Aging-Specific Survival and Molecular Signatures of Glioblastoma Multiforme: Analysis of Clinical and Large-Scale Transcriptomic Data from The Cancer Genome Atlas (TCGA)

Syed Faraz Kazim
Devan W. Vidrine
Meic H. Schmidt
Chad D. Cole
Sara G M Picirillo

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/hsc-bbhrd
Authors
Syed Faraz Kazim, Devan W. Vidrine, Meic H. Schmidt, Chad D. Cole, Sara G M Picirillo, and Christian A. Bowers
Age-Specific Survival and Molecular Signatures of Glioblastoma Multiforme: Analysis of Clinical and Large-Scale Transcriptomic Data from The Cancer Genome Atlas (TCGA)

Syed Faraz Kazim, MD, PhD, Devan W. Vidrine, MA, Meic H. Schmidt, MD, MBA, Chad D. Cole, MD, MS, Sara G.M. Picirillo, PhD, Christian A. Bowers, MD

Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM, USA

*Correspondence: CABowers@salud.unm.edu

INTRODUCTION

1. Age-specific survival in GBM patients

- Glioblastoma multiforme (GBM) is the most common malignant brain tumor and carries a poor prognosis
- Despite aggressive multimodality treatment, the median survival is approximately 18-20 months, depending on molecular subgroups
- While it’s known that older adults with GBM have a worse prognosis compared to younger patients, the precise molecular mechanism(s) and key mediator(s) of this aging-related phenomenon remain largely unknown

The present study was conducted to evaluate age-specific survival and molecular signatures of GBM in a large national cancer registry

OBJECTIVE

- We extracted data of 593 primary GBM patients from The Cancer Genome Atlas (TCGA) (www.cancergenome.nih.gov)
- The data included age at diagnosis, treatment (surgical versus non-surgical), outcome (deceased versus living), survival time, Karnofsky performance score (KPS), and gene expression profile based on RNA-Sequencing (RNA-Seq) data
- For analysis, the study data was distributed into four age groups (10-44 years, 45-54 years, 55-64 years, and > 65 years of age)

MATERIALS AND METHODS

- Age-specific survival analysis and RNA-Seq profiling identifies a sub-set of genes more commonly mutated in older GBM patients with shorter survival time
- Further characterization of the molecular signatures associated with aging in GBM patients will help identify mechanisms that contribute to GBM severity in this age group and may also lead to identification of potential therapeutic targets

RESULTS

2. Clinical and molecular profile of study data

3. RNA-Seq demonstrates differences between the four cohorts in the mutational profile of ten most mutated genes in GBM biopsies

SUMMARY & CONCLUSIONS

- Age-specific survival analysis and RNA-Seq profiling identifies a sub-set of genes more commonly mutated in older GBM patients with shorter survival time