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Vol. 113, No. § The American Naturalist May 1979

NATURAL SELECTION AND SEX CHANGE IN PANDALID SHRIMP:
TEST OF A LIFE-HISTORY THEORY

Eric L. CHARNOV
Department of Biology, University of Utah, Salt Lake City, Utah 84112

A sequential hermaphrodite reproduces as one sex early in life, then changes to the
other for the rest of its life. The condition is widespread among invertebrates and fish
(Giese and Pearse 1974, 1975a, 1975b, 1977; Bacci 1965, Ghiselin 1969, 1974;
Reinboth 1975; Atz 1964) and is known for a few plants (Heslop-Harrison 1972).

Ghiselin (1969) suggested that natural selection should favor this form of repro-
duction over dioecy when an individual’s reproductive success (RS) as a male or a
female is closely related to age or size, and where the relationship is different for each
sex. For example, if large size increases the egg output of a female but does not aid a
male in competition to fertilize eggs, selection favors genes which cause an individual
to operate as a male when small, then switch to a female at a later age (or larger size).
The reverse order of sex change would be favored if larger size or older age was
relatively more important for male RS. A series of papers employing population
genetic techniques have generally supported Ghiselin’s suggestion (Warner 1975;
Warner et al. 1975; Leigh et al. 1976; Charnov 1979). The formal models have the
added value that they allow us to make quantitative (or semiquantitative) predic-
tions on the nature of sex change. For example, the genetical models can be used to
predict the age of sex change favored by natural selection. This age corresponds to
what Maynard Smith (1976) has termed an “Evolutionarily Stable Strategy” (ESS).
Individuals changing at some other age are selected against if most members of the
population change sex at this age. Thus selection acts to maintain the population at
this value. Qualitative predictions on the age of sex change were the basis of previous
tests of the theory (Warner 1975; Warner et al. 1975).

This article presents a graphical approach to the genetical theory of sex change
(similar to one recently applied to the evolution of simultaneous hermaphroditism
[Charnov et al. 1976]). The graphs will help clarify a set of predictions to be tested
against data from Pandalid shrimp. These shrimp are protandrous hermaphrodites
(reproduce first as males). The goal is to use the genetical theory to predict the age of
sex change. Since these shrimp show much geographic variation in this age (Rass-
mussen 1953; Butler 1964; Allen 1959; Haynes and Wigley 1969; Horsted and Smidt
1956; Scrivener and Butler 1971), they provide a good opportunity to test the
evolutionary model.

Am. Nat. 1979. Vol. 113, pp. 715-734.
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A GENETICAL THEORY OF SEX CHANGE

Sex change theory makes use of the following ideas. Consider a population stable
in numbers, with overlapping generations and a stable age distribution. The species is
a protandrous hermaphrodite with the various life-history parameters (fertility as a
male or female, survival rate) assumed to be age specific. Protandry is used here
simply for illustrative purposes. Let ¢ be the age at which an individual changes sex.
Define as follows (in continuous time): b(x) = birth rate of an age x female relative to
the birth rate of an age y female, with y an arbitrary age chosen simply to make
female fertility a relative measure; Q(x) = fertility of an age x male relative to the
fertility of an age y male. This age y is the same as used above, so that an individual
operating as a male or a female at age y has a relative fertility of one. The Q(x) is the
relative ability of an age x male to fertilize eggs (e.g., compete for females).

Finally, let /(x) = probability an individual is alive at age x. This is the usual life
table definition from demography (Keyfitz 1968). It should be noted here that these
three functions could also be related to t (e.g., b(x, t)), with I(x) both sex and age
specific.

With these definitions, we may designate the genetic contribution of an individual
through male function, M(t), as

M(t) = jo I(x)0(x) dx. (1)

The genetic contribution of an individual through female function is defined in a
similar way:

F(t) = j 1(x)b(x) dx. @)
t

Note in (1) that if ¢t —» oo, the individual is a male all of its life; thus M(co) is the
fitness or genetic contribution of a pure male. In (2), if t — 0, the individual is a female
for life; thus F(0) is the fitness of a pure female.

Suppose now that this population consists entirely of individuals changing sex at
time t. Introduce into this population a rare mutant gene which causes its bearers to
change sex at some other time (). In earlier papers (Leigh et al. 1976; Charnov 1979)
it is proven that this mutant is selected against, provided

M(t) | F(r)

(otherwise it is selected for), where M(t) and F(t) refer to equations (1) and (2) for the
mutant. Equation (3) provides a rule for finding the ESS age of sex change. If we can
find a t such that (3) is satisfied for all £, then the t will be the ESS (which will be
denoted as t*).

