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Abstract

Category theory can be applied to mathematically model the semantics of cognitive neural systems. We discuss
semantics as a hierarchy of concepts, or symbolic descriptions of items sensed and represented in the connection
weights distributed throughout a neural network. The hierarchy expresses subconcept relationships, and in a
neural network it becomes represented incrementally through a Hebbian-like learning process. The categorical
semantic model described here explains the learning process as the derivation of colimits and limits in a concept
category. It explains the representation of the concept hierarchy in a neural network at each stage of learning
as a system of functors and natural transformations, expressing knowledge coherence across the regions of a
multi-regional network equipped with multiple sensors. The model yields design principles that constrain neural
network designs capable of the most important aspects of cognitive behavior.
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1 Introduction

1.1 Neural Network Semantics and Knowledge

The search for a deeper understanding of neural networks has led investigators to the notion that the distributed
pattern of connection weights formed within a network as a result of its processing of input patterns can be
explained in terms of human- understandable rules ([2], [3], [4], [7], [8], [9], [13], [20], [18], [25], [31], [37], [40],
[44], [45]). Often, the rules are regarded as knowledge made explicit by a symbolic-rule-extraction technique. The
knowledge typically has the form IF (input stimulus) THEN (output response), providing an explicit description
of the relationship between meaningful items in the input patterns and desired responses to those items. The
symbolic expressions in the rules are meant to describe significant items associated with the stimuli as well as
items expressed through the network responses. Some investigators have used mathematics to remove ambiguity
in the descriptions and to associate with rigor the relationship of rule expressions to connection weights. Typically,
they do this by expressing the rules as symbolic formulas in a formal logic. This use of symbolic statements to
model the knowledge content of a computational system is calledmathematical semantics[39].

The original inspiration for neural networks is the highly interconnected, massively parallel, distributed, adap-
tive neuron-and-synapse structure of the brain. In contemporary modeling, the neurons and other architectural
elements are organized on a larger scale in a system of interconnected functional regions([11], [27]). Each region
is associated with one or more sensory modalities, motor control, planning, the control of working memory ([38],
[41], [47], [52]), and possibly self-referential processing, at least in humans[32]. The unique functionality of each
region can be described by a system of knowledge with which it has been associated. Neuroscientists work to un-
derstand the content and organization of the knowledge systems by carefully analyzing activity in different brain
regions during the perfomance of tasks, and by studying the task performance deficits associated with damage
to different regions and/or their interconnections found in patients. In general, the knowledge asssociated with a
region exists as a system of interconnected partial descriptions of sensed items and events. A goal of neuroscience
is to be able to use these partial descriptions in different combinations to explain the brain’s activity in response
to a given situation. For example, visual processing regions in the primate brain contain representations of visual
objects in terms of basic features of color, form and texture. Descriptions of visual objects, their form, color and
other features, and the relationships between objects and features constitute a knowledge system. Region-specific
knowledge representations act together through interconnections between regions to produce a response to each
input [43] and, in the brains of some animals, cognitive behavior([11], [15], [46], [26], [43], [29], [27], [48]).
For example, visual and auditory representations are unified in an association region that shares interconnections
with the vision- and sound-specific processing regions.

This paper addresses the question of where and how knowledge is stored in connectionist systems organized
to greater or lesser extent like the brains of various organisms. It presents a mathematical model of knowledge
as acquired by and stored within multi-region neural networks. Because it directly addresses the knowledge
represented in the adaptive structure of a neural network, the model is called a semantic model. As such, it is
consistent with previous work in logical rule modeling, but transcends rule-modeling byexplaining the structure
of the knowledge contained in the rules and the component statements that form the rules. That is, the model
explains not only what the rules are saying, but how the rules arise from a hierarchical system of concepts,
with the hierarchy directed from the abstract to the specific. It explains this process as an incremental re-use
of existing concept representations in the neural network to form new concept representations as the network
processes input patterns. The model provides a mathematically rigorous yet natural explanation of the combining
of the interacting regional knowledge structures so that the network, if well-designed, acts as if there were a single
knowledge structure guiding its behavior. This is a key property studied with the model which we callknowledge
coherence.

The intended scope of the semantic model is the full range of neural network architectures, artificial or bi-
ological, from single-layer perceptrons to highly complex, multi-regional, mutli-sensor networks with recurrent
connections. The semantic model provides an analytical framework for understanding the capability of any neural
network design in terms of the knowledge it is capable of acquiring from its input data. It provides an analysis
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vehicle for the systematic design of neural networks having a desired knowledge-acquisition capability. Its use in
analysis and design can lead to a fundamental understanding of neural networks and a quantum jump in the state
of the art of biological neural system analysis and artificial neural network design.

The mathematical semantic model is based upon category theory. Category theory, the mathematical theory
of structure, is seeing increasing use in representing the hierarchical structure of knowledge and its manifestations
in computational structures—thus achieving a mathematical model of their semantics ([10], [12], [16], [28], [36],
[39], [49], [50], [51], [53]). This approach is now being applied to investigate the acquisition of knowledge
through adaptation in neural networks, and in this paper we describe the theoretical basis for this investigation.
Previous papers ([17],[19],[21], [22], [23]) have presented much of the theory in a preliminary form along with
an initial application to architectural design.

The paper is organized as follows. Since a grounding in category theory is as yet uncommon, Section 2
provides a brief review. Along with this, it introduces the fundamental categorical quantities used in semantic
analysis. Section 3 introduces categories of concepts and their instances, borrowing heavily from categorical
logic and model theory. Section 4 introduces the categories used in modeling neural architectural structure, and
Section 5 describes the association of concept categories with neural categories. Section 6 contains a discussion
of the implications for neural architecture design resulting from categorical constructions that model the learning
of specializations and abstractions derived from prior knowledge. Section 7 introduces information fusion across
multiple modalities as an interconnected system of concept hierarchy representations associated with network
sub-regions, and Section 8 presents an initial neural network design based upon this analysis. Section 9 contains
the final discussion and conclusion.

2 Category Theory: A Brief Introduction

2.1 A Mathematical Theory of Structure

A brief, straightforward introduction to category theory is contained in [39]. There are other good introductions
with varying mathematical detail, among them [1], [10], [33], and [34]. Category theory has been proposed as an
alternative to set theory as a foundation for mathematics; however, the two are normally used together, since each
has unique advantages in representing mathematical quantities in the most fundamental or abstract terms. The
primitive notion in set theory, in terms of which all others are defined, is that of the membership of a quantitiyx
in a collectiony, denotedx∈ y. in category theory, on the other hand, the primitive notion is that of an arrow,
or morphism—a relationship between twoobjectsin a category. A category can be thought of as a system of
mathematical structures of some kind, concrete (such as algebras called groups) or abstract, and the relationships
(morphisms or arrows) between them that express that type of structure (in the cased of groups, the arrows are
the group homomorphisms). Each morphismf :a−→ b has adomainobject a and acodomainobject b; that
is, f serves as a sort of directed relationship betweena and b. In acategory C, each pair of arrowsf : a−→ b
and g : b−→ c (with a head-to-tail match, where the codomainb of f is also the domain ofg as indicated) has
acompositionarrow g◦ f : a−→ c whose domaina is the domain off and whose codomainc is the codomain
of g. Composition satisfies the associative law: In triples which have a head-to-tail match by pairs,f :a−→ b,
g:b−→ c and h:c−→ d , the result of composition is order-independent,h◦ (g◦ f ) = (h◦ g) ◦ f . Also, for
each objecta, there is anidentity morphismida:a−→ a such that for any arrowsf :a−→ b and g:c−→ a
ida◦g = g and f ◦ida = f .

Theprinciple of dualityis a fundamental notion in category theory. The dual or oppositeCop of a category
C has the same objects, and the arrows reversed. Thedual of a statementin category theory is the statement with
the words “domain” and “codomain” reversed and compositionsf ◦g in place of compositionsg◦ f (note that
the reversed arrows are by convention given the same names as the originals). If a statement is true of a category
C, then its dual is true ofCop; if a statement is true of all categories, then, because every category is dual to
its dual, the dual statement is also true of all categories. This phenomenon means that, roughly speaking, “half

2



Healy and Caudell—Category Theory ... 3

the theorems of category theory are obtained for free”, since proving a theorem immediately yields its dual as an
additional theorem (see any of [1], [39], [34]).

Category theory provides a mathematically rigorous notion of “isomorphism”, a term which is often used in a
loose, intuitive sense in discourse. For example, in a discussion, one sometimes hears a statement such as “the two
[concepts, data types, program constructs, etc.] are in some sense isomorphic”. If we can formalize the entities
under discussion and include them in a category as objects, we can apply a more rigorous notion: Ifa, b are
objects of a categoryC such that there exist arrowsf :a−→ b andg:b−→ a with f ◦g = idb andg◦ f = ida ,
then the morphismf is called anisomorphism(as is g also) andg is called itsinverse(and f is called the
inverse ofg), and the two objects are said to be isomorphic. The property of an identity morphism ensures that
isomorphic objects in a category are interchangeable in the sense that they have the same relationships with all
objects of the category.

Certain notions in category theory are key to semantic modeling. One is the notion of aninitial object in a
category and the dual notion of aterminal object. An initial object of a categoryC is an objecti having a unique
morphism f : i −→ a corresponding to every objecta of C. A terminal objectt is the dual notion, obtained
by reversing arrows in the definition ofi —that is, it serves as the codomain of a unique morphismf :a−→ t
corresponding to every objecta of C. It is easy to show that all initial objects in a category are isomorphic, and
ditto for terminal objects in a category. For example, suppose thati, i′ are initial in C. Then, applying initiality
to each object, there must be unique morphismsf : i −→ i′ and f ′: i′ −→ i . The compositionsf ′ ◦ f : i −→ i and
f ◦ f ′: i′ −→ i′ must be unique as well, implying thatf ′ ◦ f = idi and f ◦ f ′ = idi′ .

There is a categorySetwhose objects are sets, whose morphisms are functions, and for which composition
is just the familiar composition of functions, with(g◦ f )(x) = g( f (x)) for functions f :a−→ b and g:b−→ c,
with x∈ a and(g◦ f )(x)∈ c. Function composition is associative, and for any setX there is an identity function
idX whose values areidX(x) = x(x ∈ X) , soSet is indeed a category. The empty set,/0 , is the single initial
object ofSet, since for any seta there is a unique functionf : /0 −→ a whose domain is/0 and whose codomain
is a, namely, the vacuous function, since there are no elements in/0 to map to an element ofa. There are an
infinite number of terminal objects inSet, namely the singletons{x} , since there is a single functionf :a−→{x}
mapping the elements of any seta to x. Finally, notice that aSetisomorphism is just a one-to-one, onto function.

A second example of a category dispels any notion that the morphisms must represent mappings. Consider the
categoryN+

| , in which the objects are nonzero natural numbers and in which there is a morphism|n,m:n−→ m

exactly whenn is a divisor of m, n | m. Notice that the transitive property of the divisor relation yields a
composition operation, which is associative. Identities exist since every nonzero natural number divides itself,
n | n. In fact, natural numbers are the objects in more than one category. Consider the categoryN≤ , which has
all the natural numbers as objects and in which there is a morphism≤n,m:n−→ m exactly when the inequality
n ≤ m holds. Again, the transitivity of the relation used to define the category, in this case≤ , yields an associative
composition operation, and again identities exist, in this case since every nonzero natural number is related to
itself, n ≤ n.

A second fundamental notion in category theory is that of acommutative diagram. In Figure 1 , the diagram
∆ expresses the fact that 4 and 6 are both divisible by 2. Diagram∆′ expresses also the additional knowledge that
24 is divisible by 4 and 6. The dashed arrow represents the consequential knowledge that (because 24 is divisible
by 4 and 6 while 4 and 6 are divisible by 2) 24 is divisible by 2. Notice that there are two morphisms from 2 to
24 that are compositions along a path directed through a third object (4 and 6, respectively), yet there is at most
one divisibility morphism from one natural number to another. Therefore,|4,24 ◦ |2,4= |2,24= |6,24 ◦ |2,6 . The
diagram∆′ is said to be acommutative diagram.

A commutative diagram in any category has the property that any two morphisms having the same diagram
objects as domain and codomain, where at least one of them is obtained as the composition of two or more diagram
morphisms and the other is obtained in the same fashion or is itself a diagram morphism, are equal. In other
words, a commutative diagram is associated with a system of equations involving compositions of morphisms.
This expresses a system of constraints on mathematical structures associated with the category.



Healy and Caudell—Category Theory ... 4

24

4 6 4

|4,24

::uuuuuuuuuu
6

|6,24

ddIIIIIIIIII

2
|2,4

ddIIIIIIIIIII |2,6

::vvvvvvvvvvv
2

|2,4

ddIIIIIIIIIII |2,6

::uuuuuuuuuuu

|2,24

OO�
�
�
�
�
�
�

Diagram∆ Diagram∆′

Figure 1:Two diagrams in the category Nat| .

One of the most important uses of commutative diagrams and terminal and initial objects is in the definition
of a limit of a diagram and the dual type of quantity, acolimit. Colimits have long been used ([16], [28], [53]) in
categorical logic and computer science as a means of expressing complex formal logic theories or specifications
of theories in terms of their simpler, component theories or specifications. In a later section, we apply colimits
and limits to model the semantics of the Hebbian-like learning in a neural network, where the network learns by
adapting the synaptic connections strengths between neuron-like elements called nodes .

2.2 Colimits

Let ∆ be a diagram in a categoryC as shown in Figures 2 and 3 , with objectsa1, a2, a3, a4, a5 and morphisms
f1:a1 −→ a3, f2:a1 −→ a4, f3:a2 −→ a4, f4:a2 −→ a5 . The diagram∆ in Figure 3 extends∆ to a commutative
diagram with an additional objectb and morphismsgi :ai −→ b (i = 1, . . . , 5) , provided additional objects and
morphisms with the requisite properties exist inC. That is,g1 ◦ f1 = g2 = g3 ◦ f2 andg3 ◦ f3 = g4 = g5 ◦ f4 .
The added cone-like structureK consisting of theapical object bandleg morphisms g1, g2, g3, g4, g5 is called a
coconefor diagram∆ . In general, a diagram can have many cocones or it can have few or none, depending upon
the available objects and morphisms inC. Given coconesK′ and K′′ for ∆ in Figure 2 , with respective apical
objectsb′ , b′′ and leg morphismsg′ i andg′′ i (i = 1, . . . , 5) , acocone morphism with domain K′ and codomain
K′′ is a C-morphismh:b′ −→ b′′ having the property

g′′ i = h ◦ g′ i (i = 1, . . . , 5) . (1)

That is, h is a factor under composition of each leg morphismg′′ i of K′′ with respect to the corresponding leg
morphismg′ i of K′ . This is illustrated in Figure 2 . Re-using the symbolh for notational efficiency, we also
denote the cocone morphism determined byh ash:K′ −→ K′′ .

With morphisms so defined, and composition of cocone morphisms following directly from composition of
C-morphisms, the cocones for∆ form a category,coc∆ . A colimit for the diagram∆ is an initial objectK in the
categorycoc∆ . That is, for every other coconeK′ for ∆ , there exists a unique cocone morphismh:K −→ K′ .
The original diagram∆ is called thebase diagramfor the colimit and the diagram∆ formed by adjoiningK
to ∆ is called itsdefining diagram. Note that, as all initial objects are isomorphic, all colimits for a given base
diagram are isomorphic.

A coproduct(Figure 4 ) is the colimit of a discrete diagram, one having objects but no morphisms among
them. InSet, for example, coproducts are disjoint unions of the component sets.
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Figure 2: A cocone morphism h:K′ −→ K′′ in coc∆ is a morphism h:b′ −→ b′′ in C between the apical
objects b′ and b′′ of coconesK′ and K′′ , respectively, that is a factor of each leg morphismg′′ i :ai −→ b′′

of K′′ , with g′′ i = h ◦ g′ i .

2.3 Limits

Limits are the dual notion to colimits; that is, the one notion is obtained from the other by “reversing the arrows”
and interchanging “initial” and “terminal” (for objects). The reason for discussing colimits first is that they have
a history of use in categorical logic and computer science ([16], [53]) and, perhaps more importantly, colimits
for all diagrams exist in certain categories of interest to us—but limits do not exist for all diagrams in these
categories. The diagrams for which limits do exist are in that sense special, and we shall have more to say about
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Figure 3: A colimit for a diagram ∆ . The extended diagram∆ extends ∆ with a conical structure of
morphisms from all diagram objects a1, . . . , a5 pointing to an apical object b
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Figure 4:A coproduct, where the base diagram∆ is discrete.

this when we discuss the concept hierarchy representation of neural network semantics.

Duality makes a discussion of limits quite simple, now that colimits have been defined. Our example will
have a correspondingly simple diagram. Let∆ be a diagram in a categoryC as shown in Figure 5 , with
objectsa1, a2, a3 and morphismsf1:a1 −→ a3, and f2:a2 −→ a3,. The diagram∆ extends∆ to a commutative
diagram with an additional objectb and morphismsgi :b−→ ai (i = 1, . . . , 3) , provided additional objects and
morphisms with the requisite properties exist inC. That is, f1 ◦ g1 = g3 = f2 ◦ g2 . The conical structureK
is called acone; note that its morphisms are directed into the diagram, the opposite sense of the leg morphisms
of a cocone, which are directed out of the diagram. Cone morphisms are defined appropriately by analogy with
cocone morphisms, and again composition follows directly from composition ofC-morphisms and the cones for
∆ form a category,cone∆ . A limit for the diagram∆ is a terminal objectK in the categorycone∆ . That is,
for every other coneK′ for ∆ , there exists a unique cone morphismh:K′ −→ K . Again, the original diagram
∆ is called thebase diagramfor the limit and the diagram∆ formed by adjoiningK to ∆ is called itsdefining
diagram. Note that, as all terminal objects are isomorphic, all limits for a given base diagram are isomorphic.
A limit for a discrete diagram is called aproduct, and the leg morphisms are calledprojections. The familiar
cartesian product of sets is an example in the categorySet.

2.4 Structural Mappings

The importance of category theory lies in its ability to formalize the notion that things that differ in substance can
have an underlying similarity of “structural” form. A house plan exists as a complex of forms either inscribed
in ink on paper or electronically within a computer. The plan can be implemented (mapped) many times, with
variations in the fine details of construction, to build houses. Each instance of building a house from the plan can
be thought of as a mapping from the structure detailed in the architectural plan to a structure made of wood, brick,
stone, metal, wallboard, and other materials. The material substances of the plan and the house are different but
the structure given in the plan is essentially unchanged in the constructed house. In category theory, the notion of
a structure-preserving mapping is formalized in the definition of afunctor. A functor F : C−→ D , with domain
categoryC and codomain categoryD , associates to each objecta of C a unique image objectF(a) of D and
to each morphismf : a−→ b of C a unique morphismF( f ) : F(a)−→ F(b) of D . Moreover,F preserves the
compositional structure ofC, as follows. Let◦C and◦D denote the separate composition operations in categories
C andD , respectively. For each compositiong◦C f defined for morphisms ofC, F(g◦C f ) = F(g)◦D F( f ) , and
for each identity morphism ofC, F(ida) = idF(a) . It follows that F preserves the commutativity of diagrams,
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Figure 5: A limit for a diagram ∆ . The extended diagram∆ extends ∆ with a conical structure of mor-
phisms to all diagram objectsa1, . . . , a3 from an apical object b.

