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Invertibility of current density from near-field electromagnetic data
D. J. Sheltrawa)

Department of Radiology, University of New Mexico, 915 Camino de Salud, Albuquerque,
New Mexico 87131

E. A. Coutsias
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131

~Received 16 June 2003; accepted 29 July 2003!

The problem of determining a current density confined to a volume from measurements of the
magnetic and electric fields it produces exterior to that volume is known to have nonunique
solutions. Despite the nonuniqueness of the inversion we show that one may nevertheless uniquely
determine certain moments of the vector spherical harmonic expansion of the current. It is
demonstrated that the determination of these moments allows for the unique inversion of a current
density confined to a spherical shell. Although unique the inversion may be ill conditioned and
require a regularization of the inversion as demonstrated in an example numerical inversion.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1611262#

I. INTRODUCTION

The electromagnetic inverse problem consists of the de-
termination or estimation of the current source underlying
the electric and magnetic fields measured outside the source.
However, as was shown by Helmholtz in 1853,1 a current
distribution inside a conductor cannot in general be deter-
mined uniquely from knowledge of the electromagnetic field
exterior to the conductor. There exist current distributions
which give rise to no magnetic field outside, no electric field
outside or neither.2,3 However, if certain constraints are
known to apply to a current distribution, one can perform the
inversion uniquely~see-planar case!.4

In neuroscience applications one is usually interested in
obtaining information about the primary current sourceJp

due to direct neuronal activity and defined in the following
decomposition of the total current:J5Jp1sE. One is then
faced with the problem of inverting for bothJp andE simul-
taneously given external field data. This task is further com-
plicated by the difficulty of performing detailed measure-
ments of tissue conductivitys~x!.5–7 In the case of an infinite
homogeneous conductivity the ohmic currents,s~x!E, make
no contributions to the external magnetic field, which can
then be expressed in terms of the primary current alone. Of
course, the essential non-uniqueness of the inversion
remains8 requiring additional constraints or assumptions for
a unique inversion.8,9

The purpose of this article is twofold:~1! to give a com-
plete characterization of those quantities related to the cur-
rent density which can be determined by a linear inversion
and ~2! to present a numerical algorithm for the unique in-
version on a spherical shell.

We state the idealized near-field electromagnetic inverse
problem as follows: Given the magnetic fieldB(r ,t) and the
electric fieldE(r ,t), known everywhere on a spherical shell

and due to the current sourceJ(r ,t) contained in the interior
of the shell, invert the field data to obtain the current density
or some of its properties. Initially we do not invoke the in-
finite homogeneous conductor assumption and we seek in-
stead inversion for the more general problem of total~pri-
mary plus ohmic! current. We take this approach since there
is considerable dispute over the applicability of the infinite
homogeneous conductor and spherically symmetric conduc-
tor assumptions to most situations of practical interest.5

However we do contrast our results to the infinite homoge-
neous conductor model since it is a useful idealization.5–7

The article is organized as follows: In Sec. II we give a
consistent presentation of the near-field approximation as
pertains to an inversion for the total current density. Section
III investigates the uniquely determined properties of a cur-
rent density for the inverse magnetometry problem. Section
IV shows in what manner electrical potential data may add to
the inversion problem. Section V then makes connection
with the infinite homogeneous conductor case. Section VI
applies the results of the preceding sections to the unique
inversion of a current on a spherical shell. Although unique,
the inversion is still not well-posed in the Hadamard sense
since, as will be shown, the inversion can be ill-conditioned
leading to ‘‘high frequency’’ noise amplification. Regulariza-
tion may be needed to make the inversion well-behaved. In
Sec. VII we formulate a simulated experiment to illustrate
the competing effects of increased magnetic field sampling,
noise amplification, and regularization. Conclusions appear
in Sec. VIII.

II. A CONSISTENT NEAR-FIELD APPROXIMATION

Although Plonsey3 has treated with success the quasi-
static problem for primary currents by neglecting certain
time derivatives in the Maxwell equations, such an approxi-
mation leads to inconsistency if applied to the total current
situation. Namely the neglect of the displacement current
(1/c)(]ē/]t) implies that“"j̄50. But since the charge distri-
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bution q̄ is initially zero the equation“"j̄50 implies, through
the equation of continuity, that it will remain zero as will the
electric potential. Clearly an approach focused on the total
current must account for the near-field electric potentials
which are measured routinely in the low-frequency electro-
encephalography experiment.