Two other inequalities are important in the theory. (1) Sex change is favored over
dioecy provided

(1—r)- F(O)+r - M(o0)
F(t*) M(t*)

<2, 4)
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F(o)

Fi1G. 1.—A fitness set for sex change. The curved surface is a plot of F(t), M(t) for various t. The
end points are the fitnesses associated with being a pure male M(co) or female F(0). Line A
connects M(co) to F(0). Line B passes through a chosen point M(t), F(t) with slope — F(z)/M(z).
These two lines are used to derive the ESS sex habit and are discussed further in the text.

where r is the fraction of males among the males and females at birth. (2) Dioecy is
favored over hermaphroditism provided

F(t*)  M(t*)
F(0) * M(cx)
(note that [5] simply inverts the ratios in [4] and sets r = +—which is the ESS sex

ratio for the dioecious population).
These inequalities can be justified intuitively. Each is of the form

<1 (5)

fitness of mutant through male function

fitness of typical individual through male function

fitness of mutant through female function <
fitness of typical individual through female function

Thus the equations assign equal weight to fitness gains through male and female
function. Since any zygote receives half its autosomal genes from each sex, it seems
reasonable that fitness measures for equilibria (or alterations) in the allocation of
resources to sex function treat male and female function equally (as first pointed out
by R. A. Fisher, 1958). See Charnov (1979) for a general discussion of this.

The implication of these inequalities is easier to see if they are put in graphical
form. For every value of ¢, we find a pair of fitnesses M(t), F(t). If these pairs are
plotted on Cartesian coordinates, a curve such as figure 1 results. Each point on the
curve is associated with a ¢ value, and the endpoints are the fitnesses for the pure
males and females. This curve will be called a “fitness set” (Levins 1968), as it traces
out all possible male and female fitnesses for the hermaphrodite. There are two lines
in figure 1, and they correspond to boundaries of the inequalities in (3) to (5). The 4
connects F(0) and M(co0); B is a line through any chosen point [M(t), F(t)] with slope
— F(t)/M(t). The equation of A, which is a linear combination of pure male and
female fitnesses, is

M(t) | F(r)

M(e) T FO) ©)
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F(o)

M), F(r)

M(t) M ()

FIG. 2.—A convex fitness set favors sex change. The ESS age of sex change (t*) is where a B
line is tangent to the fitness set, and where no points on the fitness set fall above (to the outside
of) it. Sex change is favored since all points on the A line fall to the inside of the B line
corresponding to r*.

The equation of B is

M) | F() _
M(z)  F(z) 2 )

Combining lines 4 and B with (3) to (5), I will show how the shape of the fitness set
determines the sex habit. There are two cases to be considered.

Case I.—Fitness set is convex (fig. 2). Sex change is favored. The ESS age of
transform (r*) is the ¢ which maximizes the product M(t) - F(r).

Dioecy is not favored, since all points on the fitness set are to the outside of line 4
and thus violate inequality (5). The t* is found by constructing B lines at various
points along the fitness set, until a line is found such that no points on the fitness set
fall to the outside of it. This is where the line B is tangent to the curve (and ineq. [3] is
satisfied). At this point the slopes of the line and fitness set are the same and
M(t) - F(r) is maximized.

The points (1 — r)F(0), rM (o) lie on the line connecting F(0) to M(c0) and are
to the inside of the B line defining F(t*), M(r*). Sex change is thus favored over
dioecy since inequality (4) is always satisfied. Intuition also leads to the idea that
convexity favors sex change. With the curve convex, a sequential hermaphrodite
gains more through both male and female fitness than a linear combination of males
and females, which fall on the line connecting M(o0) to F(0).

Case I1.—Fitness set is concave (fig. 3). Dioecy is favored. All points on the fitness
set lie to the inside of line 4, making (5) always true. An argument similar to that
given above for the B line shows that sex change cannot be favored with this fitness
set. In this case the hermaphrodite never achieves the same male or female fitness as a
combination of males and females.

If the fitness set is a mixture of concave and convex. the results may become rather
complex. The most reasonable case is where neither (4) nor (5) is always satisfied.
The ESS may then be a mixture of hermaphrodites and males or females (in stable
proportions). This point is further developed elsewhere (Charnov et al. 1976).

