ζ−

z̄ − 2iε) is holomorphic on an interior to Γ, its integral over that contour is zero by the Cauchy

integral theorem. Moreover, since F is holomorphic on and interior to Γ, we have by the Cauchy

integral formula that

F (z) =
1

2πi

∫
Γ

F (ζ)

ζ − z
dζ

=
1

2πi

∫
Γ

F (ζ)

ζ − z
dζ − 1

2πi

∫
Γ

F (ζ)

ζ − z̄ − 2iε
dζ

=
1

2πi

∫
Γ

(
1

ζ − z
− 1

ζ − z̄ − 2iε

)
F (ζ) dζ

=
1

π

∫
Γ

y − ε
(ζ − z)(ζ − z̄ − 2iε)

F (ζ) dζ,

since ζ − z̄ − 2iε− (ζ − z) = 2iy − 2iε. Using the substitution ζ = x+ iε+ t for t ∈ [−R,R],

we see that

1

π

∫
Γ1

y − ε
(ζ − z)(ζ − z̄ − 2iε)

F (ζ) dζ =
1

π

∫ R

−R

y − ε
(t+ i(ε− y))(t− i(ε− y))

F (x+ iε+ t) dt

=
1

π

∫ R

−R

y − ε
t2 + (y − ε)2

F (x+ iε+ t) dt.
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Letting R tend to infinity and shifting by s = x+ t we see that

1

π

∫
Γ1

y − ε
(ζ − z)(ζ − z̄ − 2iε)

F (ζ) dζ →
∫ ∞
−∞

y − ε
(s− x)2 + (y − ε)2

· F (s+ iε)

π
ds.

Using the substitution ζ = Reiθ, we see that

1

π

∫
Γ2

y − ε
(ζ − z)(ζ − z̄ − 2iε)

F (ζ) dζ =
i

π

∫ π

0

(y − ε)F (Reiθ + x+ iε)

(Reiθ + x+ iε)(Reiθ − y − iε)
Reiθ dθ.

From F (z) ≤M Im(z)−1, we have the bound∣∣∣∣ iπ
∫ π

0

(y − ε)F (Reiθ + x+ iε)

(Reiθ + x+ iε)(Reiθ − y − iε)
Reiθ dθ

∣∣∣∣ ≤ 2R2|y − ε|
R|R− |ε+ y||

sup
θ∈[0,π]

F (Reiθ + x+ iε)

≤ 2MR|y − ε|
|R− |ε+ y|| · |ε+R sin θ|

,

so the integral over Γ2 tends to zero as R→∞. Thus we arrive at the representation

F (z) =

∫ ∞
−∞

y − ε
(s− x)2 + (y − ε)2

· F (s+ iε)

π
ds,

Taking imaginary parts, we see that

Im(F (z)) = ω(z) =

∫
R
ϕε(s)ωε(s) ds,

where

ϕε(s) =
y − ε

(s− x)2 + (y − ε)2
and ωε(s) =

ω(s+ iε)

π
.

Now we can define

Fε(λ) =

∫ λ

−∞
ωε(s) ds.

Since F is Herglotz, ω(x+ iε) is postive and continuous, so then Fε is increasing and continuous.

In particular, it is a distribution, so that µε((−∞, λ]) = Fε(λ) gives a family of Borel measures.

Our bound on F shows that

yω(s) =

∫
R

y(y − ε)
(s− x)2 + (y − ε)2

ωε(s) ds ≤ y|F (z)| ≤M,

so as y →∞ we have that

µε(R) =

∫
R
ωε(s) ds ≤M.
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Taking ε = 1/n, by Theorem A.1.3 we have that µε converges vaguely to some unique Borel

measure µ with µ(R) ≤M . Moreover, we see that for Aλ = (−∞, λ], we have that∫
R
χA(s)dµε(s) =

∫
A
dµε(s) =

∫
A
ωε(s) ds,

so that dµε = ωε(s) ds. Since

|ϕε(s)− ϕ0(s)| =
∣∣∣∣ y − ε
(s− x)2 + (y − ε)2

− y

(s− x)2 + y2

∣∣∣∣
=

∣∣∣∣ −ε(s− x)2

[(s− x)2 + (y − ε)2] · [(s− x)2 + y2]

∣∣∣∣
= ε · α(s, ε),

where α(s, ε) is bounded for all s ∈ R for fixed ε > 0. So for small ε we have α(s, ε) ≤ K

uniformly for some K > 0. Now we see that∣∣∣∣ω(z)−
∫
R
ϕ0(s)dµε(s)

∣∣∣∣ =

∣∣∣∣∫
R
ϕε(s)ωε(s) ds−

∫
R
ϕ0(s)dµε(s)

∣∣∣∣
=

∣∣∣∣∫
R

(ϕε(s)− ϕ0(s))dµε(s)

∣∣∣∣
≤ sup

λ∈R
|ϕε(s)− ϕ0(s)|

∫
R
dµε(s)

≤ (Kε)µ(R)

≤MKε.

This shows that

ω(z) = lim
ε→0+

∫
R
ϕ0(s)dµε(s).

But clearly ϕ0 ∈ C0(R), so the last statement in Theorem A.1.3 shows that∫
R
ϕ0 dµε →

∫
R
ϕ0 dµ,

which implies

ω(z) =

∫
R
ϕ0(s)dµ(s) =

∫
R

y2

(s− x)2 + y2
dµ(s).

But since

1

s− z
=

s− z̄
|s− z|2

=
(s− x) + iy

(s− x)2 + y2
=

s− x
(s− x)2 + y2

+ i
y2

(s− x)2 + y2
,

57



Appendix A. Measure Theory

which implies

Im(F (z)) = Im
(∫

R

1

λ− z
dµ(λ)

)
.

Since F and the Borel transform are both holomorphic on C+ with identical imaginary parts, we

must have that they differ by a real constant A. But since

|A| ≤ |F (z)| ≤ M

Im(z)
→ 0

as Im(z)→∞, we must in fact have that

F (z) =

∫
R

1

λ− z
dµ(λ),

which was to be shown.

The next theorem shows that the measure µ can be explicitly computed:

Theorem A.2.2. If F is the Borel transform of µ, then µ is given by the Stieltjes inversion formula:

1

2
(µ((λ1, λ2)) + µ([λ1, λ2])) = lim

ε→0+

1

π

∫ λ2

λ1

Im(F (λ+ iε)) dλ.

Proof. We see that

1

π

∫ λ2

λ1

Im(F (λ+ iε)) dλ =
1

π

∫ λ2

λ1

∫
R

ε

(λ− x)2 + ε2
dµ(x) dλ.