In this section we derive a consistent near field approxi-
mation to form the basis of the inverse problem for the total
current. The microscopic Maxwell equations are written as

“"b~x,t !50 “"e~x,t !54pq~x,t !,

“Ãb~x,t !2
1

c

]

]t
e~x,t !5

4p

c
j ~x,t !, ~1!

“Ãe~x,t !1
1

c

]

]t
b~x,t !50.

It will be assumed that there exists no initial charge distribu-
tion despite the fact that charge separation does exist across a
resting polarized neuron. To do so assumes a spatial scale of
interest which we take to be a volumeV inclusive of many
neurons~possibly a cubic millimeter! over which the average
charge is zero. Such an average denoted byf̄ (x,t) for a mi-
croscopic quantityf (x,t) is defined by f̄ (x,t)51/V*Vf (x
1x8,t)d3x8. Since this averaging process is linear we may
then write the macroscopic equations at this scale of interest
to simply be

“"b̄~x,v!50 “"ē~x,v!54pq̄~x,v!,

“Ãb̄~x,v!1 iv/cē~x,v!5
4p

c
j̄ ~x,v!, ~2!

“Ãē~x,v!2
iv

c
b̄~x,v!50,

where we have also transformed into frequency space to ben-
efit from the change of time derivatives to algebraic quanti-
ties. In the remainder of this paper we will drop the explicit
frequency dependence of vector and scalar fields.

In terms of the vector potentialā~x! and scalar potential
f̄(x) the Maxwell equations may be written in the Lorentz
gauge as

¹2ā~x!1
v2

c2
ā~x!52

4p

c
j̄ ~x!, ~3!

¹2f̄~x!1
v2

c2
f̄~x!5

i4p

v
“"j̄ ~x!, ~4!

where the potentials are defined by

b̄~x!5“Ãā~x!,
~5!

iv

c
ā~x!2ē~x!5¹f̄~x!

and the Lorentz gauge is given by

“"ā~x!5
iv

c
f̄~x!. ~6!

The frequencies involved in neuronal activity~typically
'100 Hz!8 are small compared to the reciprocal of the time
needed for the signal to propagate from the source to the
sensor. This leads to a near-field expansion with respect to
the small dimensionless parametere5RVc /c, the ratio of a
characteristic distanceR between the source positions and
the positions of the field measurements~approximately 25
cm! to the distance that would be propagated by the electro-
magnetic field in vacuum during a characteristic period. Here
Vc is the characteristic frequency of the current density. To
accomplish this Eqs.~3!–~4! are written in terms of the di-
mensionless independent variablesr5x/R, w5v/Vc , and
the dimensionless dependent variablesJ5 j̄ /Jc , A
5cā/Jc4pR2, F5cf̄/Jc4pR2, E5cē/Jc4pR, and B
5cb̄/Jc4pR as

¹2A~r !1e2w2A~r !52J~r !, ~7!

e¹2F~r !1e3w2F~r !5
i

w
“"J~r !, ~8!

where Jc is a characteristic current magnitude. The defini-
tions of the potentials Eq.~5! and Lorentz gauge Eq.~6!
become

B~r !5“ÃA~r ! i ewA~r !2E~r !5¹F~r !, ~9!

“"A~r !5 i ewF~r !. ~10!

We obtain a near-field approximation by expanding the mag-
netic, electric, and current fields in terms of the smallness
parametere as follows:

A~r ;e!5(
n

enAn~r ! F~r ;e!5(
n

enFn~r !, ~11!

J~r ;e!5(
n

enJn~r !. ~12!

Substitution of Eq.~12! into Eqs.~7!–~10! yields, upon col-
lecting the zeroth order contributions, the following set of
equations:

¹2A052J0 E052¹F0 , ~13!

“"J050 B05“ÃA0 , ~14!

“"A050. ~15!

Similarly, the first order contributions yield the additional set
of equations

¹2A152J1 ¹2F05
i

w
“"J1 , ~16!

B15“ÃA1 iwA02E15¹F1 , ~17!

¹•A15 iwF0 . ~18!

The solutions of the potential equations given in Eqs.
~13! and ~16! are, respectively,

An~r !5
1

4p E Jn~r 8!

ur2r 8u
d3r 8, ~19!
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F0~r !52
i

4pw E “8"J1~r 8!

ur2r 8u
d3r 8, ~20!

wheren50, 1. The expansion of the current density in the
smallness parametere shows the dependence of the current
on the characteristic distanceR. That dependence is implicit
in the confinement of the current within a volume of radius
R.