As a final theoretical point, consider how Ghiselin’s initial hypothesis necessarily
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F(o) ¢

M(t) M(w)

F1G. 3.—A concave fitness set favors dioecy. If all points on the fitness set fall to the inside of
the A line, dioecy is favored over sex change. The ESS sex ratio (at conception) under dioecy is
one-half males.

leads to a convex fitness set. (For alternative proof, see Leigh et al. 1976.) The fitness
set is convex provided dF(t)/dM(t) and d2F(t)/dM(t)* are both < 0.

From (1) and (2), dF(t)/dM(t) = —b(t)/Q(t). Thus, if b(t)/Q(t) increases with ¢ the
fitness set is convex. To put it another way, if female RS, b(t), increases with age
relative to male RS, Q(t), selection favors sex change. An individual should be a male
when young, changing to a female at a later age.

These methods may be extended to cover ideas about the cost of sex change,
differential mortality between the sexes, etc. So long as the relations can be
represented in fitness set form, the inequalities can easily be applied.

SEX CHANGE IN PANDALID SHRIMP

Shrimp in the family Pandalidae are of major commercial importance in temperate
to subarctic waters. They have been the subject of two major symposia (F.A.O.
1968-1970; Marine Biol. Assoc., India 1967), numerous life history monographs and
reviews (Allen 1963; Gotshall 1972; Appolonio and Dunton 1969; Hjort and Rudd
1938; Palenichko 1941; Ivanov 1969; Mistakidis 1957; Kubo 1951; Aoto 1952) and
some sophisticated population modeling (Fox 1972; Abramson and Tomlinson
1972; Geibel and Heinmann 1976). A useful bibliography also exists (Scrivener
and Butler 1971).

Most commercial species are protandrous hermaphrodites. Breeding takes place in
the fall. After copulation, females carry the eggs until they hatch in the spring. The
larvae are planktonic, settling to the bottom in mid to late summer. Individuals breed
for the first time 1.5, 2.5, or 3.5 yr after hatching. Age of first breeding is often related
to the attainment of a certain size (Rasmussen 1953) and varies accordingly with
growth rates. After a variable time as a male, individuals reverse sex and reproduce as
females for the rest of their lives. Breeding is typically at yearly intervals, except
perhaps in very cold water (Rasmussen 1953), where it may be less frequent.

Seasonal breeding means that an individual can spend only an integral number of
years as a male, and that the appropriate mathematics replaces integration with
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M(t)

FiG. 4.—A fitness set with seasonal reproduction. The set consists of points, each referring to
the fitnesses associated with spending an integral number (0-5) yr as a male. If the points are
connected in succession by lines, a continuous curve results. This may be treated like the curves
in fig. 1. If t* falls on the line segment connecting two points, the population may average t* by
having a proportion of the cohort change sex at each of the two ages.

summation in (1) and (2). Likewise the fitness set will be discrete points rather than
the continuous curves of figures 1-3. A hypothetical example is in figure 4. Each
point (numbered 0-5) represents the fitness through male and female function for
spending 0, 1, 2, 3, 4, or 5 yr as a male. The example shows a life span of 5 yr. Note,
however, that the points can be connected successively with-lines (as in the figure) to
form a continuous curve. This curve will be convex provided b(x)/Q(x) increases with
X.

This curve can be treated just like the continuous fitness sets in figures 1-3. The
only alteration is that if the ESS age of sex change (t*) falls on the line segment
connecting two points, it implies that the average member of a cohort spends ¢* as a
male (Warner 1975). For example, suppose t* falls between ages 1 and 2. For a
cohort to average t*, one fraction of the cohort should change sex at age 1, the rest at
age 2. If the fitness set is convex, t* will either be a single age, or two successive ages
with a fraction of the cohort changing at each.

The proportion (g) which should change sex at the first age is calculated as follows.
It is the proportion which maximizes the product of the average fitness through male
function times the average fitness through female function. Continuing the example,
the product may be written as

[gM(1) + (1 — M ())[gF(2) + (1 — 9)F(3)),
where

M(1) = male fitness for spending 1 yr as a male,
M(2) = male fitness for spending 2 yr as a male,
F(2) = female fitness for spending 1 yr as a male (being a female at age 2),
F(3) = female fitness for spending 2 yr as a male (being a female at age 3).

