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Two Cylindrical Vortex Sheets; Evolution
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by

Jeremy David Johnson

B.S., Mathematics, University of New Mexico, 2007

M.S., Mathematics, University of New Mexico, 2011

Abstract

Using Rosenhead�s point-vortex approximation with correction terms, the evolution

of two symmetrical, counter-rotating, initially cylindrical vortex sheets in an incom-

pressible, potential �uid �ow is studied. Simulations are performed in time up to

the occurrence of branch-point curvature singularities in the vortex sheets�geome-

tries. The numerical methods employed are discussed. Parameters pertaining to

the asymptotics of the Fourier coe¢ cients of the vortex sheets�positions are numer-

ically �tted to gain insight into aspects of the singularity formation; these include

the order of the branch-point singularities, and the times and locations of singularity

formation. A smoothing over initial singularity formations is implemented by either

the heat equation or through a local application of the vortex blob method in an

attempt to gain details into further singularity formations. Lastly, the e¤ects of the

initially prescribed total circulation around the vortex sheets on their evolutions are

studied, both up to the time of singularity formation, and with the implementation

of the vortex blob method, past the times of singularity formation.
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Chapter 1

Introduction

1.1 Overview

In this paper, we study the evolution of two symmetrical, counter-rotating, initially

cylindrical vortex sheets in an incompressible, potential �uid �ow1. See schematic

given in Figure 1.1. Initially, the �uid within the vortex sheets move with constant

velocity U normal to the plane containing both center lines of the vortex sheets.

The �ow at in�nity is given by u1 = 0. The total circulation around each vortex

sheet is prescribed. Positive circulation is taken to be counter-clockwise directed.

An almost physical description of our problem can be considered as follows: Sup-

pose that initially two thin, symmetrical, counter-rotating cylindrical metal shells be

set in an instantaneous impulsive motion given by a velocity normal to itself while

immersed in a stagnant, inviscid, incompressible, irrotational �uid. Let the bound-

ary condition2 on the cylinders be u � n = U � n, where u is the velocity �eld of the
1Take u to be the velocity �eld of the �ow. Then incompressible means that r�u = 0;

potential �ow means the �ow is both irrotational, � = r� u = 0, and inviscid.
2A more physical approximation would be that the no slip condition between the �uid

1



Chapter 1. Introduction

Γ

 Γ

U

U

U
∞

=0

Figure 1.1: Schematic of the symmetrical, counter-rotating, initial cylindrical vortex
sheets and associated initial �ow.

�ow, U is the velocity vector of both the cylinders and their �uid contained within,

and n is the unit normal to the boundary surfaces.3 A normal velocity for the �ow

at the boundary of the cylinders is forbidden. However, at the boundaries, the �ow

is permitted a tangential velocity to the boundaries. Let the cylindrical walls in-

stantaneously dissolve, and allow the remaining �ow to evolve under its self-induced

velocity �eld. The absence of surface tension is assumed in our problem.

Figure 1.2 shows the streamlines for the initial �ow, where the reference frame is

taken to move with the velocity of �ow at in�nity given by u1 = 0. Figure 1.3 shows

the streamlines with a change in the reference frame, which is now taken to move

with the cylinders at a velocity U. This latter plot is the same as that for uniform

and the solid boundaries of the cylinders is given by u = U on the boundaries of the
cylinders [11]. We relax the mentioned condition of no slip so that a tangential velocity
at the boundaries is permitted.

3The condition u �n = U �n on the boundaries of the cylinders implies that the surface
of the two cylinders must be a streamline [11]. n is directed outward from the cylinder in
consideration

2



Chapter 1. Introduction

potential �ow of velocity �U given at in�nity, past two stationary, counter-rotating

cylinders.4 The reader may be familiar with the well known case of uniform potential

�ow past one stationary cylinder, for which its complex potential is easily found [11].

Solving for the complex potential in the instances of uniform potential �ow past two

or more cylinders is not as easy, however. Analytically, Lagally (1929) [16] was one

who solved the problem for potential �ow past two cylinders with circulations, using

tools from elliptic function theory. Crowdy [6] [7] [8] [9] used conformal mappings,

the generalized Riemann mapping theorem, and the use of the Schottky-Klein prime

function to solve the general problem exactly in terms of in�nite products; that is, for

the problem of potential �ow past a �nite number of cylinders with given circulations.

6 4 2 0 2 4 6
5

4

3

2

1

0

1

2

3

4

5

µ=1.5, N=32,Γ
T
 =  0

x

y

Figure 1.2: Streamlines for the initial �ow. The reference frame is taken to move
with the �ow at u1 = 0.

Modelling the evolution of two initially cylindrical vortex sheets is a natural

precursor to modelling the evolution of an initially toroidal vortex sheet. Reason

4In the �gures showing the streamlines, the cylinders were taken to have 0 circulations.

3
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6 4 2 0 2 4 6

4

3

2

1

0

1

2

3

4

µ=1.5, N=32,Γ
T
 =  0

x

y

Figure 1.3: Streamlines for the initial �ow. The reference frame is taken to move
with the cylinders at a velocity U.

being, the former is the planar analogue of the latter. Computing the initially

toroidal vortex sheet is in part motivated by the following. In the instance of

axisymmetric vortex sheet motion, there is di¢ culty in evaluating the principal value

equations governing the vortex sheet motion near the axis of symmetry [21]. The

initially toroidal vortex sheet avoids this problem altogether; it does not intersect

with its axis of symmetry.

Moore [18], Krasny [13], and Shelley [26] have shown that given analytic initial

conditions, planar vortex sheets stop being analytic in �nite time. At the time of

singularity formation, known as the critical time, the curvature of the vortex sheets

becomes in�nite. There is evidence that a branch point singularity of order 3
2
occurs

in general for planar vortex sheets [2] [10]. This means that, with respect to the

vortex sheets position, which can be parameterized by a Lagrangian parameter �,

the singularity is proportional to �
3
2 . These singularities are often referred to as

4



Chapter 1. Introduction

Moore singularities.

Our aim is to study the evolution, singularity formation, and roll-up of the two

initially cylindrical vortex sheets. The critical times, locations of singularity for-

mations, and con�rmation of the branch point singularities of order 3
2
, are sought.

Several methodologies used by Nitsche [24] [23] are adopted here.

An overview of the methods is as follows. The continuous vortex sheets are

to be discretized by a �nite array of point-vortices using Rosenhead�s point-vortex

approximation with the addition of correction terms due to van de Vooren [28].

The sheets are then evolved under their self-induced velocities up until their �nite

critical times. Since the point-vortex method does not converge past the critical

times [13], determining their values is of great importance to the evolutions of the

vortex sheets. This is why obtaining estimates for the critical times is of interest.

Parameters pertaining to the asymptotics of the Fourier coe¢ cients of the vortex

sheets�positions are then numerically �tted to gain better insight into aspects of

the singularity formation. These include con�rming the 3
2
order of the branch-point

singularities, and better determining the critical times and locations of singularity

formation. Furthermore, there is indication that more than one singularity forms on

each vortex sheet, and that for most cases, one singularity forms prior to the other.

We seek similar information to the second singularity formation as that of the �rst,

namely, its order, location, and time of formation. In order to do so, we implement a

smoothing over initial singularity formations by either the heat equation or through a

local application of the vortex blob method in lieu of the normal governing equations

over that region. Note that the vortex blob method introduces an arti�cial parameter

� into the singular governing equations so that they can be regularized [4].5 The

vortex sheet roll-up is further studied by the use of the vortex-blob method; this

method is needed to evolve the vortex sheets past their critical times. The e¤ects

5This regularization parameter � is not to be confused with the Dirac-delta function �
mentioned below.

5



Chapter 1. Introduction

of varying the initially prescribed total circulation around each vortex sheet on their

evolutions and singularity formations will also be taken into consideration.

A brief mentioning of two main numerical tools are also in order. Firstly, the non-

regularized equations governing the vortex sheet motion are principal value integrals.

The accurate approximation of these integrals is due to van de Vooren [28]. Secondly,

prior to the critical times, there exists a type of irregular motion in the point-vortices�

positions6, which is due to the growth of computer round o¤ error from Kelvin-

Hemholtz instability. This irregular point motion is controlled by both increasing

the machine precision and through the introduction of Krasny�s Fourier �lter, which

sets high wavenumber modes up to an appropriately speci�ed threshold in the Fourier

coe¢ cients of the vortex sheet�s positions to zero so that they cannot grow due to

Kelvin-Hemholtz instability [13]. When implementing Krasny�s Fourier �lter, at

each timestep of the vortex sheet�s evolution, we apply the Fourier transform to the

point-vortices�positions, set all modes below a designated threshold to zero, and

then apply the inverse Fourier transform.

1.2 Some Preliminaries

A shear layer is a thin layer which separates two regions of di¤ering velocities. An

example of this can be observed in Figure 1.4. In this �gure, there is a top and

bottom region of uniform �ow velocities, namely u = (U+; 0; 0) and u =(U�; 0; 0),

respectively. However, the separation layer (the shaded region between the top

and bottom regions in the �gure) consists of a �ow with velocity u = (U (y) ; 0; 0).

Outside of this separation layer, the vorticity � = r� u = 0. But, within this

separation layer, � = �U 0 (y) ẑ, where ẑ is taken to be directed out of the page. If
we were to let the separation layer shrink to a region of zero thickness (Figure 1.5),

6that are used to approximate the vortex sheet.

6



Chapter 1. Introduction

then we would have what is termed a vortex sheet. That is, a vortex sheet is the

interface between a shear layer of zero thickness. � = 0 away from a vortex sheet7,

yet
H
C
u � ds =

R
S
� � n dA 6= 0, where C is a closed contour around a portion of the

vortex sheet, S is the bounded surface contained within C, and n is the unit normal

to S. Indeed, � is a �-function on the surface of the vortex sheet. Across this

interface, the tangential velocity is discontinuous. This jump in tangential velocity is

known as the vortex sheet strength �, and characterizes the vortex sheet [19]. The

normal velocity component is continuous. Chorin and Marsden put it simply, "a

vortex sheet is a surface (or a curve) that is tangent to the vorticity vector � at each

of its points". Let us add that � = 0 away from the surface. They also state, "If a

surface (or curve) moves with the �ow8 and is a vortex sheet (or line) at t = 0, then

it remains so for all time" [5, p. 22-23]. So for our particular vortex sheet evolution,

the vortex sheet will remain such for all time.

Figure 1.4: Example of a shear layer

7It is being assummed the �ow is potential away from the vortex sheet.
8of an isentropic �uid. Note that irrotational �ows are isentropic [3].

7



Chapter 1. Introduction

Figure 1.5: Example of a vortex sheet approximation

The location of a closed two-dimensional vortex sheet at time t is given by the

curve x (�; t) =

0@ x (�; t)

y (�; t)

1A, where � denotes a Lagrangian parameter. See Figure
1.6. � is invariant in time for a speci�c mass of �uid on the sheet; speci�c values of

� can be said to correspond to speci�c masses of �uid on the sheet, for all time. We

α = 0
x(α,t)

u+

ux(α,t)

u+

u

CC

α
S

α
S

Figure 1.6: Contour C of a vortex sheet.