III. MAGNETIC FIELD DATA AND INVERSION

In this section we investigate the determinable quantities
of the inverse magnetometry problem. Since the measure-
ments are performed on a spherical shell it is natural to ex-
pand the magnetic field~and vector potential! in terms of
vector spherical harmonics~VSH!. The resulting expressions
will allow a precise characterization of the properties of the
current density which the idealized magnetometry experi-
ment may determine. External to the current containing re-
gion we may write Eq.~19! with n50 as10

A0~r !5(
l jm

S E
V

r 8 l

2l 11
J0~r 8!"Y jm*

l ~V8!d3r 8D Y jm
l ~V!

r ~ l 11!
,

~21!

where l 5 j , j 11,j 21 ~with the exception thatl 51 for j
50), andm52 j ,2 j 11,...,j 21,j . We will, as in the above
equation, use the variableV to denote the ordered pair of
angular variables~u,f!. By writing the zeroth order current
in the VSH expansionJ0(r )5( l jmajm

l (r )Y jm
l (V) Eq. ~21!

becomes

A0~r !5(
l jm

S mjm
ll

2l 11D Y jm
l ~V!

r l 11
, ~22!

where we have defined mjm
lk 5*0

1r kajm
l (r )r 2dr. Now since

“"J0(r )50 it can easily be shown~see Appendix A! that
mjm

j 21,j 2150. Using this property and taking the curl of Eq.
~22! gives the magnetic field on the unit shell surface

B0~V!52 i(
jm

S j

2 j 11D 1/2

mjm
j j Y jm

j 11~V!. ~23!

Since we are interested in determining the momentsmjm
j j

we can simply write Eq.~23! in terms of the radial compo-
nent ofB0"er5B0r only to obtain

B0r~V!5 i(
jm

j 1/2~ j 11!1/2

2 j 11
mjm

j j Yjm~V! ~24!

and, transforming back to the time domain, we arrive at the
result of this section

mjm
j j ~ t !52 i

2 j 11

j 1/2~ j 11!1/2
B0r

jm~ t !,

~25!
mjm

j 21,j 21~ t !50,

where we have definedB0r
jm5* B0r(V)Yjm* (V)dV. In Eq.

~25! the j 50 term poses no special problem sinceY00
0 (V)

50.
From Eq. ~23! we can conclude that thel 5 j 11,j 21

components of the current are always silent in this lowest

order near-field approximation since they do not contribute
to the magnetic field. Furthermore, any current with vanish-
ing momentsmjm

j j is as well a silent current. From Eq.~25!
we may conclude that the measurement of the magnetic field
can only give information about thel 5 j component of the
current density while the“"J050 constraint yields a restric-
tion upon thel 5 j 21 component of the current density. No
information about thel 5 j 11 component of the current den-
sity is obtained from the field measurement without addi-
tional constraints being placed upon the current.

IV. ELECTRIC FIELD DATA AND INVERSION

Electric potential measurements give information about
the small but, as we will see, not necessarily negligibleJ1 .
The zeroth order solution for the electric potential given by
Eq. ~20! can be written as10

F0~r !52
i

w (
jm

E ¹8•J1~r 8!

2 j 11

3
r 8 j

r j 11
Yjm* ~V8!Yjm~V!d3r 8. ~26!

Substituting the VSH expansion,J15( l jma jm
l (r )Y jm

l (V),
into Eq. ~26! and simplifying we obtain

F0~r !5
i

w (
jm

m jm
j 21,j 21Yjm~V!, ~27!

where we have usedn"J150 on the surface of the unit
sphere and we have definedm jm

lk 5*0
1r ka jm

l (r )r 2dr. Defining
F jm5*F0(r )Yjm* (V)dV, where the integral is taken over
the unit sphere, Eq.~27! can be written as

m jm
j 21,j 2152 iwF jmS 2 j 11

j D 1/2

. ~28!

Also, sinceJ1 obeys Eq.~20! one can write, as forJ0 , that

m jm
j j 52 i

2 j 11

j 1/2~ j 11!1/2
B1r

jm . ~29!

Transforming into the time domain we can now write the
result of this section as

m jm
j j ~ t !52 i

2 j 11

j 1/2~ j 11!1/2
B1r

jm~ t !, ~30!

m jm
j 21,j 21~ t !5S 2 j 11

j D 1/2]F jm

]t
. ~31!