Since the integrand is clearly continuous for all (x, λ) ∈ R2, Fubini’s theorem implies that

1

π

∫ λ2

λ1

∫
R

ε

(λ− x)2 + ε2
dµ(x) dλ =

1

π

∫
R

∫ λ2

λ1

ε

(λ− x)2 + ε2
dλ dµ(x)

=
1

π

∫
R

∫ λ2

λ1

1

[(λ− x)/ε−1]2 + 1
(ε−1dλ) dµ(x)

=
1

π

∫
R

[
tan−1

(
λ2 − x
ε

)
− tan−1

(
λ1 − x
ε

)]
dµ(x).
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As ε→ 0+, we have

1

π

[
tan−1

(
λ2 − x
ε

)
− tan−1

(
λ1 − x
ε

)]
→ 1

π



tan−1(∞)− tan−1(−∞) λ1 < x < λ2

tan−1(∞) x = λ1

− tan−1(−∞) x = λ2

tan−1(∞)− tan−1(∞) x < λ1

tan−1(−∞)− tan−1(−∞) x > λ2

=


1 x ∈ (λ1, λ2)

1/2 x = λ1, λ2

0 x ∈ R \ (λ1, λ2)

=
1

2

[
χ(λ1,λ2)(x) + χ[λ1,λ2](x)

]
.

Since 0 ≤ 1

π
(tan−1(·)− tan−1(·)) ≤ 1, the Lebesgue dominated convergence theorem gives

lim
ε→0+

1

π

∫ λ2

λ1

Im(F (λ+ iε)) dλ =
1

2

∫
R

[
χ(λ1,λ2)(x) + χ[λ1,λ2](x)

]
dµ(x)

=
1

2
(µ((λ1, λ2)) + µ([λ1, λ2])),

which was to be shown.

A.3 Lebesgue Decomposition of Finite Measures

We give here a brief summary of Lebesgue decomposition of Borel measures on the real line, which

follows closely the presenation in [7]. First we recall that if µ and ν are measures on a common

measure space, then we say that µ and ν are mutually singular, denoted µ ⊥ ν, if there is a

measurable set Ω such that µ(Ω) = 0 and ν(X \ Ω) = 0. On the other hand, if µ(B) = 0 implies

ν(B) = 0 for any measurable set B, then we say that ν is absolutely continuous with respect to

µ, denoted ν � µ. We start with the following lemma:

Lemma A.3.1. If µ and ν are σ-finite Borel measures on the real line, then there is a unique
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(modulo almost everywhere w.r.t. µ) non-negative function f and a set Ω such that µ(Ω) = 0 and

ν(B) = ν(B ∩ Ω) +

∫
R
f dµ

for any measurable set B.

Proof. First assume that µ and ν are finite. Take α = µ+ ν. Then

φ(h) =

∫
R
h dν

is a bounded linear function on L2(R, dα) since

|φ(h)|2 =

∣∣∣∣∫
R
h dν

∣∣∣∣2 ≤ (∫
R
dν

)(∫
R
|h|2 dν

)
≤ ν(R)

(∫
R
|h|2 dα

)
= ν(R)‖h‖2

by Cauchy-Schwarz. By the Riesz representation theorem for bounded linear functionals, we have

the existence of a g ∈ L2(R, dα) such that

φ(h) = 〈h, g〉 =

∫
R
hg dα.

Then we have

ν(B) =

∫
R
χB dν =

∫
R
χBg dα =

∫
B
g dα.

If we take A = {x : g(x) ≤ 0}, then we see that

0 ≤ ν(A) =

∫
B
g dα ≤ 0,

so that ν(A) = 0. This shows that g is non-negative almost everywhere. Now define Ω = {x :

g(x) ≥ 1}. Then

ν(Ω) =

∫
Ω
g dα =

∫
R
χΩg dα ≥

∫
R
χΩ dα = α(Ω) = ν(Ω) + µ(Ω),

so that 0 ≤ µ(Ω) ≤ 0 or µ(Ω) = 0. Now we can define

f =
g

1− g
χR\Ω,
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which is also non-negative almost everywhere. Since
∫
R
χB dν =

∫
R
χBg dα, we have that dν =

g dα so that dµ = dα− dν = (1− g) dα. Then

∫
B
f dµ =

∫
R
χBf dµ =

∫
R

g

1− g
χR\ΩχB dµ

=

∫
R

g

1− g
χ(R\Ω)∩B dµ

=

∫
R
χ(R\Ω)∩Bg dα

=

∫
R
χ(R\Ω)∩B dν

= ν((R \ Ω) ∩B).

We arrive at

ν(B) = ν(Ω ∩B) + ν((R \ Ω) ∩B) = ν(Ω ∩B) +

∫
B
f dµ,

where µ(Ω) = 0. If there is a second function f ′ satisfying this equation, then we would have∫
B(f − f ′) dµ = 0 for any Borel set B, so that f = f ′ almost everywhere, so f is unique modulo

a set of µ measure zero. To extend to the σ-finite case, we first consider the restriction of the Borel

algebra on R to the sets Xn = (−n− 1, n] ∩ [n, n+ 1) for n ≥ 0. Evidently ∪n≥0Xn = R. Since

µ and ν are Borel algebras, µ(Xn), ν(Xn) < ∞ for each n. So for each Xn we have Ωn and fn

satisfying

ν(B) = ν(Ωn ∩B) +

∫
B
fn dµ,

for all Borel sets B ⊂ Xn. Take Ω = ∪n≥1Ωn, so that µ(Ω) = 0 by additivity, and define f by

f(x) = fn(x) for x ∈ Xn, or since the supports are disjoint, f =
∑∞

n=0 fn. Now for any Borel set
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B on the real line we have

ν(B) = ν

⋃
n≥0

(B ∩Xn)

 =

∞∑
n=0

ν(B ∩Xn)

=
∞∑
n=0

[
ν(Ωn ∩ (B ∩Xn)) +

∫
B∩Xn

fn dµ

]

=
∞∑
n=0

ν(Ωn ∩ (B ∩Xn)) +
∞∑
n=0

∫
B∩Xn

fn dµ

= ν

⋃
n≥0

Ωn ∩ (B ∩Xn)

+

∫
B
f dµ

= ν

⋃
n≥0

Ωn

⋂⋃
n≥0

(B ∩Xn)

+

∫
B
f dµ

= ν(Ω ∩B) +

∫
B
f dµ,

so since the uniqueness of the fn gives f uniquely, this concludes the proof in the σ-finite case.

Let µ and ν be σ-finite Borel measures and consider the representation given by Lemma A.3.1:

ν(B) = ν(B ∩ Ω) +

∫
R
f dµ,

where µ(Ω) = 0 and f is a non-negative µ-measurable function. If ν � µ, then ν(B ∩ Ω) ⊂

ν(Ω) = 0, so that dν = f dµ. Conversely, if there is a non-negative measurable function f such

that dν = f dµ, then clearly µ(B) = 0 implies that∫
B
f dµ = ν(B) = 0.

So ν � µ if and only if dν = f dµ for some non-negative measurable function f . In this case, the

function f is written as
dν

dµ
and is called the Radon-Nikodym derivative of ν with respect to µ.

We can now prove a particular case of the famous Lebesgue decomposition theorem:

Theorem A.3.2. (Lebesgue Decomposition of Borel Measures) Let µ be a finite Borel measure

on the real line, and let m be the Lebesgue measure. Then there are unique measures µac and µs

such that µac � m, µs ⊥ µac, and µ = µac + µs.
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Proof. Since µ is finite and m is σ-finite, by Lemma A.3.1, there is a non-negative Lebesgue

measurable function f and a set M of Lebesgue measure zero such that

µ(B) = µ(M ∩B) +

∫
B
f dm.