8



Chapter 1. Introduction

have D�
Dt
� @�

@t
+ u � r� = 0. We choose a particular mass of �uid on the sheet will

move as described by u =@x(�;t)
@t

= 1
2
(u+ + u�), where u+ and u� are the respective

velocity �elds outside and inside the vortex sheet [19] It is the normal component

of u to the boundary of the vortex sheet that will determine how the vortex sheet

moves. The tangential component of u to the boundary of the vortex sheet will

determine how the individual particles move on the sheet.

Consider a closed counterclockwise contour C of �uid that contains a part of the

vortex sheet within it, and let Ct be the contour carried by the �ow. The circulation

around Ct is given by �Ct =
H
Ct
u � ds. �Ct is constant in time according to

Kelvin�s Circulation Theorem [5].9 Also, via Stokes� theorem �C=
R
D
(r� u) �

n ds =
R
D
� � n ds, where D is the region bounded by C. Let us now consider

a small portion of vortex sheet with arclength �s. Then the circulation around a

small rectangular contour C enclosing only this portion of the vortex sheet is given

by �� =
H
C
u � ds � �u+�s+u��s = � [u+ � u�] �s, where u+ and u� are the

corresponding limiting tangential velocity components above and below the vortex

sheet. So � (s) = d�
ds
� ��

�s
� � [u+ � u�]. De�ne the circulation distribution

around the vortex sheet from a �xed point on the sheet, corresponding to � = 0, to

an arbitrary point � to be � (�) =
R s(�)
0

� (s) ds, where s (�) is the arclength from

the �xed point to the arbitrary point.

1.3 Paper Organization

This paper is organized as follows. Chapter 2 describes the problem formulation, ini-

tial conditions, and evolution equations. Chapter 3 describes the numerical methods

used in the evolution of the vortex sheets, including integral approximations, e¤ects

9This holds for isentropic �ow without external forces. Also, there is the issue that the
contour intersecting the vortex sheet doesn�t remain closed (resulting from the discontin-
uous velocity across the sheet), which is addressed in [28].
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Chapter 1. Introduction

of computer precision, and Krasny�s Fourier �lter. Chapter 4 presents the numerical

results for the sheets�evolution, and certain estimates regarding singularity forma-

tion. Chapter 5 pertains to further aspects of the singularity formation; including

a description and least-squares �ttings of parameters contained in the asymptotic

form of the Fourier coe¢ cients corresponding to the vortex sheet�s positions, and

smoothings over initial singularity formations. Chapter 6 includes simulations past

the time of singularity formation with the implementation of the vortex blob method,

and includes some of the e¤ects of varying the initially prescribed total circulation

around the vortex sheets. Chapter 7 serves as a conclusion to the paper.

10



Chapter 2

Problem Formulation

2.1 Initial Conditions

Consider two identical cylindrical vortex sheets whose axes are parallel to the z-axis,

and have radii R. Let their centers fall on the y-axis and each be a distance D > R

from the x-axis; with one sheet above and one sheet below the x-axis. Suppose their

z-directed lengths are very large. Due to symmetry, at time t, the two vortex sheets

are described by the cross section of the top cylindrical sheet with the x-y plane via

x (�; t) =

0@ x (�; t)

y (�; t)

1A and � (�), where � is a Lagrangian parameter. Initially, this

curve is given by

x (�; 0) =

0@ x (�; 0)

y (�; 0)

1A =

0@ R cos�

D +R sin�

1A , where � 2 [0; 2�] . (2.1)

The curve is 2�-periodic with respect to �. Figure 2.1 gives a schematic of this setup.

Since D > R; the two vortex sheets will then not initially touch each other. Due

to symmetry, the cross section curve of the bottom cylindrical sheet in the x-y plane

is easily deduced. Moreover, due to the given symmetry of the vortex sheets, when

11



Chapter 2. Problem Formulation

α

α

x

y

D

R

R

(0,D)

(0,D)

Figure 2.1: Cross section of the initial vortex sheets in the x-y plane.

the two sheets are evolved in time, the shape of the top sheet will dictate the shape

of the bottom sheet. As such, we need only consider the behavior of the top sheet.

We prescribe the vortex sheets and the �uid contained within the vortex sheets to

have an initial velocity given by U = (U; 0; 0).12 The �ow is non-dimensionalized3

1This reference frame is chosen in part so as to be consistent with that of [24].

2One could make a change in reference frames so that the initial velocity inside the
vortex sheets is set to U = (0; 0; 0). The velocity �eld outside the vortex sheets would
then need to be changed by subtracting U from the previously x̂ directed velocity �eld
component for outside the vortex sheets. In that case, the �ow far away from the vortex
sheets would become a uniform rectilinear �ow described by the velocity �eld (�U; 0; 0).
And initially, the �ow would then be analogous to a �x̂ directed uniform rectilinear �ow
of magnitude U past two solid cylinders.

3The details of the non-dimensionalization are given in Appendix A.
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α

α

x

y

µ

1

1

(0,µ)

(0, µ)

Figure 2.2: Cross section of the initial non-dimensionalized vortex sheets in the x-y
plane.

so that the cross section of the top vortex in the x-y plane sheet is then initially

described according to

x (�; 0) =

0@ cos�

�+ sin�

1A , where � � D

R
> 1. (2.2)

Figure 2.2 shows these non-dimensionalized changes. The non-dimensionalized ini-

tial velocity for the vortex sheets and the �uid contained within the vortex sheets is

U = (1; 0; 0).4 As described in Section 1.1, the initial boundary condition upon the

4This reference frame is chosen in part so as to be consistent with that of [24].
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Chapter 2. Problem Formulation

vortex sheets are given by u � n = U � n. The arclength is given by s = R�. The

total circulation (distribution) around each entire vortex sheet

�T = � (2�) =

Z s(2�)

0

� (s) ds (2.3)

needs to also be initially set.5 With these constraints, the initial velocity �eld of the

�ow outside the vortex sheets can be determined.

2.2 Evolution Equations

Two-dimensional vortex sheet evolution at the point x (�; t) =

0@ x (�; t)

y (�; t)

1A is gov-

erned by the velocity equations

u (x; t) =
1

2�
P:V:

Z
C

1

(x� ~x)2 + (y � ~y)2

0@ ~y � y

x� ~x

1A�0 (~�) d~�, (2.4)

where C is the counterclockwise contour along the entire vortex sheet, ~x (�; t) de-

notes the vortex sheet positions inducing the motion, and � (~�) is the circulation

distribution. Thus, if one gives the initial position of a vortex sheet, and can solve

for �0 (~�), the motion is determined. (2.4) is known as the Birkho¤-Rott equation.

For our particular problem of the two initially cylindrical vortex sheets, (2.4)

becomes

u (x; t) =
1

2�
P:V:

Z 2�

0

1

(x� ~x)2 + (y � ~y)2

0@ ~y � y

x� ~x

1A�0 (~�) d�
+
1

2�

Z 2�

0

1

(x� ~x)2 + (y + ~y)2

0@ y + ~y

~x� x

1A�0 (~�) d�. (2.5)

5�T will remain constant throughout all time.
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Chapter 2. Problem Formulation

Recall that the vortex sheets in our problem are symmetric about the x-axis, and

the induced velocities from both sheets needs to be taken into account. The initial

vortex sheets�positions are given by (2.2). With a total prescribed circulation �T

around each vortex sheet, and use of the boundary condition u � n = U � n, we will
�nd �0 (~�).6 If this can be done, the motion for our problem can be determined.

Equations (2.5) fail to converge past the time of singularity formation in the vortex

sheets�positions.

One approach to describe the motion of the vortex sheets past these times of

singularity formation is to regularize equation (2.5) by the introduction of an arti�cial

parameter �. This method is known as the vortex blob method [23] [4] [14]. It gives

the velocity at x by

u (x; t) =
1

2�

Z 2�

0

1

(x� ~x)2 + (y � ~y)2 + �2

0@ ~y � y

x� ~x

1A�0 (~�) d�
+
1

2�

Z 2�

0

1

(x� ~x)2 + (y + ~y)2 + �2

0@ y + ~y

~x� x

1A�0 (~�) d�. (2.6)

In the limit � ! 0, it is known that the solution to (2.6) converges to the solution

for that of (2.5) prior to singularity formation.

2.2.1 Finite Array of Point Vortices

Equations (2.4) can be constructed by considering the following:

Suppose an incompressible, almost potential �ow where the vorticity is concen-

trated at a �nite array of N point-vortices located in a plane at positions xk, with

respective circulations ��k, where k = 1; 2; :::; N . At each of these point-vortices

6 Note that at time t = 0, the vortex sheet strength � (~s) = �0 (~�).
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Chapter 2. Problem Formulation

the vorticity �eld is singular. Away from the point vortices, the �ow is potential.

Now, the stream function at location x =

0@ x

y

1A due to an individual point-vortex

located at position xk is given by

 k (x) = �
��k
2�

log kx� xkk . (2.7)

The contribution to the velocity �eld solely from the point-vortex at position xk is

given by

uk (x) =

0@  k(x)
@y

� k(x)
@x

1A =
��k
2�

1

(x� xk)
2 + (y � yk)

2

0@ yk � y

x� xk

1A (2.8)

Via superposition, the stream function resulting from the entire array of point-

vortices is given by  (x) =
NP
k=1

 k (x). And, the total induced velocity �eld becomes

u (x; t)=
NX
k=1
x6=xk

uk (x; t) =
1

2�

NX
k=1
x6=xk

��k

(x� xk)
2 + (y � yk)

2

0@ yk � y

x� xk

1A (2.9)

Thus, a point-vortex located at xj will move as described by7

u (xj; t) =

0@ dxj
dt

dyj
dt

1A =
1

2�

NX
k=1
k 6=j

��k

(xk � xj)
2 + (yk � yj)

2

0@ yk � yj

xj � xk

1A . (2.10)

The point-vortices evolve under self-induced motion. The positions xk and respective

circulations��k, k = 1; 2; :::; N , of the point-vortices will need to be prescribed. Not

only will the circulations ��k at each point-vortex remain constant throughout time;

but also will the total circulation distribution �T =
NP
k=1

��k [5].

By letting N !1 and ��! 0 in (2.10), we then get (2.4).

7The constraint k 6= j in the summation is made so that the self-induced contribution
of the point-vortex to the velocity �eld is not included.
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2.2.2 Point-Vortex Approximation Applied to the Two Cylin-

drical Vortex Sheets
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T
 = 10

Figure 2.3: Streamlines for the initial �ow past the cylindrical, counter-rotating
vortex sheets, with �T = �10; 0; 10. For these plots, � = 1:5 and N = 32.