F(a)
αa //

F( f )

��

G(a)

G( f )

��
F(b) αb

// G(b)

Figure 6: A commutative diagram associated with a natural transformation. The morphisms G( f ) ◦αa :
F(a)−→G(b) and αb◦F( f ) : F(a)−→G(b) are one and the same, G( f )◦αa = αb◦F( f ) .

that is, the images of the objects and morphisms in a commutative diagram ofC form a commutative diagram in
D . This means that any structural constraints expressed inC are translated intoD and, hence,F is a structure-
preserving mapping.

The two categoriesN+
| and N≤ yield an example of this important kind of structural relation. Define a

functor F : N+
| −→N≤ as follows. The image of each positive natural numbern is itself, that is,F(n) = n. The

image of each morphism|n,m is the morphismF(|n,m) , whereF(|n,m:n−→ m) =≤n,m:n−→ m, which works
becausen | m implies n ≤ m. Notice that the compositional structure ofN+

| is appropriately preserved.

Not only are there structure-preserving mappings between categories, but also structure-preserving relations
between the mappings themselves. Anatural transformationα : F −→ G with domain functorF : C −→ D
and codomain functorG : C−→ D consists of a system ofD -morphismsαa , one for each objecta of C, such
that the diagram inD shown in Figure 6 commutes for each morphismf :a−→ b of C. That is, the morphisms
G( f )◦αa : F(a)−→G(b) andαb◦F( f ) : F(a)−→G(b) are actually one and the same,G( f )◦αa = αb◦F( f ) .
In a sense, the two functors have their morphism imagesF( f ):F(a) −→ F(b) , G( f ):G(a) −→ G(b) “stitched
together” by other morphismsαa,αb existing inD , indexed by the objects ofC. Composition of the morphisms
along the two paths leading from one cornerF(a) of a commutative square to the opposite cornerG(b) yields
the same morphism, independently of the path traversed.
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3 Categorical Semantics

3.1 Concept Morphisms: The Structure of Knowledge

Few neural network researchers would argue with the notion that meaningful representations of the items that are
sensed to form input patterns for an adaptive network become associated with the connection weights through
Hebbian-like adaptation, or learning. That is how the network builds an ”internal model” leading to its ability
to perform a useful task associated with the input examples it has processed. That the many components of the
network are highly distributed and interdependent suggests that the represented items can be decomposed into
parts. For example, an item represented by an input pattern can be regarded as a combination of features that
stimulate individual input nodes to varying levels of activity. Symbolic descriptions for the parts or features of
input items can be associated with input patterns that express the features. Since the patterns are responsible for
the network activity that results in connection weight adaptation, it is conceivable that a system for manipulating
symbolic descriptions of items can be associated with the representation of input items in the distributed connec-
tion weight pattern of the network. This representation can be organized into a hierarchical system that relates
the more abstract items such as simple, pattern-expressed features to the more complex, more specific items that
arecomposedof the more abstract items. Categorical constructs involving a category of concepts and concept
relationships will be our system language for expressing the association of symbolic descriptions with adaptively-
formed, or learned, distributed representations of items.

A categoryConcept provides the hierarchical structure of descriptions associated with a distributed system
of item representations. Its objects are concepts, or symbolic descriptions of items, and its morphisms are concept
relationships. A concept morphisms:Ti −→ Tj is an association of the description constituting conceptTi with a
subconcept, or logical part, of the description constituting conceptTj . We use an already-available mathematical
convenience, a category of formal logic theories and theory morphisms[10], for the categoryConcept. An
example will serve to describe the objects and morphisms of this category, as well as provide a concrete example
of a colimit. The example is presented in full in the Appendix, and an overview of it is given in the next section
sufficient to follow its use as an illustration of the analysis of neural network semantics.

3.2 Example: Concepts, Morphisms and a Colimit

The definitions and axioms of a theory, as well as all formulas that can be proved from them, are symbolic
statements in a language sufficiently expressive and unambiguous that it can be used to phrase propositions for
proof by a mechanical theorem-prover. A theory describes a domain of items and their properties; a theory
of geometry is an example, where the items are geometric objects. A complete listing of the statements of a
theory includes the definitions of the quantities whose properties it describes, the axioms that assert the properties
assumed in the theory, all the quantities whose existence one can derive from the defined quantities, and all the
further properties of the quantities that one can prove from the axioms—that is, the theorems. It is not necessary
to always have in hand the entirety of a theory’s quantities and theorems. A simple alternative which we use
in most of our discussion is to list only its definitions and axioms. The inferred quantities can be derived and
theorems proved as they are needed. A theory can appear in several different forms, depending upon which of its
quantities and statements are regarded as definitions and axioms, for there are often many alternative choices. For
our formalization of concepts and their morphisms, we shall use the alternative of listing a single choice. Any
such list is called aformal specification. Even though specifications are not the same as theories, the distinction
will not be important for the purposes of this presentation.

We represent concepts as theories (or their specifications). A concept morphism is a theory morphism. The
following example illustrates concepts, concept morphisms, commutative diagrams and colimits. It shows how
the concept of a triangle can be derived from simpler concepts as the apical object of a colimit for a diagram.
The concepts and morphisms are expressed in a syntax similar to that used in [53]. For simplicity, a triangle is
regarded as a construct obtained by joining three distinct, intersecting lines (the angles often associated with a
triangle are not discussed). The example is only sketched here, but the Appendix contains a full exposition. The



Healy and Caudell—Category Theory ... 9

discussion in subsequent sections describes the association of the example colimit with the learning of complex
concepts and morphisms by a neural network through the re-use of prior conceptual knowledge.

ConceptT1 is a very basic theory of points and lines. In this presentation, points are regarded as undefined
quantities and lines are quantities defined in terms of points. This is done through a logical predicateon that has
two arguments, a point and a line, and is true just in case the point is associated with (or “lies on”) the line. The
on predicate is used in an axiom to express the notion that any two distinct points are “on” some unique line (see
[5] for the use of this axiom in several different geometries).

Concept T1
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
end

The statement linesorts Points,Lines introduces the most basic sorts of the conceptT1 . Sorts are “log-
ical containers” which are used to distinguish between the different types of things referred to by the variables
or constants in logical formulas. For example, the universal quantifier (forall ) portion of the axiom inT1 ,
forall(x,y : Points) , makes it clear that the axiom is a formula applying to all thingsx andy of type “Points”.
As a consequence, the antecedent of the first implication of the axiom,(x not = y) , is understood to mean that
x andy represent two distinctpoints, as opposed to lines, circles, widgets, or any other kind of thing. The lineop
on: Points*Lines -> Boolean specifies that there is an operation that maps any ordered pair(x, l) consist-
ing of a point and a line to a member (“true” or “false”) of theBoolean sort. The meaning ofon (x,l) is “Point
x lies on line l ”. An operation which takes values inBoolean is a called a predicate. TheBoolean sort is part
of a concept of logical operations that is implicitly included in every concept (it is an initial object of the concept
category). Versions of formal logic containing predicates allow for highly expressive formulas, or statements,
that employ functions and quantifiers such asforall andexists , corresponding to the usual universal and ex-
istential quantifiers∀ and∃ , respectively. There are many derived sorts in a theory, such as products of the given
sorts. If the sort symbols represent sets, then product sorts represent cartesian products of the sets. For example,
the product sortPoints∗Lines represents the set of ordered pairs(x, l) of points and lines. Combinations of
sorts and operations associated with them are similar to abstract data types in software specifications.

Notice thatT1 also states the existence of three labelled, but otherwise unspecified, pointsp1, p2 and p3 .
This is done through the use of the statement formconst X : Points , which is a way of stating that there exists
a specific (but otherwise indefinite) point with the labelX . The three constants may or may not represent distinct
points: Their separate nature must either be stated as an axiom ofT1 , or provable from the axioms of the concept.

We next express three conceptsT2, T3 and T4 by making and modifying three copies ofT1 . In each new
concept, we add a line constant, re-name the three point constants (for clarity in this presentation—otherwise,
the specific names are not important), and associate two of the point constants with the line constant via theon
predicate. Notice the additional inclusion of an axiom stating that the three point constants denote distinct points.
A specification for the first of the three concepts,T2 , is as follows:

Concept T2
sorts Points, Lines
const pa1: Points
const pa2: Points
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const paext: Points
const la: Lines
op on: Points*Lines --> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
on (pa1, la) and on (pa2, la) and (pa1 not= pa2)

end

The other two concepts are identical in form but differ in the naming of the point and line constants. They are
listed in full in the Appendix.

A concept morphisms1:T1 −→ T2 maps the sort symbolsPoints andLines to sort symbols inT2 . These
symbols are left unchanged by mappingPoints to Points and similarly for lines, and also theon predicate.
All statements are reformulated in accordance with the symbol mapping to form their image statements inT2 .
The resulting mapping of formulas is truth-preserving: The single axiom ofT1 relating points to lines maps to
itself as an axiom ofT2 , and similarly for the implicit axioms for booleans. Finally, the point constantsp1, p2
and p3 map to the point constantspa1, pa2 and paext , respectively. Here,pa1 and pa2 are associated with
the line la via the on predicate inT2 and paext is intended as a point “external to”la . This intention is not
stated inT2 because it is not necessary to make it explicit as yet. The individual symbol mapping relationships
are expressed usingmapletnotation:

Morphisms1 : Points 7→ Points
Lines 7→ Lines
on 7→ on
p1 7→ pa1
p2 7→ pa2
p3 7→ paext

Hereafter, all maplets that leave symbols unchanged will be omitted from morphism descriptions. Since every
sort and operation symbol must map to something, this will not result in any ambiguities.

Morphismss2:T1−→T3 ands3:T1−→T4 have a similar form, but with different mappings of point constants
in place of those ofs1 :

Morphisms2 : Points 7→ Points
Lines 7→ Lines
on 7→ on
p1 7→ pbext
p2 7→ pb1
p3 7→ pb2

Morphisms3 : Points 7→ Points
Lines 7→ Lines
on 7→ on
p1 7→ pc2
p2 7→ pcext
p3 7→ pc1
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The morphismss2 ands3 indicate that the images of the point constantsp1 , p2 andp3 are used differently
in T3 and T4 . In T3 , for example, it is the imagespb1 of p2 and pb2 of p3 that are associated with the line
constant,lb , while the imagepbext of p1 is the “external” point. This is so that the morphisms can properly
define the “concept blending” that forms a triangle from the three lines. This is accomplished by including exactly
the objectsT1, T2, T3, T4 and morphismss1, s2, s3 in a diagram∆ . A colimit for ∆ has the requisite cocone, as
shown in Figure 7 , with apical objectT5 and leg morphisms̀1:T1 −→ T5 , `2:T2 −→ T5 , `3:T3 −→ T5 , and
`4:T4 −→ T5 . With ∆ as the base diagram, the defining diagram of the colimit,∆ as shown in the figure, is
commutative, with

`4 = `2 ◦ s1 = `3 ◦ s2 = `4 ◦ `3 . (2)

Figure 8 is a pictorial illustration of the colimit defining diagram of Figure 7 . The illustration depicts the contents
of the concepts involved along with the diagram structure. The resulting colimit object, the specificationT5 , is as
follows (see the Appendix for a complete exposition of the concepts and morphisms):

Concept T5
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
const la: Lines
const lb: Lines
const lc: Lines
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
on (p1, la) and on (p2, la) and (p1 not= p2)
on (p2, lb) and on (p3, lb) and (p2 not= p3)
on (p3, lc) and on (p1, lc) and (p3 not= p1)

end

SpecT5 is a “blending” or “pasting together” ofT2, T3 and T4 along their common sub-conceptT1 . This
is because of the commutativity of the defining diagram∆ of the colimit. For the equality ( 2) to hold, separate
symbols ofT2, T3 andT4 that are images of the same symbol ofT1 under the three diagram∆ morphismss1, s2

ands3 must merge into a single symbol in the colimit apical conceptT5 . To make this clear, we have re-assigned
the name of the commonT1 symbol to the merged-image symbol inT5 for each such case. Thus, symbols such as
Points, Lines andon appear inT5 , and appear only once, since they are mapped to themselves by each of the
morphismss1, s2 and s3 . The point constantsp1, p2, p3 also appear. However, inT5 , each one appears in the
definition of two different lines. This is because each of them appears in conceptT1 but is mapped to three points,
one in each conceptT2, T3, T4 , via the three morphisms fromT1 to those concepts. In two of these concepts, its
image point appears in the definition of a line, but as a different point on a different line in each concept. In the
remaining concept, it appears as an “external” point, not on the line named in that concept. For example,p1 is
mapped topa1 in T2 via s1 , to pbext in T3 via s2 , and topc2 in T4 via s3 . In T5 , therefore, it forms the point
p1 at the intersections of linesla andlc , and lies external to linelb . See conceptT5 , pictured in Figure 8 , for
an illustration of the triangle. The other concepts pictured in the defining diagram yield the names of the various
constants which together yield the vertices and sides of the triangle.

A theorem in category theory can be used to derive an algorithm for calculating colimits in any category that
contains colimits for all of its diagrams (the dual to The Limit Theorem—see [39]). The categoryConcept is
one such category. Thus, the apical objectT5 and leg morphisms̀1, `2, `3 , and`4 can be derived automatically
from the objects and morphisms of the base diagram,∆ . This confers a great advantage on the use of category
theory in knowledge-based system development. Theories and their morphisms (or formal specifications and their
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Figure 7:A colimit for the diagram ∆ in the triangle geometry example in category Concept . The extended
diagram ∆ extends the point-and-line concepts in∆ to form a concept about triangles formed from triples
of lines in the apical concept of the colimit,T5 , as discussed in the text.

morphisms) can be used to specify the intended semantics of software or other kinds of system components. The
colimit calculation and the structure-preserving mappings of category theory together provide a mathematically
rigorous as well as automated technique for constructing the full system from diagrams[53].

Here, we shall apply the same kind of mathematics, but regard the theories as concepts that describe the stimuli
that activate the nodes of a neural network, and the morphisms as relationships that describe the embedding of one
concept in another by virtue of the transmission of stimuli through paths of connections in a network. This will
provide an analytical framework for determining, unambiguously and precisely, when a neural architecture has the
capability to learn a hierarchy of concepts of varying degrees of complexity. It will also explicate the combining
of information from multiple sensors and the integration of cognitive functions such as memory storage and
retrieval, planning, and decision-making. It will make it possible to determine why a network generates the
input-to-output behaviors it does, and how to design a network with more desirable behavior.

3.3 Model Spaces

Each conceptT has an associated space ofinstances. An instance can be thought of as a situation described
by T , where the entities and relationships of the situation satisfy the axioms ofT . For example, an instance of
the colimit theoryT5 just discussed consists of any geometrically-describable arrangement of entities satisfying
the theory axioms and in which the constantsp1, p2, p3, la, lb, lc serve as labels for three distinct entities
considered to be points and three distinct entities considered as lines, each one at a specific location in some
“space”, real or imagined. Examples of these “spaces” include the Euclidean plane (imagined) and a collection
of pebbles on a sidewalk, arranged in intersecting straight lines so as to satisfy the theory axioms (real). A
consequence of the axioms ofT5 that involve its point and line constants is that three lines labelledla, lb, lc
form a triangle with points labelledp1, p2, p3, at their intersections as specified. An instance ofT1 is any
example of the geometry of points and lines, and an instance of any one ofT2, T3 or T4 is an example of geometry
augmented by a line defined by two points and a third point not specified as being on the line, with all quantities
labelled appropriately.

Instances of theories can be related, as the theories are related, by morphisms. The triangle example provides
an illustration. An instance of the geometry theoryT5 , which describes a triangle axiomatically, consists of
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Figure 8:A pictorial illustration of the colimit base and defining diagrams ∆ and ∆ . The contents of the
concepts involved are pictured along with the diagrammatic structure. Solid dots and lines signify point
and line constants, respectively, labelled as in the corresponding concepts. Certain point constants are
equivalenced by the composition morphisms with domainT1 and codomain T5 , all of which are equal
since ∆ commutes. For example,pa1, pbext and pc2 are all mapped to the triangle vertex p1 in T5 by
the colimit leg morphisms `2, `3 and `4 becausep1 in T1 maps to pa1, pbext and pc2 via morphisms s1,
s2 and s3 , respectively. ConceptT1 has no line constant, so it is shown containing a dashed line with two
open dots, representing the axiom relating points and lines which is present in all the concepts.

some mathematically-expressable means of organizing the space containing its entities— for example, points
and straight lines drawn on paper on the Euclidean plane or pebble arrangments on a sidewalk—together with a
triangle at a specific location and orientation to the observer with the vertices and sides labelled as are the point
and line constants. Each instance ofT5 corresponds to an instance ofT2, T3 and T4 , which describe only points
and lines but provide partial information about the quantities and laws governing them which are necessary for
constructing triangles. Each instance ofT2 , and also each instance ofT3 and T4 , corresponds to an instance of
T1 . These relationships are composable: Each instance ofT5 , by virtue of its correspondence with an instance
of any of T2, T3 and T4 , corresponds to an instance ofT1 as well. This shows that there are mappings from
instances of the more specific theories to instances of less specific theories embedded in them, and the mappings
have a law of composition. It is also true that the less specific theories can have more instances than those that
are more specific. This is because a theory is more specific when it has more sorts, operations, constants and/or
axioms, any of which provide constraints upon its instances.

This leads us to our system for analyzing the instances of concepts and relating them to neural network
activities. We denote the space of instances of a conceptT , calledmodels of T, by Mod(T) . The mathematical
structure of a memberσ of Mod(T) is as follows. For each sortu of T , there is a setuσ . For each operation
p of T , where p is given the formp:u−→ u′ , there is a functionpσ:uσ −→ u′σ mapping members ofuσ to
members ofu′σ (recall that if p is a predicate,u′ must beBoolean , so thatu′σ is the set of Boolean values
T, F ). For each constantc with sort u, there is a specific membercσ of uσ . Finally, each axiom ofT must be



Healy and Caudell—Category Theory ... 14

valid for all quantitiesuσ, pσ, cσ . In other words, the theoryT must be valid for the structureσ obtained by
replacing its sorts, operations and constants with the indicated quantities.