Although electric potential measurements only give in-
formation about the relatively smalleJ1 contribution to the
current, this information is not necessarily negligible. Such is
the case for thel 5 j 21 component of the current density for
which the zeroth order magnetic field measurements give no
direct information. Although knowledge of the small first
order current@obtained from Eq.~31!# contributes little to the
total current magnitude, it may provide localization informa-
tion. In addition it should be noted that theJ1 contribution to
the current is notably different from theJ0 contribution in
that the former leads to a net charge formation~the diver-
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gence is non zero! and therefore may give information of a
special nature albeit of smaller amplitude than theJ0 term.
Note that Eq.~31! provides no significant additional infor-
mation about thel 5 j component of the current density since
B1r is negligible comparedB0r and cannot be measured in-
dependent ofB0r .

V. INFINITE HOMOGENEOUS CONDUCTOR

In this section we make connections with the infinite
homogeneous conductor model. If one has knowledge of the
conductivity of the medium containing the primary current
sources one may writeJ5Jp2s¹F, whereJp is the pri-
mary current source and2s¹F is the current given by
Ohm’s law. Note that this expression uses the dimensionless
conductivity constants54ps̄RJc /c, wheres is the con-
ductivity averaged over a suitable spatial scale. This relation-
ship is valid for all orders of the expansion in the smallness
parametere so that

J0~r !5J0p~r !2s¹F0~r !. ~32!

Strictly speaking we should include the contribution of ef-
fective current densities from magnetization and polarization
effects. However, these currents make a negligible contribu-
tion to the total current as shown by Plonsey.3 If the conduc-
tivity s can be considered to be infinite homogeneous this
form of the total current density, when combined with Eqs.
~13! and ~16!, yields the following connection between ze-
roth and first order contributions to the current density:

¹•J1~r !5
iw

s
¹•J0p~r !. ~33!

Substitution of Eqs.~32! and ~33! into Eq. ~20! then gives

A0~r !5
1

4p E J0p~r 8!

ur2r 8u
, ~34!

F0~r !52
1

4ps E “8"J0p~r 8!

ur2r 8u
d3r 8. ~35!

As noted by others3 the ohmic contribution to the current
density does not contribute to the magnetic field in this case
of a homogeneous conducting medium. Note that Eqs.~34!
and ~35! both depend on the zeroth order primary current
only.

A derivation similar to those presented in the preceding
sections of this article results in the uniquely determined
quantities

mjm
j j ~ t !52 i

2 j 11

j 1/2~ j 11!1/2
B0r

jm~ t !, ~36!

mjm
j 21,j 21~ t !5sS 2 j 11

j D 1/2

F jm~ t !, ~37!

wheremjm
lk (t)5*0

1r kajm
l (r ,t)r 2dr and theajm

l (r ,w) are the
VSH coefficients of the zeroth order primary currentJ0p .
Therefore, in the case of the homogeneous conductor the
electric and magnetic field measurements yield zeroth order
current density information in orthogonal subspaces. Notice
that, as in the total current case, there is no information ob-

tained about thel 5 j 11 components of the current density.
Also notice that, unlike the total current case, the determin-
able quantitiesmjm

j 21,j 21 depend on the electric potential
rather than its time derivative.

VI. A UNIQUELY INVERTIBLE CURRENT DENSITY

We now look at a case where the magnetic and electric
field information is enough to determine the current density.
In the following we assume that the current is restricted to a
shell of radiusr 0 . Results are given for both the total current
and the primary current of an infinite homogeneous conduc-
tor. Although the infinite homogeneous conductor is rarely
realized as a suitable approximation to the practical problems
of interest this does serve as an important case with which to
draw distinction with the total current case.

A. Total current case

In this caseJ5J01eJ1 and we may write the coeffi-
cients of the VSH expansion of the current density as

ajm
l ~r !5r 22d~r 2r 0!bjm

l , a jm
l 5r 22d~r 2r 0!b jm

l ,
~38!

wherel 5 j , j 11,j 21 and the coefficientsbjm
j andb jm

j are to
be determined from measurement of the momentsmjm

j and
m jm

j 21,j 21. Multiplying each side of Eq.~38! by the appropri-
ate power ofr and integrating we obtain

mjm
lk ~r !5r 0

kbjm
l , m jm

lk 5r 0
kb jm

l . ~39!