Take µs(·) = µ(M ∩ ·) and dµac = f dm. Then since µac(M) =
∫
M f dm = 0 and

µs(R \M) = µ((R \M) ∩M) = µ(φ) = 0,

we have that µac ⊥ µs, and we have already seen that µac � m. To see that this decomposition

is unique, let µ = µ̃ac + µ̃s. Then dµ̃ac = f̃ dm for some non-negative Lebesgue measurable

function f̃ . So

µs(A)− µ̃s(A) = µ(A)− µac(A)− (µ(A)− µ̃ac(A)) =

∫
A

(f̃ − f) dm.

Since µ̃ac ⊥ µ̃s, there is a M̃ such that m(M̃) = 0 and µ̃s(R \ M̃) = 0. Then m(M ∪ M̃) = 0.

Let A be a Lebesgue measurable set. We may assume WLOG that A is either contained in M ∪ M̃

or its complement. If A ⊂ (M ∪ M̃), then∫
A

(f̃ − f) dm = 0.

If instead A ⊂ [(R \M) ∩ (R \ M̃)] 6= φ, we have that∫
A

(f̃ − f) dm = µs(A)− µ̃s(A) = 0

by monotonicity. This shows that f = f̃ almost everywhere, since
∫
A(f̃ − f) dm = 0 for all

Lebesgue measurable sets A. Then µs = µ̃s, so that

µac − µ̃ac = µ− µs − (µ− µ̃s) = 0,

and so µac = µ̃ac as well.

We would now like to characterize the supports of µac and µs in terms of m. This is done via

differentiation of measures. We begin by defining the symmetric derivative of a Borel measure µ

to be

(Dµ)(x) = lim
r→0

µ((x− r, x+ r))

2r
= lim

r→0

µ((x− r, x+ r))

m(x− r, x+ r)

where m is again the Lebesgue measure. First we have
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Lemma A.3.3. The set {Mµ > λ} = {x ∈ R : (Mµ)(x) > λ} are open, where Mµ is the

maximal function

(Mµ)(x) = sup
0<r<∞

µ((x− r, x+ r))

2r
.

In particular, Mµ is Lebesgue measurable.

Proof. It suffices to show that the sets {Mµ > λ} = {x ∈ R : (Mµ)(x) > λ} are open. Fix

x ∈ {Mµ > λ} for some λ > 0. By the definition of {Mµ > λ}, we can find r > 0 and t > λ

such that

µ((x− r, x+ r)) = 2tr.

Since t/λ > 1, there exists a δ > 0 such that r + δ <
rt

λ
, so for any y with |x − y| < δ we have

y − δ < x < y + δ so that

(x− r, x+ r) ⊂ (y − r − δ, y + r + δ),

which gives

µ((y − r − δ, y + r + δ)) ≥ µ((x− r, x+ r)) = 2tr > λ · 2(r + δ),

so that

µ((y − r − δ, y + r + δ))

2(r + δ)
> λ,

which shows that (x − r, x + r) ⊂ {Mµ > λ}. This for all x ∈ {Mµ > λ}, so {Mµ > λ} is

open.

If Ii = (xi − ri, xi + ri), 1 ≤ i ≤ n, is a finite collection of intervals with ri ≤ ri+1 for each

1 ≤ i < n, then we can find a subset {rj}kj=1 ⊂ {ri}ni=1 such that the Ij are all disjoint and each

Ii is contained in some interval of the form (xj − 3rj , xj + 3rj). This can be seen by noting that if

Ii∩Ij 6= φ with ri ≤ rj , then for y ∈ Ii, we have |xi−y| ≤ |xi−xj |+ |xj−y| < 2rj +rj = 3rj .

It follows that

m(∪ni=1Ii) ≤
k∑
i=1

m(Ij) = 6
k∑
j=1

rj .

We can use this fact to prove:
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Lemma A.3.4. For any Borel measure µ on the real line and λ > 0, we have

m({Mµ > λ}) ≤ 3µ(R)

λ
.

Proof. Let K be any compact subset of {Mµ > λ}. Then for each x ∈ K, the definition of Mµ

gives an rx such that µ((x − rx, x + rx)) > 2rxλ. Some finite collection of these open intervals

{Ii = (xi− ri, xi + ri)}ni=1, must cover K since it is compact. The remarks above show that there

are {rj}kj=1 for some k ≤ n such that

m(K) ≤ 3
k∑
j=1

(2rj) <
3

λ

k∑
j=1

µ(Ii).

But m is a regular measure and {Mµ > λ} is open, so taking the supremum over all compact

subsets gives

m({Mµ > λ}) ≤ 3

λ
µ(R),

which concludes the proof.

In particular this shows that if f is a Lebesgue measurable function and dµ = f dm, then for the

maximal operator

(Mf)(x) = sup
0<r<∞

1

2r

∫
(x−r,x+r)

|f | dm

we get

m({M(|f | dm) > λ}) ≤ 3

λ

∫
R
|f | dm.

This leads us to define a Lebesgue point of a Lebesgue measurable function f to be any x ∈ R

such that

lim
r→0

1

2r

∫
(x−r,x+r)

|f(y)− f(x)| dm(y) = 0.

Note that if f is a continuous function, then every point is a Lebesgue point. The following theorem

establishes existence in the general case:

Theorem A.3.5. If f is Lebesgue measurable, then almost every x ∈ R is a Lebesgue point of f .
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Proof. It suffices to show that

(Tf)(x) = sup
0<r<∞

1

2r

∫
(x−r,x+r)

|f(y)− f(x)| dm(y) = 0,

for almost every x. For any ε > 0 we can find a g ∈ C(R) such that
∫
R |f − g| dm < ε. Since g is

continuous, taking h = f − g shows that for all r > 0 we have

1

2r

∫
(x−r,x+r)

|f − f(x)| dm ≤ 1

2r

∫
(x−r,x+r)

|f − g − (f(x)− g)| dm

≤ 1

2r

∫
(x−r,x+r)

|h| dm+
1

2r

∫
(x−r,x+r)

|f(x)− g| dm

=
1

2r

∫
(x−r,x+r)

|h| dm+ |h(x)|.

Then (Tf)(x) ≤ (Mh)(x) + |h(x)|, so if x is such that (Mf)(x) > 2y for some y > 0, then

either (Mf)(h) > y or |h| > y, so we have

{Tf > 2y} ⊂ {Mh > y} ∪ {|h| > y}.

But m({h > y}) ≤ 1

y

∫
R |h| dm by Markov’s inquality, so Lemma A.3.4 gives

m({Tf > 2y}) ≤ m({Mh > y}) +m({|h| > y} ≤ 4

λ

∫
R
|h| dm =

4ε

y
.

Since ε > 0 was arbitrary, we must have

m({Tf > 2y}) = 0.

This for all y > 0, so that (Tf)(x) = 0 for almost every x ∈ R.