For an example of a model, consider the previously-discussed instances in the triangle example. A modelσ
constructed with the Euclidean plane in mind hasuσ as the set of points in the plane ifu is the sortPoints .
If u is the sortLines , on the other hand, thenuσ is the set of straight lines in the plane. In theoryT5 , for
example, the operationon : Points∗Lines−> Boolean can be represented by a functionpσ:uσ −→ u′σ ,
whereuσ = (Points∗Lines)σ = Pointsσ ×Linesσ and u′σ = Booleanσ . The predicatepσ has the value
T for those point-line pairs having the property that the point lies on the line. The axiom

. . .
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))

holds for all quantitiesx,y ∈ Pointsσ satisfying the stated pre-condition: That is, there exists a unique
member ofLinesσ defined byx and y. The same holds in any model of the theoriesT1—T4 . However, notice
that there can be membersσ of Mod(T1) that do not have specifically identified members ofLinesσ for any of
the line constantsla, lb, lc becauseT1 does not specify any line constants. However, specific lines serving in
the roles of the three line constants must exist in any member ofMod(T5) .

Another example can be formed from the pebbles-on-a-sidewalk example. Consider a region delineated on a
sidewalk with specific positions marked for all possible placements of pebbles. A model ofT5 then has a specific
layout of pebbles representing the point constants, with the point constant representatives labelled, with paint,
say. It can also contain other pebbles (shaped or colored differently, perhaps) to represent all the other points
on the three lines chosen to represent the line constants; the three line constant representatives can be indicated
by placing an appropriately-labelled piece of tape at one end of each. The specified points and lines must be
configured, collectively, to satisfy the axioms ofT5 . Interestingly, notice that the pebbles could be either pixels or
groups of pixels in a video image. The lines could likewise represent linear configurations of pixels, and so forth.
Models constructed in this “image space” are suggestive of the use of model theory in analyzing the relationship
between the processing in a neural network trained to recognize geometric objects and the structure of its input
environment consisting of sensor images.

The notion that a more specific conceptT ′ can incorporate a less specific (more abstract) conceptT has
already been formalized in the definition of a concept morphisms:T −→ T ′ . In correspondence with this, the
notion that each model ofT ′ corresponds to a model ofT is captured in the definition of a model-space morphism
Mod(s):Mod(T ′)−→ Mod(T) . The morphismMod(s) acts as a function that maps every modelσ′ in Mod(T ′) to
a unique modelσ in Mod(T) , that is,σ = Mod(s)(σ′) . Notice thatMod(s) has the reverse direction tos, as is
appropriate. Since the theoryT typically has less structure (fewer sorts, operations, constants, and/or axioms)
than the theoryT ′ , the modelσ is not required to have all the sets, functions, predicates, and specified members
(constants) thatσ′ must have, and is only required to obey the axioms ofT , which are typically fewer in number
than those ofT ′ . Nothing prevents a model ofT from havingall the structure of a model ofT ′ ; it is just the
case that an arbitrary model ofT is notrequiredto have all the structure that an arbitrary model ofT ′ is required
to have. By the same token, there can be many models inMod(T) that are not the image of a model inMod(T ′)
under the mappingMod(s) : A simpler theory poses fewer restrictions on its models, hence, there can be more of
them.

We can extend the examples of models just discussed to obtain examples of model-space morphisms. In the
pebbles-on-a-sidewalk example, any modelσ′′ in Mod(T5) maps to a modelσ′ in Mod(T2) , thence to a model
σ in Mod(T1) , via the compositionMod(s1) ◦ Mod(`2) of the model-space morphismsMod(`2):Mod(T5) −→
Mod(T2) and Mod(s1):Mod(T2) −→ Mod(T1) . At each stage, the model derived fromσ′′ can have the same
appearance: Although models ofT2 and T1 are not required to contain all that is specified for models ofT5 ,
those derived directly from models such asσ′′ via the model-space morphisms can retain all the structure ofσ′′ ,
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or be part of a system that does so, while other models not so derived have less structure. Thus, although the
model σ may retain the triangle built from pebbles as inσ′′ (but perhaps with differently-colored pebbles and
perhaps with some deleted), other members ofMod(T1) need have no triangle, nor any specified lines. However,
they must have at least one designated pebble serving in the role of the point constants.

Notice the use of the term “model spaces” as opposed to “sets of models”. As noted previously, a different
amount of structure is required of arbitrary models of two theories serving as the domain and codomain of
a model-space morphism. This suggests that some models in a given model space are more elaborate than
others, and that a less elaborate model can be thought of as embedded in another model that happens to satisfy
more constraints. In actuality, this notion is expressed throughmodel morphisms, and, indeed, the model spaces
Mod(T) are in actuality categories and the model-space morphismsMod(s):Mod(T ′) −→ Mod(T) are functors.
On the other hand, we use the term “space” rather than “category” because we do not intend to explore the
categorical properties of model spaces in this report. However, for completeness, it is desirable to point out
that the categorical formulation applies within as well as between model spaces. Overall, there is a functor
Mod:Concept−→Cat , whereCat is a category whose objects are categories and whose morphisms are functors.
The concept object imagesMod(T) are objects inCat and the concept morphism imagesMod(s):Mod(T ′) −→
Mod(T) are morphisms ofCat . See [36] or [16] for a further discussion of model categories and [34] or [1] for
foundational issues concerning the existence of a category of categories.

We shall relate the model spaces and their morphisms to neural architectures following a discussion of our
categorical formulation for the latter. Several items must be discussed before doing this.

4 Neural Architectures and Neural Categories

Since the point of our categorical concept representation is to express the semantics of neural networks, we need
a category within which neural structure can be represented. By neural structure, we mean not just the intercon-
nection structure joining the nodes of a neural network, but the systematic activity of its nodes and connections
in interacting with its environment. The objective is to explain the activity of any neural network arising from
its inputs in terms of the concept structure that network is capable of acquiring, and also to explain how neural
activity is related to the acquisition of a concept structure. In accomplishing this, a category representing a neu-
ral architecture need not include all the details of the neural network computations; it need only represent the
outcome of the computations in expressing and learning concepts and concept morphisms.

4.1 Architectures

A neural network architectureA has nodespi (i = 1, 2, . . . , nN) and connectionsck (k = 1, 2, . . . , nC) , where
nN, nC are positive integers. The nodes have signal functionsφi :R −→ R , whereR is the set of real numbers1.
For example, the commonly-used sigmoid with a threshold valueθT,i is

ξi = φi(θi) =
1

1 + e−(θi −θT,i)
(i = 1, 2, . . . , nN), (3)

where the argumentθi is an activation potential. Each connectionck joins a pair of nodes, itssource pi = nS(ck)
and itstarget pj = nT(ck)(1 ≤ i, j ≤ nN) . If i = j , ck is anautoconnectionthrough whichpi either stimulates
or inhibits itself, depending upon whetherck is excitatoryor inhibitory.

1The systemR of real numbers is used here purely for simplicity, since it has familiarity in the connectionist literature. Certain subsets
of R could have been specified instead to represent the domain and codomain of a signal function. In fact, the semantic model does not
depend upon the use of the real number system at all: functions defined over the rationals, the complex numbers, or other algebraic structures
with additive and multiplicative structures can be used instead, with the proper care taken to ensure consistency of the resulting analysis. For
example,R is a complete, ordered field; many other algebraic systems do not have this combination of properties. One result of this is that
the intervals used here in defining neural objects must be replaced by other kinds of sets when using these systems.
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In the usual discrete neural network model, such as the perceptron, the activation potentialθi is

θi = Σµ∈di wµδµ (4)

where eachδµ is an output signalξ` emitted by some nodep` (` ∈ di) wheredi is the set of input connections
to pi , δµ = ξ−` = φ`(θ−` ) , and p` = nS(cµ) , pi = nT(cµ) , and wµ is the current weight value for connection
(cµ . A fixed set ofinput nodes ph(h∈ SI ⊆ {1, . . . , nN}) is typically defined for an architecture, and in many
cases also a set ofoutput nodes pω(ω ∈ SO ⊆ {1, . . . , nN}) . Input nodes require an additional term in their input
sum to account for the external input,viz.,

θi = Σµ∈di wµδµ + Ii . (5)

In architectures such as perceptrons, input nodes receive external inputs only; in this case, the input node has
input sum

θi = Ii . (6)

As soon as the current activation valuesθi for the nodes are computed, the signal functions are evaluated to
compute an output,

ξi = φi(θi) . (7)

A neural architectureA has an infinite number of possible weight statesw. A weight state is annC-tuple
(w1, w2, . . . wnC) of numerical valueswk for the connectionsck (k = 1, 2, . . . , nC) . The network transitions from
one weight state to another by virtue of its conectionist learning algorithm, usually based upon some variant of
Hebb’s law[24]. Activation and learning in a neural network occur simultaneously in response to the input patterns
the network processes. Activation and learning are combined mathematically to define global state transitions as
part of the definition of a neural category. Before discussing neural categories, let us explain in more detail what
it means to have a semantic model for neural networks.

4.2 Neural Processing and Semantics

A basic assumption of any neural network model is that a stimulus patternI presented to the input nodes repre-
sents an event — an object, entity, situation, visual scene, or some representative of the network’s environment
that has significance “for the network”. Another assumption is that the representation is consistent across all
events; that is, the algorithm or sensing method that converts events to input patterns remains fixed as the input
stream progresses. These assumptions are fundamental to the analyst’s ability to make sense of the phenomena
observed as a network processes its input stream, whether the network is artificial or biological. In the ana-
lyst’s view, each input patternI associates, or bind, the network to its environment. The network is supposed
to adapt from a sequence of inputs so that it can respond to future inputs from the environment in a manner that
the analyst considers reasonable. Semantic modeling is a vehicle for understanding this process by employing
the precision of a mathematical language to describe the contents of the information supplied by environmental
events as represented by the input patterns, the consequent representation of the environment learned by the net-
work and stored in its connection weight array, and the outputs the network generates. The explicit representation
of knowledge about entities and their properties and relationships contained in the descriptions can make visible
the assumptions implicit in a neural network model so that they, too, become amenable to analysis.

To even begin to understand the information content of events and the consequent neural representation of the
environment, we need an unambiguous, precise language capable of expressing the properties of and relationships
among arbitrary entities. To be useful in analysis, the language must be flexible, able to express the properties of
many entities in combination and the properties of complex entities in terms of the properties and relationships
of their parts. For example, the property of balance in a painting arises from the spatial relationships of the
shapes, colors and textures within it; a blue patch of water to the lower left is reflected in a scattering of blue
flowers on the river bank at the upper right, and so forth. In many cases involving the “emergent” property of a
system of entities, on the other hand, the association of the system property with those of its components may
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not be obvious on the surface, but if it arises systematically the association must be expressible mathematically.
In any case, the key to semantic modeling is to be able to associate, again unambiguously and with precision,
the descriptions in our language with the structure and operations of a computational entity such as a neural
network. An important notion we use for this association is that the description associated with an event can be
seen as a part of a longer, more detailed description associated with that which produced the event. Thus, the
descriptions associated with the inputs to the network exist at various levels of detail, from the abstract to the
specific. Furthermore, the network, given a sufficiently rich input format, can reconstruct much of the complexity
of the environment in its internal representation of the information it gains from the input representation of the
events. Again, the descriptions of simple and complex entities are related. We wish to associate this hierarchy
of descriptions with the learning of environmental representations and their storage in and retrieval from a neural
network’s connection-weight memory.

This line of thought has two consequences for our purposes: First, one or more of the pattern values in an
input I represent a concept, a description of something which, when sampled (say, by apprehending examples of
it), generates events. A single pattern may represent several such concepts. Second, a concept has sub-concepts,
or embedded concepts, representing different aspects of the event-generator. For example, the pattern values
in I represent pieces of information about an event, such as boundary segments of shapes appearing in visual
images; each is describable as a boundary segment, an aspect of a boundary; each description is a concept. The
full boundary helps to delineate a shape appearing in the image, so it is itself an aspect (the shape) of a yet
more complex object captured in the image. Other aspects of the object are its colors, textures, and shading or
the indication of three- dimensionality; all have descriptions, and all descriptions are concepts. The boundary
segment concepts are sub-concepts of the boundary shape concept, and it, in turn, is a sub-concept of a full
description of an object, along with other sub-concepts describing color, texture and so forth. Further, an object
is more than it appears in a visual image: It can be an entity that also produces sounds, has a touch and feel,
and other properties; therefore, the visual object concept is a sub-concept of a complex concept describing the
whole object. Objects of any possible kind may exist in a system of interacting entities, such as people in a
social situation or vehicles in a traffic network. The individual object concepts are therefore sub-concepts of a
description of a system, which also contains descriptions of the ways in which individuals can interact. From this,
it is evident that concepts normally exist in a hierarchy given by a sub-concept relation. This is a re-statement of
the fact that the descriptions of simple and complex entities are related.

A concept can be transformed significantly when used as a sub-concept in more complex concepts, or it can
be used in several ways. Therefore, although we often describe a concept relation as a sub-concept relation,
the term “concept morphism” is more generally applicable. This brings us to the use of the categoryConcept
for representing the semantics of a neural network.A network forms an internal representation of the concept
category to greater or lesser extent depending upon its ability to learn and represent concepts at all levels of the
hierarchy. The part of the category that it can fully represent in its connection weight array at any point in its
learning history constitutes a “knowledge base”, one which it updates incrementally. Our objective is to provide
a mathematical framework that explains the output responses and the connection weights of an arbitrary neural
network in terms of an internal knowledge base, and explains the weight modifications in terms of updates to the
knowledge base. This explanation is an understanding of the semantics of the neural network.

If the connection weight changes are to be effective in accumulating the knowledge implicit in a stream of
input patterns, they must incorporate previously obtained information in the formulation of new information as
each pattern is processed. This systematic change, therefore, involves the re-use of prior knowledge and can be
seen as the derivation of concepts from previously-learned concepts. Each network response to an input pattern
either represents a system of concepts pre-existing in the network’s internal knowledge base or else prescribes
the derivation of a concept new to the network’s representation. A prescription for a derivation is represented
by the activated nodes and connections between them that represent pre-existing concept representations and
relationships between them, beginnning with the input nodes. This can be represented by the mapping of a
diagram inConcept to a diagram in a neural category, once we have defined what is meant by a neural category.

We measure the activation valuesθi of the nodespi (i = 1, 2, . . . , nN) of a neural network indirectly, by
observing their outputsξi = φi(θi) . The valueξi represents a concept in the existing knowledge base. For
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example, a particular output valueξh for an input nodeph might be associated with a concept such as “event X
produces a horizontal contour segment at location L in the image”, where the “strength” of the contour at location
L is associated with a range of output values forph . Leaving open the possibility that a range of valuesξh

might be associated with a horizontal contour segment occurring at location L for “noise immunity”, it is best to
associate the contour segment at L with a setη of valuesη = {ξ | ` < ξ < u} (if ξh takes real values,η is a
real interval and may be arbitrarily small). The occurrence of a value lying withinη signifies an instance of the
concept of a horizontal bar occurring at location L. Thus, in general, concepts about events are represented by
node/interval pairs(pi , η) , whereη is a range ( for example, a real interval) of output values forpi .

Now, for any nodepi , we can trace backward through its input connections in the network, eventually deter-
mining how its output valueξi is formed by combining and transforming input node values through the weighted
connection pathways leading to it. If we can describe how this combining works in terms of the input node/interval
concepts, then, outputsξi for node pi can be related to a derivation of the concept associated with them in terms
of concepts and relationships associated with the nodes and connections relatingpi to nodes such asph . As with
the input nodes, the valuesξi are best regarded as points within a set (for example, a real interval)η .

Examining this from the opposite perspective, what tells us that(pi , η) represents a given conceptT , or
that it represents any concepts at all? For example, supposeT describes the layout of a room seen from some
viewpoint (e.g., “The room contains a chair and a table. The chair sits behind the table.”) We might be led to
the supposition that(pi , η) representsT by noticing that an outputξi for pi falls within the intervalη when an
input pattern representing a camera image of the room is presented to the input nodes. However, this conclusion
is not necessarily an accurate assertion about the semantics of(pi , η) . For if pi is an input node, it could simply
be that a particular region of the camera image yields a segment of an image contour that indicates the presence of
the chair, or the table, but does not describe either entity in any more detail than that. The same contour segment
(such as a horizontal bar) could just as easily describe any of hundreds of other items in the room, or in other,
completely unrelated camera images. To represent the entire room view,(pi , η) must represent “downstream”
processing of the image contour segment together with many other image features.

The need to establish the semantics of quantities such as(pi , η) unambigously and with precision is the
reason for having a mathematical semantic model. The outputs a nodepi will generate at a given time depends
upon its connection-weighted inputs, its signal function, and its current activity. We can account for the other
quantities by observing the node’s properties, but its inputs through connections involve its relationship with its
immediate neighbors. Semantics involves relationships and, categorically, relationships are the morphisms in
a category. We have a declarative basis for expressing semantics with concept morphisms; to understand the
declarative semantics of a neural network, we need to have a mathematical model that includes neural morphisms
and how the two kinds of morphisms are related.

4.3 Neural Categories

There is an infinite number of possible neural network architecturesA, and each has an infinite number of
possible weight statesw. In analyzing or designing a specific neural network, artificial or biological, we either
assume or provide a structure forA that contains enough nodes and connections to account for the appearance
of previously-unused nodes or connections as the network evolves through learning or growth. In an artificial
network, for example, many connections can initially be assigned weight values close to zero. Their values can
then increase if they happen to be recruited as significant contributors to network processing by the learning
algorithm for A. In a biological system, an increase from an initial near-zero value can be used to represent
either adaptation (learning) or the growth of a new connection. In any case, the semantic model associates each
combination ofA and w with a categoryNA,w . Each input patterne for A results in activity in its nodes and
connections, and this together with the connectionist structure ofA is involved in the definitions of objects and
morphisms forNA,w . Weight adaptation, or “learning”, changes one or more of the componentswk of w, a
consequence of the node activities resulting from the processing ofe. This is represented in the semantic model
as a transition between categories.
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Our mathematical model addresses the semantics of the network processing explicitly, but regards neural
dynamics and notions of time and state change only as a means of carrying out the computations involved. We
shall assume that the computations proceed, and confine our interest to the knowledge representation scheme that
we use to express the semantics. To model the processing of an arbitrary neural network, therefore, we use a
transformation that expresses only the neural network computational states of significance for semantic analysis.
Let WA, ΘA, EA denote the spaces of weight tuples, activation tuples and input tuples forA, respectively. To
represent the activation and learning algorithms associated with the architecture, we define a functionΦA:WA×
ΘA×EA−→WA×ΘA . The functionΦA maps annC+nN +nI -tuple of initial weights, activation values and input
values to a resultantnC +nN-tuple of weights and activation values. It expresses the totality of neural processing
of the input via weighted summation of the inputs at each node, the signal function evaluationsξi = φi(θi) , and
any other assumptions embodied in the rules for activation inA, including feedback, recurrence, and connection
weight adaptation. It is meant to represent the processing in a significant computational step in an arbitrary
architectural model, whether discrete or continuous. We write(v, ψ) = ΦA(w, θ, e) , with w, v ∈ WA; θ, ψ ∈
ΘA;e∈ EA .