One can view the solution of Eq.~39! as a simple inver-
sion of a diagonal matrix. However, the dependence onr 0

may make these diagonal matrices ill conditoned with con-
dition number given byr 0

12 j c, where j c is a cutoff number
for j. As a result noise in the high spatial frequency compo-
nents of the current density may be amplified. To obtain a
well-conditioned inversion we apply a Tikhonov regulariza-
tion ~see Appendix D! to smooth the high frequency noise.
For a diagonal matrix the classical Tikhonov regularization
takes the simple form

bjm
l 5

r 0
k

r 0
2k1l2

mjm
lk ~r !, b jm

l 5
r 0

k

r 0
2k1l2

m jm
lk , ~40!

wherel is the regularization parameter and we have setf `

50 andL5I ~see Appendix D!. A proper choice of the regu-
larization parameterl balances spatial smoothing against
noise reduction.

The restriction of the current to the shell surface com-
bined with “"J050 implies that J0"r50. This condition
gives the following relationship between thel 5 j 11 and l
5 j 21 components:

ajm
j 115A j

j 11
ajm

j 21, a jm
j 115A j

j 11
a jm

j 21. ~41!

Combining the definition of the known quantitiesmjm
j j ,

mjm
j 21,j 21, and m jm

j 21,j 21 with Eq. ~41! one then obtains the
current density
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J5d~r 2r 0!(
jm

j c Fmjm
j j

r 0
j 22

r 0
2 j1l2

Y jm
J

1eAj m jm
j 21,j 21

r 0
j 23

r 0
2 j 221l2 S Y jm

j 21

Aj
1

Y jm
j 11

Aj 11
D G ~42!

or in terms of the magnetic and electric field quantities

J5d~r 2r 0!(
jm

j c F2 iB0r
jm 2 j 11

Aj 21 j

r 0
j 22

r 0
2 j1l2

Y jm
j

1eA2 j 11
]F jm

]t

r 0
j 23

r 0
2 j 221l2 S Y jm

j 11

Aj
1

Y jm
j 21

Aj 11
D G .

~43!

B. Infinite homogeneous conductor case

Now we consider the case of an infinite homogeneous
conductor. In this case we write the coefficients of the VSH
expansion of the current density as

ajm
l ~r !5r 22d~r 2r 0!bjm

l , ~44!

where again thebjm
l are coefficients to be determined. If we

assume thatJp"r50 we may write, in a manner similar to the
total current,

J0p5d~r 2r 0!(
jm

F2 iB0r
jm 2 j 11

Aj 21 j

r 0
j 22

r 0
2 j1l2

Y jm
j

1sA2 j 11F jm

r 0
j 23

r 0
2 j 221l2 S Y jm

j 11

Aj
1

Y jm
j 21

Aj 11
D G .

~45!

Note that the conditionJp"r50 is an additional constraint
which is not implied by restriction to the shell as in the total
current case.

C. Validity of inversion

Having found the VSH expansion of the current densi-
ties of Secs. VI A and VI B from measurements of the mag-
netic and electric fields does not guarantee that the series
given by Eq.~43! or ~45! will converge. If we insist that the
currents have finite energy, then it is appropriate to require
that iJi2,`; for the case in Eq.~43! without electric field
contributions, e.g., this implies

iJi2
25(

jm

@B0r
jm~2 j 11!#2

r 0
2 j 14 j ~ j 11!

,`. ~46!

Clearly, this restricts the magnetic field, and the smaller
we desirer 0 to be for the shell on which we perform the
inversion, the more severe the restriction. The above condi-
tion is of course met whenever the radius of reconstruction,
r 0 , is greater than or equal to the radius of a sphere com-
pletely enclosing the current,r c . But reconstruction on a
spherical shell of smaller radiusr 0,r c could be also found
for sufficiently fast decayingB0r

jm . On the other hand, for

regularized data such as that associated with a truncated
spherical harmonic expansion, a reconstruction is guaranteed
for arbitrary r 0.0.

VII. A SIMULATED INVERSION ON A SPHERICAL
SHELL

In this section a simulation to test the inversion on a
spherical conducting shell is presented. In the next section
we will use this simulation in a number of examples to test
the inversion method on the shell. We assume the current
density to be restricted to a shell of known radiusr 0,1. We
also assume that the radial component of the magnetic field,
Br , can be sampled on a grid~to be specified below! of a
larger spherical shell of radiusr 51. We will make use of the
SPHEREPACK-3.0Fortran-77 code11,12 to perform the analysis
of a simulated magnetic field to find the valuesB0r

jm and the
subsequent synthesis of the current density.