Now we are ready to prove the main result:

Theorem A.3.6. Let µ be a Borel measure on R. We have

i) µ ⊥ m implies that (Dµ)(x) =∞ everywhere but a set of µ measure 0 (i.e., µ is supported

on T = {x ∈ R : (Dµ)(x) =∞}, so that µ(R \ T ) = 0);

ii) if dµ = f dm, then
dµ

dm
= Dµ (i.e., if µ � m, then the Radon-Nikodym derivative of µ is

Dµ).
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Proof. (i) If µ ⊥ m, then there is a Borel set B such that m(B) = 0 and µ(R \ B) = 0. We

must show that the set of all x such that (Dµ)(x) = 0 has µ measure zero. Since µ(R \ B) has µ

measure zero, we may restrict our attention to B. Since m(S) = 0, we can find Vj for j ≥ 1 such

that B ⊂ Vj for all j and m(Vj) ≤ 1/j. If (Dµ)(x) <∞, then we have that

lim
r→0

µ((x− r, x+ r))

2r
< N

for some N ≥ 1. So we define EN to be the set of all x ∈ B such that there exists a sequence

rx = r
(i)
x such that r(i)

x → 0 and

µ((x− r(i)
x , x+ r(i)

x )) < 2Nr(i)
x .

Evidently, x lies in some EN if and only if (Dµ)(x) < ∞, so we must show that ∪N≥1EN has

µ measure zero. Fix N and j. For every x in EN there is an rx small enough such that Ix =

(x−rx, x+rx) ⊂ Vj and satisfies µ(Ix) < 2Nrx. SetOj,N = ∪x∈EN Ix. Then EN ⊂ Oj,N ⊂ Vj ,

and for any compact set K ⊂ Oj,N , there is a finite subset F of EN such that Ix cover K for

x ∈ F . Then by the remarks before Lemma A.3.4 we have the existence of xk in F such that

Ixk = (x− 3rxk , x+ 3rxk) are disjoint and cover K. Then

µ(K) ≤
∑
k

µ(Ixk) < N
∑
k

m(Ixk) ≤ 3N
∑
k

m(Ixk) = 3Nm(∪kIxk) ≤ 3Nm(Vj) ≤
3N

j
.

Taking

ΩN =
∞⋂
j=1

Oj,N ,

we see that EN ⊂ ΩN and since µ(ΩN ) ≤ 3N

j
for all j, we have that µ(ΩN ) = 0 for all N . This

shows that each EN has µ measure zero, so that µ(∪N≥1EN ) = 0 as well.

(ii) If x is a Lebesgue point of f , then since f is non-negative we have that

f(x) = lim
r→0

1

2r

∫
(x−r,x+r)

f dm = lim
r→0

µ((x− r, x+ r)

2r
= (Dµ)(x),

since dµ = f dm.
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Functional Analysis

B.1 Spectral Measures

This section and the next give a concise but detailed presenation of the spectral theorem for self-

adjoint operators, and follows closely the presentation in [11]. Take B to be the Borel sets on the

real line and P(H) to be the space of projections on a separable complex Hilbert space H . The

inner product 〈·, ·〉 of H is taken to be conjugate linear in the second argument.

Definition B.1.1. A map P : B→ P(H) is a spectral measure if

i) P (R) = I

ii) P

( ∞⋃
n=1

Bn

)
=
∞∑
n=1

P (Bn)

for any disjoint collection of Borel sets {Bn}. The sum is understood to converge in the strong

operator topology.

A spectral measure is not a genuine measure, as it does not take values in [0,∞], but it does satisfy

many of the same properties. Moreover, it is possible to use the inner product on H to define Borel

measures for each f in H , as follows:
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Theorem B.1.1. For each f ∈ H , the function

µf (B) = 〈P (B)f, f〉 = ‖P (B)f‖2

defines a finite Borel measure on the real line.

Proof. Fix an f ∈ H . We wish to see that µf (φ) = 0. Since µf (φ) = ‖P (φ)f‖2, it is sufficient

to prove that P (φ) is the zero operator. Since R ∪ φ is disjoint, we have from the properties of the

spectral measure that

I = P (R) = P (R ∪ φ) = P (R) + P (φ) = I + P (φ).

These operators can only be equal if P (φ)f = 0 for all f ∈ H . To see the additivity of µf , let

ε > 0. It is clear that µ0 ≡ 0, so we may take f 6= 0. Then by the definition of a spectral measure,

there exists an N ≥ 1 such that∥∥∥∥P
( ∞⋃
n=1

Bn

)
f −

N∑
n=1

P (Bn)f

∥∥∥∥ < ε

‖f‖

for all . Then the continuity and linearity of the inner product on H implies that∣∣∣∣∣µf
( ∞⋃
n=1

Bn

)
−

N∑
n=1

µf (Bn)

∣∣∣∣∣ =

∣∣∣∣∣
〈
P

( ∞⋃
n=1

Bn

)
f, f

〉
−

N∑
n=1

〈P (Bn)f, f〉

∣∣∣∣∣
=

∣∣∣∣∣
〈
P

( ∞⋃
n=1

Bn

)
f −

N∑
n=1

P (Bn)f, f

〉∣∣∣∣∣ ,
so by Cauchy-Schwarz we have∣∣∣∣∣µf

( ∞⋃
n=1

Bn

)
−

N∑
n=1

µf (Bn)

∣∣∣∣∣ ≤
∥∥∥∥P
( ∞⋃
n=1

Bn

)
f −

N∑
n=1

P (Bn)f

∥∥∥∥ · ‖f‖ < ε.

Since each P (R)f = If = f , we have that µf (R) = 〈P (R)f, f〉 = ‖P (R)f‖2 = ‖f‖2, and µf is

finite.

Since we have

‖P (B)f + g‖2 = µf (B) + ‖g‖2 + 2 Re(〈P (B)f, g〉)
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and

‖P (B)f + ig‖2 = µf (B) + ‖g‖2 + 2 Im(〈P (B)f, g〉),

we can use the polarization identity to define the complex measures

µfg(B) = 〈P (B)f, g〉 =
1

4
(µf+g(B)− µf−g(B)− iµf−ig(B) + iµf+ig(B))

for each pair of f and g in H . We see that for any Borel set B

µfg(B) = 〈P (B)f, g〉 = 〈g, P (B)f〉 = 〈P (B)g, f〉 = µgf (B)

so that µgf = µfg. Let Simp(R) denote the set of complex-valued simple functions, regarded

as a subspace of the space of complex-valued bounded Borel functions equipped with the sup

norm, and let B(H) denote the space of bounded linear operators on H . Denote the indicator

function of A ⊂ R by χA. For any ϕ =
∑N

n=1 αnχBn ∈ Simp+(R), we define the operator

P∗ : Simp(R)→ B(H) by the formula

P∗(ϕ) =

N∑
n=1

αnP (Bn) =

∫
R
ϕ(λ)dP (λ).

This gives

〈P∗(ϕ)f, g〉 =
N∑
n=1

αn〈P (Bn)f, g〉 =
N∑
n=1

αnµfg(Bn) =

∫
R
ϕdµfg,

and in particular

‖P∗(ϕ)f‖2 =
N∑
n=1

|αn|2〈P (B)f, f〉 =

∫
R
|ϕ|2dµf .

By way of the Hahn-Banach theorem, we have the following:

Theorem B.1.2. (Integral Representation for Borel Functions) If P is a spectral measure on a

Hilbert space H , then every bounded Borel function ψ : R→ C has the representation

P∗(ψ) =

∫
R
ψ(λ)dP (λ).