This splitting of a cohort into two parts is well known for Pandalid shrimp (e.g.
Rasmussen 1953). Probably the most common situation is the occurrence of “early
maturing females” (EMF) (Fox 1972). These are individuals who mature or breed for
the first time as females, never having reproduced as males. At the age of first
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reproduction (a), the cohort splits into two parts. Some fraction of breeders are males
(and typically will turn into females by age « + 1), the rest are females. In reference to
figure 4, this case would result if the product maximization fell between 0 and 1.

The absence or presence of EMF, and their frequency when present, provides a
good test for sex change theory for the following reason. Theoretical presence or
absence does not depend upon knowledge about the male fertility, Q(x), function
(which would be very difficult to measure). Since only one male age group is present
(all males are predicted to change to females by age a + 1), the potential fertility of
older males is unimportant. Suppose t* is less than 1 yr. The t* then maximizes F - M
where the product takes the form [P - F(a) + (1 — P)F(x + D)][(1 — P)M(2)] =
M - F, where P is the fraction of a cohort acting as EMF.

Setting (M - F)/0P = 0 and letting W = F(x + 1)/F(«) (the relative female fitness
of a hermaphrodite compared to an EMF), we find that the ESS P is of the form:

P(1-P)=1-2W, W<}
P/(1-P)=0, w4

Relationship (8) provides a rather unique hypothesis. If W > 4, all individuals should
spawn at least once as males (thus we predict there to be no EMF). If W < 3, we
expect a negative, linear relationship between W and the ratio of females to males at
the age of first reproduction (with a limiting value of 1:1). Note that the relationship
is the same as the predicted frequency of females in gynodioecious plant populations
(Charnov et al. 1976).

Provided EMF and hermaphrodites experience the same mortality and fecundity
schedules (they differ only in that EMF get one additional year as a female), W may
be estimated as follows. All mortality prior to age « cancels out of the equation. We
may take the cohort as beginning life at age a; so l(x) = 1. W is then written as:

o Moe+ 1) b(e+ 1)+ o +2) - blo+2) + -
_.b(a)+l(a+1)-b(a+1)+1(a+2).b(a+2)+._‘.

®)

©)

To estimate W requires knowledge of (1) age of first reproduction—a, (2) age-fertility
relations, in terms of egg production—b(x), (3) mortality rates—I(x). I will now show
how these may be estimated for Pandalid shrimp.

i) Female fecundity, b(x), increases with adult size. Most graphs of egg number
against body length (or carapace length) are increasing and concave upward. The
data usually fit a power function (no. eggs = a - #* where # = body length, a and b
are constants). The coefficient b is typically near 3, which means that the egg count is
proportional to body mass or carapace volume. To further test this relation, curves
were fit (by least squares) to several graphs from the literature. Pandalus borealis
(three populations—Rassmussen 1953; Allen 1959; Appolonio and Dunton 1969)
gave b coefficients of 3.35, 3.29, and 3.68, respectively. Pandalus montagui (two
populations—Allen 1963; Mistakidis 1957) gave b coefficients of 3.4 and 3.35; P.
jordani, b = 3.06 (T. H. Butler, personal communication); and P. platyceros, b = 3.4
(Butler 1964). Finally, Jensen (1958) showed (for several species of marine shrimp)
that egg count typically increases with the third power of body length (or a linear
dimension) while Rao Vedavyasa (1968) showed the same for three Penaeid shrimp.
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Given the variation present in most egg-count data, it seems unlikely that the
Pandalid data would show b significatly different from 3. A few data sets lack a power
function, or have a b coefficient clearly different from 3 (Haynes and Wigley 1969;
Rao Vedavyasa 1968); however, given the form of most data I have seen, it appears to
be a well-supported assumption.

It remains to specify how shrimp grow. As noted by several authors (Gotshall
1972; Fox 1972; Abramson and Tomlinson 1972), shrimp growth in length is well
represented by the classical Bertalanffy equation (widely used to describe fish growth
[Beverton and Holt 1957]):

/(x) = ¢o0{1 — exp [~ K(x — xo)]} (10)
where

/(x) = length at age x,
/oo = asymptotic or maximum length,
xo = hypothetical age at zero length,
K = growth coefficient (specifies how fast 700 is approached).