Consider the cylindrical vortex sheets described in Section 2.1. Replace each

vortex sheet by an array of N point-vortices uniformly spaced throughout the entire

sheet, which are located at xk = x (�k; t), corresponding to the uniformmesh given by

�k = (k � 1)��, where �� = 2�
N
, and with respective circulations ��k, where k =

1; 2; :::; N . This approximation of the vortex sheet is known as Rosenhead�s point-

vortex approximation. At a position x, the stream function due to the contributions

from the two arrays each consisting of N point-vortices used in approximating the
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two cylindrical vortex sheets is given by

 (x) = � 1

2�

NX
k=1

��k log

q
(x� xk)

2 + (y � yk)
2

� 1

2�

NP
k=1

��Bk log

q
(x� xBk )

2
+ (y � yBk )

2. (2.11)

�
xBk ; y

B
k

�
and ��Bk , k = 1; 2; ::; N , denote the locations of the point-vortices and

corresponding circulations on the bottom vortex sheet. These locations and circu-

lations are related to those on the top vortex sheet via
�
xBk ; y

B
k

�
= (xk;�yk) and

��Bk = ���k. Thus the stream function due to the two arrays of point-vortices

can be written as

 (x) =
1

2�

NX
k=1

��k

�
� log

q
(x� xk)

2 + (y � yk)
2 + log

q
(x� xk)

2 + (y + yk)
2

�
.

(2.12)

The total induced velocity �eld would then become

u (x; t) =

0@  k(x)
@y

 (x)
@x

1A =
1

2�

NX
k=1
k 6=j

��k

(x� xk)
2 + (y � yk)

2

0@ yk � y

x� xk

1A
+
1

2�

NX
k=1

��k

(x� xk)
2 + (y + yk)

2

0@ y + yk

xk � x

1A . (2.13)

Thus, a point-vortex located at xj will move as described by

u (xj; t) =
1

2�

NX
k=1
k 6=j

��k

(xj � xk)
2 + (yj � yk)

2

0@ yk � yj

xj � xk

1A
+
1

2�

NX
k=1

��k

(xj � xk)
2 + (yj + yk)

2

0@ yj + yk

xk � xj

1A . (2.14)
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By letting N !1 and ��! 0 in (2.14), we then get (2.5).

Figure 2.3 shows the streamlines, or level curves, of  with the prescribed nondi-

mensionalized uniform �ow U = (1; 0; 0), for �T = �10, 0, and 10. They were

constructed using 2.12. In these plots, � = 1:5 and N = 32. Observe that es-

pecially for �T = �10 and �T = 0, the streamlines are more dense in the region

between the two cylinders than for the regions above and below the two cylinders.

Thus, according the Bernoulli�s theorem8, there is a smaller pressure distribution in

the region between the two spheres [25, p. 109]. This pressure di¤erential causes

the cylinders to move together. As �T is increased, this pressure di¤erential will

decrease; eventually, another pressure di¤erential will take e¤ect and the two cylin-

ders will be pushed apart. Additionally, the y-axis symmetry of the streamlines

implies that there is no drag on the initial sheets [5]. The stagnation points, de�ned

where the pressure is a greatest, will lie on the boundaries of the cylinders for j�T j
su¢ ciently small. As j�T j increases, the location of the stagnation points will move
o¤ of the boundaries of the cylinders and into the �ow [8].

It is permissible to replace the array of point vortices9 in this �gure with a

solid cylinder in which the point vortices�locations would lie on the boundary of the

cylinder; the �ow outside the array of point vortices would remain unchanged. If

we were to only consider the case of �ow past one cylinder (i.e. the limiting case

� ! 1 in our problem), the cylinder could be replaced with a doublet of suitable

strength having the same center as of the cylinder, and again the �ow outside the

radius of the cylinder would remain unchanged [11]. For this appropriately placed

doublet of suitable strength, there would be a circular streamline that is the same

position as that of the cylinder. In addition, on any streamline  (x) = constant,

8Recall that Bernoulli�s theorem states that p = H � 1
2 juj

2, where p is the pressure
distribution, and H is Bernoulli�s constant [5] [8].

9To be more precise, this would be the case for the limiting case N ! 1, where N is
the number of point vortices on each vortex sheet.
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the curve can be thought of as a solid boundary of the �uid [17]. In our problem,

due to symmetry, a streamline actually falls upon the x-axis. An example of this

can be seen in the given plot of the streamlines for �T = 10. This implies that an

in�nite wall could be placed along the x-axis without changing the considered �ow.

Thus, our problem is analogous to the problem of evolving either the top or bottom

rotating, initially cylindrical vortex sheet with an in�nitely long wall placed on the

x-axis.

2.2.3 Solving for the Initial Sheet Strength

In (2.14), by choosing uniform spacing and circulations of the point-vortices used

in the vortex sheet approximations, we then have ��k = �k�sk =
2�
N
�k, where

�sk =
2�
N
. If we take the discretized top vortex sheet�s point-vortices to be located

at positions xj, j = 1; 2; :::; N , then the normal to the discretized sheet at those

points is given by n (xj) = (cos�j; sin�j), and the velocities there given by u (xj).

Then the imposed boundary condition u � n = U � n can be written as

dxj
dt
cos�j +

dyj
dt
sin�j = u (xj) � n (xj) = U � n (xj) = cos�j, (2.15)

where u (xj) =

0@ dxj
dt

dyj
dt

1A is given by (2.14). Recall that the nondimensionalized U

is given by U = (1; 0; 0).

De�ne

A jk
k 6=j

=
1

N
[

 
yk � yj

(xj � xk)
2 + (yj � yk)

2 +
yj + yk

(xj � xk)
2 + (yj + yk)

2

!
cos�j, (2.16)

Ajj =
1

N

" 
yj + yj

(xj � xk)
2 + (yj + yk)

2

!
cos�j +

 
� xj � xj

(xj � xj)
2 + (yj + yj)

2

!
sin�j

#
.
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Then (2.15) can be written as

h
Aj1 Aj2 ::: AjN

i
26666664
�1

�2
...

�N

37777775 =
h
cos�j

i
. (2.17)

This is equivalent to the systemA� = b, whereA =

26666664
A11 ::: A1N

A21 ::: A2N
...

. . .
...

AN1 ::: ANN

37777775, � =
26666664
�1

�2
...

�N

37777775,

and b =

26666664
cos�1

cos�2
...

cos�N

37777775. Initially, A and b are known.
10 So we can solve for the initial

sheet strength �.

When we proceed to solve this system in Matlab via the command � = Anb, we
get the results as presented in Figure 2.4. Convergence in � is not observed as N is

increased. In addition, condition number of A is very large (Figure 2.5), and thus, A

is poorly conditioned. Matlab gives the following error: Matrix is close to singular

or badly scaled. Results may be inaccurate. These poor results are expected, as the

total circulation �T around each vortex sheet has not yet been prescribed.

Let us now de�ne

xmj =
�
xmj ; y

m
j

�
=
�
cos�mj ; �+ sin�

m
j

�
, where �mj = �j +

�

N
. (2.18)

xmj be located on the approximated vortex sheet half-way, that is at the "midpoint",

between the two neighboring point-vortices. Let us approximate the velocities at

10Note that we have N unknowns in �; and N equations in A� = b.
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Figure 2.4: Computed initial sheet strengh � vs. � using the non-midpoint method.

u (xj) by actually evaluating them at xmj instead of at xj. That is, for evaluation

purposes we are making11

u
�
xmj
�
=

1

2�

NX
k=1

��k�
xmj � xk

�2
+
�
ymj � yk

�2
0@ yk � ymj

xmj � xk

1A
+
1

2�

NX
k=1

��k�
xmj � xk

�2
+
�
ymj + yk

�2
0@ ymj + yk

xk � xmj

1A . (2.19)

We impose (2.15), but now with evaluating n at xmj in lieu of xj, and approximating

u (xj) with u
�
xmj
�
as given in (2.19). We now re-de�ne A and b according to

11The k 6= j constraint in the �rst summation of the velocity �eld is now lifted.
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Figure 2.5: cond(A) vs. 1
N
for non-midpoint method.

Ajk =
1

N
[

 
yk � ymj�

xmj � xk
�2
+
�
ymj � yk

�2 + ymj + yk�
xmj � xk

�2
+
�
ymj + yk

�2
!
cos�mj

+

 
xmj � xk�

xmj � xk
�2
+
�
ymj � yk

�2 xk � xmj�
xmj � xk

�2
+
�
ymj + yk

�2
!
sin�mj ],

where bj = cos�mj . (2.20)

With the newly de�ned terms, we again have a slightly di¤erent system A� = b.

We refer to this methodology as the midpoint method.

In this instance, A has a slightly better condition number (Figure 2.7) than

before, but is still poorly conditioned. Matlab still yields the error: Matrix is close

to singular or badly scaled. Results may be inaccurate. Even though there is still
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not convergence of the ��s as N is increased (Figure 2.6), there is less oscillatory

behavior than that in Figure 2.4. These poor results are again expected, as the total

circulation �T around each vortex sheet still has not been taken into account.
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Figure 2.6: Computed initial sheet strengh � vs. � using the midpoint method.

Let us now take into account the total initial circulation �T around each vortex

sheet. We have

�T =
NX
k=1

��k =
NX
k=1

�k�sk =
2�

N

NX
k=1

�k, (2.21)

where �sk = �s =
2�

N
:

For j = 1; 2; :::; N and k = 1; 2; :::; N , let us use Ajk and bj as de�ned by (2.20) in

the midpoint method. For j = N +1 and k = 1; 2; :::; N , de�ne Ajk = �s = 2�
N
and
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Figure 2.7: cond(A) vs. 1
N
for midpoint method.

bj = �T. This corresponding system can be written as2666666664

A11 ::: A1N

A21 ::: A2N
...

. . .
...

AN1 ::: ANN
2�
N

::: 2�
N

3777777775

26666664
�1

�2
...

�N

37777775 =
2666666664

cos�1

cos�2
...

cos�N

�T

3777777775
(2.22)

or again, A� = b. This system is now overdetermined12 however, and is to be solved

in the least squares sense. � was originally computed in Matlab again using the

command � = Anb for the preliminary results. These results for �T = 0 are shown
in Figure 2.8. Convergence of � as N is increased is now observed. And, A now

has a signi�cantly better condition number than before (Figure 2.9). The maximum

relative error in � given by max
����exact��N�exact

��� versus N , where �N corresponds to the
� used in the point-vortex approximation with N point-vortices on each sheet, and

�exact is supposed to be �1024, is shown in Figure 2.10.

12Note that we now have N unknowns in �; and N + 1 equations in A� = b.
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Note that in computations performed later in this work, � was computed in

Fortran. The subroutine HFTI, which was downloaded from the netlib repository

[20], was used to solve the overdetermined system by Householder transformations.13
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Figure 2.8: � vs �, with the implemented constraint �T = 0.

The plot of � vs. � for several values of � with �T = 0 is given in Figure 2.11. As

� approaches 1, � becomes signi�cantly more negative in the neighborhood about

� = 3�
2
. As � increases, � (�) approaches 2 sin�, indicated by the dashed line in

Figure 2.11. This is consistent with � (�) = 2U sin � (where we have U = 1) given in

limiting case of one cylindrical vortex sheet, as studied in [24]. Comparing � (�) to

each other for di¤erent values of � can be used to roughly see how much the sheets�

evolutions will be similar to each other. Note that for large � (i.e. � > 5), the values

of � (�) are very close to each other; indicating that for large � values, we expect

further initial prescribed separation between the sheets as indicated by � to result

in fairly insigni�cant changes to the sheets�evolutions.

