2021

Effect of dexpramipexole on neuropathic pain in prenatal alcohol exposed male and female subjects

Justine Zimmerly
Andrea Pasmay
Shahani Noor
Annette Fernandez
Melody Sun

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/hsc-bbhrd
Effect of dexpramipexole on neuropathic pain in prenatal alcohol exposed male and female subjects

Justine R. Zimmerly (jrzimmerly@salud.unm.edu), A.A. Pasmay1, S. Noor, A.K. Fernandez2, M.S. Sun1, S. Davies1, D.D. Savage1, N. Mellios1, E.D. Milligan1

(1) Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, USA 87131

1. Introduction

- Neuropathic pain can be described as the result of damage caused to the somatosensory system manifested as a pathological sensitivity to light touch, clinically referred to as allodynia.
- Neuropathic pain is mediated, in part, by cytokines released from activated resident glial cells and peripheral immune cells that invade the central nervous system through a conversion of astroocytes to microglia.
- Our lab has previously demonstrated that prenatal alcohol exposure (PAE) is a risk factor for developing chronic neuropathic pain from very minor injuries to peripheral nerves of the somatosensory system that project to and communicate to spinal pain projection neurons.
- IL-1β is a potent pro-inflammatory cytokine that is elevated in spinal cords and peripheral immune cells from PAE offspring with either nerve damage or immune challenge, respectively.
- IL-1β is released by macrophages and to a lesser extent, T cells.
- Dexpramipexole ([β]-pramipexole) is an anionformer of [β]-pramipexole and has virtually none of the dopamine receptor binding activity that [β]-pramipexole exerts. However, given that dexpramipexole reduces caspase-3 activity and cell death, we speculated that dexpramipexole may exert anti-inflammatory properties on immune cells and glia.
- Therefore, we tested the hypothesis that administration of dexpramipexole will result in a decreased inflammatory response and reduced allodynia in PAE rats.
- To test this hypothesis, we administered an intrathecal (I.T., subarachnoid, peri-spinal) injection of dexpramipexole to determine if spinal glia and local immune cells could respond to dexpramipexole and lead to reversal of allodynia.
- In addition, we collected immune cells from the spleen (majority T-cells) and peritoneal cavity (PEC: macrophages/microphages), and stimulated them with lipopolysaccharide (LPS) alone, or in combination with dexpramipexole to determine whether dexpramipexole can decrease IL-1β protein levels.

2. Methods

- **Prenatal Alcohol Exposure Model:** Rat dams were provided Sac-sweetened alcohol (5%) or Sac-sweetened water for 4 hours/day during gestation (SBEs: ~60 mg/d). Offspring were acclimated to a 12:12 light cycle and remained in the colony room for ~4 months until the time of experimentation.
- **Habitation and Chronic Constriction Injury (CCI):** Rats were housed in the colony room for 4 months prior to the initiation of experiments. They were then habituated for a week for an hour a day. Chronic constriction injury model is a rat model of neuropathic pain based on a unilateral loose ligature of the sciatic nerve. Chronic constriction injury (CCI) consisted of a single loose ligature of the left sciatic nerve using 4–0.