Based upon the discussion in the previous sub-section, an obvious choice for the objects of a neural category
NA,w is the collection of pairs(pi , η) , where pi is a node ofA and η is a set of output values forpi that has
some significance in our analysis. There may be many such output sets, so a single node can be associated with
many objects, depending upon the needs of the analysis to be perfomed. In any case, we refer to the nodepi as
thecarrier of any object of the form(pi , η) .

Let two conceptsT1, T2 be represented by objects(pi , η), (p j , η′) , respectively, in the categoryNA,w . Al-
though the morphisms ofNA,w have not been defined as yet, one would expect that any concept morphisms
betweenT1, T2 would be represented as morphisms ofNA,w by virtue of the activity in the weighted network
connections between the nodespi , p j . To begin relating activity in a neural architecture to morphisms in its
associated neural category, we define asignal path γ with source (pi , η) and target(p j , η′) as a connec-
tion path ck1, ck2, . . . ckn with nonzero weights,wkr 6= 0 (r = 1, . . . , n) , together with a sequence of nodes
pµ1, pµ2, . . . , pµn, pµn+1 and intervalsη1, η2, . . . , ηn, ηn+1 , where pi = pµ1 = nS(ck1) , pµr = nS(ckr ) and
pµr+1 = nT(ckr ) (r = 1, . . . , n) , p j = pµn+1 = nT(ckn) . Thus, a signal path is a connection path between(pi , η)
and (p j , η′) which, if it has any intermediate nodes (i.e., if there is more than one connection in the path), has
specified output intervals for those nodes. We can representγ by the string[(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . ,
(pµn, ηn), ckn, (pµn+1, ηn+1)] , which shows the layout of objects and connections along the path. The path has
source and target objects(pi , η) = (pµ1, η1) = oS(γ) and (p j , η′) = (pµn+1, ηn+1) = oT(γ) , the others being
referred to as intermediate objects.

Let θ denote an arbitrarynN-tuple (θ1, θ2, . . . ,θnN) of activation statesθi for the nodespi (i = 1, . . . , nN)
of NA,w . Let e denote an arbitrarynI -tuple (e1, e2, . . . ,enI ) of input pattern values, wherenI is, as before, the
number of nodes in the input node setSI , with nI = card(SI ) ≤ nN . Matching input pattern components to
the input nodes that receive them is done by associating each input pattern indexh(1 ≤ h ≤ nI ) to a unique
node indexi (1 ≤ i ≤ nN) such thateh = Ii , where pi is the appropriate input node. When the nodespµr in
a pathγ produce outputs lying within the intervalsηr , whereγ = [(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . ,
(pµn, ηn), ckn, (pµn+1, ηn+1)] , we say that theobjects(pµr , ηr), are activated.

The combination of a signal pathγ with source and target(pi , η) = oS(γ) and (p j , η′) = oT(γ) , together
with a weight statew, has an associated setUγ,w of pairs(θ, e)∈ΘA×EA satisfying the following requirements:

1. For all nodespµr of γ (r = 1, . . . , n) , φr(θr),φr(ψr)∈ ηr , where for somev∈WA , (v, ψ) = ΦA(w, θ, e) .

2. For every connection(ckr ) of γ , vkr 6= 0 (r = 1, . . . , n) .

In particular, (1) holds for the source and target nodes,φi(θi),φi(ψi) ∈ η andφ j(θ j),φ j(ψ j) ∈ η . In other words,
the pairs(θ, e) in Uγ,w are combinations of initial activation values and inputs for the network whose subsequent
processing does not change the objects that are activated along the pathγ , even with accompanying changes in
some or all network connection weights (as long as the weights do not become zero). The elements(θ, e) ∈Uγ,w
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are calledinstances ofγ in weight state w. The totality of elements(θ, e) associated with a nodepi generating
an output within the designated intervalη of a neural object(pi , η) are calledinstances of(pi , η) .

For each setΓ of paths γ having common source and target(pi , η) and (p j , η′) (where now we write
(pi , η) = oS(Γ), (p j , η′) = oT(Γ) , and each weight statew, there is an associated set of instancesUΓ,w . This
is obtained by simply forming the intersectionUΓ,w =

T
Uγ,w(γ ∈ Γ) . We say that two path setsΓ and Γ′ with

a common source and target areequivalentin weight statew, denotedΓ ≡w Γ′ , if UΓ,w = UΓ′,w . All path sets
which are pairwise equivalent have the sameclosure, a path setΓw that contains all their members. Thus, when
Γ ≡w Γ′ , we can writeΓw = Γ′w . A path set of the formΓw , whereΓ is an arbitrary path set, is calledclosed
in weight state w. Notice, finally, thatUΓw,w = UΓ,w .

We are now ready to say what we mean by a neural morphism. A morphismm:(pi , η) −→ (p j , η′) in a
neural categoryNA,w is given by the following:

1. A domain object(pi , η) ,

2. a codomain object(p j , η′) ,

3. a path setΓ having (pi , η) = oS(γ) and (p j , η′) = oT(γ) (γ ∈ Γ) , and

4. the setUΓ,w of pairs (θ, e) , with (θ, e) ∈UΓ,w ⊆ ΘA×EA , where for each pathγ ∈ Γ with
γ = [(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . , (pµn, ηn), ckn, (pµn+1, ηn+1)] , we haveφµr (θµr )∈ηr , φµr (ψµr )∈
ηr for (r = 1, . . . , n) , where(v, ψ) = ΦA(w, θ, e) for somev∈WA .

Any setΓ′ with Γ ≡w Γ′ defines the same morphism. Thus, a morphism can be represented by a weight state
w and any of its path setsΓ, Γ′, . . . , which have the same source and target nodes and are associated with the
same set of instances,UΓ,w = UΓ′,w = . . . . Given any of its equivalent path setsΓ and the weight statew of its
category, we refer to a morphismm asthe morphism associated with the pair(Γ, w) , and we writeUm = UΓ,w

(the dependence ofUm on w is appropriate because a morphism is specific to its category, in this caseNA,w ).
Conversely, each of its path sets is called acarrier for the morphism in weight statew.

The definition of composition for morphisms in a categoryNA,w is really rather obvious, given our notions
of what constitutes a morphism. Consider a pair of morphismsm1, m2 , with a path setΓ1, Γ2, , respectively
for each, with associated setsUΓ1,w, UΓ2,w of instances, whereoS(Γ2) = oT(Γ1) . We can form the intersection
UΓ3,w = UΓ2,w ∩UΓ1,w , whereΓ3 contains the concatenationsγ;γ′ of all pairs of pathsγ ∈ Γ1, γ′ ∈ Γ2 , which is
possible becauseoS(γ′) = oT(γ) for all such pairs. For example, if
γ = [(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . , (pµn, ηn), ckn, (pµn+1, ηn+1)] and
γ′ = [(pµn+1, ηn+1), ckn+1, (pµn+2, ηn+2), ckn+2, (pµn+3, ηn+3), . . . , (pµn+n′ , ηn+n′), ckn+n′ , (pµn+n′+1

, ηn+n′+1)] , then

γ;γ′ = [(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . , (pµn, ηn), ckn, (pµn+1, ηn+1),
ckn+1, (pµn+2, ηn+2), ckn+2, (pµn+3, ηn+3), . . . ,(pµn+n′ , ηn+n′), ckn+n′ , (pµn+n′+1

, ηn+n′+1)] .

With these definitions, the pair(Γ3,w) uniquely defines a morphismm3:(pµ1, η1) −→ (pµn+n′+1
, ηn+n′+1) , that

is, m3 = m2 ◦ m1 , having as one of its path setsΓ3 = {γ;γ′ | γ ∈ Γ1, γ′ ∈ Γ2} , with UΓ3,w = UΓ2,w ∩UΓ1,w and
with (pµ1, η1) = oS(Γ3) and (pµn+n′+1

, ηn+n′+1) = oT(Γ3) . The operation◦ for morphisms associated with the
concatenations of path sets, such that the source of one set is the target of the other, can always be defined and
yields a unique result.

Notice that there can be path setsΓ whose source and target are one and the same object(pi , η) , with
oS(Γ) = (pi , η) = oT(Γ) . For eachw and each such path set there is a morphismm:(pi , η) −→ (pi , η) of
NA,w . For each object(pi , η) , we define a particular path set which is of fundamental importance: The singleton
{[(pi , η), (pi , η)]} , whose only member we call thevirtual path for (pi , η) . It is a path with no connection;
instances of it are simply instances of(pi , η) . Its importance lies in its use in defining the identity morphism
id(pi ,η) as the morphism associated with({[(pi , η), (pi , η)]}, w) . It is now a straightforward exercise to show
that the composition as defined is associative and has an identity for each object. Therefore, the quantities we
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have been calling objects and morphisms satisfy the two axioms of composition, hence, they really are objects
and morphisms andNA,w with these definitions is indeed a category.

We denote byUid(pi ,η),w the instance set of the virtual path for object(pi , η) (hence, the instance set of the
identity morphism for the object). Any path setΓ equivalent to{[(pi , η), (pi , η)]} , that is,Γ ≡w {[(pi , η), (pi , η)]} ,
has the same instances, hence, is acting collectively as the virtual path,UΓ,w = Uid(pi ,η),w . Notice that the instance
set of an identity morphism is just the instance set of its object,Uid(pi ,η),w = U(pi ,η) .

4.4 Example: A Simple Multi-Layer Perceptron Network

Consider a categoryNA,w representing a multi-layer feedforward network with weight statew. Here, the function
ΦA represents all processing that occurs in a single iteration of a learning algorithm for feedforward networks
such as the perceptron algorithm[35]. For simplicity, let the nodespi act as binary nodes in representing con-
cepts, where positive outputs signify events associated with a concept represented by the node; all outputs not
sufficiently positive are regarded as having either uncertain or no significance. Given this one-to-one correspon-
dence between nodes and objects, substitutingpi for (pi , η) simplifies notation, and any outputξi = φi(θi) > 0
is an instance of the objectpi .

Figure 9 shows a part of the MLP network, with selected nodes in what we shall refer to as layersn, n + 1
and n + 2, and selected connections between them. Although there can be many other nodes present, we refer
to the nodes shown in the figure asp1 (in Layer n ), p2 and p3 (in Layer n + 1 ) and p4 (in Layer n + 2 ).
The connections are also labelled as, for example,c1 (from p1 to p2 ). From the definition of neural morphism
just given, there is a morphism corresponding to the setΓ1w , whereΓ1 contains a path associated with the single
connectionc1 , that is, γ1 = [(p1, η), c1, (p2, η)] . In fact, since the architecture is a feedforward network and
c1 connects nodes across adjacent layers (n and n + 1 ), γ1 is the only possible member ofΓ1w , hence, of
Γ1 , unless we allow there to be multiple connections between two nodes. Denote the morphism associated with
the pair (Γ1, w) by m1:(p1, η) −→ (p2, η) . Because of our one-to-one node-to-object representation, we can
simplify the notation for our example and instead writeγ1 = [p1, c1, p2] andm1: p1 −→ p2 .

The instances ofm1 are all combinations(θ, e) ∈ ΘA×EA of network activation states and network input
patterns fromUΓ1,w . SinceoS(Γ1) = (p1, η) = p1 and oT(Γ1) = (p2, η) = p2 , these are instances of both
(p1, η) and (p2, η) (that is, ξ1 = φ1(θ1) ∈ η, ξ2 = φ1(θ2) ∈ η , and similarly for the outputs evaluated atψ ,
where(v, ψ) = ΦA(w, θ, e) ). Note that it matters not whether the weightw1 of c1 is w1 > 0 or w1 < 0, only
that w1 (and alsov1 ) is nonzero and that the nodes along the pathγ1 ( p1 and p2 ) are generating outputs within
their specified intervals (the intervalη ).

Again using the fact that each node corresponds to a single object in the current example, we can express the
paths corresponding to connectionsc2, c3, and c4 as γ2 = [p1, c2, p3] , γ3 = [p2, c3, p4] and γ4 = [p3, c4, p4] ,
respectively. Assuming that there is at most one connection between each pair of nodes in adjacent layers, the
path setsΓ2, Γ3, Γ4 have solely the following members:γ2 ∈ Γ2 , γ3 ∈ Γ3 , γ4 ∈ Γ4 . Corresponding to these,
there are setsUΓ2,w , UΓ3,w , andUΓ4,w whose members are the initial network activation and input combinations
(θ, e) ∈ ΘA×EA that result in outputsξ1,ξ3 ∈ η (i.e., ξ1 = φ1(θ1) > 0, ξ3 = φ1(θ3) > 0) for the source and
target nodes simultaneously forγ2 , ξ2,ξ4 ∈ η for γ3 , and ξ3,ξ4 ∈ η for γ4 . This describes the morphisms
associated with the connectionsc1, c2, c3, c4 , which we shall callm1: p1 −→ p2 , m2: p1 −→ p3 , m3: p2 −→ p4 ,
andm4: p3 −→ p4 , respectively.

Now let us examine some compositions and characterize any commutative diagrams that might involve the
objects and morphisms associated with the array of connectionsc1, c2, c3, c4 . Concatenating paths, we have
pathsγ5 = [p1, c1, p2, c3, p4] and γ6 = [p1, c2, p3, c4, p4] , two separate paths with the same source and target.
Letting Γ5 = {γ5} and Γ6 = {γ6} , with UΓ5,w = UΓ3,w ∩UΓ1,w , UΓ6,w = UΓ4,w ∩UΓ2,w , we have morphisms
m5 = m3 ◦ m1 and m6 = m4 ◦ m2 . These are two morphisms with the same domain and codomain,m5: p1 −→
p4 , associated with the pair(Γ5, w) , andm6: p1 −→ p4 , associated with the pair(Γ6, w) . Now, were it the case
that UΓ5,w = UΓ6,w , i.e., thatΓ5 ≡w Γ6 , then they would be one and the same morphism with domainp1 and
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Figure 9:Two connection paths corresponding to a commutative diagram. The bottom pair of connections
is seen emanating from a single nodep1 serving as the carrier for diagram object (p1, η1) . Similarly, the
top pair of connections is seen terminating upon a single nodep4 serving as the carrier for diagram object
(p4, η4) . The commutativity of the diagram indicates that the two paths are involved in an instance of the
same morphism with domain (p1, η1) and codomain (p4, η4) . All instances that define the diagram are
instances of this morphism.

codomainp4 , that is, it would be the case thatm7 = m5 = m6: p1−→ p4 . However, in general, this will not prove
to be the case; because of the inputs to the intermediate nodesp2 and p3 through other connections emanating
from nodes in prior layers, it can happen that some instances ofm5 are not instances ofm6 because they are
instances ofp2 but not p3 ; conversely, not all instances ofm6 need be instances ofm5 . Therefore, the diagram
defined by the morphismsm1, m2, m3, and m4 need not be a commutative diagram, since the compositions
m3 ◦ m1 andm4 ◦ m2 need not be equal.

This examplifies an important fact: A set of paths having the same source and target objects can be involved
in several different morphisms and, in fact, can be involved in several different diagrams. Further, some of these
diagrams can be commutative while others are not. This is to say, although a morphism is uniquely defined by a
path setΓ and weight statew (because the pair(Γ,w) has a unique instance setUΓ,w associated with it),Γ can
also be involved in separate morphisms defined by larger path sets that contain it. The diamond-shaped diagram
defined bym1, m2, m3, and m4 need not be commutative if we define these morphisms using the instance sets
UΓ1,w, UΓ2,w, UΓ3,w, UΓ4,w as in this example. However, there is a single morphism associated with the larger
path set consisting of the two paths through the connectionsc1, c2, c3, and c4 : Simply let Γ7 be the union of
path setsΓ7 = Γ5 ∪ Γ6 = {γ5, γ6} . The instances of this union are the instances of the intersection,UΓ7,w =
UΓ5,w ∩ UΓ6,w . This defines a morphismm7: p1 −→ p4 uniquely associated with the pair(Γ7, w) . In case the
intersection is empty,UΓ5,w ∩UΓ6,w = /0 , m7 is referred to as a vacuous morphism, having no instances. In any
case, it is true thatUΓ7,w ⊆ UΓ5,w andUΓ7,w ⊆ UΓ6,w . The subset relationship is proper in either or both cases
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unless the diagram commutes. Thus, there is a morphism associated with the two paths through the connections
c1, c2, c3, andc4 regardless of whether the diagram involvingm1, m2, m3, andm4 is commutative.

Without being too specific about the total connectivity structure or the learning algorithm of our perceptron-
like network example, or even the total range of neural computation represented by the activation functionΦA

used in defining morphisms, we have shown how morphisms, diagrams and commutative diagrams can be found
in neural network architectures. We have shown how to distinguish between a diagram and a commutative dia-
gram, given the knowledge of whether or not certain path sets in the network have equal sets of instances (hence,
are equivalent) with respect to the array of network weights associated with the category under consideration.
With the categorical model for neural architectures in hand, we can proceed to investigate concept representation
and learning.

5 Functors: Transporting Structures Across Categories

5.1 Defining Functors Incrementally

We have defined categoriesConcept for an organized system of concepts and their relationships, andNA,w

to represent the system consisting of a neural network architectureA, a weight tuplew, and the activities as-
sociated with the pair(A, w) , which are represented by the network activity functionΦA . We now describe
the categorical representation of the concept system in the activities of the neural system, that is, the seman-
tics of NA,w . Fundamental in the representation is the notion of a functorM:Concept−→ NA,w . It maps
eachConcept morphismsκ:Tµ −→ Tν to an appropriateNA,w morphismM(sκ):M(Tµ) −→ M(Tν) with do-
main (pi , η) = M(Tµ) and codomain(p j , η′) = M(Tν) . Consider the consequences of there being concept
morphisms, such assκ′ :Tν −→ Tλ , whose domain is the codomain ofsκ . We can form the compositionsκ′ ◦ sκ ,
whose functorial image underM is M(sκ′ ◦ sκ):M(Tµ)−→ M(Tν) . Because of the functorial property, we need
to ensure that our definition ofM has as a consequence thatM(sκ′ ◦ sκ) = M(sκ′) ◦ M(sκ) .

To see what this entails, recall that a pair(Γ,w) can uniquely representM(sκ) , whereΓ is a set of paths of
the form γ = [(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . , (pµn, ηn), ckn, (pµn+1, ηn+1)] . If we assign functorial
images to concepts such that the domain and codomain ofM(sκ) are M(Tµ) = (pi , η) and M(Tν) = (p j , η′) ,
then the common source and target objects of all of the pathsγ in Γ must be(pµ1, η1) = (pi , η) = oS(γ)
and (pµn+1, ηn+1) = (p j , η′) = oT(γ) , respectively. The elements of the set of instancesUΓ,w are the com-
binations of initial state and input,(θ, e) ∈ ΘA×EA , that initiate the neural network activities ofA associated
with the NA,w morphismM(sκ) . Similarly, M(sκ′):M(Tν) −→ M(Tλ) has domainM(Tν) = (p j , η′) and also
a codomainM(Tλ) = (p`, η′′) , and can be represented by a pair(Γ′,w) where Γ′ has elements of the form
γ′ = [(pν1, η′1), ck′1

, (pν2, η′2), ck′2
, (pν3, η′3), . . . , (pνn′ , η′n′), ck′

n′
, (pνn′+1

, η′n′+1),, where (pν1, η′1) = (p j , η)
= (pµn+1, ηn+1) (so thatoS(γ′) = oT(γ) ) and (pνn′+1

, ηn′+1) = (p`, η′′) .