13Unless otherwise indicated, it is assumed that �T = 0, even though other values of �T
are just as permissible.
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Figure 2.9: cond(A) vs. 1
N
, with the implemented constraint �T = 0.

Di¤erent prescribed values of the total circulation constraint �T change the re-

spective values of � (�). Larger values of �T will impart larger values of � (�). This
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Figure 2.10: max
����exact��N�exact

��� vs. N , with the implemented constraint �T = 0.
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Figure 2.11: � vs. � for di¤erent values of � listed in the legend, with N = 2048
and �T = 0 . The larger values of � correspond to the larger values of � (�). The
dashed line is the plot of 2 sin�.

can be seen in Figure 2.12.

Since the analytical solutions for uniform potential �ow past two (and multiple)

cylinders with and without circulation can be found [7] [8] [9], it would be possible

to compare our results of � (�) with the � (�) given by the mentioned analytical

solutions.
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Figure 2.12: � vs. � corresponding to values of �T as given in the legend, with
N = 2048, � = 2. The larger �T values correspond to the larger � (�) values.
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Numerical Methods

3.1 Integral Approximations

At each time-step, the velocity �eld u (x; t) will be evaluated at the point-vortices�

locations x = xj, j = 1; 2; ::; N . uj = u (xj; t) will be approximated by integrating

the right-hand side of (2.5) via the Trapezoidal rule, without, and then with cor-

rection terms added. A fourth-order Runge-Kutta method is used to integrate the

system of ODEs (2.5) in time.1 Without the correction terms added, the integral

approximation is O
�
1
N

�
. With the correction terms added, the integral approxi-

mation is exponentially accurate. However, the integral approximations lose their

accuracy near the time of singularity formation.

1Another method used by Shelley [26], termed the modi�ed point-vortex approximation,
which does not use correction terms, but is also exponentially accurate, can also be used.
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3.1.1 Without Correction Terms

Let us approximate the right-hand side of (2.5) by the Trapezoidal rule. We need

to drop the j = k contribution in the principle-value integrals so that they can be

integrated. Figure 3.1 shows the estimated error of doing so, and indicates that it

is a �rst-order approximation O
�
1
N

�
.
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Figure 3.1: Convergence of the velocity �eld integrals (2.5) using the Trapezoidal
rule approximation.
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3.1.2 With Correction Terms

In order to gain better accuracy in the integration of the right-hand side of (2.5),

we proceed to do the following [24]. De�ne Gu (�; �j; t) =

0@ Gu (�; �j; t)

Gv (�; �j; t)

1A to

be the integrands of the principal integral terms found in the velocity �eld u (xj; t)

given in (2.5). They are Gu (�; �j; t) = 1
(xj�x)2+(yj�y)2

0@ yj � y

xj � x

1A�0 (�), where
we note that x = x (�; t) and xj = x (�j; t). Gu (�; �j; t) can be expanded in

� � �j of the form
cu�1
���j +

~Gu (�; �j; t), where ~Gu (�; �j; t) =
P1

n=0 c
u
n (�� �j)

n,

cun =

0@ cun (�j; t)

cvn (�j; t)

1A. Note that ~Gu (�j; �j; t) =
0@ cu0

cv0

1A. According to [24], we can
make the approximation

P:V:

Z 2�

0

Gu (�; �j; t) d� � (�� �j)
0X

k 6=j

Gu (�k; �j; t)+(�� �j) ~G
u (�j; �j; t) , (3.1)

where the
P0 denotes that the �rst and last summations are multiplied by 1

2
.

The �rst term is the Trapezoidal rule for the principal-value integrals, and the second

term a correction term. We need now solve for Gu (�j; �j; t) in order to perform

this approximation, which we will now do.

Using a Taylor series expansion about � = �j, we have

x (�) = x (�j) + x
0 (�j) (�� �j) +

x00 (�j)

2
(�� �j)

2 + :::, (3.2)

�0 (�) = �0 (�j) + �
00 (�j) (�� �j) + ::: .

Letting h = � � �j, � = � (�), and �j = � (�j); this can be rewritten as x (�) =

xj + x
0
jh+

x00j
2
h2 + ::: , and �0 = �0j + �

00
jh+ ::: . So
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Gu (�; �j; t) =
yj�y

(xj�x)2+(yj�y)2
�0

=

�
yj�

�
yj+y

0
jh+

y00j
2
h2+O(h3)

��
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�y0jh�

y00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�y0jh�

y00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

�x0jh�
x00
j
2
h2+O(h3)

�2
+

�
�y0jh�

y00
j
2
h2+O(h3)

�2

=
�y0jh�0j+h2

�
�
y00j
2
�0j�y0j�00j

�
+O(h3)

h2(x2j+y2j )+h3(x0jx00j+y0jy00j )+O(h4)
=

�
y0j�

0
j

h
�
�
y00j
2
�0j+y

0
j�

00
j

�
+O(h)

(x2j+y2j )+h(x0jx00j+y0jy00j )+O(h2)

= 1
x02j +y

02
j

�
1� (x

0
jx
00
j+y

0
jy
00
j )h

x02j +y
02
j

+O (h2)

� h
�y0j�0j
h

� y00j �j
2
� y0j�

00
j +O (h)

i
.

And,

Gv (�; �j; t) =
xj�x

(xj�x)2+(yj�y)2
�0

=

�
xj�

�
xj+x

0
jh+

x00j
2
h2+O(h3)

��
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�x0jh�

x00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

xj�
�
xj+x0jh+

x00
j
2
h2+O(h3)

��2
+

�
yj�

�
yj+y0jh+

y00
j
2
h2+O(h3)

��2

=

�
�x0jh�

x00j
2
h2+O(h3)

�
[�0j+�00j h+O(h2)]�

�x0jh�
x00
j
2
h2+O(h3)

�2
+

�
�y0jh�

y00
j
2
h2+O(h3)

�2

=
�x0jh�0j+h2

�
�
x00j
2
�0j�x0j�00j

�
+O(h3)

h2(x2j+y2j )+h3(x0jx00j+y0jy00j )+O(h4)
=

�
x0j�

0
j

h
�
�
x00j
2
�0j+x

0
j�

00
j

�
+O(h)

(x2j+y2j )+h(x0jx00j+y0jy00j )+O(h2)

= 1
x02j +y

02
j

�
1� (x

0
jx
00
j+y

0
jy
00
j )h

x02j +y
02
j

+O (h2)

� h
�x0j�

0
j

h
�
�
x00j
2
�0j + x0j�

00
j

�
+O (h)

i
.

We noted that
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�
�x0jh�

x00j
2
h2
�2
+
�
�y0jh�

y00j
2
h2
�2

= h2x0j
2 + h3x0jx

00
j +

1
4
h4x00j

2 + h2y0j
2 + h3y0jy

00
j +

1
4
h4y00j

2

= h2
�
x0j
2 + y0j

2
�
+ h3

�
x0jx

00
j + y0jy

00
j

�
+O (h4), and

1

(x2j+y2j )+h(x0jx00j+y0jy00j )+O(h3)
= 1

x02j +y
02
j

�
1� (x

0
jx
00
j+y

0
jy
00
j )h

x02j +y
02
j

+O (h2)

�
.

It follows that2

~Gu (�j; �j; t) =

0@ cu0

cv0

1A =

0BB@
1

x02j +y
02
j

�
y0j�

0
j(x0jx00j+y0jy00j )
x02j +y

02
j

� y00j
2
�0j � y0j�

00
j

�
1

x02j +y
02
j

�
x0j�

0
j(x0jx00j+y0jy00j )
x02j +y

02
j

� x00j
2
�0j � x0j�

00
j

�
1CCA . (3.3)

We used the Trapezoidal rule for the approximation of the integration of the

non-principal-value integrals on the right-hand side of (2.5), and (3.1) for the ap-

proximation of the integration of the principal-value integrals on the right-hand side

of (2.5). The derivatives x0j, x
00
j , and �

00
j are taken with respect to �; and in the

simulations are computed via spectral di¤erentiation.

With these integral approximations, we get exponential decay in the estimated

error of uj as N is increased, up to almost the magnitude of the set level of the

Fourier �lter 3, which is 10�12 in this case. This can be observed in Figure 3.2 for

t = 0, and in Figure 3.3 for the later time t = 0:2. This is a nice improvement

from the errors in the integral approximations with the use of the Trapezoidal rule

without the correction terms, as shown in Figure 3.1. Note that some of the higher

error in Figure 3.3 is due to newly introduced errors in the computed positions xj as

time is incremented, and are in part due to the implementation of the Fourier �lter.

Van de Vooren [28] is responsible for this method of integral approximation.

2Recall that �0j = �j .
3The Fourier �lter will be described shortly.
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Figure 3.2: Convergence of the velocity �eld integrals (2.5) using the Trapezoidal
rule plus correction terms, at t = 0.
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Figure 3.3: Convergence of the velocity �eld integrals (2.5) using the Trapezoidal
rule plus correction terms, at t = 0:2.
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3.2 Irregular Point-VortexMotion, Computer Pre-

cision, and Krasny�s Fourier Filter

Prior to the critical times, irregular point motion can occur in the positions of the

point-vortices used in approximating vortex sheets. Figure 3.4 and Figure 3.5 demon-

strate this occurrence with respect to our problem. Krasny [13] serves as one of the

classic references on this topic.

Irregular point motion in the discretized vortex sheets is due to the growth of

computer discretization/round-o¤ error resulting from Kelvin-Hemholtz instability.

An increase in machine precision can help control this irregular motion, yet it comes

at a computational cost. Observe that for �xed N = 256, �T = 0:01, and � = 2,

irregular point motion decreases in our problem when changing from single to double

machine precision (Figures 3.4 and 3.5).4 The implementation of a Fourier �lter is

another way to control the irregular point motion. Known as Krasny�s Fourier �lter,

it sets all modes in the point-vortices�positions below a designated �lter level to zero.

The designated �lter level is either referred to as l or tol in this paper; l implying a

�lter level of a value of 10�l, and tol being equal to 10�l. Setting the �lter level needs

to be done in a manner so that the high modes in the discretization/round-o¤ error

cannot grow due to Kelvin-Hemholtz instability [13] [24]. To implement the Fourier

�lter, at each timestep the Fourier transform to the point-vortices�positions is taken,

the �lter applied to the Fourier coe¢ cients, and the inverse Fourier transform then

taken. The di¤erence between Figure 3.5 (without the Fourier �lter) with that of

Figure 3.7 (with the Fourier �lter) demonstrates the e¤ects of using the �lter in

instance of the double machine precision. Also, the irregular point motion is not

due to a lack in resolution of time. This can be observed in the comparison of

Figure 3.5 with that of Figure 3.6; the corresponding timesteps are �T = 0:01 and

4�T denotes the timestep used in the sheet evolution.
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�T = 0:001, respectively.

Since the irregular point motion increases with an increase inN , error in the sheet

evolution will also increase with increased N . So, the level of the Fourier �lter needs

to simultaneously be made smaller as N is increased in order to reduce the overall

error [2] [13] [24]. The Fourier �lter does introduce an error that is dependent on

both the timestep and the �lter level. So for increased precision, the Fourier �lter

level can be set at a lower level; this would result in a smaller error contribution.