Combining (10) with the fact that the egg count increases with /3, an expression for
b(x) is given by:

b(x) x {1 —exp [-K(x — x0)]}) x>« (11)

ii) For I(x) (survivorship), it will be assumed that after the age of first breeding («)
shrimp die at a constant exponential rate. If N is the size of a cohort, dN/dx =
—Z - N. This assumption (common in fishery work—Beverton 1963; Beverton and
Holt 1959) is probably not biologically correct. Most life tables show the death rate
to increase with age, and shrimp are no exception (Gotshall 1972; Geibel and
Heinmann 1976). However, 1 will show that this assumption is robust; for the
estimation of W, it makes little difference whether mortality is assumed constant or
increasing with age.

Putting these factors into equation (9) provides the following formula for W,

W el —exp [—K(x+ 1 = xo)]}> + e {1 —exp [-K(x +2 - xo)I> +

(1 —exp[—K(a@—xo)])> + e 41 —exp [-K(a@+ 1 — xo)]}* +

(12)

I have used unpublished sources and published data to estimate four parameters
(fraction EMF, K, «, age of last breeding) for each of 27 shrimp populations. The
data are summarized in table 1. From the published literature, K was estimated using
BMD asymptotic regression (unweighted) (Dixon 1970) applied to length-age curves.
The program also provided an estimate of x,. With one exception (see table 1) these
values (x,) were very small (about 159, of the corresponding a value). Notice in (12)
that x, is always subtracted from «. Thus if x, ~ —.15a, it has very little affect on W.
In calculating W, I set x, = —.15q, since the estimated x, never differed significantly
at the — .05 level from —.15«¢. Computer calculations showed that this was a robust
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assumption—W varied by only a few percent to changes in x,, in the neighborhood of
—.05a-—.25a.

It remains to discuss how an estimate of Z was made. There are very few mortality
estimates in the shrimp literature (Gotshall 1972). However, there is an indirect way
to estimate mortality sufficient for my purposes. What the literature provides are
estimates of the oldest breeding age (call it T,,,). I call this the “age of last breeding”
and take it to be the age of the oldest reproducers typically identified in the
population. Shrimp carry their eggs for about .5 yr, so I calculated an age of last
breeding for each population by adding .5 to the typical age of last spawning (as
presented in the published literature or from unpublished sources identified in table
1). There is no direct way to age shrimp, so that the values in the table reflect either
the examination of length frequency diagrams or the results of following an un-
usually large year class as it grows older (Rasmussen 1953). There is at least one other
possible source of error in this analysis. As discussed by Beverton (1963) and
Beverton and Holt (1959), the oldest age observed must increase as the sample size
increases. However, a large part of their analysis is devoted to showing that the oldest
age observed goes up very slowly with sample size. Mortality rates for most
populations increase with age and are well fit by a Gompertz function (i.e., mortality
rates go up exponentially with age). Gumbel (1958) showed, using probability theory,
that the average age of the oldest individual observed in a population with Gompertz
mortality increases linearly with the double logarithm of the sample size. Thus, as
noted by Beverton and Holt, this parameter is very insensitive to sample size in the
range 10°-10°. All of the shrimp data are based on samples within this range and
thus sample size ceases to be an important variable.

We can use the estimates of the oldest breeding age (T,,,,) to estimate an average
mortality rate (for each population) using a procedure developed by Beverton and
Holt and applied to fish. The procedure is simple; they showed that an estimate of
average mortality (an average weighted towards the younger age classes) could be
obtained by multiplying the inverse of the oldest age observed (T,,,) by 6.4 or

Z=64/T,,. (13)

This is an empirical relation which they discovered for several fish species. They
regressed Z and 1/T,,, for each of several fish species (several populations within
each species). The relationship between the two variables was well described by
Z = h/T,.x Where h fell in the narrow range 6.0-7.3. The average for all the species
examined is 6.4.

I note here that the Z used in the above analysis was a weighted average, as
mortality rates typically increase with age in fish (usually a Gompertz function). The
empirical relation is between 1/T,,,, and this average Z.

TEST OF HYPOTHESIS

Using the biological relations discussed above, I will now provide two (not
independent) tests for the hypothesis given by equation (8). Then I will discuss the
consequences of violating some assumptions of the theory.
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F1G. 5.—Growth and death rates are correlated. The line = least squares fit through the
origin; data from table 1.

Test 1: Using K to Estimate Z.

Fox (1972) showed for several populations of Pandalid shrimp that K, the growth
coefficient, was highly correlated with 1/7,,,,. Populations with higher growth
coefficients (faster approach to /oo0) had shorter life spans. Beverton and Holt had
previously shown this same relation for many fish species. I have extended Fox’s
analysis to the shrimp populations in table 1.