Moreover, we have that P∗ satisfies the following:
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i) P∗ has norm one;

ii) the adjoint of P∗(ψ) is P∗(ψ) for all ψ;

iii) P∗(ψ1ψ2) = P∗(ψ1)P∗(ψ2) for all ψ1 and ψ2;

iv) P∗(ψ) is normal for all ψ.

Proof. Clearly P∗ is linear on Simp+(R), so since the set of simple functions is dense in the

space of complex-valued bounded Borel functions, these properties will follow immediately from

the Hahn-Banach theorem, once they have been shown to hold on Simp+(R). So we let ϕ =∑N
n=1 αnχBn ∈ Simp+(R) and proceed as follows:

(i) Let ‖P∗(ϕ)‖op denote the operator norm of P∗(ϕ). We wish to see that sup|ϕ|∞=1 ‖P∗(ϕ)‖op =

1. If |ϕ|∞ = 1, then we must have

‖P∗(ϕ)f‖2 =

∫
R
|ϕ|2dµf ≤ |ϕ|∞

∫
R
dµf = µf (R) = ‖f‖2.

So if ‖f‖ = 1, then ‖P∗(ϕ)‖op ≤ 1, and so P∗ has norm no greater than 1. To see that equality

holds, we take ϕ(x) ≡ 1, so that ‖P∗(ϕ)f‖ = 1 for ‖f‖ = 1.

(ii) We can compute the adjoint of P∗(ϕ) from the properties of the spectral measure:

〈f, P∗(ϕ)g〉 =

∫
R
ϕµgf =

∫
R
ϕµgf =

∫
R
ϕµfg = 〈P∗(ϕ)f, g〉.

(iii) If B1 and B2 are disjoint, then we have P (B1 ∪ B2) = P (B1) + P (B2). Squaring this and

using the fact that P (·) is a projection, we have

P (B1) + P (B2) = P (B1 ∪B2) = P (B1 ∪B2)2

= P (B1)2 + P (B1)P (B2) + P (B2)P (B1) + P (B2)2

= P (B1) + P (B1)P (B2) + P (B2)P (B1) + P (B2),

or P (B1)P (B2) + P (B2)P (B1) = 0. Multiplying on the left by P (B1) gives P (B1)P (B2) +

P (B1)P (B2)P (B1) = 0. Multiplying on the right by P (B1) then gives 2P (B1)P (B2)P (B1) =

0. Substituting into the previous equation now gives P (B1)P (B2) = 0 for any pair of disjoint
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Borel sets. Now note that for any two simple functions ϕ1 and ϕ2, we can refine their supports

using complements and intersections to write

ϕ1(x) =
N∑
i=1

αiχBi and ϕ2(x) =
N∑
i=1

βiχBi ,

where the αi and βi may not be distinct and non-zero, but the Bi are all disjoint. This is also a

simple function since the Bi are also Borel sets. But since χBiχBj = 0 for Bi ∩ Bj = φ, this

shows that

ϕ1(x)ϕ2(x) =

(
N∑
i=1

αiχBi

)(
N∑
i=1

βiχBi

)
=

N∑
i=1

αiβiχBi ,

so that

P∗(ϕ1(x)ϕ2(x)) =

N∑
i=1

αiβiP (Bi).

But since P (Bi)P (Bj) = 0 for disjoint sets, this shows that

P∗(ϕ1(x))P∗(ϕ2(x)) =

N∑
i=1

αiβiP (Bi)
2 =

N∑
i=1

αiβiP (Bi),

since each P (Bi) is a projection. Thus P∗(ϕ1ϕ2) = P∗(ϕ1)P∗(ϕ2) for simple functions, as de-

sired.

(iv) From (ii) and (iii), we have that P∗(ϕ)[P∗(ϕ)]∗ = P∗(ϕ)P∗(ϕ) = P∗(|ϕ|2) = [P∗(ϕ)]∗P∗(ϕ)

for all f ∈ H . It follows that P∗(ϕ) is normal.

For any f ∈ H , define the subspace Hf of H to be the images of f under P∗(ψ) for each ψ ∈

L2(R, dµf ) = L2(dµf ). In other words,

Hf = {P∗(ψ)f :

∫
R
|ψ|2dµf <∞}.

This is clearly a subspace since P∗ is linear and αψ1 + ψ2 ∈ L2(dµf ) if ψ1, ψ2 ∈ L2(dµf ). The

space L2(dµf ) for the Borel measure µf is closed for any f , so if |ψn − ψ|∞ → 0, we have that

‖P∗(ψn)f − P∗(ψ)f‖2 = ‖P∗(ψn − φ)f‖2 =

∫
R
|ψn − ψ|2dµf ≤ |ψn − ψ|∞‖f‖2 → 0.

This shows that Hf is closed, so we can consider the projection Pf of H onto Hf .
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Lemma B.1.3. For each f ∈ H and ψ ∈ L2(dµf ), Hf reduces P∗(ψ); i.e., PfP∗(ψ) = P∗(ψ)Pf .

Proof. Any h ∈ H has the form h = P∗(ψh)f + g for some ψh ∈ L2(R, µf ) and g ∈ H⊥f . We

see that

P∗(ψ)Pfh = P∗(ψ)Pf (P∗(ψh)f + g) = P∗(ψ)P∗(ψh)f.

Since g ∈ H⊥f , we have that 〈P∗(ψ0)f, P∗(ψ)g〉 = 〈P∗(ψ0ψ)f, g〉 = 0, so that P∗(ψ)g ∈ H⊥f as

well. Then

PfP∗(ψ)h = PfP∗(ψ)(P∗(ψh)f + g) = Pf (P∗(ψ)P∗(ψh)f + P∗(ψ)g) = P∗(ψh)P∗(ψ)f,

so since P∗(ψ) and P∗(ψh) commute, we have that PfP∗(ψ) = P∗(ψ)Pf .

From this lemma, we can prove the following theorem:

Theorem B.1.4. If Hf = H , then there exists a unitary map from H to L2(R, dµf ), and P∗(ψ) is

unitarily equivalent with the multiplication operator Ψ defined by Ψ(ϕ) = ψϕ for ϕ ∈ L2(dµf ).

Proof. Define Uf : Hf → L2(R, dµf ) by

Uf (P∗(ψ)f) = ψ.

Clearly this map is onto by the definition of Hf , and it is well-defined by Lemma B.1.3. We have

by the properties of P∗ that

〈Uf (P∗(ψ1)f), Uf (P∗(ψ2)f)〉L2 = 〈ψ1, ψ2〉L2

=

∫
R
ψ1ψ2 dµf

= 〈P∗(ψ2ψ1)f, f〉H

= 〈P∗(ψ2)P∗(ψ1)f, f〉H

= 〈P∗(ψ1)f, P∗(ψ2)f〉H .