A. The simulation

TheJ0 part of the current density given by Eq.~43! may
be reconstructed according to

J52 id~r 2r 0!(
jm

j c

B0r
jm 2 j 11

Aj 21 j

r 0
j 22

r 0
2 j1l2

Y jm
j . ~47!

In the case of the current shell it is somewhat simpler to
represent the results of the inversion in terms of a scalar
stream function c~u,f! such that J(r )5r 22d(r 2r 0)er

3¹Vc where

c5(
jm

B0r
jm

r 0
j

r 0
2 j1l2

2 j 11

j ~ j 11!
Yjm . ~48!

To create simulated magnetic field measurements we
make use of a current density of the form

J05ef

d~r 2r 0!

r 0
2

sinuG~u!,

~49!

G~u!5 (
n50

N0 2n11

2
Pn~cosu0!Pn~cosu!,

where thePn are Legendre functions and the functionG(u)
is a truncated Legendre expansion ofd(cosu2cosu0).

The radial component of the magnetic field due to the
currents of the type given in Eq.~49! is directly calculated as

Br5(
l 51

N0

a l Pl~cosu!, ~50!

a l5
r 0

l 11

4p

l ~ l 11!

2l 11
@Pl 11~cosu0!2Pl 21~cosu0!#, ~51!

where we have takenr 51. The field due to these elemental
currents can be rotated by the angles (u r ,f r) ~see Appendix
C! and superimposed upon others to give a richer set of
simulated fields to test the inversion algorithm and its limi-
tations. In the next section of this article we will use these
simulated fields to test the inversion method on the shell.

We also add noise to the simulated field to test the sta-
bility of the inversion and our ability to eliminate instability
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through regularization. We do so by adding noise of a given
signal-to-noise ratio~SNR! to each field point in the simu-
lated measurement. The SNR is given by SNR5Smaxs,
whereSmax is the maximum signal over all field points ands
is the standard deviation of 0 deviates.13

For the purpose of error analysis we combine Eqs.~48!,
~50!, and ~51! to obtain the current stream function directly
as

c5
r 0

4p (
n51

N0

Pn~cosu!@Pn11~cosu0!2Pn21~cosu0!#,

~52!

which will be useful in the next section of this article.
As discussed by Swarztrauber,11,12 the analysis ofB0r

into spherical harmonic componentsB0r
jm requires truncations

with j <N the number of zonal harmonics included. For each
j there are 2j 11 values form, therefore, the determination
of (N11)2 spherical harmonic coefficients is required. On
the other hand, the spherical transform algorithms given in
SPHEREPACK-3.0require sampling on a grid that is equally
spaced in both longitudef and latitudeu. With the product
grid containingN points in theu direction and 2N points in
the f direction, this results in 2N2 data points, making the
analysis problem 1. This results in the analysis being per-
formed as a least squares problem.11,14 A spectral filtering
where atu5u i only 2N sinui longitudinal points are re-
quired can be employed without effective loss of
resolution.14 This reduces the number of required sample val-
ues to pN2/2 for the entire sphere although the analysis
problem is still 1. To employ the above algorithm, our
method requires the values on the reduced grid and produces
the values on the equispaced grid~used bySPHEREPACK-3.0!
by fast Fourier transform based interpolation.

B. An example

In this section we give an example inversion to test the
ability to resolve currents on a spherical shell and explore the
amount of regularization needed to control the instability dis-
cussed in Sec. VI. The example demonstrates the effect of
variation in the following parameters: The number of latitude
and longitude sampling points,nlat and nlon ; the SNR, and
the regularization parameterl.

In Figs. 1–6 we show the graphical results of an ex-
ample inversion for two closely spaced current rings on a
spherical shell of radiusr 050.8 which is the reconstruction
surface as well. Figure 1 is a direct plot of the current stream
function as given by Eq.~52!. The plots of Figs. 1–2 can be
compared to this direct plot for a visual check of inversion
accuracy. Tables I and II give a more precise check of the
inversion error.

Figures 2 and 3 pertain to a noiseless sampling of the
magnetic field. These figures illustrate the progressively bet-
ter resolution of the current density as sampling of the mag-
netic field is increased. Table I shows a precipitous reduction
in the error near a sampling such thatnlat541 and nlon

580. Although increasing the sampling of the field allows
one to compute components of the current stream function of
larger j andm values and therefore provide greater detail in
the inversion this trend does not persist as one can see when

the sampling is nearnlat549 andnlon596. Near this sam-
pling density an amplification of machine precision ‘‘noise,’’
due to the ill-conditioned nature of the inversion, begins to
compete with the reduction in error due to increased sam-
pling density. Of course the precise limit imposed by the
noise to the effectively attainable resolution worsens expo-
nentially with decreasing values ofr 0 , the reconstruction
radius.