Figure 5 shows a plot of K against the inverse of the age of last breeding (1/T;nay)-
The fitted regression did not show the K intercept significantly different from zero (at
the .05 level), so the line in the figure is the least-squares fit through the origin. The
correlation coefficient is .84 and the hypothesis that K and 1/T,,, are positively
related is accepted. The resulting equation is K = 2.35/T,,,,. However, since we have
the relation Z = 6.4/T,,,,,

Z=27-K. (14)

Thus the growth coefficient may be used to estimate an average mortality rate for the
adult life span. The main advantage of using K to estimate Z is that thé individual
T..ax are rather imprecise. However, using all of the shrimp data (to estimate the
relation between T,,,, and K) helps remove the effect of errors in the estimation of
individual T,,,.

For each shrimp population, W was estimated using equation (12) (with the
relation Z = 2.7 - K). These values are shown in table 1. The result of graphing the
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LIFETIME EGG PRODUCTION OF EARLY MATURING FEMALE

FI1G. 6.—Occurrence of “early maturing females” (EMF) in Pandalid shrimp. Data are
(proportion EMF): (proportion males) plotted against relative hermaphrodite fitness (W).
Theoretical relationship (eq. [8]) is shown by the heavy line; data from table 1.

estimated P/(1 — P) (P = female proportion of first breeders or proportion EMF)
against W is shown in figure 6. The heavy line is the theoretical expected relation (eq.
[8]). With one exception, the points fall close to the theoretical values. Since both W
and P are estimated with error, it is difficult (and of dubious value) to apply any
simple statistical test. I will argue that the relation is fairly convincing in the absence
of such a test. Clearly, zero values are associated with high W, positive values with
low W.

Some may argue that the test (fig. 6) is not powerful since it uses the Beverton and
Holt (B-H) fish relationship to estimate Z (for shrimp). To this there are three replies.
(1) Figure 6 is not a regression relation; that is, I have not fitted any parameters (in
either P/(1 — P) or W) in relation to the theoretical curve. (2) If one does not care for
the Beverton and Holt derived relationship (Z = 2.7 - K), there is one simple option.
The weakest use of the B-H relationship is to claim that Z and K are positively
related (fig. 5 supports this for shrimp). The simplest model is Z =r - K, a one
parameter model. If this is substituted into equation (12), we can then seek the r
which gives the “best fit” (by some criterion, such as least squares in the vertical
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plane) to the theoretical relation. I have not done this, but figure 6 shows that the
parameter r would be near 2.7 (since the fit is fairly good in the figure with the
exception of one point). (3) It seems likely that the B-H relationship linking Z and
T,..x follows from the adult demographic patterns rather than anything about fish per
se. Thus, it seems weak to argue against using it with shrimp.

Test 2: Positive Proportion of EMF (using T,,,, to estimate Z)

Seven populations (table 1) are classified as having an age of last breeding of 3 yr.
The average K (or K) for these is .80. Estimating Z to be 2.1 (or 6.4/3), theory
predicts that .38 of each cohort should be EMF. The average over these populations
is .31. Three populations have T,,, = 4 yr (K = .59, Z = 1.6), with the theoretical P
at .23. The average P is .24. Six populations have T,,,, = 5 yr (K = 41, Z = 1.3).
These populations are theoretically near P ~ 0 (regardless of the a value). The
average P is .08. It would appear that P is smaller than the theoretical for the T,,,, of
3, and larger than theoretical for T, of 5. However, the differences are not
significant by a ¢ test (.05 level). As suggested by the previous analysis (which did not
lump the populations by T,,,, but used the individual K to estimate Z), the shrimp
come rather close to doing what theory predicts.

DISCUSSION

This section will examine the consequences of violating certain theoretical assump-
tions. The discussion will take the form of questions.