By the definition of composition in the categoryNA,w , M(sκ′) ◦M(sκ) is representable by some pair(Γ′′,w) ,
whereΓ′′ = Γ;Γ′ contains the path concatenations

γ;γ′ = [(pµ1, η1), ck1, (pµ2, η2), ck2, (pµ3, η3), . . . , (pµn, ηn), ckn, (pµn+1, ηn+1), ckn+1, (pµn+2, ηn+2),
ckn+2, (pµn+3, ηn+3), . . . , (pµn+n′ , ηn+n′), ckn+n′ , (pµn+n′+1

, ηn+n′+1)] ,

where we have re-labelled as follows:

(pν1, η′1) = (pµn+1, ηn+1) ,
ck′1

= ckn+1 ,

(pν2, η′2) = (pµn+2, ηn+2) ,
ck′2

= ckn+2 ,

(pν3, η′3) = (pµn+3, ηn+3) ,
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. . . ,

(pνn′ , η′n′) = (pµn+n′ , ηn+n′) ,
ck′n′

= ckn+n′ ,

(pνn′+1
, η′n′+1) = (pµn+n′+1

, ηn+n′+1)] .

The set of instances ofM(sκ′) ◦M(sκ) is the setUΓ′′,w , which is just the intersectionUΓ′′,w = UΓ,w ∩UΓ′,w . Thus,
we obtain the compositionM(sκ′) ◦ M(sκ):(pi , η) −→ (p`, η′′) . We must take care in definingM so that each
such composition of concept morphism images inNA,w is actually the same as the image of the corresponding
composition of concept morphisms,M(sκ′ ◦ sκ) . This can be done by definingM recursively so that ifM(sκ) is
representable by a pair(Γ,w) andM(sκ′) is representable by a pair(Γ′,w) , thenM(sκ′ ◦ sκ) is representable by
the pair(Γ′′,w) , whereΓ′′ = Γ;Γ′ .

5.2 Example: Applying a Functor to a Diagram

Applying a functorM:Concept−→ NA,w to the colimit defining diagram∆ requires the identification of neural
objects and morphisms to serve as the imagesM(T1), M(T2), M(T3), M(T4), M(T5) and

M(s1):M(T1)−→M(T2) ,
M(s2):M(T1)−→M(T3) ,
M(s3):M(T1)−→M(T4) ,
M(`1):M(T1)−→M(T5) ,
M(`2):M(T2)−→M(T5) ,
M(`3):M(T3)−→M(T5) ,
M(`4):M(T4)−→M(T5) .

In addition, the functorial property requires that the resulting neural diagram, denotedM(∆) , must commute. This
requires thatM(`2) ◦M(s1) = M(`3) ◦M(s2) = M(`4) ◦M(s3) = M(s1) . If we can find the nodespi and paths
γ that supply the basic structural shape for the diagram, and if we can then claim that there is a connection weight
array and network initial activations and inputsw, θ,e that help define the morphisms such that the diagram com-
mutes, we can claim to have found that part of a functor consistent with the mapping of∆ into a categoryNA,w for
the architectureA. To define the entire functor requires a scheme for calculating the images of arbitrary concepts
and concept morphisms. The functorial property facilitates this because it enables the calculation of the images
of all concept morphismsM(u) obtainable by composition, whereM(u) = M(s) ◦ M(t) ,given that the factors
M(s), M(t) are known. In particular, applying the functoriality property to define functors in this incremental
fashion guarantees the preservation of diagram commutativity. Applying functoriality requires first specifying
a basic collection of concept and morphism images in terms of neural objects and morphisms associated with
architectural items such as input nodes and the connection paths from them to other nodes.

There are other requirements in addition to functoriality for the images of the defining diagrams of colimits
and limits. Initiality and terminality are among these. For example, in addition to the commutativity of diagram
M(∆) , its cocone must be initial. Now, functors that preserve initiality and terminality of colimit cocones and
limit cones are of a special kind. Ensuring that the functors discussed here have this property poses an additional
design constraint for neural network architectures.

But there is another constraint whose severity depends upon how explicitly we want the functorM to rep-
resent the concepts and morphisms ofConcept through the objects and morphisms ofNA,w . Requiring the
representation to be very explicit places great demands upon the architectural constructions we use inA. The
discussion of Section 6 explores this “explicitness” constraint in more detail.

At this juncture in our presentation, it is apparent that applying the categorical model of neural network
semantics is a complex undertaking. Its use poses many constraints upon architectural analysis and design. It is



Healy and Caudell—Category Theory ... 25

important to observe that this is an advantage more than it is a burden. Design constraints are the conceptual tools
that make it possible to fully understand and to create neural network architectures based upon the knowledge
structures they purport to represent.

5.3 Neural Models

A functor M:Concept−→ NA,w maps conceptsT, T ′ and morphismss:T −→ T ′ to neural category objects
and morphismsM(T), M(T ′) and M(s):M(T) −→ M(T ′) . As discussed previously, there is also a functor
Mod:Concept−→ Cat which maps the concepts and morphisms to model spaces and model-space morphisms
Mod(T), Mod(T ′) and Mod(s):Mod(T ′) −→ Mod(T) , respectively. The functorMod is calledcontravariantbe-
cause it reverses the directions of the arrows ofConcept.

Now, the instances of a neural object(pi , η) are pairs(θ, e) ∈ ΘA×EA . There is a difficulty in regarding
an instance(θ, e) as a modelσ of a theory. As defined, instances do not have the correct mathematical form
to be models: A modelσ is an object of a model spaceMod(T) and has a structure obtained by substituting
sets and functions for the sorts and operations of the theoryT such that the axioms ofT are valid for the
resulting system of sets and functions . Although not in the mathematical form of a theory model, however, an
instance(θ, e) corresponds to a modelσ . Consider a theory morphism such as`2:T2 −→ T5 in our triangle
example. The conceptsT2 and T5 are mapped to neural category objects(pi , η), ,(p j , η′) , respectively, by a
functor M —for example,(pi , η) = M(T2) , with instances(θ, e) , where(θ, e)∈U(pi ,η) ⊆ ΘA×EA . Since each
such instance represents, through its componente, an input from the environmentEA , it can also be associated
with a situation, or event, within the environment as represented by the sensors providing input to the network.
Each event that produces a member ofU(pi ,η) , on the other hand, can be regarded as a model ofT2 , that is,
as some memberσ of Mod(T2) . To construct this model from the environment requires a knowledge of the
quantities constituting the environment sufficient to enable the proper substitutions to be made in terms of sets
and functions for the quantities in the theoryT2 . The model-space morphisms associated with concept morphisms
such asMod(`2):Mod(T5)−→ Mod(T2) can be indexed by neural morphism instances in similar fashion.

As important as the correspondence between the functorsM andMod is in fully understanding the association
of neural object and morphism instances with the corresponding concept models and model-space morphisms,
there is not space here to discuss it in detail. Instead, the present analysis will proceed informally. Nevertheless,
using the mathematical semantic model in this way makes it possible to gain understanding and anticipate neural
structures one might not have discovered otherwise.

6 Applying Category-Theoretic Design Principles

To fully represent the concept hierarchy expressed in the categoryConcept is a daunting undertaking. First of
all, there is an infinite number of concepts and morphisms inConcept but any realizable neural architectureA
is finite. Therefore, if a neural categoryNA,w is to represent only that which is possible to construct fromA
with any weight arrayw, any functorConcept−→ NA,w is inherently a many-to-one mapping on both objects
and morphisms. This will be explored further in discussing concept compression in Section 9. An accurate
representation of even a finite number of concepts in their entirety can be intractable. Many concepts are simply
not representable in many architectures, and many are not represented at a given stage of learning using the
current weight arrayw even though they are representable: The network may not have learned them yet. One of
the main issues in representability is the complexity of the architecture. In the conceptsT1—T5 of the triangle
example, the axiom relating points and lines appears in all the concepts. It is a basic notion in geometry [5] and a
neural network that fully expresses it must therefore possess the ability to reason about geometry, a cognitive skill
apparently possessed only by highly complex systems. The many predicates and functions used in the axioms of
concepts, such as theon predicate of the triangle example, are similarly difficult to represent in an explicit form.
It is, however, possible to overcome the latter difficulty in many cases short of designing a fully cognitive neural
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network as long as the representation is not required to be explicit. The triangle example serves to illustrate this
as we demonstrate in this section.

The main point of this section is that the more one wishes to represent explicitly with a neural network,
the more complex the design task. Our main thrust is to illustrate neural network design to represent certain
concept constructions, with some items in the concepts necessarily represented only implicitly. This is consistent
with the discussion of logical rules and knowledge representation in the Introduction, for knowledge represented
implicitly can guide behavior in the same sense that the knowledge implicit in the design of any machine guides
its operation. The desired end in neural network design is that the knowledge representation be as explicit as
possible and acquired through experience, so that the machine is useful in applications requiring highly complex
computations including adaptability.

6.1 Representing a Colimit with a Feedforward Network

It is instructive to attempt an association of the triangle colimit example with the learning of the triangle concept
by a specific type of neural network. It is easy enough to match the shape of the triangle diagram with a diagram
in a categoryNA,w if one is not concerned with the other details of representation. A functorial mapping of
the diagram of figures 7 8 fromConcept to NA,w requires only that we assume thatNA,w has the necessary
objects and morphisms. The difficulties lie in showing that the architectureA has an associated functionΦA

and weight arrayw that allows a representation of the morphisms in terms of objects(pi , η) , signal pathsγ
and prior activation-input pairs(θ, e) , using our previously- introduced notation. But even this is not enough:
it must also be shown thatw can be an output of a learning episode represented withΦA , that is, that for some
triple (w′, θ, e) , we can obtain(w, ψ) = ΦA(w′, θ, e) for someψ . Fortunately, the main use envisioned for
the semantic model is more generally in network analysis and design. The objective is then to show that the
representation and learning of certain kinds of concepts is possible, not to exhibit all the details of individual
concept representations and learning episodes.

The diagram shape illustrated in Figures 7 and 8 can be achieved in a categoryNA,w representing a feed-
forward architecture such as the MLP discussed previously. This requires only a simple modification to the
diamond-shaped perceptron diagram of Figure 9. The result, shown in Figure 10 , has a nodep1 in Layer n as
before, but now has three nodesp2, p3, p4 in Layer n + 1 and a nodep5 shown at the apex of the structure.
We intend thatp5 serve as the neural colimit object. Retaining our binary model in which nodes are treated as
objects, thepi (i = 1, 5) serve as objects as well as nodes. We intend thatp5 serve as the neural colimit object.
We further intend that the connectionsck (k = 1, 6) be involved in the signal paths corresponding to the colimit
defining diagram morphisms

m1: p1 −→ p2 ,

m2: p1 −→ p3 ,

m3: p1 −→ p4 , (8)

m4: p2 −→ p5 ,

m5: p3 −→ p5 ,

m6: p4 −→ p5 .

Specifically, morphismmk (k = 1, 6) is associated with a signal path setΓk (k = 1, 6) . At least one member of
each path set is a single-connection path, where its connection is indicated in Figure 10. That is,

γk ∈ Γk (k = 1, 6) , (9)

where

γ1 = [p1, c1, p2] ,
γ2 = [p1, c2, p3] ,
γ3 = [p1, c3, p4] , (10)
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Figure 10:Connection paths corresponding to a commutative diagram intended to serve as a neural colimit
diagram in a feedforward architecture. This diagram is, in turn, intended as the functorial image of the
defining diagram for the triangle concept example.

γ4 = [p2, c4, p5] ,
γ5 = [p3, c5, p5] ,
γ6 = [p4, c6, p5] .

The neural category diagram is suggestive of the following assignments of functorM images for the concept
objects and morphisms from the triangle example (see figures 8, 10 and 11 ):

pµ = M(Tµ)(µ = 1, . . . , 5) ; (11)

mκ: p1 −→ pκ+1 = M(sκ):M(T1)−→M(Tκ+1)(κ = 1, 2, 3) ; (12)

mκ: pκ−2 −→ p5 = M(`κ−2):M(Tκ−2)−→M(T5)(κ = 4, 5, 6) . (13)

For the assignments to be a part of a functor, the neural morphismsm1, m2, m3, m4, m5, m6 must form a commu-
tative diagram, that is, there must be a neural morphismm7 : p1 −→ p5 such that

m7 = m4 ◦ m1 = m5 ◦ m2 = m6 ◦ m3 . (14)

so that defining

m7 = M(`1) . (15)

yields the desired result,

M(`1) = M(`2) ◦ M(s1) = M(`3 ◦ M(s2) = M(`4) ◦ M(s3) . (16)
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Figure 11:The image under the functor M of the objects and morphisms of the defining diagram of the
colimit for the diagram ∆ in Concept , mapped to a commutative diagram in the category NA,w .

This requires that

Γ7 ≡w Γ8 ≡w Γ9, where

Γ7 = Γ1;Γ4 ,

Γ8 = Γ2;Γ5 , (17)

Γ9 = Γ3;Γ6 .

It is a trivial matter to establish that a weight arrayw exists so that the diagram involvingm1, m2, m3, m4,
m5, m6 commutes if that is the only requirement. Since the MLP network example relies on binary nodes, let the
node signal functions produce a valueφi(θ) = 1 whenθ > θT,i , and arbitrarily assignθT,i = 0.5 for each node.
Then, pi is activated when

θi = Σµ∈di wµδµ > 0.5, (18)

where the valuesδµ are output signalsξ` emitted by nodes from whichpi has input connections. Suppose
that the only input connections targeting nodesp2, p3 and p4 are c1, c2 and c3 , respectively; that is, the “other
inputs” indicated in Figure 10 are not present. Then,Γk is a singleton,Γk = {γk}(k = 1, 6) . Assigning weights
w1 =w2 =w3 = 0.6 andw4 = w5 = w6 = 0.2 ensures thatp5 is active exactly whenp2, p3, p4 are active,
which in turn occur exactly whenp1 is active. Therefore, the pathsγ with p1 = oS(γ) and p5 = oT(γ) are all
equivalent, orΓ7 ≡ Γ8 ≡ Γ9 as desired. (Note that in the earlier discussion associated with Figure 9, we could
have forced commutativity of its diamond-shaped diagram in a similar fashion given the freedom to choose an
appropriate weight array.)

A weight array can easily be found to make the indicated diagram commute, but this is a wholly inadequate
means of ensuring a representation of colimits. First, commutativity is only half the requirement: Initiality is the
other half. More basic to our discussion, however, is that this approach, if followed in neural network design,
would make colimits superflous. Notice that the neural diagram indicated in Figure 10 has all nodes (hence,
signal pathsγ1, γ2, γ3 ) activated in any instance in whichp1 is activated. This precludes the re-use ofp1 in
other colimit diagrams when those diagrams are supposed to represent concepts independent ofT5 . But one of
the major advantages of the colimit construction is that it allows diagram objects and morphisms to be re-used in
other diagrams, representing distinct concepts, that is, concepts which have different model spaces. The model
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spaces will very likely have nonempty intersections. However, if the concepts that share diagram components are
to be non-redundant, they must have some non-shared models.

Having other connections to the nodes as indicated in Figure 10 allows the flexibility to overcome the redun-
dancy and other shortcomings of the connections and weights discussed here. A balance of inhibitory as well as
excitatory connections allows greater flexibility. Better still, replacing the feedforward architecture with one that
employs feedback connections allows a colimit object node to provide control over its associated diagram. An
example is shown in Figure 12. Utilizing the presence of the “other input” connections, the input connections
to p2, p3, p4 from p1 can have weight values smaller in magnitude, hence, weaker, yetp2, p3, p4 can be acti-
vated individually by appropriate inputs (we shall continue to view all connections as excitatory for simplicity in
this example, although this is not a design suggestion). This allows their associated objects to be used in many
separate but overlapping diagrams defining a wide variety of colimits that happen to share some concepts. The
connections fromp2, p3, p4 to p5 can, on the other, be strengthened, so that the activation of, say,p2 and p3 ,
is enough to bring about the activation ofp5 ; this allows partial evidence for the concept represented byp5 to
highlight it through network activity as a hypothesis for representing the current input. Conversely, suppose that
the feedback connectionscR

4 , cR
5 , cR

6 , cR
7 in Figure 12 all have weights of sufficient magnitude so that the activa-

tion of p5 necessitates the activation ofp1, p2, p3, p4 . Then, for example, any instance of path setΓ7 (which is
an instance of bothΓ1 andΓ4 , hence, requires that nodesp1, p2, p5 be activated) will also be an instance ofΓ8

and Γ9 . Thus, the reciprocal connections ensure that the diagram commutes. Having inhibitory interconnections
among colimit object nodes— another type of reciprocity— provides yet another degree of flexibility: it allows
partially-activated nodes to compete for continued activation, with the winners finally suppressing the losers. This
serves as a selection mechanism, allowing the colimits with the greatest support from the current network input
pattern to be selected to represent the input.

6.2 Explicit versus Implicit Representations of Concept Morphisms

In principle, the ability to construct a functorM:Concept−→ NA,w to establish with mathematical certainty the
kinds of information content, or concepts, a neural architecture can represent, or to produce an architecture that
can acquire and represent the kind and complexity of concepts desired. This makes it possible togrounda given
concept representation by exposing its relationship to other concept representations involved in the processing of
inputs by the neural architecture, ultimately relating it to the concepts represented at the input nodes. This raises
the issue of the relative complexity of the morphisms ofConcept and NA,w . A concept morphisms:T −→ T ′

can be highly complex, since it is a symbol mapping that shows which items of each type — sort, operation, and
constant— are related in the domain and codomain concepts, preserves the structure of the logical expressions
of T in the substitutions of mapped symbols to obtain theirs-images inT ′ and, finally, preserves the truth of
the axioms ofT in their images inT ′ . A single connection between nodes cannot be expected to represent this
amount of information explicitly.