Figures 4–6 illustrate the importance of regularization in
any practical situation with added noise. Here we vary the
regularization parameterl to illustrate the tradeoff between
the noise-filtering effects and the smoothing effects inherent
to a Tikhonov regularization of the inversion. In Fig. 4,
where regularization ofl50 is used, the 5% Gaussian-
distributed sampling noise entirely obscures the inversion. In

FIG. 1. Direct plot of the current stream function withNn1535, (u r ,f r)1

5(45,0), Nn2535, (u r ,f r)25(67,0).

FIG. 2. Reconstruction withNlat525, Nlon548, S2N5 inf, er50.195.
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Fig. 5 a value ofl50.03 suppresses the noise but at a high
cost to resolution. From Fig. 6 and Table II it appears that
l50.002 is a good choice of a regularization parameter that
balances noise amplification reduction against smoothing ef-
fects of the Tikhonov regularization. Table II shows that the
same sampling as that used in the noiseless case appears to
give the best error but this error value is considerably higher
as compared to the noiseless case.

VIII. CONCLUSIONS

We have shown that for the idealized inverse magnetom-
etry problem the determinable quantities in a VSH represen-
tation are moments of the expansion coefficients. Only one
moment per coefficient is fixed by magnetic field measure-
ments alone. This clearly exhibits the need for additional

trusted and testable constraints in the inverse magnetometry
problem. In general these added constraints will clearly con-
tain the majority of the information needed in an unique
inversion for the current density of the idealized inverse
magnetometry problem.

We have shown in what sense electric potential data may
be incorporated to give additional information on the total
current. When inverting for the total current, magnetic field
data gives information about zeroth order near-field contri-
butions to the current density, whereas electric potential data
gives information about the first order contributions. When
the conductivity is known, as in the case of a homogeneous
conductor, both the magnetic and electric data give zeroth
order information about the primary currents.

Finally we have shown that for a spherical shell a unique
inversion is possible. However, the inversion has been shown

FIG. 3. Reconstruction withNlat565, Nlon5128, S2N5`, er53.34
310210.

FIG. 4. Reconstruction withNlat565, Nlon5128, S2N520, l50, er

571.9.

FIG. 5. Reconstruction withNlat565, Nlon5128, S2N520, l50.03, er

50.400.

FIG. 6. Reconstruction withNlat565, Nlon5128, S2N520, l50.002, er

59.6031022.
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to be ill-conditioned in general. A regularization may be
needed and this regularization must balance the filtering of
amplified ‘‘high frequency’’ noise against the smoothing of
spatial detail in the inversion.
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APPENDIX A: DIVERGENCE CONSTRAINT

In this Appendix we derive the restriction on the mo-
mentsmjm

j 21,j 2150 given by the condition“"J050. From
this condition we have10

05Aj S d

dr
2

j 21

r Dajm
j 21~r !,

~A1!

2Aj 11S d

dr
1

j 12

r Dajm
j 11~r !.

Multiplying Eq. ~A1! by r k12 and integrating by parts gives

05Ak11~k2 j !E
0

1

r k21ajm
j 11~r !r 2 dr

2Aj ~k2 j 13!E
0

1

r k21ajm
j 21~r !r 2 dr. ~A2!

since there is no current on the shell of radius 1. Therefore,
we obtain

~k2 j !mjm
j 11,k211A j

j 11
~k1 j 11!mjm

j 21,k2150, ~A3!

which for k5 j becomesmjm
j 21,j 2150. It is easy to see that

the condition“"A050 is equivalent tomjm
j 21,j 2150, so the

vanishing of the divergence ofA0 is implied by that ofJ0 as
expected.

APPENDIX B: SPHERICAL HARMONIC PROPERTIES

In this appendix we give some information on vector
spherical harmonics. The vector spherical harmonics may be
generated from the scalar spherical harmonics according to

Y jm
j 115A j 11

2 j 11 S 2erYjm1eu

1

j 11

]Yjm

]u

1ef

im

j 11

Yjm

sinu D ,

Y jm
j 52eu

m

Aj ~ j 11!

Yjm

sinu
2ef

i

Aj ~ j 11!

]Yjm

]u
, ~B1!

Y jm
j 215A j

2 j 11 S erYjm1eu

1

j

]Yjm

]u
1ef

im

j

Yjm

sinu D .