The vortex sheet simulations incorporating the Fourier �lter were done in double

(with l = 10 to l = 13) or quadruple (with l = 28) precision in the following sections

of this paper.
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Figure 3.4: Locations of point-vortices used to approximate vortex sheet, using single
precision, without a Fourier �lter, and with N = 256, t = 0:3, �T = 0:01, � = 2.
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Figure 3.5: Locations of point-vortices used to approximate vortex sheet, using dou-
ble precision, without a Fourier �lter, and with N = 256, t = 0:3, �T = 0:01,
� = 2.
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Figure 3.6: Locations of point-vortices used to approximate vortex sheet, using dou-
ble precision, without a Fourier Filter, and with N = 256, t = 0:3, �T = 0:001,
� = 2.
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Figure 3.7: Locations of point-vortices used to approximate vortex sheet, using dou-
ble precision and the Fourier �lter set to l = 12, with N = 256, t = 0:03, �T = 0:01,
� = 2.
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Evolution Results

4.1 Evolution of Vortex Sheet, Curvature, and Crit-

ical Times Estimates

Figure 4.1 shows snapshots at the speci�ed times for the evolution of the top and

bottom vortex sheets, where N = 512, � = 2, the �lter level l = 12, and the timestep

�T = 0:001. The bottom vortex sheet is the a mirror image of the top sheet about

the x-axis. The bottom sheet in Figure 4.1 shows the every fourth point vortices

used in the sheet approximation in order to show how the point-vortices move on

the sheet. The top sheet shows the interpolating curve of the point-vortices used in

the approximation. The point-vortices do not remain uniformly spaced throughout

the sheet, but instead become more bunched towards the rear of the sheet, and less

bunched towards the front of the sheet, as is increased. These computations were

performed in double precision. Recall that the sheets were initially given a velocity

of U = (1; 0; 0). Thus, the fronts of the sheets are thought of as being the rightmost

parts. Nitsche provides an explanation of why the sheet rolls up as shown, "The

front vorticity causes vortex elements in the rear to decrease in radius, while the rear
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vorticity causes vortex elements in the front to increase in radius. Since elements

with smaller radii travel faster, the rear elements move towards the front ones and

the shape of the vortex sheets becomes narrower" [24].
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Figure 4.1: Computed evolution of the top and bottom vortex sheets at the listed
times, with N = 512, � = 2, l = 12, �T = 0:001.

Singularities which form are in�nite jump discontinuities in the curvature of the

vortex sheet [18] [10] [13]. These singularities occur in the vortex sheets at �nite

times, are called the critical times, and are denoted by tc. The point-vortex approx-

imation converges up to but not beyond these critical times. Thus, knowing when

critical times occur is an important consideration in vortex sheet evolution.

The curvature of the vortex sheet is given by

� (�; t) =
x�y�� � x��y�

(x2� + y2�)
3
2

(4.1)

Let �max (t) denote the maximum curvature of the vortex sheet at time t. The
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critical times can be estimated as the time limit in which 1
�max(t)

approaches zero.

Figure 4.2 plots 1
�max(t)

for speci�ed l values (�lter level is 10�l) and N values, for

� = 2. Note that for all �, � (�; 0) = 1. Figure 4.3 is a close-up of Figure 4.2, where

the �lter level and N are taken to increase from right to left in these plot. Both of

these plots support the notion that the critical times occur at a �nite time. Observe

in these �gures that 1
�max(t)

approaches zero at earlier times as l and N are increased.

Thus, critical time estimates taken from these plots will be a slight overshoot of the

actual critical times. Better critical time estimates could be obtained from increasing

l and N further.
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Figure 4.2: Plot of 1
�max

vs. t, for speci�ed l and N values, for � = 2, �T = 0.

Another method that can be used to estimate critical times monitors when a

kink1 forms in the vortex sheets� geometry. When a kink has formed, we know

1We de�ne the occurrence of a kink as when, for two adjacent point vortices, one point-
vortex passes vertically over the other one.
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Figure 4.3: Closeup of 1
�max

vs. t, for speci�ed l and N values, near the critial time,
for � = 2, �T = 0.

that a singularity has occurred a short time beforehand. The location of singularity

formation can also be estimated by the location of the kink. The method consists

of the following: If the two conditions are satis�ed (where xj, j = 1; 2; :::; N , denote

the point-vortices�locations)

� yj < c, for some appropriately chosen constant c (so as to choose a particular

region of the sheet)

� xj > max(xj+1; xj�1),

then a singularity has formed in a small neighborhood about xj.

This method only roughly approximates the time of singularity formation. Again,

it is an overshoot of the actual critical times. This overshoot is partly due to the
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discretization of the vortex sheet. Also, according to Krasny, the singularity is not

actually visually apparent in the vortex sheet at the critical time. And in the limit

N ! 1, there will actually be no kink formation in the sheet at the critical time
[13].

The geometries of the top vortex sheets at the kink critical time estimates are

shown in Figure 4.4 for several � and �T values, with N = 512, l = 28, �T = 0:001.

Do not forget that there is a bottom sheet as well; we simply did not include it in the

plots because no new information is gained in doing so. The approximate location

at which the singularity formation occurs is indicated on these plots by the diamond

shaped marker. Varying �T will a¤ect the geometries of the vortex sheets�evolution,

location of singularity formation, and critical times. Observe that the singularity is

located on the bottom half of the vortex sheet in the plots for �T = �5 and 0, and
on the upper half of the sheet for �T = 5.

Observe that the singularity location moves down on the sheet (that is, towards

the x-axis) as � decreases, for �T = �5 and 0; and up along the sheet (that is,
away from the x-axis) as � decreases, for �T = 5. In the limiting case of one

vortex sheet (i.e. �!1), Nitsche found that two symmetric singularities will occur
simultaneously on the vortex sheet, with one located on the bottom half of the sheet,

and one located on the top half of the sheet [24]. More on the e¤ects of �T in the

sheet evolutions can be seen in Chapter 6.

Figure 4.5 plots the estimated critical times using the kink method, for speci�ed

� and N values, for �T = 0. This �gure shows that in general, the critical time

estimates decrease as N increases and as � decreases. Figure 4.6 plots the kink

estimated critical times tc vs. � for several di¤erent values of �T , where N = 512,

�T = 0:001, and l = 28.2 The value tc = 0:587 corresponding to � = 5, �T = 0

2Note that these computations were performed in quadrupole precision, allowing the
speci�ed �lter level l.
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appears to be in close agreement with the value of tc = 0:5825 given in the limiting

case �!1 given by Nitsche3 in [24]. De�ne �c to be the value of the Lagrangian

parameter � corresponding to the location of the singularity on the vortex sheet at

time tc. Figure 4.7 plots the kink estimated �c values for speci�ed � and �T values,

where N = 512, �T = 0:001, and l = 28. The value �c = 4:050 corresponding to

� = 5, �T = 0 appears to also be in close agreement with the value of �c = 3:927

given in the limiting case �!1 given by Nitsche in [24].4

The two presented critical time estimation methods are rough estimates. A more

precise method that will yield greater insight into critical time estimation, as well as

other characteristics of the singularity formation is forthcoming.

3Note that in [24], Nitsche uses a di¤erent nondimensionalized velocity U di¤erent than
ours. We must divide her value of tc by 4 to arrive at the value corresponding to the tc
relevant to our sheets.

4Note that in [24], Nitsche uses a di¤erent parameterization than us, and so the �c given
in her paper as 0:75� corresponds to an �c = 2� � 0:75� in our problem.
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Figure 4.4: Computed top vortex sheet for speci�ed � and �T values at the kink
critical time estimates, where N = 512, l = 28, �T = 0:001.
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�T = 0:001, l = 28. The legend values correspond to �T values.
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Figure 4.7: Kink estimated �c vs. � for the indicated �T values, with N = 512,
�T = 0:001, l = 28. The legend corresponds to �T values.
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Chapter 5

Analysis of the Fourier Spectrum

We now turn to studying the singularity formation in more detail using the asymp-

totics of the Fourier coe¢ cients corresponding to the positions of the vortex sheets

[27] [24] [13] [10]. After the asymptotic expressions are developed, a linear least-

squares �tting is performed over a set of the parameters included in the expressions.

Con�rmation that the branch point singularities are of order 3
2
is one aim. Another

is improved estimates of the previously approximated critical times and singularity

formation locations.

5.1 Asymptotics of Fourier Integrals using Laplace�s

Method

The following developed derivation will be needed in the next section. This section

relies signi�cantly on a similar derivation given in Carrier, Krook, and Pearson [3,

p. 255-56].1

1Here we are deriving the asymptotic expression for ck. Carrier, Krook, and Pearson
[3] gave the major steps for the derivation of the asymptotic expression for c�k.

51



Chapter 5. Analysis of the Fourier Spectrum

Consider the Fourier integral I (k) =
R1
�1 e

�ikzf (z) dz, k 2 N, where the path
of integration passes above the singularities at zj and below the singularities at �j,

as given in Figure 5.1.

Re(z)

Im
(z

)

C1

z2

z1

ζ2

ζ1

C2

ϒ2

ϒ1

Figure 5.1: The arrows indicate the contour directions. The branch cuts extend
outward from the singularities zj and �j, j = 1; 2.

Suppose that in a neighborhood of zj,

f (z) = (z � zj)
�
1X
n=0

an (z � zj)
n , (5.1)

where Re � > �1 , and jf (z)j ! 0 uniformly as z ! 1. Then by using Jordan�s

lemma and the Cauchy-Goursat theorem,

I (k) =

Z
C1+C2

e�ikzf (z) dz. (5.2)

52



Chapter 5. Analysis of the Fourier Spectrum

The contribution from Cj to I (k) is given by

ICj (k) =

Z
Cj

e�ikz (z � zj)
�

" 1X
n=0

an (z � zj)
n +RN (z)

#
dz

=

Z
Cjup

e�ikz (z � zj)
�

" 1X
n=0

an (z � zj)
n +RN (z)

#
dz

+

Z
Cjdown

e�ikz (z � zj)
�

" 1X
n=0

an (z � zj)
n +RN (z)

#
dz

= �
Z 1

0

e�ik(zj�ir)ei
3�
2
�r�

" 1X
n=0

an (�i)n rn +RN (zj � ir)

#
(�i) dr

+

Z 1

0

e�ik(zj�ir)e�i
�
2
�r�

" 1X
n=0

an (�i)n rn +RN (zj � ir)

#
(�i) dr (5.3)

= i
�
ei

3�
2
� � e�i

�
2
�
�
e�ikzj (�1)�

Z 1

0

e�krr�

" 1X
n=0

an (�i)n rn +RN (zj � ir)

#
dr

= �2(e
i�� � e�i��)

2i
ei

�
2
�e�ikzjei��

Z 1

0

e�krr�

" 1X
n=0

an (�i)n rn +RN (zj � ir)

#
dr

= �2 sin (��) e(�ikzj+i
3�
2
�)
Z 1

0

e�krr�

" 1X
n=0

an (�i)n rn +RN (zj � ir)