Depending upon the complexity ofs, an explicit representation of its imageM(s):M(T)−→ M(T ′) under a
functor M:Concept−→ NA,w can require a multiplicity of connections and intermediate nodes forming several
signal paths. In the triangle example,M(s1):M(T1)−→M(T2) would need to represent the various sort, operation
and constant mappings fromT1 to T2 . For example,s1 maps point constantsp1 andp2 of T1 to pa1 andpa2 of
T2 , respectively. There is another morphism that mapsp1 andpa2 andp2 to pa1 , reversing the associations of
points specified in the first morphism. An explicit representation ofs1, in the neural structure defining a morphism
of NA,w must make it clear which of the two is intended. This can be accomplished by having separate paths
γ10, γ11, γ12, . . . with p1 = oS(γ10) = oS(γ11) = oS(γ12) = . . . and p1 = oT(γ10) = oT(γ11) = oT(γ12) = . . . ,
where each path represents one of the associations specified ins. For example, the associationp1 7→ pa1 can
be represented using a nodep10 that is a coproduct objectM(T)+M(T ′) for the two neural objectsM(T) and
M(T ′) that represent two simple theoriesT andT ′ sharing the sortPoints , with T containing the constantp1
and T ′ containing the constantpa1 (recall that in the neural architecture under discussion, we assume binary
nodes so that nodes = objects). Figure 13 illustrates this. The fact that it is a coproduct object ensures thatp10
is active only if M(T) and M(T ′) are active (as with the original defining diagram forp5 , where p5 = M(T5) ,
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Figure 12:Connection paths corresponding to a commutative diagram intended to serve as a neural colimit
diagram in an architecture having feedback connections. The connections reciprocal to the connection
paths of the colimit leg morphisms implement the model-space morphisms from a colimit concept to the
concepts in its base diagram.

we see that reciprocal connections are highly recommended as a design element). A pathγ10 representing the
association ofp1 with pa1 is γ10 = [p1, c10, p10, c11, p2] . Here, c10 and c11 are connections whose sole
purpose is to formγ10: They do not represent concept morphisms—nor can they, since their source and target
nodes represent concepts which are mismatched with regard to the functorial property. LetΓ10 be the path set
defining the morphismM(s1) , Γ10 = {γ10, γ11, γ12, . . .} . It is the totality of the path setΓ10 that defines the
morphismM(s1) , not any one path within it. None of the paths individually, nor any of their single-connection
components (such as[p1, c10, p10] or [p10, c11, p2] for γ10), need be the functor image of a concept morphism.

Finally, there are two strategies for ensuring that the truth of the axioms ofT1 is maintained in theirs1 -
images inT2 . One strategy is to apply theorem-proving techniques (see [53]). The other is a model-based
approach, checking to ensure that the model-space morphismMod(s1):Mod(T2) −→ Mod(T1) is properly associ-
ated withM(s1):M(T1) −→ M(T2) . Given the earlier discussion of the indexing of models by the instances of
the nodes representing their corresponding concepts, ensuring that the model-space morphism is properly repre-
sented can be achieved by ensuring that any instance of the objectM(T2) that is also an instance of the morphism
M(s1):M(T1)−→M(T2) is an instance ofM(T1) .

We have seen that an explicit representation of a concept morphism is a neural morphism with possibly many
paths, constructed in a special way but apparently requiring knowledge of only those concept representations
(such asp10 = M(T) + M(T ′) ) directly involved in defining the associations along its paths. An alternative
to an explicit representation is an implicit representation, with most of the morphism semantics hidden as with
the single-connection pathγ1 associated withM(s1) in Figure 12. To ensure that this is a valid functorial
representation, however, the mapping of sorts, operations and constants specified bys1 must be discernible by
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identifying the place that the purportedM(s1) occupies within the network. Fortunately, as mentioned before, a
theorem in category theory guarantees that in the concept category, colimit cocones can be automatically derived
given their base diagrams. This makes it possible to “decode” concept object and morphism representations in
NA,w by tracing connection paths backward to the input nodes where these paths are involved in morphisms of
the defining diagrams of colimits. The functorial property can be applied along with the knowledge of concept
colimit derivations to determine the semantics of objects and morphisms in colimit derivations leading to the
morphism in question. Thus, the connections to be traced are all those in paths leading to nodesM(T1) and
M(T2) that are involved in the defining diagrams of colimits and/or limits. Although it allows a much simpler
neural representation of the concept morphisms1 as a neural morphismM(s1) , it requires examining a potentially
much greater part of the neural network to verify the representation. Ensuring that the truth of the axioms ofT
is maintained is the same as with the explicit representation.

Implementing concept colimits as neural colimits places several constraints on neural network design. These
constraints require that nodes be interconnected through multiple pathways to form commutative diagrams and
to provide some degree of accuracy in representing concept morphisms. The ability to enforce colimit represen-
tations also suggests that the pathways have reciprocal connections or some equivalent mechanism. There also
seems to be a requirement for inhibitory connections, at least occurring between colimit object nodes, to prevent
a “tower of babel” effect when multiple nodes share large portions of their base diagrams. Finally, representing
concepts of a generally- applicable nature, such as those involving spatially invariant geometric entities, requires
a means of representing the association of a spatially invariant entity with a class of spatially fixed, or location-
dependent, entities that it characterizes. In the next section, we address a general notion of invariance, which we
call abstraction. This involves a deeper understanding of the relationship between colimits and limits.

6.3 Grounding the Colimit Representations

The discussion of explicit versus implicit concept morphism representations in the previous sub-section raised
the issue of grounding the representation of a concept morphism by ensuring that a functor actually exists that
confers the semantics of the concept morphism upon a neural morphism purported to serve as its image. This
can be done with either an explicit or an implicit neural representation. The explicit representation demands only
local information about concept and morphism images directly connected with the neural morphism but requires
that these be involved in multiple paths defining a rather complex neural morphism, an example being the path
representing the mapletp1 7→ pa1 . The implicit representation requires analyzing the representations connecting
the domain and codomain images of the concept morphism through many stages of colimit representation going
all the way back to the input node concept representations, but can be implemented as a single connection in
many cases.

More generally, the ability to claim that a functor exists that can be applied to a diagram such as that of
Figures 7 and 8 raises the following issues:

1. There must be input nodes whose activations represent concepts from whichT1, T2, T3, T4 can be derived
via appropriate diagrammatic constructions inConcept.

2. It must be shown that the functor extends to these constructions, spanning the network from the input nodes
to p1, p2, p3, p4 .

3. It must be shown that the functor preserves colimits and other needed constructions fromConcept; in
particular, the neural cocone in Figure 11 must be initial: There must be a unique cocone morphism in
NA,w from it to any other cocone for the base diagramM(∆) .

Item 3 is a reflection of the fact that having a functor does not guarantee the preservation of colimits as such.
However, it does preserve the commutativity of all the defining diagrams for cocones, and it also preserves cocone
morphisms. As long asNA,w does not offer additional cocones or cocone morphisms for the functor imageM(∆)
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of the base diagram∆ from Concept, colimits are indeed preserved. A functor that preserves colimits in general
is explicitly referred to as a colimit-preserving functor.

To address the other two items, consider the concept imagesM(T1), M(T2), M(T3), M(T4) . They must be rep-
resented directly by input nodes or, more likely, constructed from other concepts associated with neural network
input nodes. The most basic items required are representations of single points and lines. Linked properly to a
visual sensor, for example, the input nodes can be made to respond to stimuli occurring in separate regions of the
image space, such as a retinal visual field or a field of video image pixels (their receptive fields, or RFs). The RFs
can overlap, but each appears to the network as a separate input, since it is associated with a separate input node.
Input nodes having very small RFs, or “blobs”, represent individual points. The detection of a point by a blob
node is signified by a binary 1 (a sufficiently large accumulation of image brightness values occurring in its RF,
yielding a positive stimulus exceeding its threshold). Individual lines can be represented as coproducts, where
their base diagrams are discrete diagrams containing input nodes (remember that nodes are equivalent to objects
in our binary representation). Connections from the input nodes to their line nodes are the paths associated with
the coproduct leg morphisms; note that a point node can participate in many different diagrams, hence, can have
connections projecting to many line nodes.

At this juncture, it might seem that the next step is to form colimits involving the point and line nodes to obtain
M(T1), M(T2), M(T3) and M(T4) . However, notice that the conceptsT1, T2, T3, T4 all involve theon operation,
and an explicit representation of this using point and line nodes is difficult to envision. Instead, an implicit
representation ofon as well as the axiom that uses it to relate points and lines in general will be assumed present
in the manner in which the network is applied to represent geometry. For example, one can observe that a specific
point is “on” a line when the nodes representing both are active simultaneously, generating positive outputs. Also,
.all models of any of the concepts containing the axiom will be assumed to associate a unique line with any pair of
points. In a pebbles-on-a-sidewalk model, for example, any paird, d′ of distinct pebbles will appear in the layout
within one line l ; any set of pebblesq containing bothd andd′ that is distinct froml cannot be a line. Another
consideration in constructingM(T1), M(T2), M(T3) and M(T4) using point and line nodes as objects is that the
represented points and lines are not spatially invariant—each point is associated with a fixed location in the image
space, and each line is a coproduct of a specific collection of these fixed points. Thus, even if the diagram∆ could
be represented using these nodes, it would express a triangle with a single, fixed location and orientation in the
image space. Many such triangles would be required to represent arbitrarily-placed triangles. Finally, notice
that the objects and constructions discussed so far leave the network with no means of expressing “pointness”,
“lineness” or “triangle-ness”—that is, all concepts representing fixed points share the property that they represent
points, and similarly for those representing other fixed geometric entities, such as lines and triangles. In other
words, the ability to represent spatially invariant geometric concepts is missing.

This calls forth a more general issue: In order for neural colimits to represent generally-applicable concepts,
their base diagram objects must represent abstractions derived from the specific information represented at the
sensor level. Spatial invariance is one such abstraction; there are many others.

6.4 Designing with Limits: Learning Invariants and Forming Abstractions

The desired representations of spatially-invariant quantities, and abstractions in general, already exist within
the semantic model. It is the capability to derive limits for certain concept diagrams. As with colimits, the
commutative diagrams for these constructions are preserved by functors. For limits, the only caveat remaining is
that the cones must be terminal. As with initiality for colimit cocones, we address this with the general statement
that terminality can be established if the requisite category of cones and cone morphisms can always be found
where the limit of a represented concept diagram exists.

Future reports will explore the construction of limits and their interaction with colimits. For the present,
suffice it to say that spatial invariance for a particular kind of object can be derived via a limit for a discrete
diagram. Indeed, suppose the neural network has developed several representations for the same entitiy—a simple
shape in a visual image space, say, described by a conceptT . Suppose that the shape occurs several times in
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input patterns to the network derived from images presented by a visual imaging sensor, and in each occurrence
it appears without the image analysis pre-processing that would be necessary to remove spatial information. That
is, each representation of the shape formed by adapting the neural network weights contains spatial information
fixing the entity at a specific position in the visual field. Each representation is a conceptTi , say, associated with
a neural category object(pi , η) . Each Ti can be thought of asT enriched with sorts, objects, constants and
axioms which themselves constitute a conceptSi describing a spatial location relative to a fixed reference in the
space, such as a coordinate center. For example,Ti might be a coproduct,Ti = T +Si . Whether or notTi is a
coproduct, we express the representation via a functorM as (pi , η) = M(Ti) .

Consider the discrete diagram consisting solely of a collection of spatially dependent concepts of the formTi .
A limit for the discrete diagram has an apical object, a concept, that contains only the description that is common
to all the Ti . Since the location-specific descriptionsSi vary, this common description is essentially the shape
conceptT (some sorts and other information constituting a theory of space may also be present, but this is of
no concern). A neural limit objectM(T) for the discrete diagram of spatially-dependent neural representations
M(Ti) is a spatially-invariant shape representation.

In the case of the triangle example, the base diagram components are to be spatially invariant. This can
be accomplished by a network that can represent limits as just described. The use of limits and colimits in
combination to form complex representations from spatially-invariant and other abstract representations, as well
as the formation of abstractions by the network, is explored next.

6.5 Feedforward Networks versus Networks with Feedback

Recall that the model-space morphismsMod(s):Mod(T ′) −→ Mod(T) are directed opposite their corresponding
concept morphismss:T −→ T ′ and neural morphismsM(s):M(T) −→ M(T ′) . This suggests that a neural
network implementing concepts must have an instance for each conceptT (represented byM(T) ) in every case
that it has an instance for a more complex conceptT ′ (represented byM(T ′) ) which incorporates it when the
latter instance is accompanied by an instance of a morphisms:T −→T ′ (represented byM(s):M(T)−→M(T ′) ).
This must be true independently of whether there is a neural morphismm:M(T ′) −→ M(T) available in the
opposite direction toM(s) to represent the model-space morphismMod(s):Mod(T ′) −→ Mod(T) . In particular,
this applies to limits and colimits: Every instance of a colimit objectT must be accompanied by an instance of
its base diagram, as implied by the model-space morphismsMod(`i):Mod(T)−→ Mod(Ti) associated with its leg
morphisms`i :Ti −→ T . The concept morphisms are represented in the neural category by the functorial images
M(`i):M(Ti) −→ M(T) , which in turn are represented by bundles of signal paths directed from eachM(Ti) to
M(T) (recall that if represented implicitly, the leg morphisms can have singleton bundles whose sole elements
are single-connection paths). To begin making the point of this discussion, the simplest means of assuring that the
neural network behaves correctly in accordance with the model-space morphismsMod(`i):Mod(T) −→ Mod(Ti)
is for the neural network to have reciprocal paths directed fromM(T) to eachM(Ti) . Otherwise, the desired
behavior is difficult to ensure: The many diagrams possible in the concept category overlap in many places,
and this makes it highly improbable that a feedforward architecture representing concept morphisms alone and
trained on an arbitrary set of input patterns will perform in the synchronized manner implied by the model-
space morphisms adjoined to colimit leg morphisms. Having a feedforward architecture represent the model-
space morphisms instead of the concept morphisms is no solution to this dilemma, for then complex concept
representations could not be learned as combinations of simple, input feature representations.

On the other hand, an instance of some of the diagram objects and morphisms may provide excitatory input
to the colimit object but without activating it: These objects and morphisms may also be part of another diagram,
and activate instead the colimit of that diagram. An instance of the leg morphismsM(`i):M(Ti) −→ M(T) acts
to “prime” the colimit object, giving it a competitive advantage over colimit objects with lesser or no input from
active diagram representations in the the network. This is where network synchronization is essential: The many,
overlapping network representations of the many, overlapping diagrams that are available to represent a current
input pattern, and thereby retireve its representation from the connectionist memory of the network, must be
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sorted through in some fashion and one or more choices made among them. Intuitively, this can require rather
sophisticated neural circuitry.

By duality, similar comments hold for a limit object for a diagram, but with the directions of all morphisms
reversed. An instance of any of its defining diagram objects inNA,w will activate a limit object for the diagram
as long as there is activity in the signal paths defining the corresponding leg morphism. That is, an outputξi

by an appropriate nodepi lying within an appropriate intervalηi , representing a diagram object(pi , ηi) , will
always activate a limit object(p, η) for the diagram, with an outputξ lying within the intervalη being emitted
by the nodep, given that the nodes in the network’s representation of the neural morphism representing the
corresponding model-space morphism have activity in their corresponding intervals. That this must be the case
is a consequence of the model-space morphism associated with the leg morphism. The model-space morphisms
Mod(`i):Mod(Ti) −→ Mod(T) , directed opposite their corresponding concept morphismss:T −→ Ti and neural
morphismsM(s):M(T)−→ M(Ti) , are represented in the neural network architecture by connections reciprocal
to the signal path bundles representing the concept morphism images in the neural category. On the other hand,
the limit object provides input to its defining diagram objects but need not activate them.

To summarize, the rules for activation of limits versus activity in their defining diagrams have just the opposite
sense of the rules for activation of colimits versus activity intheir defining diagrams. This is appropriate, since
the corresponding limit leg morphisms are directed from limit to diagram object, just the opposite of the sense of
the colimit leg morphisms.

An example of this behavior of neural network representations of limits can be seen in the relationship be-
tween spatially invariant representations and the spatially-dependent items they represent. More generally, the
formation in the neural network of a representation of a limit for a diagram is characteristic of the derivation of
an abstraction when a diagram of special cases of the abstract concept is represented by neural network activity.
In the concept category, that which is common to the diagram concepts as they are related by diagram morphisms
is the content of the limit object, provided a limit for the diagram exists. The fact that not all diagrams have
limits is a reflection of the fact that an abstraction may not be derivable in many situations. This confers a value
on diagrams that do lend themselves to limit formation. Appropriately, when it exists, the network’s limit object
representation will be activated when any of its defining diagram object representations is activated. This is a
reflection of the fact that an instance of an abstraction occurs when any of its special cases occurs.

The full range of behaviors with regard to limits and colimits just described can be realized in the most
straightforward manner by a neural network that contains reciprocal connections between nodes associated with
neural objects representing concepts that are connected via morphisms. Suppose, by contrast, that a feedfor-
ward neural network is designed to learn invariant representations in the manner of the Neocognitron (originally
proposed in [14]). This architecture expresses invariant representations, of visual shapes, say, by having a layer
of simple (S) cells learn spatially-dependent shapes by virtue of having input connections from visual feature-
representing cells localized to image regions (for example, edge detectors). The S cells for all spatially-dependent
representations of a single shape supply input to a single cell in a layer of complex (C) cells. The C cells rep-
resent all the spatially invariant shapes. In our categorical model, the input connections to a C cell are directed
opposite the direction of concept morphisms, where the S cells represent the spatially- dependent shape descrip-
tions, or concepts, and the C cells represent the corresponding spatially-invariant shape descriptions. The S-to-C
cell connections are, in fact, associated with the model-space morphisms. Notice that, as described in [14], any
one S cell can excite a C cell, as is the case with the nodes associated with our discrete diagram objects and the
corresponding diagram limit (or in the discrete case, product) objects.

Similarly to but opposite the situation with colimits, on the other hand, there are no connections in the re-
ciprocal direction—from C to S cells. But these connections are necessary to represent the limit leg morphisms
`i :T −→ Ti , whereTi is a diagram concept object andT is a limit object for the diagram. These morphisms have
the limit object as domain and the diagram objects as codomains. Since there are no C to S cell connections, there
can be no stimulus transmission in the network associated with the activation of a C cell. But this transmission
would be useful in cases where an explicit manifestation of the spatially invariant representation at all locations
is desirable. For example, it might be desired to call forth a shape representation and have the neural network
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“prime”, or stimulate, all past localized representations for the shape. This would give the shape representation
an advantage over other, competing shapes in all those regions. This would serve as a “ shape filter” for input
patterns, and could be seen as a manifestation of the semnantics of the invariant representation in the neural
network’s behavior. In any case, a feedforward network has connections in only a single direction, in particular,
solely for the directions toward (or efferent to) a C cell from its spatially-dependent counterparts. Therefore, a
feedforward network does not have the flexibility in function reciprocal connections would provide the C cells as
limit objects. More generally, a feedforward neural network does not properly represent limits.

By duality, a similar analysis with opposite activation properties can be made for S cells at higher levels which
might receive inputs from a variety of spatial-invariance C cells, to form complex shape representations using the
simpler spatially-invariant C-cell-based representations as features. This use of S and C cells, by placing them in
alternating layers in a feedforward network, is discussed in [42]. The higher-level S cells correspond to colimit
objects in the categorical model, but the feedforward neural network does not properly represent them as colimit
objects.

In summary, the Neocognitron is an architecture that has important and highly useful properties for represent-
ing invariant features and complex, multi-feature objects. The paper of Riesenhuber and Poggio [42] provides an
informative and useful analysis of these properties. The claim made in this section is simply that there is more to
be gained by heeding the consequences of the categorical semantics applied to neural networks.