In addition, the following property is used in this article:

Y jm
j 5

2 i

Aj ~ j 11!
~erÃ“V!Yjm . ~B2!

The vector spherical harmonics obey the orthogonality prop-
erty

E
0

pE
0

2p

Y j 8m8
* l 8 Y jm

l sinu du df5d j j 8d l l 8dmm8 ~B3!

and the following relations for the divergence operator:

¹•@ f Y jm
j 11#52A j 11

2 j 11 S d

dr
1

j 12

r D f Yjm ,

¹•@ f Y jm
j #50, ~B4!

¹•@ f Y jm
j 21#5A j

2 j 11 S d

dr
2

j 21

r D f Yjm ,

and the curl operator10

¹3@ f Y jm
j 11#5 iA j

2 j 11 S d

dr
1

j 12

r D f Y jm
j ,

¹3@ f Y jm
j #5 iA j

2 j 11 S d

dr
2

j

r D f Y jm
j 11

1 iA j 11

2 j 11 S d

dr
1

j 11

r D f Y jm
j 21, ~B5!

¹3@ f Y jm
j 21#5 iA j 11

2 j 11 S d

dr
2

j 21

r D f Y jm
j ,

where f 5 f (r ). We also give the connection between the
spherical harmonics and associated Legendre functions

Yjm~u,f!5A2 j 11

4p

~ j 2m!!

~ j 1m!!
Pj

m~cosu!expim f.

~B6!

TABLE I. Relative error with SNR5`.

nlat nlon Error

9 16 0.633 616 464
17 32 0.499 727 286
25 48 0.194 608 761
33 64 0.044 827 409
41 80 5.706 622 63310211

49 96 6.274 477 49310211

57 112 1.052 210 49310210

65 128 3.344 016 24310210

TABLE II. Relative error with SNR520.

nlat nlon Error

9 16 0.633 567 187
17 32 0.499 966 94
25 48 0.199 766 954
33 64 0.106 897 188
41 80 0.096 111 095
49 96 0.096 569 9241
57 112 0.096 098 5884
65 128 0.096 013 9612

5314 J. Appl. Phys., Vol. 94, No. 8, 15 October 2003 D. J. Sheltraw and E. A. Coutsias

Downloaded 29 Nov 2004 to 129.24.209.236. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



APPENDIX C: ROTATION OF ELEMENTAL MAGNETIC
FIELDS

In Sec. VII we performed rotations upon elemental fields
to obtain our simulated fields. Each elemental fieldBr is a
sum of Legendre polynomials of the formBr

5( la l Pl(cosu). The rotation operatorRr5R(f r ,u r), act-
ing on a Legendre polynomialPl(cosu), yields

Rr Pl~cosu!5Pl~u r !Pl~u!12 (
m51

l
~ l 2m!!

~ l 1m!!
Pl

m~u r !

3Pl
m~u!cosm~f r2f! ~C1!

so that the rotated elemental field becomes

Br~u,f!5(
l

a l Pl~u r !Pl~u!12(
ml

a l

~ l 2m!!

~ l 1m!!
Pl

m~u r !

3Pl
m~u!cosm~f r2f!. ~C2!

The fields due to each elemental current can then be added at
the sampling points for the simulated field measurement.

APPENDIX D: TIKHONOV REGULARIZATION

In this Appendix we give a brief review of Tikhonov
regularization as it applies to this article.15 We assume one
wants to invert the following linear equation given the datad

A f5d. ~D1!

We will also assume that the matrixA is ill conditioned.
Tikhonov regularization of Eq.~D1! obtains a well-
conditioned solution by minimizing the following functional:

f̂ l5arg min$l2iL~ f 2 f `!i21id2A fi2%, ~D2!

wherel is the regularization parameter andf ` is a default
solution. If l is large the data misfit term,id2A fi2, be-

comes negligible and the solution tends tof ` in which high
frequency behavior has been effectively smoothed, regard-
less of its origin. Ifl is small the solution tends to the solu-
tion of Eq.~D1!, which is presumably ill conditioned, result-
ing in noise amplification. A practical choice of the
regularization parameter balances smoothing of the solution
against reduction of the amplified high frequency noise in the
data. Minimizing Eq.~D2! one obtains

~l2LtL1AtA! f 5l2LtL f `1Atd. ~D3!

For systems of equations which are relatively small~a few
hundred equations! this equation may be directly solved for
f. For larger systems one may employ searching or iterative
algorithms.
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