#
dr,

where we let z = zj � ir. Then by Watson�s lemma, for jkj large we have

ICj (k) s �2 sin (��) e(�ikzj+i
3�
2
�)

1X
n=0

an (�i)n � (� + n+ 1)

k�+n+1
. (5.4)

For jkj large, I (k) is dominated by the particular ICj (k) with the greatest2 Im zj.
This can easily be seen by considering the dominant term e�ikzj in the above expres-

sion, and noting that e�ikzj = e�ikRe(zj)ek Im(zj). So we may write

I (k) s �2 sin (��) e(�ik~z+i
3�
2
�)

1X
n=0

an (�i)n � (� + n+ 1)

k�+n+1
, (5.5)

2�greatest�is not to be taken in the jIm zj j sense. For example, if 8j, zj < 0, then the
zj with �greatest�imaginary part would be the one with least negative value.
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where ~z is now the particular zj with �greatest�imaginary part, assuming such a ~z

exists. Now if we let n = 0, then we have3

I (k) s �2a0 sin (��) � (� + 1)
k�+1

e(�ik~z+i
3�
2
�). (5.6)

5.2 Asymptotics Applied to the Fourier Spectrum

of the Vortex Sheets�Positions

Let f (�; t) = x (�; t) + iy (�; t), where (x (�; t) ; y (�; t)) denotes the positions of the

top vortex sheet. Assume that f (�; t) can be analytically continued for complex

values of � to a strip of width � (t) in either the upper or lower-half complex �

plane.4 Furthermore, suppose that this analytic continuation of f (�; t) contains

branch point singularities of order p > �1 located on the upper boundary of this
strip; that is, at � = � � �c (t) + i� (t). Then, in a neighborhood of �, f (�) =

(�� �)�
P1

n=0 a
n (�� �)n, where � (t) � p (t) + i� (t).5 Using the results of the

previous section, for large k > 0 we have ck s �2a0 sin(��)�(�+1)
k�+1

e(�ik
e�+i 3�

2
�). That is,

ck s �2a0 sin (��) � (�+ 1)
kp+i�+1

e[�ik(�c+i�)+i
3�
2
(p+i�)]

= �2a0 sin (��) � (�+ 1) e
� 3�

2
�ei

3�
2
p

kp+1
ek�k�i�e�ik�c =

A

kp+1
ek�k�i�e�ik�c

=
jAj ei�
kp+1

ek�e�i� ln ke�ik�c, (5.7)

where A = jAj ei�, and we let A = �2a0 sin (��) � (�+ 1) e�
3�
2
�ei

3�
2
p.6

3See Appendix B for the similiar asymptotics derivation corresponding to c�k.
4The strip of width � (t) is to be in the upper-half � plane if � (t) > 0, and in the

lower-half � plane if � (t) < 0.
5The � (t) used here is di¤erent than the � = D

R used to indicate the geometry of the
two cylindrical sheets; and is used to be consistent with the work of Nitsche [24].

6For the limiting case �!1, the reader is referred to [24] for the asymptotics fo ck.
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Taking the ln of both sides then yields

ln
q
a2k + b2k+ i tan

�1
�
bk
ak

�
= ln jAj+�k� (p+ 1) ln k� i� ln k� ik�c+ i�, (5.8)

where we have let ck = ak + ibk.7 Equating the real and imaginary parts of this

expression then yields

ln
q
a2k + b2k = ln jAj+ �k � (p+ 1) ln k, (5.9)

tan�1
�
bk
ak

�
= �� � ln k � k�c. (5.10)

jAj, p, �, �, ��, and �c are functions of k and t. If � (t)! 0 as t! tc, there will

be a change from exponential to algebraic decay in jckj. At � (tc) = 0, this algebraic
decay will be of the order p + 1 in jckj. Evidence of this decay can be observed

in Figure 5.2.8 In this plot, as time increases up to the critical time, the Fourier

coe¢ cients do indeed appear to become linear. A dashed reference line with slope

�2:5 is indicated in the �gure, and matches up with the general behavior of jckj near
the estimated critical time. It supports the notion that a branch point singularity

with order of 3
2
occurs.

As � increases, it has been observed that oscillations in the plots of jckj versus k
will also increase, as seen by comparing Figure 5.2 with Figure 5.3. In the limiting

case � ! 1 performed by Nitsche [24], the oscillations appear to be greatest; and

is shown to be due to the simultaneous formation of two singularities [24]. We

think this increased oscillatory behavior as � increases is due to the contribution of

a second singularity on the same vortex sheet9.

7Recall that ln ck = ln
q
a2k + b

2
k + i tan

�1
�
bk
ak

�
.

8These plots of jckj have had the Fourier �lter applied to them.
9More on this 2nd singularity formation will be discussed in Section 5.4.
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Figure 5.2: Fourier coe¢ cients jckj vs. k, for � = 1:5, with �T = 0. The dotted
reference line denotes a slope of �2:5 on the plot. The coe¢ cients increase as time
increases.

We seek the values of the parameters jAj, p, �, �, ��, and �c, when they are
approximately constant over a range of k. Thus, we attempt to solve for these

parameters over a range of ck values; namely, ck; ck+1;ck+2;:::; ck+ws , wherews is some

prescribed integer. Over this speci�ed window, we assume that jAj ; p; �; �;��; �c
are constant with respect to k. A system over this window can be constructed as

follows:

0BBBBBBBB@

1 ln k k

1 ln (k + 1) k + 1

1 ln (k + 2) k + 2
...

...
...

1 ln (k + ws) k + ws

1CCCCCCCCA

0BBB@
ln jAj

� (p+ 1)
�

1CCCA =

0BBBBBB@
ln jckj
ln jck+1j

...

ln jck+wsj

1CCCCCCA , (5.11)
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Figure 5.3: Fourier coe¢ cients jckj vs. k, for � = 5, with �T = 0.. The dotted
reference line denotes a slope of �2:5 on the plot. The coe¢ cients increase as time
increases.

0BBBBBB@
1 ln k k

1 ln (k + 1) k + 1
...

...
...

1 ln (k + ws) k + ws

1CCCCCCA
0BBB@

�

��
��c

1CCCA =

0BBBBBB@
tan�1

�
yk
xk

�
tan�1

�
yk+1
xk+1

�
...

tan�1
�
yk+ws
xk+ws

�

1CCCCCCA . (5.12)

We use the four-quadrant inverse tangent in matlab called atan2 to compute

tan�1
�
y
x

�
. This function returns values in the interval [��; �] (see matlab help

for description). The correct 2� multiples need to be added to tan�1
�
y
x

�
so that

it increases smoothly; otherwise, we will get undue oscillations when we attempt to

solve (5.12). Figures 5.4 and 5.5 plot the matlab function atan2
�
y
x

�
without and

with the 2� multiples added, respectively. tan�1s
�
y
x

�
is taken to denotes tan�1

�
y
x

�
with the appropriate 2� multiple added. Thus, we actually seek to solve the following
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system in lieu of (5.12):0BBBBBB@
1 ln k k

1 ln (k + 1) k + 1
...

...
...

1 ln (k + ws) k + ws

1CCCCCCA
0BBB@

�

��
��c

1CCCA =

0BBBBBB@
tan�1s

�
yk
xk

�
tan�1s

�
yk+1
xk+1

�
...

tan�1s

�
yk+ws
xk+ws

�

1CCCCCCA . (5.13)

5.3 Fitting Results

The systems (5.11) and (5.13) were solved in matlab by the n command. Figures

5.6 and 5.7 show plots of the results for � = 1:5,N = 2048, �T = 0:001, l = 28,

and window size ws = 5. They were done for t = 0:275; 0:28; 0:285; 0:29. These

times are close, and less than, the kink estimated critical time. Small changes in

ws did not have a signi�cant e¤ect upon the results. The values of jAj, �, and �
do not yield much signi�cant information. We are most interested in p,�, and �c;
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which support the occurrence of a branch point singularity in the lower complex �

plane. The precision of p,�, and �c is a¤ected from a lack in total convergence in

the parameters for large k. This noise for large k is due to the e¤ect of the Fourier

�lter, truncation errors [19], and in the instance of increasing �, possibly the role in

the asymptotics of ck due to the contribution from a second singularity formation.

The �rst two given explanations could possibly be remedied by a further increase in

the machine precision, the Fourier �lter level, and the number of point vortices N .

As such, we consider 20 � k � 200.

In the Figure 5.6, we see that p roughly converges within the neighborhood of
3
2
, a value we would expect from the literature [24]. Recall that p is the order of

the branch point singularity, as given in (5.7). �c is the value of the Lagrangian

parameter � when � = 0, and from which the location of the singularity on the sheet

is known. �c is the angle � associated with a speci�c in�nitesimal part of the vortex
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Figure 5.6: Parameters jAj, p, � in approximation (5.11), for N = 2048, �T = 0:001,
l = 28, �T = 0, and ws = 5.

sheet location at time zero; this speci�c in�nitesimal part of the sheet moves to a

di¤erent position from its original one as the sheet was evolved in time. Also, �c is

approximately negative the slope of tan�1s
�
y
x

�
vs. k, which was approximated with

a linear least squares �t for � = 1:5 in Figure 5.5. Figure 5.7 gives �c � �1:77.
This is in agreement with the value from the kink estimation, which was given in

Figure 4.7 as �c � �1:77.10 The time of singularity formation tc can be estimated

from how � approaches 0 for times prior to tc. The bottom left subplot in Figure

5.6 shows this for when k = 80. It is important to take a value of k for which

10Note that Figure 4.7 actually given the estimate to be �c � 4:51. But this is equivalent
to �c � 2� � 4:51 � �1:77.
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� has approximately converged in k; values in the vicinity of k = 80 have a very

mild a¤ect upon this subplot. In this subplot, note that � is very close to being

linear with respect to t. We take a linear least squares extrapolation to determine

approximately the time at which � = 0. In this instance, it yields the estimate

tc � 0:294. Estimating tc in this way shows that the tc estimates via the kink

and maximum curvature methods were slight overshoots of their actual values. For

comparison, the kink estimate for � = 1:5, N = 512, l = 28 as previously given in

Figure 4.6 is tc � 0:302. Computations similar to those of Figures 5.6 and 5.7 were
done for several values of �. However; the �ttings did not converge for � large (i.e.

� � 5).
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Figure 5.7: Parameters �, �, and �c in approximation (5.12), for N = 2048, �T =
0:001, l = 28, �T = 0, and ws = 5.
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5.4 Second Singularity Formation

There is some indication that more than one singularity forms on each vortex sheet.

These include the following:

1. The plots of the vortex sheets�geometries at their kink estimated critical times

in Figure 4.4 show when �T was changed from �5 to 5, the location of sin-
gularity formation changes from being on the the bottom half of the sheet to

being on the top half. This change in location was also shown in Figure 4.7.

2. In the limiting case � ! 1, it is known that two singularities occur simulta-
neously [24].

3. The oscillations in Fourier coe¢ cients shown in Figures 5.2 and 5.3 increase as

� is increased (for �T = 0). These increased oscillations approach the behavior

of the Fourier spectrum in the limiting case �!1, given in [24].