We have that if g = P∗(ψ
′)f ∈ Hf , then

(UfP∗(ψ))g = Uf (P∗(ψ)P∗(ψ
′)f) = Uf (P∗(ψψ

′)f) = ψψ′ = (ΨUf )(g),

so that UfP∗(ψ) = ΨUf . So Ψ and P∗(ψ) are unitarily equivalent for each ψ.
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We just saw that if Hf = H , then Uf is a unitary map from H onto L2(dµf ). If Hf 6= H , then

since Hf reduces P∗(ψ), we can write

P∗(ψ) = P∗(ψ)|Hf ⊕ P∗(ψ)|H⊥f

for any ψ ∈ L2(R, dµf ). We call a sequence {δn}∞n=1 ⊂ H a spectral basis for H if ‖δn‖ = 1 for

all n and Hδi ⊥ Hδj for i 6= j. If a spectral basis exists, we can write

H =

∞⊕
n=1

Hδn ,

and we have thatU = ⊕∞n=1Uδn is a unitary map fromH to⊕∞n=1L
2(R, dµδn), andUP∗(ψ) = ΨU

for all ψ. Since H is separable, an at most countable spectral basis can always be constructed by

applying the Gram-Schmidt procedure to a total set in H . The detailed proof is omitted, as this

result is not used in the main paper, but it is mentioned for the sake of completeness.

B.2 The Spectral Theorem for Self-Adjoint Operators

For every spectral measure P on H , we can assign the operator A = P∗(x) =

∫
R
λ dP (λ).

Since the identity function ψ(x) = x is real-valued, we have [P∗(x)]∗ = P∗(x) = P∗(x), so

A is self-adjoint. Recall that the resolvent of A is the map RA(z) : ρ(A) → B(H) defined by

z 7→ (A− zI)−1. For a fixed z ∈ C, we denote the simple function zχR by just z. Then we have

P∗(z) =

∫
R
z dP (λ) = zP (R) = zI.

In particular, P∗(1) = I . But since P∗(ψ1ψ2) = P∗(ψ1)P∗(ψ2), we must have

(A− zI)P∗

(
1

x− z

)
= (P∗(x)− P∗(z))P∗

(
1

x− z

)
= (P∗(x− z))P∗

(
1

x− z

)
= P∗(1) = I.

This shows that RA(z) =

∫
R

1

λ− z
dP (λ). We then have that

Ff (z) = 〈RA(z)f, f〉 =

∫
R

1

λ− z
dµf (λ)
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is a Borel transform. Since

Im(Ff (z)) = Im
∫
R

λ− z
|λ− z|2

dµf (λ) = Im(z)

∫
R

1

|λ− z|2
dµf (λ),

we see that Ff is a Herglotz function on the upper half plane, and so from Theorem A.1.1, the

measure µf is can be recovered via the Stieltjes inversion formula:

µf (λ) = lim
δ→0+

lim
ε→0+

1

π

∫ λ+δ

−∞
Im(Ff (t+ iε))dt.

We can now use the results from Appendix A and the above to prove the following theorem:

Theorem B.2.1. (Spectral Theorem for Self-Adjoint Operators) If A is a self-adjoint operator

on a Hilbert space H , then there exists a unique spectral measure PA such that

A =

∫
R
λdPA(λ).

Conversely, for every spectral measure P , the operator A defined by the above formula is a self-

adjoint operator.

Proof. The reverse direction has already been shown in the remarks before the statement of the

theorem, so we focus here on the forward direction. Let A be any self-adjoint operator on H , and

define the function Ff (z) = 〈RA(z)f, f〉, which is clearly holomorphic on ρ(A). It is important

to note that since A is self-adjoint, we have that ρ(A) ⊂ R and that (RA(z))∗ = RA(z). From this

it is clear that Ff satisfies Ff (z) = Ff (z), and

|Ff (z)| ≤ ‖RA(z)f‖‖f‖ ≤ ‖RA(z)‖‖f‖2 ≤ ‖f‖
2

Im(z)
,

by Cauchy-Schwarz and the bound ‖RA(z)‖ ≤ Im(z)−1 for the resolvent. Since RA(z) −

RA(z′) = (z − z′)RA(z′)RA(z), we have that

2i Im(Ff (z)) = 〈RA(z)f, f〉 − 〈RA(z)f, f〉 = 2i Im(z)‖RA(z)f‖2,

so Ff is a Herglotz function for any f . Then from Theorem A.1.1 there is a unique Borel measure

µf given by the Stieltjes inversion formula such that Ff is the Borel transform for µf :

Ff (z) =

∫
R

1

λ− z
dµf (λ).
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By the polarization identity, we recover a complex measure µfg for each pair of f and g in H such

that 〈RA(z)f, g〉 =

∫
R

1

λ− z
dµfg(λ). For a fixed Borel set B, we define

sB(f, g) =

∫
R
χBdµfg = µfg(B).

It is clear from the definition of µfg that sB is linear in the first variable and conjugate linear in the

second. We also see that

sB(f, f) =

∫
R
χBdµf = µf (B) ≥ 0,

so sB is a positive-definite sesquilinear form. We now have by Cauchy-Schwarz that

|sB(f, g)|2 ≤ sB(f, f)sB(g, g) = µf (B)µg(B) ≤ µf (R)µg(R) = ‖f‖2‖g‖2.

So by the Riesz Representation Theorem, we have the existence of a unique operator PA(B) sat-

isfying sB(f, g) = 〈PA(B)f, g〉 with ‖PA(B)‖ = ‖sB‖. Since |sB(f, g)| ≤ ‖f‖ · ‖g‖, we

have that ‖sB‖ ≤ 1 for all B. So we have constructed a unique family of operators {PA(B) :

B a Borel set} such that 0 ≤ 〈PA(B)f, g〉 ≤ 1 and

〈PA(B)f, g〉 =

∫
R
χBµfg.

We wish to show that the map P : PA → A is in fact a spectral measure. First we fix a Borel set B

and show that PA(B) is a projection. We know that PA(B) is self-adjoint by construction, so it is

sufficient to show that [PA(B)]2 = PA(B). If we can prove PA(B1 ∩ B2) = PA(B1)PA(B2),

this will follow from taking B1 = B2. We first use the formula RA(z) − RA(z′) = (z −

z′)RA(z′)RA(z) to compute:∫
R

1

λ− z′
dµf,RA(z)g(λ) = 〈RA(z′)f,RA(z)g〉

= 〈RA(z)RA(z′)f, g〉

=
1

z′ − z
〈[RA(z′)−RA(z)]f, g〉

=
1

z′ − z

∫
R

(
1

λ− z′
− 1

λ− z

)
dµfg(λ)

=

∫
R

1

λ− z′
dµfg(λ)

λ− z
,
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so that dµf,RA(z)g(λ) = (λ − z)−1dµfg(λ) by the uniqueness of Borel measures. We can now

compute ∫
R

1

λ− z
dµPA(B)f,g(λ) = 〈RA(z)PA(B)f, g〉

= 〈PA(B)f,RA(z)g〉

=

∫
R
χB(λ)dµf,RA(z)g(λ)

=

∫
R

1

λ− z
χB(λ)dµfg(λ),

from which it follows that dµPA(B)f,g(λ) = χB(λ)dµfg(λ). As χB1χB2 = χB1∩B2 , we arrive at

〈PA(B1 ∩B2)f, g〉 =

∫
R
χB1∩B2(λ)dµfg(λ)

=

∫
R
χB1χB2(λ)dµfg(λ)

=

∫
R
χB1dµPA(B)f,g(λ)

= 〈PA(B1)PA(B2)f, g〉.