7 Naturality: Knowledge Coherence Across a Multi-Region Network

7.1 Stages of Learning in a Multi-Region Network

Consider, now, a multi-regional neural network, having several sensors with each sensor providing input to a
region of the network. There can be other regions, such as association regions that unify the processing from two
or more sensors, regions whose main function is for motor control (say, for an autonomous vehicle controlled
by the network), and regions for cognitive functions such as situation assessment and planning. The semantic
model specifies that at any stage of learning there is a system of functors: Each functor mapsConcept into a part
of the neural categoryNA,w that models a subregion of the architectureA at the stage of learning represented
by the weight vectorw. We can design an architecture to learn concepts describing those aspects of sensed
items representable by any particular collection of sensors, or concepts which involve many sensors for their full
expression but must be implemented with a limited sensor array for economy reasons.

For example, suppose sensorsS1 andS2 are available. Separate functorsM1 andM2 can be used to represent
the same state of learning in an architecture, but restricting concept implementations to a single sensor in each
case. Thus, each concept and morphism are represented twice—once for sensorS1 and once for sensorS2 . Each
functor models the concept hierarchy as the categoryConcept, represented in a separate region of the network
having a specialized function. Since functors can be many-to-one on both objects and morphisms, those parts of
concepts that do not relate to the function of the subregion corresponding to a functor are “compressed out”. This
will be explained in more detail. First, let us ask the overriding question for this multi-regional network semantic
model: How are the functions of the separate regions to be unified? The functions are described by the concepts
of the hierarchy, but this is represented differently in each region. In the current example, how can the two sensors
be exploited to acquire a unified concept representation in the neural network, when each sensor region expresses
only that aspect of the concepts specific to that sensor representation?The answer lies in natural transformations
α1:M1 −→M3 andα2:M2 −→M3 from M1 andM2 to a third functorM3 , as shown in Figure 14 . This system
of functors and natural transformations works together as follows.

The natural transformationsα1 and α2 are represented inNA,w by Neural morphisms separate from those
that represent concept and model-space morphisms: The latter are instead specific to each network region. via
reciprocal connections as usual. A third network region contains the representation of the objects and morphisms
of the image ofM3 ;. However, theM3 region has no sensor. Instead, it serves as an association region. The se-
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mantic model makes the association function explicit: Each triple of objectsMi(Tµ)(i = 1,2,3) is connected by
the two individual morphismsα1

Tµ
:Mi(Tµ)−→M3(Tµ)(i = 1,2) . This connects the three functorial images of the

conceptTµ . The defining property of a natural transformation specifies that the network connections that support
the natural transformation morphisms are the appropriate ones to unify the two sensors in the dual-sensor repre-
sentation of functorM3 . For, consider aConcept morphismsα:Tµ −→ Tν specifying a subconcept relationship.
The functorial imagesMi(sα):Mi(Tµ) −→ Mi(Tν)(i = 1,2,3) preserve that relationship. By composition with
the appropriate natural transformation components, there are two morphisms available from the sensor-S1 -based
representationM1(Tµ) of Tµ to the desired fused, dual-sensor representationM3(Tν) of Tν : the compositions
α1

Tν ◦ M1(sα) and M3(sα) ◦ α1
Tµ

. Each of these morphisms has its associated connection paths. For knowledge
coherence, however, we want the two sets of connection paths to be associated with a single morphism from
M1(Tµ) to M3(Tν) , that is,α1

Tν ◦ M1(sα) = M3(sα) ◦ α1
Tµ

. But this is just the defining requirement of the natural

transformationα1 . The same holds forα2 , corresponding to the unification of the sensorS2 region with the
association region.

7.2 Diagrams in a Functor Category

The categorical model, with functors from a category of concepts to a category of neural network components and
natural transformations between these functors, provides a mathematical model for neural structures consistent
with concept-subconcept relationships. Colimits of diagrams show how concepts can be combined, and how a
concept can be re-used many times in forming more complex concepts. Functors map commutative diagrams
to commutative diagrams, capturing this aspect of the colimit structure. Natural transformations express the
fusion of single-mode sensor representations of concepts in the same neural architecture, connecting the different
implementations of the concept hierarchy at all levels and in a consistent fashion. This mathematical model
appears to be compatible with a model of the primate brain proposed by Damasio[11]. In this section, we explore
the multi-regional ramifications of these notions.

Functors can be many-to-one on either or both objects and morphisms; for two objectsa andb, for example,
it can be thatF(a) = F(b) . Because of its significance in architecture design([21],[22]), we refer to this “merging
of objects and morphisms” ascompression.

A natural transformationα : F −→ G between functorsF, G : C −→ D consists ofD -morphismsαa , one
for each objecta of C , such that for each morphismf :a−→ b of C , G( f )◦αa = αb◦F( f ) . The square-shaped
commutative diagrams for two natural transformationsα1, α2 : F, G−→ (F + G) evaluated at two objectsa and
b and a morphismf :a−→ b are shown in Figure 15 . This figure also illustrates the notion of a coproduct for
two functors F and G . Given categoriesC and D , there is a categoryDC whose objects are the functors
F : C −→ D and whose morphisms are the natural transformations, such asα1, α2 . A coproduct functorF + G
for two functorsF, G in DC (provided the required injection morphisms exist) is one that compresses a pair of
objects or of morphisms fromC if and only if the pair is compressed by bothF and G . The coproduct has the
effect of “pasting together” the corresponding commutative squares of the natural transformation injections as
shown in Figure 15 .

Functors in the categoryNConcept
A,w preserve the colimit construction, in part because functors preserve diagram

commutativity. A given functorMA:Concept−→ NA,w , therefore, effectively transports the structure of all
possible knowledge— represented by the concept category—into the categorical architecture representation. The
colimit construction also indicates how concepts are formed through adaptation. Of necessity,MA entails a large
amount of compression; in fact, it represents a single state of learning in a finite network, with all the other
knowledge contained in the infinitely-large concept category hidden by compression. Many such functors are
required to express the concept hierarchy representation in the several network regions at the many stages of
learning.

To see how we apply this in analyzing existing neural network designs, consider some of the ART mapping
networks (for example, as analysed in a rule-base analysis in [20]). These couple separate, unsupervised ART
networks (sometimes with an intermediate “mapping field” subnetwork) to provide supervised ART systems. We
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have shown[21] that each ART network has solely coproduct formation as a means of learning complex concepts
in terms of the simple concepts represented by its input nodes. This stems from the lack of connections within
the input (F0 ) and matching (F1 ) layers. The more general colimits required to capture knowledge representa-
tion are missing, and limits have no explicit representation at all in these networks. Also, there are no nodes
available for compression of yet more complex (or less complex) concepts, or input concepts not represented by
the present input layer. The effect is to limit the concept hierarchy representation to a functor image fragment
containing at most coproducts over a single layer. Further, the interconnections between ART networks required
for commutative squares are not present, so any natural transformations would be only partially represented[21].

On the positive side, ART networks have important advantages for a study of knowledge representation. The
explicit learning procedure and the presence of feedback (top-down) connections facilitates the identification of
intervals η of the F2 nodes as coproduct objects: The bottom-up connections to a previously-committedF2

node that have nonzero weights are the connection paths of the coproduct injection morphisms. Using an ART 1
network as an example[6], the coproduct objects are the previously-mentioned intervalsη2 of the committedF2

nodes. Suppose that the template of a winner-take-all node in theF2 competition to represent an input pattern
is a subset template of “sufficient size” (see [6]; “subset” means that each nonzero template connection weight
corresponds to a nonzero input pattern value, and “sufficient size” means that there are “enough” template nonze-
ros). The top-down, unit-weight template connections then ensure the activation in theirη2 intervals of exactly
the F1 nodes in the discrete diagram upon which the currently-expressed coproduct is based, thus ensuring the
continued activation of the coproduct morphism connections. This largely describes the semantics of resonance
in a typical ART network.

The interconnects betweenF2 layers of the separate ART networks is suggestive of natural transformation
components corresponding to the concepts represented by theF2 η2 intervals. What is missing are the compo-
nents corresponding to the concepts at theF0 (or, equivalently, theF1 ) level. We decided to exploit the properties
of network templates and interconnections by using ART networks as a point of departure in developing new
architectures more compatible with knowledge representation and coherence.

8 A Categorically-Motivated Multi-Regional Design

In this section, we apply the design principle of knowledge coherence to derive a neural network design that
improves upon multi-ART networks. We do not address improvements to allow the derivation of colimits more
general than coproducts, and we do not address the derivation of limits. The design principles corresponding to
these fundamentally important considerations will be addressed in future analyses. Further discussion of them
does, however, appear in later sections of this document.

We have given a very brief example of applying the categorical semantic theory using ART mapping networks.
The example emphasized binary nodes for simplicity, using the binary intervalsη2 . Our other example, the
proposed categorical neural architecture that is the subject of this paper, will be described next. Although this
initial architecture is designed to operate in a binary fashion, we use the more general notationη for arbitrary
intervals for simplicity and also to emphasize that the semantic model applies to other than binary-node networks.

Figure 14 shows the overall scheme for an architecture that represents and coherently fuses the information
from two sensors according to our theory. There are three regions, two receiving input from sensors and the
third, an association region, receiving input from the other two regions. In terms of the semantic model, the
architecture at a given stage of learning is represented by the categoryNA,w and the sensor regions are represented
by the images of the functorsM1 and M2 . The association region is represented by the image ofM3 . Two
natural transformationsαi : Mi −→M3 (i ∈ {1, 2}) are coproduct morphisms for the discrete diagram containing
M1, M2 in NConcept

A,w , andM3 is the corresponding coproduct object,M3 = M1 + M2 . Figure 16 shows an initial
architecture designed in accordance with this scheme and using properties of ART networks where these can be
exploited. We call the sensor regionsprimariesand denote these byP1 and P2 , corresponding to the functors
M1 and M2 . We call the region corresponding toM3 an associator, which we will denote byA . Adaptive
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connections are indicated by arrows ending in bullets and non-adaptive connections have standard arrowheads.
Connection polarity is indicated by + (excitatory), - (inhibitory), orR (a bundle of non-phasic reset connections).

An immediate problem occurs in implementing the scheme of Figure 14 as a multi-sensor architecture. Let
us suppose that the two sensors are logically independent. For example, letP1 be coupled to a visual sensor, with
its F0 layer representing concepts describing visual primitives of some kind, and let theF0 nodes atP2 represent
tactile information provided by an array of pressure sensors. Then, since the two kinds of sensor primitives
convey entirely different kinds of infornmation, each subnetwork must omit the input concepts associated with
the other subnetwork’s sensor. However, our semantic model requires that each functor map the entire knowledge
space ofConcept into its subnetwork region, including all of the concepts that describe both kinds of sensor
primitives. To satisfy these competing requirements, there must beNA,w objects and morphisms available to
represent the functorial compression of sensor primitives for each subnetwork within the other subnetwork. We
choose to represent these as a sort of auxiliaryF1 node, because it is atF1 that the discrete diagrams form via
bottom-up/top-down matching (ART-based, although the gain control subsystem is not shown). We include one
of these compression nodes in each subnetwork to serve as the target for the functor images of the missing sensor
primitives. They are labelledC1 (for P1 ) andC2 (for P2 ) in Figure 16 . The coproduct functorM3 , on the other
hand, fully represents the non-compressed knowledge represented byM1 and M2 . Therefore, regionA has two
F1 layers whose nodes receive inputs from their correspondingF1 nodes inP1 andP2 , respectively. We use the
term “proxies” for the twoF1 layers inA ; however, their bottom-up/top-down connections with theA F2 layer
operate independently ofP1 andP2 .

We connect each compression node to the proxy of the opposite subnetwork’sF1 layer as shown. There are
pairs of connection paths emanating from theF1 nodes ofP1 andP2 to the appropriateA F2 nodes. These form
the commutative squares of the two natural transformationsα1:M1 −→ M3 and α2:M2 −→ M3 . For example,
let S be an object inConcept that descibes a sensor primitive via the functorM1 , so that for someP1 F1 node
F1

1,k and an appropriate intervalη , (F1
1,k, η) = M1(S) . To simplify notation, we shall simply use the functorial

representation, in the present caseM1(S) . Proceeding, letS be represented in theA subnetwork’sP1F1 -proxy
layer via the functorM3 as M3(S) . This yields twoF1 representations ofS, connected across subnetworks by
a P1 F1 to A F1 connection that represents the natural transformation componentα1(S):M1(S) −→ M3(S) .
Let T be a coproduct concept with a coproduct injection morphismm:S−→ T , and let T be represented in
the P1 and A F2 layers byM1(T) and M3(T) , respectively. Then, there are two connection paths fromM1(S)
to M3(T) forming the sides of a commutative square, as follows. One path consists of two connections: a
P1 F1 to P1 F2 connection, the coproduct morphism imageM1(m):M1(S) −→ M1(T) , followed by theP1

F2 to A F2 connection for theα1 componentα1(T):M1(T) −→ M3(T) , yielding the composition morphism
α1(T) ◦ M1(m):M1(S)−→ M3(T) . The second path consists of two connections: aP1 F1 to A F1 connection
for the α1 componentα1(S):M1(S)−→ M3(S) , followed by anA F1 to A F2 connection, the coproduct mor-
phism imageM3(m):M3(S)−→M3(T) , yielding the composition morphismM3(m) ◦ α1(S):M1(S)−→M3(T) .
The composition morphisms are the same morphism,α1(T) ◦ M1(m) = M3(m) ◦ α1(S) , hence, in the archi-
tecture, the two connection paths must represent the sameNA,w morphism. In other words, the square whose
sides are the four factors in the two compositions is commutative. Thus, the relationship between the primary
sensor primitive concept representationM1(S) and the associator colimit concept representationM3(T) , where
conceptT includes conceptS as one of its parts, is independent of the path that expresses the relationship across
the primaryP1 and the associatorA . This is the basis for knowledge coherence and is one of the theoretical
considerations that help determine the operational rules for the architecture.

Joined to the preceding commutative square is one for the natural transformationα2:M2 −→ M3 . In the
latter, we obtain two connection paths fromM2(S) to M3(T) ; however, there is noP2 F1 node representing
S, but instead the compression nodeC2 . Defining the appropriate functor images and natural transformation
components as before, but this time usingC2 instead of aP2 F1 node (but using again the sameA F1 node from
the proxy layer forP1 F1 ), we obtain the commutative square associated with the equalityα2(T) ◦ M2(m) =
M3(m) ◦ α2(S) . The fact that the two commutative squares are “pasted together” alongM3(m):M3(S)−→M3(T)
implies that in the operational architecture, all four connection paths must become activated for the same inputs.
The details of operation must be defined to be consistent with this.
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8.1 Discussion of Operation for the Multi-Region Design

There is not space here to describe the operational flow of the new architecture in full, but we can point out
a few guiding principles. First, the fact that the architecture is to implement coproducts, functors and natural
transformations and, in particular, coproducts inNConcept

A,w , serves as a basis for the algorithm for the activation
and connection-weight modifications. Thus, the appropriate commutative square diagrams must be activated con-
necting theP1 andP2 F1 and compression nodes to the currently-activeA F2 coproduct node. This operational
consideration is a realization of a theoretical implication of the semantic model: The fusion of information from
multiple sensors is a consequence of knowledge coherence, fully expressed as the calculation of colimits at two
levels. First, colimits inConcept are mapped to their neural representations by functors, which preserve the
commutativity of diagrams. Second, natural transformations representing interconnects to an association region
in a neural network define the latter as a coproduct of functors; in the presented architecture, this results in the
appropriate “pasting together” of the commutative squares some of whose sides are the colimit (in this case,
coproduct) morphism images for the functors.

More operational detail is provided by the desire to stay as close as possible to ART network design. TheF2

choice and template modification operations within each subnetwork proceed according to the ART gain control
and connectionist adaptation mechanisms. For example,Neural morphisms such asM1(m):M1(S) −→ M1(T)
andM3(m):M3(S)−→M3(T) in the illustration of commutative squares forα1:M1 −→M3 are implemented as
bottom-up connections, but the latter are assisted in this role by their corresponding top-down template connec-
tions, which ensure their activation during the appropriate periods.

The principle of connections not directly involved in a morphism supporting those that are in their role is
extended throughout the new architecture. For example, the morphismα1(T):M1(T)−→M3(T) is implemented
as aP1 -F2 -to-A -F2 connection (an on-center (OC) connection in Figure 16 ), but the latter receives support in
that role from its attendantF2 -to-F2 off-surround (OS) connections to the rest of theA F2 layer and also from
a reciprocal connection with which it is paired. Thus, coproduct nodes inPi and A (i = 1,2) that represent
the same coproduct concept form mutually-supportive pairs. Sustained activation of a chosenP1 F2 node,
for example, depends upon this, for its support from its own template weakens during the time the input it is
representing is presented to the network.

The P2 -to-A commutative square that shares a side with the previously-describedP1 -F1 -to-A -F2 square
has theP2 compression nodeC2 in the role of the third representation of conceptS, M2(S) , and its connections
to/from theP1 F1 proxy in A are inhibitory. To examine the effect this has in a typical operational scenario, let us
assume that for the current episode of presentation of input patterns to theP1 andP2 F0 layers,P1 was the first
to reach its candidate for itsF2 choice, a node representing the functor imageM1(T) of a conceptT . Suppose
that, next, a node representing the imageM2(T ′) of a conceptT ′ becomes activated. This causes the activation
of C2 (see the appropriate top-down connection in Figure 16 ), which then acts to suppress theP1 F1 proxy layer
in A ; but M1(T) has already provided excitation toC1 , which acts in a similar manner to suppress theP2 F1

proxy. Under an ART-like “2/3 Rule” operating inA , the proxies can only sustain their activities if the nodes
representingM3(T ′) and M3(T) can provide the top-down excitatory stimulation through the proxy template
connections. However, ifM3(T ′) 6= M3(T) , then two distinctA F2 nodes will be competing for activation as
winner-take-all nodes. This results in their mutual suppression through the OS inhibitory connections fromP1

and P2 , resulting in loss of top-down support to their proxies. The final result is a loss of activity in the node
representingM1(T) , for its support from its template has weakened with the passage of time, as mentioned before
(in the current architectural design,M2(T) , having reached its choice later, has support from its “fresh” nonzero
template bottom-up connections, hence, remains near full activation). The weakened state of theM1(T) node
allows the reset connection fromC1 to the P1 F2 layer to have its full effect (C1 , like P2 , lags behindP1 F1

and F2 in its cycle of activation). This results in the stimulation of theF2 competitors forM1(T) , which then
compete to choose a new winner. Thus, the functor coproduct is enforced by rejecting the choice of the primary
subnetwork that made the original prediction.