4. The �tting of the asymptotic parameters in Section 5.3 could not be applied

the case of � large.

5. In Chapter 6, it is shown that each vortex sheet rolls up into two double

branched spirals for simulations11 that go past the critical time.

We would like to use the techniques developed in Section 5.2 to gain more details

of the second singularity formation, as were found in Section 5.3 for the �rst singu-

larity formation. In order to do so, we apply a spatial smoothing to a prescribed

neighborhood about the location of �rst singularity formation. The smoothing is

done through a local application of either the evolution of the heat equation or a

modi�ed vortex blob method.
11These simulations use the vortex blob method.
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Chapter 5. Analysis of the Fourier Spectrum

5.4.1 Smoothing by the Heat Equation

Consider the one-dimensional heat equation without sources on a �nite interval ~x0 <

~x < L:

@u

@t
= �

@2u

@2~x
, (5.14)

u (~x0; t) = u0,

u (L; t) = uN ,

u (~x; 0) = f (~x) .

De�ne a uniform mesh given by ~xj = ~x0 + j�~x, where j = 0; 1; 2; ::; N ; and a

time discretization by tm = m�t, m = 0; 1; 2; ::;M . A forward time, centered spatial

di¤erence approximation of the heat equation is then given by:

u
(m+1)
j = u

(m)
j + s

�
u
(m)
j+1 � 2u

(m)
j + u

(m)
j�1

�
, (5.15)

where j = 1; 2; ::; N � 1, m starts at 1, u (~xj; tm) � u
(m+1)
j , and s = � �t

(�~x)2
.12 The

constraint 0 < s <= 1
2
will guarantee that the numerical solution is stable [12].

Make � � � (~x). Let �n (~x) = (~x�1)n(~x+1)n, for n even, and where �1 � ~x � 1;
and

� (~x; p) =

8<: �Erfc-Log (j~xj ; p) , for � 1 � ~x < 0
�Erfc-Log (~x; p) , for 0 � ~x � 1

,

12Note that N and �t given here are not to be confused with the N and �t pertaining
to the number of point-vortices used in the point-vortex approximation and the timestep
of the sheet evolution.
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where �Erfc-Log (�; p) � 1
2
erfc

(
2p

1
2

�
j�j � 1

2

�s� log
h
1�4(j�j� 1

2)
2
i

4(j�j� 1
2)

2

)
as described in [1].13

Figure 5.8 plots � (~x) versus ~x (top subplot) and their respective Fourier coe¢ cients

jckj versus k (bottom subplot), for � (~x) = �n (~x) and � (~x; p) = �n (~x), where n = 2; 4

and p = 2; 6; 12. The legend entries n correspond to � (~x) = �n (~x), and those

including the erfclog terms correspond to � (~x) = � (~x; p). The e¤ect of increasing

p can also be seen in Figure 5.8; in part, it will make the integrand of � (~x) slimmer

in a neighborhood about ~x = 0. Observe that as k increases beyond a small value

(a little after k = 10 to be more precise), there will be sequentially larger decays in

the Fourier coe¢ cients jckj of �2 (~x), �2 (~x), � (~x; 6), and � (~x; 12).
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Figure 5.8: Plots of � (~x) vs. ~x and their respective Fourier coe¢ cients jckj vs. k,
for several types of � (~x) distributions.

13Note that this � (~x; t) is di¤erent than the � (s) corresponding to the vortex sheet
strength mentioned earlier in the paper.
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The heat equation is applied to both the x and y positions of the point vortices

used in the vortex sheet approximation. As such, we will solve (5.15) for both of

the cases u = x and u = y. We let ~x = kk in both cases, where kk is taken to be

the discretization index corresponding to a speci�c point-vortex.14 The smoothing

is done in an index neighborhood h about the estimated location of the singularity

that is intended to be smoothed. Furthermore, we impose a number of points h0

on each side of the prescribed � (~x) distribution for which we have additionally set

� (~x) = 0. Let

�erf-logc, p (~x) �

8>>>>>><>>>>>>:

0, for 0 � ~x � h0

�
���� ~x�hh�h0

��� ; p� , for h0 � ~x � h

�
�
~x�h
h�h0 ; p

�
, for h � ~x � 2h� h0

0, for 2h� h0 < ~x � 2h

. (5.16)

See the top plot in Figure 5.9 for an example of h, h0, and � (~x). For this

example, � (~x) = �erf-logc, 12 (~x). max (su) = max
�
� (~x) �t

(�~x)2

�
= max

�
� (k) �t

(�k)2

�
,

where u can be taken to be either u = x or u = y. Unless otherwise stated,

max (sx) = max (sy) since the same�~x and�t were typically used for the smoothings

in both the x and y positions. This smoothing was applied to both of the following

cases (and their outcomes given):

1. Over a neighborhood of the second singularity formation in an attempt to

study the �rst singularity formation for � large; namely, for � large enough

that the �tting methods developed in the Section 5.2 could not be applied.

For these instances, we took the estimated location of the second singularity

formation to be approximately equal to that of the limiting case �!1 already

14This kk is not to be confused with the k corresponding to the index of the Fourier
coe¢ cients ck.
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Figure 5.9: � distribution (top plot) and Fourier coe¢ cients of the vortex sheet
position jckj vs. k (bottom plot) before and after the smoothing was applied to a
neighboorhood about the estimated location of the 1st singularity formation.

determined by Nitsche [24]. This case was also used to test the success of

the smoothing on our vortex sheet problem. If this case of smoothing over

the second singularity formation is successful, and the asymptotic parameters

from Section 5.3 relating to the �rst singularity can then be determined, they

should be similar to those in the limiting case �!1 given by Nitsche. � = 5

was one of our test cases. Figure 5.9 plots the implemented � (~x) = � (~x) =

�erf-logc, 12 (~x) (where h0 = 100, h = 300, and p = 12) distribution (top plot) and

Fourier coe¢ cients of the vortex sheet position jckj vs. k (bottom plot) before

and after the smoothing was applied to a neighborhood h about the estimated

location of the �rst singularity formation. We set M = 150, N = 2048, and
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Chapter 5. Analysis of the Fourier Spectrum

performed the smoothing for t = 0:5, 0:52, 0:54, 0:55, 0:56, 0:57. Applying the

methods in the Section 5.3 to the smoothed vortex sheet were not successful;

the asymptotic system could not be solved via matlab.

2. Over a neighborhood of the �rst singularity formation in an attempt to deter-

mine the asymptotic parameters developed in Section 5.3 corresponding to the

second singularity formation. In this case, the location of the �rst singularity

formation was known for � not large (i.e. � � 2), as determined in the Section
5.3. In the instances we attempted, including � = 1:5, � = 2, and other

values of � for which � � 2), the smoothing also did not yield any signi�cant
results with respect to determining the asymptotic parameters of the second

singularity formation.
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105
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original
smooth

Figure 5.10: Fourier coe¢ cients of the vortex sheets�position jckj vs. k after the
smoothing was applied, with � = 1

2
.

In both of these cases, it was important to apply the smoothing within an appro-
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priate neighborhood about the designated singularity so that the smoothing does not

a¤ect the other singularity formation in question. In the smoothings implemented,

attempts were performed for � (~x) = �erf-logc, p (~x) and � (~x) = �n (~x), for several n

and p values ranging from 2 to 12. Several di¤erent values of the total number of

timesteps M , �t, h, and h0; and consequently, various values of max (s) � 1
2
were

used. These did not improve our sought after results.

As another last test case for this method, we smoothed over the entire vortex

sheet with � (~x) = 1
2
to gain further insight into the e¤ect of the smoothing. Figure

5.10 shows the Fourier coe¢ cients the vortex sheet position jckj vs. k before and

after this smoothing was applied. Observe that jckj corresponding to the smoothed
data decays less for large k that corresponding to the non-smoothed jckj. This shows
that the actual attempt to su¢ ciently smooth the positions of the vortex sheet was

not successful.

Possible explanations for the failure of the implementation to yield smoother

results include error in the modes introduced by the discretization, and � (~x) not

being su¢ ciently smooth in its discretization.

5.4.2 Smoothing with the Vortex Blob Method

We again consider smoothing over a portion of the vortex sheet, but this time using

a variation of the vortex blob method mentioned in Section 2.2.2. In (2.6), let

� � � (�). Then (2.6) becomes
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u (x; t) =
1

2�

Z 2�

0

1

(x� ~x)2 + (y � ~y)2 + � (�)2

0@ ~y � y

x� ~x

1A� (�) d� (5.17)

+
1

2�

Z 2�

0

1

(x� ~x)2 + (y + ~y)2 + � (�)2

0@ y + ~y

~x� x

1A� (�) d�.

Now, choose

�n (�) �

8>>><>>>:
0, if � < �j � "

�max(����j�"
"

)n(
���j+"

"
)n, if �j � " � � � �j + "

0, if �j + " < �

. (5.18)

So, within an " neighborhood about �j, a modi�ed vortex blob method is imple-

mented. We choose �j to be equal to the estimated �c value corresponding to the

location of the singularity to be smoothed. �max was taken to be either 0:1 or 0:2.

For this method, we replaced the integral approximation methods with correction

terms as described in Section 3.1 with a method used by Shelley [26], termed the

modi�ed point-vortex approximation, which does not include the use of the correc-

tion terms, but is also exponentially accurate. This made coding this problem more

convenient. The vortex sheets�were evolved according to (5.17), the implementa-

tion of the Fourier �lter. Still, noise was prevalent in the geometries of the vortex

sheets. As time was incremented, it arose to the extent that it signi�cantly per-

turbed the evolution of the vortex sheets�positions. This attempt of a smoothing

proved unsuccessful. As a test case, we tried changing �n (�) as given in (5.17) to a

periodic function �n (�) = �max sin
2 (�� �j) for �n (�) = �max cos

2 (�� �j) to see if

it would improve the problem of the noise. It was hoped that if a periodic function

was useful in decreasing the noise, we could adjust it so that its magnitude is small
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away from the �rst singularity formation, and larger near the location of the second

singularity formation. The periodic functions mentioned, however, did not result in

an improvement.
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Evolution Past Critical Times

Thus far, we have performed evolutions of the vortex sheets up only to their estimated

critical times. As mentioned in Section 2.2.2, with the use of the vortex blob

method, according to (2.6), the vortex sheets can be evolved past their estimated

critical times, with an appropriate choice of �. Suitable choices include, for example,

� = 0:2, 0:1,or 0:05. Figure 6.1 plots the vortex sheet evolutions with � = 5, � = 0:1,

�T = 0:01, and for �T = �5; 0; 5. Recall that the vortex sheets are prescribed an

initial velocity U = (1; 0; 0). Note that the value of �T determines the location of

the �rst singularity formation, as well as which portion of the vortex sheet rolls up

�rst. Nitsche [23] studied the vortex sheet roll-up for a single initially cylindrical

vortex sheet with �T = 0, which is our limiting case �!1. The middle set of plots
in the �gure for � = 5, �T = 0, is in close agreement to those results, as they should

be. Figure 6.2 plots the computed top vortex sheets again with � = 0:1, �T = 0:01,

and �T = �5; 0; 5, but now with � = 1:5. The three plots in the top right corner

corresponding to T = 4;�T = �5; T = 6;�T = �5; and T = 6;�T = 0 appear to

have a portion of their vortex sheets touching the x-axis. This would imply that

the top vortex sheets are actually touching the bottom vortex sheets at those times.