This holds for all f, g ∈ H , so it follows that PA(B1∩B2) = PA(B1)PA(B2). In order to compute

PA(R), suppose that f is in the kernel of PA(R). Then 〈PA(R)f, f〉 = µf (R) = 0, which implies

that µf is the zero measure. But then 〈RA(z)f, f〉 =

∫
R

1

λ− z
dµf = 0 as well. But this can only

hold if f = 0, so since PA(R) is a projection, Ker(PA(R)) = {0} implies that PA(R) = I . Finally,

to prove additivity we let B =

∞⋃
n=1

Bn, where {Bn}∞n=1 is a collection of pairwise disjoint Borel

sets. But then the additivity of µf shows that∥∥∥∥PA(B)f −
N∑
n=1

PA(Bn)f

∥∥∥∥2

=

〈(
PA(B)−

N∑
n=1

PA(Bn)

)
f, f

〉

= 〈PA(B)f, f〉 −

〈
N∑
n=1

PA(Bn)f, f

〉

= µf (B)−
N∑
n=1

µf (Bn)→ 0

asN →∞. This establishes the existence of a spectral measure forA, and uniqueness follows from

the fact that the Borel measures µfg were uniquely determined by the Stieltjes inversion formula
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and the projections of the spectral measure were uniquely determined by the Riesz represenation

theorem.

This theorem allows us to characterize any self-adjoint operator on H as an integral over a spectral

measure that is unitarily equivalent to a class of multiplication operators. Moreover, we see that

(PA)∗(x) = A, so Theorem B.1.4 shows that if e is a cyclic vector for A, then for all f ∈ H we

have

f =
∑
k

αk[(PA)∗(x)]ke = (PA)∗

(∑
k

αkx
k

)
e.

This shows that f ∈ He, since
∑

k αkx
k is a polynomial and so is in L2(dµe). This gives a

unitary map U : H → L2(dµe), such that UAU−1ψ(x) = xψ(x). Otherwise, we may take an

orthonormal basis for H and construct a spectral basis by a Gram-Schimdt procedure to produce a

unitary map onto a direct sum of L2 spaces such that UAU−1ψ(x) = xψ(x). We summarize this

as:

Lemma B.2.2. If e is a cyclic vector for A, then He = H .

B.3 The Spectrum of a Self-Adjoint Operator

Here we will demonstrate a characterization of the spectrum σ(A) of a self-adjoint operator A

in terms of its spectral measure PA, which is also presented in [11]. We also present a theorem

relating these results to the material in the previous appendix (a brief summary can also be found

in [6]). We will need the following lemma:

Lemma B.3.1. Let z ∈ C. If {fn}∞n=1 is a sequence in H such that ‖fn‖ = 1 for all n and

‖(A− z)fn‖ → 0, then z ∈ σ(A).

Proof. Suppose ‖fn‖ = 1 for all n and (A − z)fn → 0. If z ∈ ρ(A), then RA(z) exists and is

bounded, so we have

‖fn‖ = ‖RA(z)(A− z)−1fn‖ ≤ ‖RA(z)‖ · ‖(A− z)fn‖ → 0,

78



Appendix B. Functional Analysis

a contradiction.

These sequences are called Weyl sequences. Using them we may prove:

Theorem B.3.2. For a self-adjoint operator A with spectral measure PA, we have

σ(A) = {λ ∈ R : PA((λ− ε, λ+ ε)) 6= 0, ∀ε > 0}.

In particular, we have:

i) PA((λ1, λ2)) = 0 if and only if (λ1, λ2) ⊂ ρ(A);

ii) PA(σ(A)) = I;

iii) PA(R ∩ ρ(A)) = 0.

Proof. First note that since λ ∈ R, A − λ is also self-adjoint. Moreover, A − λ = (PA)∗(t − λ).

Now suppose that Bn = (λ − 1/n, λ + 1/n) and PA(Bn) 6= 0 for all n. By Riesz’s Lemma, for

each n we can find fn ∈ PA(Bn)(H) with ‖fn‖ = 1. Then since dµPA(Bn)f = χBndµf and

fn ∈ PA(Bn), we must have

‖(A− λ)fn‖2 = ‖(A− λ)PA(Bn)fn‖2

=

∫
R

(t− λ)2dµPA(Bn)fn(t)

=

∫
R

(t− λ)2χBn(t)dµfn(t)

≤ sup
t∈Bn

(t− λ)2µfn(Bn)

≤ 1

n2
,

since µfn(·) ≤ ‖fn‖2 = 1. This shows that (fn) is a Weyl sequence, and so Lemma B.3.1 implies

that λ ∈ σ(A). Conversely, take ε > 0 withBε = (λ−ε, λ+ε), and supposePA((λ−ε, λ+ε)) = 0.

Define ψε(t) = χR\((λ−ε,λ+ε)(t− λ)−1. We note that if B1 ⊂ B2, then B2 is the disjoint union of

B1 andB2 \B1, so that PA(B2) = PA(B1)+PA(B2 \B1), or PA(B2 \B1) = PA(B2)−PA(B1).
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We now have that

(A− λ)(PA)∗(ψε) = (PA)∗(t− λ)(PA)∗(ψε)

= (PA)∗((t− λ)ψε)

= (PA)∗(χR\Bε)

= PA(χBR\ε)

= PA(R)− PA(Bε)

= I,

since PA(Bε) = 0 by assumption. The same reasoning shows that (PA)∗(ψε)(A− λ) = I , so that

A− λ is invertible. Thus λ ∈ ρ(A).

To see (i), we need the following fact: If B1 and B2 are Borel sets with B1 ⊂ B2, then PA(B1) ≤

PA(B2) in the sense that

〈PA(B1)f, f〉 ≤ 〈PA(B2)f, f〉

for all f ∈ H (this is the analogue of monotonicity for a spectral measure). In particular, if PA(B2)

is the zero operator, then so is PA(B1). To see this, we note that since the characteristic functions

satisfy χB1 ≤ χB2 for B1 ⊂ B2, we have∫
R
χB1dµf ≤

∫
R
χB2dµf ,

which is equivalent to the above. Now if λ ∈ (λ1, λ2) and PA((λ1, λ2)) = 0, we find ε > 0 such

thatBε ⊂ (λ1, λ2). Then the above shows that PA(Bε) = 0 as well. So the first part of the theorem

implies that λ ∈ ρ(A). Conversely, if λ ∈ σ(A), then PA(Bε) 6= 0 for all ε > 0, so monotonicity

again implies that PA((λ1, λ2)) 6= 0.

To prove (ii) and (iii), we first note that since A is self-adjoint, ρ(A) must be open, since σ(A)

must be closed. For each λ ∈ ρ(A), we find an ε > 0 such that Bε ⊂ ρ(A). From this we get

an open cover O of ρ(A), and we may pass to a countable open subcover {On} of ρ(A). We can

define O∗N = ON \ ∪n<NOn. These sets are all disjoint by construction, and part (i) shows that

PA(O∗N ) = 0 for all N . Then additivity of the spectral measure gives

PA(R ∩ ρ(A)) = PA(ρ(A)) =

∞∑
N=1

O∗N = 0.
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This shows (ii), and now (iii) follows from

PA(σ(A)) + PA(ρ(A)) = PA(σ(A) ∪ ρ(A)) = PA(R) = I,

completing the proof.