1. What if fecundity is not a cubic function of body length ? Computer calculations
show that predictions are very insensitive (+ ~ 10%) to alterations of this, provided
fecundity is a power function of length with a b coefficient of 2.5-3.5. This is because
the predicted values are insensitive to the age-fecundity relation itself. This is best
seen in figure 7. For a = 1.5 and b = 3, the computer calculated t* (ESS age of sex
change) for various K (growth coefficient) and Z (adult mortality rate). Male fertility,
0, was assumed to be constant with age. The areas marked 1 and 2 are parameter
values where the population should be spending 1 and 2 yr, respectively, as males.
The 1.5 line is where the cohort should split, with half spending 1 yr as a male, half 2
yr. The fractions to the right of the I sector are where the cohort should again split.
Here the fractions give the proportion of the cohort which should operate as females
at the age of first breeding (EMF). The remainder of the cohort should operate 1 yr
as a male. As noted earlier by Leigh et al. (1976) and Warner (1975), higher mortality
rates (high Z) and higher relative rates of increase for female fertility with age (high
K) both select for less time being spent in male phase. The diagonal line is the
relation Z = 2.7 - K. Notice that the predictions are insensitive to K. For example, if
K = .47 and Z = 1.3, we predict that there should be no EMF. At K = .85, Z = 2.3,
we predict the proportion of EMF to be .4. This is the entire range represented by
populations maturing at 1.5 yr. However, if K is held constant at .47 while Z is
increased from 1.3 to 2.3, the proportion EMF goes from zero to .35. Likewise, if Z is
held at 1.3, increasing K alone (from .47 to .85) changes the EMF from zero to .15.
Clearly, mortality is the key parameter with age-fecundity (growth) relations of much
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FIG. 7.—A times-of-equal-sex-change diagram. As a function of growth (K) and death (Z)
rates, the graph plots the ESS time as a male, assuming an age of first breeding of 1.5 yr. Zones I
and 2 refer to 1 and 2 yr in male phase. The fractions to the right of the I zone denote the fraction
of a cohort which breeds as females at age 1.5 (the fraction EMF). The diagonal line is
Z=27K.

less importance. Estimation of K is important, however, because of its use in
obtaining Z.

2. What if mortality rates increase with age? Beverton and Holt noted for fish that
mortality rates increase over the adult life span. If Z(x) is the rate between age x and
x + 1, the function Z(x) is usually of the form Z(x)=d e where d and c are
constants. This is termed Gompertz mortality. Their analysis fits this function to fish

data. They then calculated an average Z for the adult life span using a formula
equivalent to

x
ir1s
_~
=
N

N
I
=

e

, whereageaisx=0. (15)

18
P=3
bad
e

b
-

This parameter (Z) is, of course, simply a mean coefficient weighted in favor of the
younger age groups.

It is this Z that Beverton and Holt correlated with T, to get Z = 6.4/T,,,. In
terms of my analysis, the question now becomes: Suppose mortality is of the
Gompertz form; what difference does it make in W if Z is applied as a constant over
the adult life span, when compared to W calculated from the original life table (the
one used to calculate Z)? Using a computer, I generated several thousand life tables
where mortality was of the Gompertz form. From these I determined values of ¢ and
d such that the associated Z was the same. The computer then calculated W (details
in caption to fig. 8) for the original life table and for Z applied as a constant over the
adult life span. The results are shown in figure 8. The stippled area encloses the W
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F1G. 8.—Mortality increasing with age does not alter the predicted W. The figure graphs W
(assuming a Gompertz life history) against W (applying Z as a constant across the adult life
span). Since.many Gompertz life histories have the same Z (eq. [15]), the W range they represent
is shown by the stippled area. All the Gompertz W fall close to the 45° line. This figure assumes
o= 15and K = Z/2.7.

associated with all Gompertz life histories which correspond to the same W with VA
used as a constant. As can be seen from the figure, the application of an average
mortality rate (as a constant over the adult life span) has very little affect on the
predicted W (particularly for W < .5). Even if mortality is not of the Gompertz form
(e.g., increases linearly with age), the same robustness should be present in the
calculation of W.

3. What if the population is not in stable age distribution (SAD)? This is a difficult
question and I doubt that any general answer is possible (because there,are many
ways to violate the SAD assumption). However, this section will discuss a special
case, one which seems biologically reasonable for shrimp. Suppose that variation in
age structure is caused by variation in year class strength. Sometimes many imma-
tures survive to age a, sometimes few. Suppose further that individual growth rates
and adult mortality rates are constant through time. Thus in the fall of year T, X(T)
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age a shrimp are present; in year T + 1, X(T + 1), etc. If the recruitment X (T) is
independent of population size (a common fishery assumption—Beverton and Holt
1957), it is reasonable to consider the X(T), X(T + 1), etc., to be independent
identically distributed random variables (mean = y, variance = ¢2). Violation of the
SAD assumption results because o2 > 0.