If, on the other hand,M3(T ′) = M3(T) , then the primary subnetwork predictions are consistent and the entire
network is said to be in resonance. The proper associations between concept representatives have been established
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and enforced at both theF1 and F2 levels across all three subnetworks. Thus, resonance as here described
corresponds to coherence at both concept levels. That is, a concept representation atF1 in both primaries is related
to a single associatorF2 representation through a morphism representation, a bundle of connections representing a
commutative square. The two commutative squares express the notion that the primary-to-associator subconcept-
to-concept relationships are independent of path, hence, are expressed without ambiguity.

This architecture is currently in preliminary testing for a series of experiments that will follow. Experience
gained with it so far has led to some design refinements. The refinements are not completely determined by
expediency: When a difficulty arises, it leads us to consider the semantic model, and to ask if we are being fully
consistent with it and to what extent does it determine the architectural details.

9 Conclusion

We have presented a mathematical semantic model for neural networks. The semantic model is based upon
category theory, the mathematical theory of structure. The categorical constructs used to model the representation
of concepts and their relationships suggests architectural structures and their properties. These apply to learning
and to the combination of information from multiple sensors in a multi-region architecture. Overall, the analysis
with the semantic model performed to date suggests the following neural network design principles.

1. Functorial mappings guide network design by posing constraints upon the representation of concepts and
their relationships, where the relationships are the morphisms in a category of theories.

2. The learning algorithm of the network must be capable of expanding an existing functor image representa-
tion into a larger one through network activation.

3. The expansion of the representation will consist in part of the derivation of colimits to represent complex
entities and situations through the re-use of already-represented concepts and their morphisms. It consists
also of the derivation of limits to represent the abstractions that are derivable from diagrams representing
their special cases. Reciprocal connections are strongly suggested as architectural elements to enforce the
properties of limits and colimits.

4. Natural transformations represent knowledge coherence, the association of information from different re-
gions of a multi-region architecture in such a manner that the separate representations of the concept hier-
archy act as one.

5. Reciprocal connections are again suggested, to enforce the commutative squares of the natural transforma-
tions.

6. Concept compression is suggested as a means of representing missing information—concepts and mor-
phisms that are represented in one region by a functor but not in another region with its separate functor.
The commutative diagrams of the natural transformations ensure that the missing concepts, compressed
by a many-to-one functor onto a node representing many concepts at once, are properly connected to their
representations in other regions.

We have given examples to illustrate the semantic model and its applications in neural network analysis and
design. We have applied it to achieve an understanding of the semantics of ART networks. We have followed this
with an application to the design of a multi-region, multi-sensor neural network capable of coherent knowledge
representation based upon the new design principles. In the new design, nodes and connections are explicitly
organized to implement coproducts, functors and natural transformations. Experimentation with the new archi-
tecture is under way.

There are still details implied by the semantic model that are missing in the new architecture introduced
here. First, as in ART, the colimits represented in each subnetwork are only two-layer coproducts. Limits are
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not represented at all. Second, the compression nodes and morphisms for the infinite variety of concepts not
representable in any of the three subnetworks are missing, with the sole exception of the compression nodes for
the alternate sensor in each sensor subnetwork. Nevertheless, the architecture described here is a beginning at
applying design principles obtained from the semantic model. More generally, the present document introduces
the model and delineates many of its basic features as a guide to neural network semantic analysis. Finally, by
providing a mathematical vehicle for associating a hierarchy of concepts with a multi-regional neural architecture
and explicating the incremental learning of both more abstract and more specific concepts with re-use of exist-
ing conceptual knowledge, the model would seem to have a natural role as a fundamental model for exploring
cognition in neural networks.
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Appendix

A An Introduction to Some Formal Logic Terminology

Quantification of variable symbols is something not normally considered unless one is specifically concerned
with a study of logic, the establishment of truth by argument. An example of the need for quantification occurs
when analyzing statement forms “X is a dog”. Here, the meaning of the term “dog” is clear: It is a symbolic
string representing a class of animals, which can be described in a theory with as much detail as one wishes. In
the description, of course, the theory will resort to undefined quantities: One can include as many definitions and
axioms as one likes in an attempt to describe what exactly is meant by the term “dog”, but eventually one finds
that something in the description must simply be understood without further definition. A theory of geometry,
for example, resorts to introducing “points” without defining them, to avoid circularity in definitions. One cannot
define everything, and at some place in any discussion, formal or informal, there must be an understanding of a
common meaning of terminology with no further explanation required. The symbol “X” in the statement form “X
is a dog”, on the other hand, has no fixed meaning other than that it represents an arbitrary member of the class
“dog”: That is, it is a variable. Clearly, the use of this variable in the statement form leaves the validity of the
statement form ambiguous. No justification exists for stating “X is a dog” without further information about the
context in which “X” is being used. What if X is really a cat or an elephant? It is clear, however, what meaning is
intended in the statement “There exists a dog”. In formal logic, one introduces a variable such as X and restates
this as “There exists an X such that X is a dog”, so that the form “there exists” can be re-use as a general symbolic
form for the statement of existence, with the context of its use supplied by the variable (“X” in this case) and the
statement form to which it is adjoined.

In symbolic logic, or formal logic as it is now called, predicates are used together with logical operators and
quantifiers to form propositions. In the text, propositions are referred to simply as “statements”. A proposition
has a form such as “There exists X such that X is a dog”. A statement form of this kind is calledclosedbecause
its variables are all quantified. Axioms, definitions and theorems, the statements making up a theory, must all be
closed.

Predicates are statement forms intended as descriptions of the properties of things. The things are like the
subjects in sentences of natural language, and the predicates are like verb phrases or statements of membership:
In “X is a dog”, X represents an arbitrary subject and “is a dog” is, of course, a statement form for membership
in a class of animal. In formal logic, this would be restated symbolically in a form such asdog(x) . Existentially
quantified, it would be written in a form such as∃(x)(dog(x)) .

Normally, one needs to supply some qualification for the variables in a proposition. After all, given common
knowledge about life on the planet Earth, it is a bit redundant to assert that there exists a dog. A more useful
statement would declare that some member of a class of thing related somehow to dogs, but defined differently,
is actually, in fact, a dog. For example, one might have the classWA , with some definitions and axioms that
amount to establishingWA as the class of all “working animals”—animals that perform some function guided by
and useful to humans in performing certain tasks (such as police patrol horses, seeing-eye dogs, and so forth). It
might then be useful to have a theory concerning working animals and to include within it (possibly as a theorem,
provable from other statements)∃(x)(WA(x)anddog(x) . This asserts that some things are working animals and
are also dogs—that is, there are working dogs. Here, two predicates—WA anddog— have been combined using
a logical operator (and) and a quantifier (∃ ) to form a statement which is relatively useful and can be evaluated
with respect to its validity. In logic, statement forms and statements (propositions) are all often referred to as
formulae, or more specifically, “well-formed formulae”.
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B Constructing Triangles from Point and Line Primitives: An Example
of a Concept Colimit

This exposition presents the details of a concept diagram and a colimit derived from it. Concepts and their mor-
phisms exist either in a category of theories or of theory presentations (formal specifications). The presentation
here is meant to be self-contained. As such, it repeats some of the main text, although only a minor part.

A specific example of concepts, concept morphisms, commutative diagrams and colimits can be seen in
expressing the concept of a triangle as a geometric construct obtained by joining three line segments by pairs.
The example begins with a conceptT1 , a very basic theory of points and lines. In this presentation, points are
regarded as undefined quantities and lines are quantities defined in terms of points. This is done through a logical
predicateon that has two arguments, a point and a line, and is true just in case the point is associated with (or
“lies on”) the line. Theon predicate is used in an axiom to express the notion that any two distinct points are
“on” some unique line (see [5] for the use of this axiom in several different geometries).

Concept T1
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
end

The first line contains the declarationSpec T1, announcing a specification for conceptT1 . The statement line
sorts Points,Lines introduces the most basic sorts of the conceptT1 . Sorts are “logical containers” which
are used to distinguish between the different types of things referred to by the variables or constants in logical
formulas. The things referred to are an example of a specific part of a model for the concept. For example,
the universal quantifier (forall ) portion of the axiom inT1 , forall(x,y : Points) , makes it clear that the
axiom is a formula applying to all thingsx and y of type “Points”. As a consequence, the antecedent of the
first implication of the axiom,(x not = y) , is understood to mean thatx and y represent two distinctpoints, as
opposed to lines, circles, widgets, or any other kind of thing. Aside from listing only the axioms of a concept, a
specification lists only the most basic sorts and operations (such asop on: Points*Lines -> Boolean) used
in the axioms. There are also many derived sorts, such as products of the given sorts. If the sorts are represented
by sets in a model of the concept, then the product sorts are represented by the corresponding cartesian products
of the sets. The concept so specified includes all the statement lines one can write that follow as a consequence
of those in the specification, such as all theorems one could prove from the given axioms, and declarations of all
the derived sorts. Derived sorts are any sorts that can be formed by combining the basic ones in sums, products
or other sort constructs (we will require only product sorts in our examples, to provide “containers” for the pairs,
triples or higher-order tuples of things “contained in” the basic sorts). The notion of sorts, together with the
operations associated with them in concepts, is similar to the notion of abstract data types in software program
specifications.

Notice thatT1 also states the existence of three labelled, but otherwise unspecified, pointsp1, p2 and p3 .
This is done through the use of the statement formconst X : Points , which is a way of stating that there exists
a specific (but otherwise indefinite) point with the labelX . The three constants may or may not represent distinct
points: Their separate nature must either be stated as an axiom ofT1 , or provable from other axioms of the
concept. However, there are no axioms inT1 that would apply.
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An equivalent to the use of sorts in sorted theories is the use of one-variable predicates in un-sorted theo-
ries. For example, the predicatepoint (in place of the sortPoints ) has the truth valuetrue if its argument
represents a point. Were we using un-sorted theories, the statement lines

const p1
const p2
const p3
point (p1) and point (p2) and point (p3)

would appear inT1 in place of the lines

sorts Points, . . .
const p1: Points
const p2: Points
const p3: Points .

The line op on : Points∗Lines−> Boolean in the specification ofT1 introduces anoperation symbol
denoting a function, in this case a predicate which maps an ordered pair(x, l) consisting of a point and a line to
a truth valueT or F in the sortBoolean . The meaning ofon (x,l) is the statement “pointx lies on line l ”.
That is, for specified values of the variablesx and l , on (x,l) evaluates toT (true) if x represents a point onl ,
F if not. The sortBoolean is part of a concept of logical operations that is implicitly included in every concept.
Versions of formal logic containing predicates allow for highly expressive formulas, or statements, that employ
functions and quantifiers (forall and exists correspond to the usual universal and existential quantifiers∀
and∃ , respectively).

Theorem-proving software programs use formal specifications such as the one for conceptT1 above in ap-
plications such as the formal verification of electronic hardware component designs. The use of sorts with an
associated type-checking mechanism is one of many mathematically valid devices that can improve clarity in the
expression of theories as well as efficiency in using them.

We next express three conceptsT2, T3 and T4 by making and modifying three copies ofT1 . In each new
concept, we add a line constant, re-name the three point constants (for clarity in this presentation—otherwise, the
specific names are not important), and associate the latter with the line constant via theon predicate. Notice the
additional inclusion of an axiom stating that the three point constants denote distinct points. A specification for
the first of the three concepts,T2 , is as follows:

Concept T2
sorts Points, Lines
const pa1: Points
const pa2: Points
const paext: Points
const la: Lines
op on: Points*Lines --> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
on (pa1, la) and on (pa2, la) and (pa1 not= pa2)

end

A concept morphisms1:T1 −→ T2 maps the sort symbolsPoints and Lines to sort symbols inT2 . Since
we want to leave these symbols unchanged, we mapPoints to Points and similarly for lines. We also map the
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on predicate symbol to itself, and the same for the variables. However, the point constants have been renamed
in the mapping. All formulas are reformulated with the symbol mapping images to form their images inT2 .
Notice that the axiom relating points and lines maps to itself. Obviously, the resulting mapping of formulas is
truth-preserving: The only truth in question is that of the image of the single axiom ofT1 , whch maps to itself
as an axiom ofT2 (of course, all truths of the implicit concept of booleans are also unchanged). Finally, we map
the point constantsp1, p2 andp3 to the point constantspa1, pa2 andpaext , respectively. Here,pa1 andpa2
are associated with the linela via the on predicate andpaext is intended as a point “external to”la . This
intention is not stated inT2 because it is not necessary to make it explicit as yet. The individual symbol mapping
relationships are expressed usingmapletnotation:

Morphisms1 : Points 7→ Points
Lines 7→ Lines
on 7→ on
p1 7→ pa1
p2 7→ pa2
p3 7→ paext

Hereafter, all maplets that leave symbols unchanged will be omitted from morphism descriptions. Since every
sort and operation symbol must map to something, this will not result in any ambiguities.

ConceptT3 is the same asT2 except with point constantspb1, pb2 and pbext and line constantlb in
place ofpa1, pa2, paext and la , respectively. Similarly, conceptT4 is the same asT2 except with constants
pc1, pc2, pcext lc in place ofpa1, pa2, paext, la . The axiom ofT2 defining la in terms of the two points
pa1, pa2, via theon predicate is replaced inT3 by an axiom with the same syntactic structure, but defininglb
in terms of the two pointspb1, pb2, . Similarly, it is replaced inT4 by the axiom defininglc in terms of the two
pointspc1, pc2, . The conceptsT3 andT4 are:

Concept T3
sorts Points, Lines
const pb1: Points
const pb2: Points
const pbext: Points
const lb: Lines
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
on (pb1, lb) and on (pb2, lb) and (pb1 not= pb2)

end

Concept T4
sorts Points, Lines
const pc1: Points
const pc2: Points
const pcext: Points
const lc: Lines
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
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(exists l:Lines) (on (x, l) and on (y, l) and
((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))

on (pc1, lc) and on (pc2, lc) and (pc1 not= pc2)
end

We now define morphismss2:T1 −→ T3 and s3:T1 −→ T4 , both the same ass1 but with the following
mappings of point constants in place of those ofs1 :

Morphisms2 : Points 7→ Points
Lines 7→ Lines
on 7→ on
p1 7→ pbext
p2 7→ pb1
p3 7→ pb2

Morphisms3 : Points 7→ Points
Lines 7→ Lines
on 7→ on
p1 7→ pc2
p2 7→ pcext
p3 7→ pc1

The objectsT1, T2, T3, T4 and morphismss1, s2, s3 form a diagram∆ . A colimit for ∆ has the requisite
cocone, as shown in Figure 7 , with apical objectT5 and leg morphisms̀1:T1−→T5 , `2:T2−→T5 , `3:T3−→T5 ,
and `4:T4 −→ T5 . With ∆ as the base diagram, the defining diagram of the colimit,∆ as shown in the figure, is
commutative, with

`4 = `2 ◦ s1 = `3 ◦ s2 = `4 ◦ `3 . (19)

The specificationT5 is as follows:

Concept T5
sorts Points, Lines
const p1: Points
const p2: Points
const p3: Points
const la: Lines
const lb: Lines
const lc: Lines
op on: Points*Lines -> Boolean
Axiom Two-points-define-a-line is

forall(x, y:Points) ((x not= y) implies
(exists l:Lines) (on (x, l) and on (y, l) and

((forall m:lines) (on (x, m) and on (y, m)) implies (m = l) ))
on (p1, la) and on (p2, la) and (p1 not= p2)
on (p2, lb) and on (p3, lb) and (p2 not= p3)
on (p3, lc) and on (p1, lc) and (p3 not= p1)

end

SpecT5 is a “blending” or “pasting together” ofT2, T3 and T4 along their common sub-conceptT1 . This is
because of the commutativity of the defining diagram∆ of the colimit. For the equality ( 19) to hold, separate
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symbols ofT2, T3 andT4 that are images of the same symbol ofT1 under the three diagram∆ morphismss1, s2

ands3 must merge into a single symbol in the colimit apical conceptT5 . To make this clear, we have re-assigned
the name of the commonT1 symbol to the merged-image symbol inT5 for each such case. Thus, symbols such
as Points, Lines and on appear inT5 , and appear only once, since they are mapped to themselves by each
of the morphismss1, s2 and s3 . The point constantsp1, p2, p3 also appear. However, inT5 , each one appears
in the definition of two different lines. This is because each of them appears in conceptT1 but is mapped to
three points, one in each conceptT2, T3, T4 , via the three morphisms fromT1 to those concepts. In two of these
concepts, its image point appears in the definition of a line, but as a different point on a different line in each
concept. In the remaining concept, it appears as an “external” point, not on the line named in that concept. For
example,p1 is mapped topa1 in T2 via s1 , to pbext in T3 via s2 , and topc2 in T4 via s3 . In T5 , therefore,
it forms the pointp1 at the intersections of linesla andlc , and lies external to linelb .

A theorem in category theory can be used to derive an algorithm for calculating colimits in any category
having colimits for all diagrams (the dual to The Limit Theorem—see [39]). The categoryConcept is one such
category. Thus, the apical objectT5 and leg morphisms̀1, `2, `3 , and `4 in the example can be derived from
the objects and morphisms of the base diagram,∆ . This confers a great advantage on the use of category the-
ory in knowledge-based system development. Theories and their morphisms (or formal specifications and their
morphisms) can be used to specify the intended semantics of software or other kinds of system components. The
colimit calculation and the structure-preserving mappings of category theory together provide a mathematically
rigorous as well as automated technique for constructing the full system from diagrams[53]. The same kind of
mathematics can be applied to an analysis of neural network representations of knowledge, where the knowledge
is analyzed as a structure of concepts and morphisms acquired incrementally from the network’s input environ-
ment. This knowledge structure describes the semantics of the network as a distributed system of interconnected
computational components.
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Figure 13:A connection path representing one of the symbol maplets,p1 7→ pa1 (see text), in an explicit
representation of a concept morphism imageM(s1) . The intermediate node p10 is shown representing
a coproduct M(T)+ M(T ′) of the nodesM(T) and M(T ′) representing conceptsT and T ′ that contain
essentially only the point constant symbolsp1 and pa1 , respectively. In addition to its injection morphism
i1 to the coproduct object p10, the neural object M(T) is also the domain of a morphism with codomain
p1 . Similarly, in addition to being the domain of the injection i2 , M(T ′) is also the domain of a morphism
with codomain p2 . The latter morphisms are images of concept morphisms, since the symbols of the simple
conceptsT and T ′ are in the conceptsT1 (represented by p1 ) and T2 (represented by p2 ), respectively.
However, there is no concept morphism represented solely by the paths containing connectionsc10 and
c11. Also, a coproduct was used to describep10 instead of a more general colimit that would unify the two
copies of the sortPoints in M(T) and M(T ′) . This is because to represent the maplet it is sufficient to
associate the path with the symbolsp1 and pa1 . The proper unification of concepts is not necessary for
this. The connectioncR

1 is the reciprocal for the morphism M(s1) . It represents the model-space morphism
Mod(s1) .
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Figure 14:Functors map the hierarchy of a concept category to multiple regions. Natural transformations
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Figure 15:A coproduct in DC “pastes together” commutative squares along the morphism images of the
coproduct functor.
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