Also, observe that for the middle set of plots in the �gure, � = 1:5, �T = 0, the top
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and bottom halves of the top vortex sheet do not roll up as symmetrically as in the

case for � = 5, �T = 0 given in Figure 6.1.
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Figure 6.1: Computed top vortex sheets using the vortex blob method, for � = 5,
� = 0:1, �T = 0:01, and with �T = �5; 0; 5.

A few comments are in order regarding the lift forces on the vortex sheets. Ac-

cording to [5, p. 93], the Kutta-Joukowski Theorem states the following: "Consider

incompressible potential �ow exterior to a region B. Let the velocity �eld approach

the constant value (U; V ) = U at in�nity. Then the force exerted on B is given

by F = ���T kUkn, where �T is the circulation around B and n is a unit vector
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Figure 6.2: Computed top vortex sheets using the vortex blob method, for � = 1:5,
� = 0:1, �T = 0:01, and with �T = �5; 0; 5.

orthogonal to U." The Kutta-Joukowski Theorem can be applied to the top vortex

sheet1, for example, in the limiting case � ! 1. For �T = 0, there is no net force

1For these considerations, to make kUk nonzero for the �ow, we simply change our

reference frame as follows: Choose the initial velocity inside the vortex sheets to be (0; 0; 0).
The velocity �eld outside the vortex sheets would then be changed by subtracting U from
the previously x̂ directed velocity �eld component for outside the vortex sheets. In that
case, the �ow far away from the vortex sheets would become a uniform rectilinear �ow
described by the velocity �eld (�U; 0; 0). And initially, the �ow would then be analogous
to a �x̂ directed uniform rectilinear �ow of magnitude U past the two vortex sheets.
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acting on the vortex sheet, and thus no drag (recall d�Alembert�s paradox). An

application of the Kutta-Joukowski Theorem often noted is that for uniform �ow

past a single cylinder with circulation [11] [8].

The Kutta-Joukowski Theorem cannot, however, be applied to a single vortex

sheet in our problem for � �nite. But, it can be applied to determine the total

force summed from that due to both of the vortex sheets [8]. Nevertheless, due

to our prescribed symmetry of the vortex sheets, (i.e. the bottom vortex sheet is

a re�ection about the x-axis of the top vortex sheet), the total sum of circulation

summed from the top and bottom vortex sheets will be 0. The bottom vortex sheet

will have a negative circulation, but of the same magnitude, of that of the top vortex

sheet. If one wished to prescribe the top and bottom vortex sheets with individual

circulations with di¤erent magnitudes, or same signs, one would need to change the

initial setup of the problem, and break the symmetry we imposed on the two vortex

sheets. For our problem in question, due to the symmetry we prescribed on the

vortex sheets, we know that the lift forces must be equal in magnitude and opposite

in direction.

Even in the instance that each vortex sheet is prescribed a 0 circulation, there is

a force of attraction between them. This is because when more than one body is

moving through an ideal �uid, a mutual force is exerted between them (if they have

no circulation, and possibly even if they do have circulation) [25, p. 109]. This force

of attraction increases as � becomes smaller. Further explanation of these concepts

is discussed by Crowdy for the case of a �nite stack of cylindrical airfoils in [8].
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Summary

The evolution of two initially cylindrical, counter-rotating vortex sheets was com-

puted. Several values of both their non-dimensionalized separation distance �,

and total prescribed circulation �T around each sheet were taken into considera-

tion. More than one method was used to estimate their times and locations of the

singularity formation. These include an analysis of the blow up in the maximum

curvature � of the sheets�geometries, the post-critical-time kink formation, and the

transition from exponential to algebraic decay in the Fourier spectrum and the as-

sociated linear-least-squares �tting of the asymptotic parameters. The branch-point

singularities were con�rmed to be of order 3
2
.

Several indications were given for the presence of a second singularity formation

in the vortex sheets, for � �nite. Smoothings the initial singularity formation were

conducted using either the heat equation or a local application of the vortex blob

method. It was hoped that doing so would allow one to determine the values of

the asymptotic parameters, and hence, obtain the analogous asymptotic information

that was gained in doing so with the �rst singularity formation. The smoothings

were, however, unsuccessful towards this aim.
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The vortex sheet roll-up past times of singularity formation was studied with the

use of the vortex-blob method.

The evolution of the two cylindrical vortex problem could possibly be extended

to the case of the evolution of a set of multiple initially cylindrical vortex sheets,

with the aid the content found in [7] [8] [9], by providing a means for solve for the

associated initial sheet strengths � (s).

Modelling the evolution of an initially toroidal vortex sheet is one of next logical

extensions for the problem considered in this paper.
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Appendix A

Non-dimensionalization

In this section, we show the non-dimensionalization of the initial conditions (2.1) to

that of (2.2), as well as for that of the evolution equations (2.5). The end result will

be the introduction of the parameter � = D
R
in lieu of using both D and R. This

leads to a greater simplicity in the simulations of the given problem.

Let R and U be quantities with units of length and velocity, respectively. Let us

introduce the following dimensionless quantitiesU� = U
U
=
�
U
U
; 0; 0

�
= (1; 0; 0). x� =

x
R
, ~x� = ~x

R
, �� = �

RU
, and t� = U

R
t. So Rx� = x, dx

dx� = R, d� = RU d��, and dt�

dt
= U

R
.

Then Rx� = x (�; t) =

0@ R cos�

D +R sin�

1A implies that x� =

0@ cos�

D
R
+ sin�

1A.
Also, dx(�;t)

dt
= dx

dx�
dx�

dt
= Rdx�

dt
= Rdx�

dt�
dt�

dt
= RU

R
dx�

dt� = U dx�

dt� . So

dx�

dt� =
1
U

�
U dx�

dt�

�
= 1

U
dx(�;t)
dt

= 1
2�U

P:V:
R 2�
0

1
(x�~x)2+(y�~y)2

0@ ~y � y

x� ~x

1A d�
d~�
d~�
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+ 1
2�U

R 2�
0

1
(x�~x)2+(y+~y)2

0@ y + ~y

~x� x

1A d�
d~�
d~�

= 1
2�U

P:V:
R 2�
0

1
(Rx��R~x�)2+(Ry��R~y�)2

0@ R~y �Ry

Rx�R~x

1A RU d��

d~�
d~�

+ 1
2�U

R 2�
0

1
(Rx��R~x�)2+(Ry�+R~y�)2

0@ Ry +R~y

R~x�Rx

1A RU d��

d~�
d~�

= R2U
2�R2U

P:V:
R 2�
0

1
(x��~x�)2+(y��~y�)2

0@ ~y � y

x� ~x

1A d��

d~�
d~�

+ R2U
2�R2U

R 2�
0

1
(x��~x�)2+(y�+~y�)2

0@ y + ~y

~x� x

1A d��

d~�
d~�

= 1
2�

R 2�
0

1
(x��~x�)2+(y��~y�)2

0@ ~y � y

x� ~x

1A d��

d~�
d~�

+ 1
2�

R 2�
0

1
(x��~x�)2+(y�+~y�)2

0@ y + ~y

~x� x

1A d��

d~�
d~�.

Thus, the governing equations dx�

dt� are the same as those for
dx
dt
, where x� =0@ cos�

D
R
+ sin�

1A. Let � � D
R
. And for simplicity, let us now drop the � so that x�

becomes x, etc. Then we have

x (�) =

0@ x (a)

y (a)

1A =

0@ cos�

�+ sin�

1A . (A.1)

See Figure 2.2 for a schematic of this description. And, the initially prescribed

velocity of the vortex sheets and the �uid contained within the vortex sheets now

becomes U = (1; 0; 0).
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Asymptotics of the Fourier

Integral for c�k

This section is similar to that done in of Section 5.1, but pertains to the asymptotics

of c�k. The more signi�cant steps of this derivation are given in by Carrier, Krook,

and Pearson [3, p. 255-56]. Consider the Fourier integral I (k) =
R1
�1 e

ikzf (z) dz,

k 2 N, where the path of integration is the same as that previously. Suppose that

in a neighborhood of �j,

f (z) =
�
z � �j

�� 1X
n=0

an
�
z � �j

�n
, (B.1)

with Re � > �1 , and jf (z)j ! 0 uniformly as z ! 1. Again by using Jordan�s

lemma and the Cauchy-Goursat theorem,

I (k) =

Z
�1+�2

eikzf (z) dz. (B.2)
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The contribution from �j to I (k) is given by

I�j (k) =

Z
�j

eikz
�
z � �j

�� " 1X
n=0

an
�
z � �j

�n
+RN (z)

#
dz

=

Z
�jdown

eikz
�
z � �j

�� " 1X
n=0

an
�
z � �j

�n
+RN (z)

#
dz

+

Z
�jup

eikz
�
z � �j

�� " 1X
n=0

an
�
z � �j

�n
+RN (z)

#
dz

= �
Z 1

0

eik(�j+ir)e�i
3�
2
�r�

" 1X
n=0

api
nrn +RN

�
�j + ir

�#
i dr

+

Z 1

0

eik(ir+�j)ei
�
2
�r�

" 1X
n=0

api
nrn +RN

�
�j + ir

�#
i dr (B.3)

= i
�
ei

�
2
� � e�i

3�
2
�
�
eik�j

Z 1

0

e�krr�

" 1X
n=0

ani
nrn +RN

�
�j + ir

�#
dr

= �2(e
i�� � e�i��)

2i
e�i

�
2
�eik�j

Z 1

0

e�krr�

" 1X
n=0

api
nrn +RN

�
�j + ir

�#
dr

= �2 sin (��) e(ik�j�i
�
2
�)
Z 1

0

e�krr�

" 1X
n=0

api
nrn +RN

�
�j + ir

�#
dr,

where we let z = �j + ir. Then by Watson�s lemma, for jkj large we have

I�j (k) s �2 sin (��) e(ik�j+i
�
2
�)

1X
n=0

ani
n� (� + n+ 1)

k�+n+1
. (B.4)

For jkj large, I (k) is dominated by the particular I�j (k) with the smallest1 Im �j.
This can easily be seen by considering the dominant term eik�j = eikRe(�j)e�k Im(�j)

in the above expression. So

I (k) s �2 sin (��) e(ik~z�i
�
2
�)

1X
n=0

ani
n� (� + n+ 1)

k�+n+1
, (B.5)

1�smallest�is not to be taken in the
��Im �j�� sense. For example, if 8j, �j > 0, then the

�j with �smallest�imaginary part would be the one with least positive value.
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where ~z is now the particular �j with smallest imaginary part, assuming such a ~z

exists. Again by letting n = 0, we then have

I (k) s �2a0 sin (��) � (� + 1)
k�+1

e(ik~z�i
�
2
�). (B.6)

In this work, we performed the �tting of asymptotic parameters to that of ck.

The asymptotics for c�k were included so that one could do similar �ttings for c�k

if desired.
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