To even further restrict the model, consider a population such as Pandalus jordani
off northern California (Gotshall 1972; Charnov et al. 1978). This population always
has EMF and an age of last breeding of 3 yr; thus almost all the breeders are in two
age groups (1.5, 2.5 yr). Earlier work (Charnov et al. 1978) developed a theory which
predicted how P should change as the age distribution changes. The data supported
the hypothesis that shrimp alter their age of transformation (shift P) according to the
following rule. The P(T) refers to proportion EMF in year T.

P(T) = 1 b(2.5) (no. of age 2.5 spawners
2 b(1.5) \no. of age 1.5 spawners

where b(2.5) = egg count of female aged 2.5 yr and b(1.5) = egg count of female aged
1.5 yr.

For the California shrimp b(2.5)/b(1.5) ~ 2. The survival rate from age 1.5 to 2.5
will be denoted s. Rewriting (16) in terms of the X(T) assumption, we have

X(T-1)
X(T)

, (16)

P(T)=4 -5 (17)

Since the shrimp adjust P each year, we need to know what the average P (over
several years) will be. Call this P. By use of a Taylor expansion (the “delta
method”—Seber 1973), an approximate value for P is given by

_ o
P~%—s(l+l7). (18)

For California s ~ .12 (Z ~ 2.1 or T,,,, = 3), which from (18) gives P = .38 if 6> = 0.
Note that .38 is the value predicted with the SAD assumption (and T,,, = 3). If
0? > 0, P decreases from the SAD model prediction. The important question is: How
much?

The correction factor (in [18]) is 6%/u?. From table 7 in Abramson and Tomlinson
(1972), I estimated the mean and variance in numbers of aged 1.5 shrimp (present in
Septémber) for 14 yr. This should give a rough idea of how large o?/u? might be
expected to be. For these years a%/u? = .09. This would lower P from .38 to .37. Even
if %/u® were .3, P would only decrease to .34. When we consider that the 95%
confidence interval on P for California (table 1—data from Abramson and Tomlin-
son [1972]) is .24-.42 (11 yr, P = .33), it is highly unlikely that we will be able to
detect the lowering of P due to this affect.

At least for populations with high death rates, the SAD model does fairly well at
predicting the average proportion EMF. Note however that the temporal variation
around this average falls outside the SAD model. To account for the temporal
variation requires the non-SAD assumption (Charnov et al. 1978).

Similar results hold for other (T;,,, > 3) life histories. For large W (> .6) violation
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of the SAD assumption (as developed above) does not alter the prediction of zero
proportion EMF. At intermediate W (.3-.6), we predict P to be larger than predicted
by the SAD model (since sometimes there will be no EMF). However, the effect is of
the order < 15% of P. The point I am making is that the non-SAD model makes
predictions which come within ~ 10%-15% of the values predicted by the SAD
model. To account for the mean value (P), the two models are identical in practice.
Interestingly, some populations with W near .5 are predicted under the SAD model
to have no EMF. Depending upon ¢2, they may or may not have a positive fraction
(in some years). It is tempting to suggest that the average P of .08 for populations
with T,,, =5 yr (when the predicted P is approximately zero) supports this
prediction.

Many other organisms (plants and animals) which change sex also show the ability
to alter the time of sex change to fit local breeding conditions (references in Bacci
1965; Reinboth 1975; Hoagland 1978; Warner et al. 1975; Charnov and Bull 1977;
Ende 1976). Sometimes it pays an individual to remain a male a bit longer or to
become a female right away. An analysis such as the above may well prove useful for
these organisms.

4. What about predictions other than the occurrence of EMF? Figure 7 shows
that slower growth (low K) and longer life (low Z) should result in more time being
spent as a male. A similar result follows for populations with an age of first breeding
of 2.5 yr. These predictions are qualitatively supported by Rasmussen’s (1953) data
for Norway, and Horsted and Smidt’s (1956) data for Greenland (P. borealis).
Rasmussen (1953) was the first person to point out that sex change in P. borealis was
more closely related to size than age. Shrimp populations with slower growth (and
death) rates spent more time as males; these populations tended to change sex at an
approximate fixed size, independent of age. My reasons for stressing the fraction
EMF as the most useful hypothesis is that predictions such as the above require
knowledge about the male Q(x) function. If Q(x) increases with age, the predictions
(for age of sex change) from figure 7 (other than the EMF predictions) underestimate
the length of time spent as a male. However, predictions should still be in the right
direction. Warner (1975) first noted (from a table in Haynes and Wigley 1969) that
the broad scale geographic patterns of time spent in male phase (for P. borealis) were
consistent with sex change theory. My detailed analyses fully support his conclusion.
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