Remarkably, this theorem shows that if A has a cyclic vector, then we have

µf (R) = 〈f, f〉 = 〈PA(σ(A))f, f〉 =

∫
R
χσ(A)dµf = µf (σ(A)),

while

µf (ρ(A)) = 0.

Moreover, λ ∈ ρ(A) if and only if there is an open neighborhood N of λ such that PA(N) = 0, so

that µf (N) = 0. This shows that the support of µf is exactly σ(A): supp(µf ) = σ(A) for any f .

We refer to this invariance by saying that A has simple spectrum. We note that in particular, we

must have

〈RA(z)f, f〉 =

∫
σ(A)

1

λ− z
dµf (λ)

for any choice of f ∈ H . It is often also beneficial to split the spectrum into two pieces: the

discrete spectrum, denoted by σd(A), includes all isolated points in the spectrum of A, and the

essential spectrum, denoted by σess(A), includes all the points in the spectrum that are not isolated

(σess(A) = σ(A) \ σd(A). Note that if we suppose that PA({λ}) 6= 0, then for f ∈ PA({λ})(H),

we have that

(A− λI)f = (A− λI)PA({λ})f =

∫
R

(t− λ)χ{λ}dµf (t) =

∫
{λ}

(t− λ)dµf (t) = 0,

so that λ is an eigenvalue of A. This shows that if µf ({λ}) > 0, then λ is an eigenvalue of A, so

it follows from Theorem B.3.2 that the discrete spectrum is contained in the point spectrum, i.e.,

σd(A) can only contain eigenvalues of A. We have that

Lemma B.3.3. If there is a Weyl sequence fn converging to λ that also conveges weakly to 0, then

λ ∈ σess(A).
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Proof. Suppose that λ ∈ σd(A). Then λ is an eigenvalue of A, so again by Theorem B.3.2, there

is an ε > 0 such that PA(λ − ε, λ + ε) is finite rank for 0 < δ < ε. In particular, Eλ is compact.

Take gn = Eλfn. Then the weak convergence of the fn shows that gn → 0. Then we have that

‖fn − gn‖2 = ‖(I − PA(λ− ε, λ+ ε))fn‖2

= ‖(PA(R)− PA(λ− ε, λ+ ε))fn‖2

= ‖(PA(R \ (λ− ε, λ+ ε))fn‖2

=

∫
R\(λ−ε,λ+ε)

dµfn

≤ 1

ε2

∫
R\(λ−ε,λ+ε)

(t− λ)2dµfn(t)

≤ 1

ε2
‖(A− λI)fn‖2.

This tends to 0, so that ‖gn‖ → ‖fn‖ = 1, a contradiction. Hence, we must have λ ∈ σess(A).

An immediate consequence of this lemma is that since the spectrum ofA is simple, the point masses

of the measures dµf coincide with the discrete spectrum of A. We can also use this lemma to

provide a quick proof of Weyl’s Theorem: IfA is self-adjoint andK is compact, then σess(A) and

σess(A+K). First suppose that (fn) is a sequence with ‖fn‖ = 1 for all n. If ‖(A+K)fn‖ → 0,

then clearly ‖Afn‖ → 0. If ‖Afn‖ → 0 and the fn converge weakly to 0, then we have that

‖(A+K)fn‖ ≤ ‖Afn‖+ ‖Kfn‖ → 0, since K is compact. Thus, A and A+K share the same

Weyl sequences that are weakly convergent to 0, so they must share the same essential spectrum.

Now that we have this characterization of the spectrum in terms of the spectral measure, we can

finally prove the following theorem:

Theorem B.3.4. Let F (z) be the Borel transform of a finite Borel measure µ and dx = dm be the

Lebesgue measure. Then

i) µ({x ∈ R : lim
ε→0+

Im(F (x+ iε)) =∞}) = 0;

ii) dµac =
1

π
Im(F ) dx;

iii) µ({x}) = lim
δ→0+

lim
ε→0+

2

π

∫ x+δ

x
Im(F (λ+ iε))dλ, for all x ∈ R.
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Proof. We see that if λ ∈ (x− ε, x+ ε), then (λ− x)2 + ε2 < ε2, so that

ε

(λ− x)2 + ε2
>

1

2ε
.

Then

Im(F (x+ iε)) =

∫
R

ε

(λ− x)2 + ε2
dµ(λ)

≥
∫

(x−ε,x+ε)

ε

(λ− x)2 + ε2
dµ(λ)

>
1

2ε

∫
(x−ε,x+ε)

dµ

=
µ(x− ε, x+ ε)

2ε
.

Then the monotonicity of µ proves (i) since the set T in Theorem A.3.6(i) must contain {x ∈ R :

lim
ε→0+

Im(F (x+ iε)) =∞} by the above inequality. To verify (ii), we note that since µ is finite, it

suffices to show that if f is continuous and bounded, then

1

π

∫
R
f Im(F ) dm =

∫
R
f dµ.

So suppose that f is continuous and bounded and denote dx = dm(x). Then by Fubini’s theorem

we have

1

π

∫
R
f(x) Im(F (x+ iε)) dx =

1

π

∫
R
f(x)

∫
R

ε

(λ− x)2 + ε2
dµ(λ) dx

=

∫
R

1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx dµ(λ).

Since f is bounded, we may take |f(x)| ≤M for all x ∈ R, and then Holder’s equality gives

1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx ≤ sup

x∈R
|f(x)| · 1

π

∫
R

ε

(λ− x)2 + ε2
dx

= sup
x∈R
|f(x)| · 1

π
tan−1

(
x− λ
ε

) ∣∣∣∣∞
−∞
≤M.

So taking ε = 1/n and applying the Lebesgue dominated convergence with respect to the measure

µ as n → ∞ shows that the integral on the left converges to some limit function G(λ). We claim
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that G = f . We have

1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx− f(λ) =

1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx

− f(λ)
1

π

∫
R

ε

(λ− x)2 + ε2
dx

=
1

π

∫
R

ε

(λ− x)2 + ε2
(f(x)− f(λ)) dx,

but since f is continuous, we can find a δn > 0 such that |f(x) − f(λ)| < 1/n for |x − λ| < δn.

Then we have for each fixed n that∣∣∣∣ 1π
∫
R

ε

(λ− x)2 + ε2
[f(x)− f(λ)] dx

∣∣∣∣ ≤ 1

π

∫
R

ε

(λ− x)2 + ε2
|f(x)− f(λ)| dx

<
1

nπ

∫
|x−λ|<δn

ε

(λ− x)2 + ε2
dx

+ 2M · 1

π

∫
|x−λ|≥δn

ε

(λ− x)2 + ε2
dx

≤ 1

n
+

2M

π

∫
|x−λ|≥δn

ε

(λ− x)2 + ε2
dx.

For each n, the second integral tends to zero as ε→ 0+. This shows that

lim
ε→0+

[
1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx− f(λ)

]
<

1

n
.

This for all n, so that

lim
ε→0+

1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx = f(λ).

This shows that

lim
ε→0+

1

π

∫
R
f(x) Im(F (x+ iε)) dm = lim

ε→0+

∫
R

1

π

∫
R

ε

(λ− x)2 + ε2
f(x) dx dµ(λ)

=

∫
R
f(λ) dµ(λ),

which establishes (ii). (iii) is just a restatement of the Stieltjes inversion formula.
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