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new architecture for a smarter Internet abstracts the functional components of the network from the hardware
that enables it. This is done via software agents that implement such functions and are capable of relocating them-
selves over the network to optimize resources. To achieve that we need an algorithm that governs the way agents
distribute themselves in the physical network, and this paper presents our first effort towards this goal. We for-
mulate the problem as an optimization problem, where agentsmust be distributed in the network, and can receive
resources from the nodes they occupy according to their taskrequirements. This optimization problem is then
solved in a hierarchical manner: A centralized (randomized) algorithm optimizes the agent distribution among the
nodes, and a decentralized (convex optimization) algorithm performs the resource allocation within each node.
We present simulation results showing that the hierarchical optimization algorithm achieves the desired objective.
Finally we discuss our next steps towards decentralizing the proposed algorithm.

1 Introduction

Retransmissions, delays, and communication failures may occur when a mobile device either moves across multi-
ple networks, or has an intermittent connection inside the same network. Such problems are caused by the current
implementation of the Internet, which which delivers packets to static locations. This assumption is no longer
valid when the communication task involves mobile devices,since such devices may connect/disconnect without
no prior notice, and may even move across different networksduring the communication task [8].

A novel Internet architecture addressing these issues was proposed by Jerez et al. [8]. This architecture essen-
tially postulates an abstract network that treats the nodesand the traffic as digital entities, separating the functional
components of the network from the hardware that enables them. In this fashion, a logical (intelligent) network
is created on top of the physical network, enabling functions like persistent identification of different objects
and smarter routing to avoid retransmissions. The functional components of the network are conceptualized as
software agents (e.g. routing agents, storage agents, DNS implementation agents, etc.), and the hardware is seen
as a resource to be used by these agents, such that their taskscan be efficiently executed (Figure 1).

Figure 1: Network example: Each platform in the network can run several processes concurrently. The network
is abstracted as a graph and the processes as agents (black circles) that can move among the nodes.

In this setting, each particular node in the physical network is capable of simultaneously hosting more than
one agent. Moreover, agents can move around searching for nodes with more resources in order to complete their
tasks in the best possible way. Agents are viewed as greedy entities competing with each other for the completion
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of their tasks (benefit), by consuming hardware resources required for the task execution. The objective is to use
the resources of the network so that the aggregate benefit of all the agents in the network is maximized.

The previous paragraph sets the stage for an optimization problem that, due to the nature of the network, must
be solved in a decentralized form. Each node needs to distribute its resources among the agents that it hosts.
Agents need to decide whether they must migrate to a different node if this action increases their benefit. These
actions must be executed without a centralized authority controlling the whole network, meaning that the desired
solution of this problem should be in the form of local and semi-local policies (based on information about the
node currently occupied and its immediate neighbors).

Similar theoretical problems have been addressed in the study of different Internet Congestion Control pro-
tocols, within an optimization and dynamical systems theory framework [9, 13]. In [9] an optimization problem
is proposed to model a transmission control protocol (TCP).In [1, 21] a system based on price and benefit in-
teracting dynamics is proved to solve a congestion control problem in a decentralized manner. These and other
related results are surveyed in [18]. Peer-to-peer networks have also been the subject of study from a dynamical
systems perspective [13] obtaining characterizations of their behavior and approximate requirements for desirable
performance.

It is important to note that an essential difference betweenthe problem posed here, and prior literature on
multi-agent control systems is that our problem considers agents moving between discrete locations on a graph;
the latter body of literature focuses on agents moving in a continuous space [4,5,7,10,11,15,19].

In this paper we present an approach to solve the network resource allocation problem described above. We
approach the problem from an optimization perspective, assuming initially that the topology of the network and
the number of agents are fixed. We show that this problem can besolved hierarchically: On top we have the
combinatorial optimization problem of the distribution ofthe agents among the nodes, and at the bottom the
fully decentralized convex optimization problem of resource assignment among agents within each node. The
solution to the convex optimization problem is obtained using classical techniques (Karush-Khun-Tucker condi-
tions [2,14]), while the agent distribution problem is solved using randomized algorithms to avoid computational
complexity issues common to model-based techniques (e.g. combinatorial optimization [3], mixed integer pro-
gramming [6], etc). We illustrate the problem and the solution using a numerical example. Finally we discuss
future research steps to fully decentralize the algorithm and relax some of the current assumptions related to the
topology of the network and the number of agents.

2 Problem Formulation

Consider a set of agents capable of calculating their own benefit as a function of the resources that they are using
from the network. The network has nodes with different typesof resources, capable of deciding how much of
each resource is allocated to each agent within each node. The nodes are connected over a network of fixed
topology, and agents can move between any two connected nodes.

Let G = (V ,E) be a graph with nodes indexed byV = {1,2, ...,Nv} and edgesE = {(v,w) : v,w∈ V ,v 6=
w, andv connected tow}. We call the graph undirected if(v,w) ∈ E whenever(w,v) ∈ E , and time-invariant if
the set of nodesV and the set of edgesE remain unchanged over time. A graph is connected if there is apath
between any pair of nodes in the graph, where a path fromv to w is a sequence of different nodes starting atv and
ending atw such that consecutive nodes are connected.

Assumption 1(Network). The network is a time-invariant undirected graphG = (V ,E) where the total number
of nodes is Nv.

Assumption 2(Resources). We assume there exist Nr types of resources in the network (e.g. bandwidth, memory,
connectivity). For each node i∈ V we have the set of fixed available amount of resources Ri = {r i,1, r i,2, ...r i,Nr},
where ri, j ∈ R is the amount of resource of type j available at node i. We assume that0≤ r i, j < ∞ for all i ∈ V
and all j ∈ R = {1,2, ...,Nr}.

2



UNM Technical Report: EECE-TR-07-001

Assumption 3 (Agents). There is a fixed number of agents Na, indexed by the setA = {1,2, ...,Na}. The state
of each agent k∈ A consists of an ordered tuple(xk,1,xk,2, ...,xk,Nr ,vk), where xk, j ∈ R represents the amount
of resource of type j allocated to agent k, and vk ∈ V denotes the location of agent k in the graph. Note that
0≤ xk, j < ∞ for all k ∈ A and all j ∈ R .

If Assumption 1 is relaxed then we seek a solution to the technical problem described in section 1 where the
topology, and the number of nodes change over time. If Assumption 2 is relaxed, we can then allow for time
varying resources. Note however that this is strongly related to the topology of the network, because as we show
below, the unavailability of resources at a particular nodeis equivalent to the disappearance of that node from the
network. Finally, if Assumption 3 is relaxed, we can allow variations in the number of agents over time.

The description of the network as an undirected graph in Assumption 1, the existence of a fixed number of type
of (non-negative but finite) resources in Assumption 2, and the description of the agents states in Assumption 3
are reasonable. Communications in a network are usually bidirectional so that information flow in both directions
may safely be assumed1. The devices enabling the network probably generate a largeset of type of resources
to be allocated, but this set is still finite. The agents benefit depends upon their location in the network and
the resources allocated to them, so the relevant information for the agents is contained in the state description
introduced in Assumption 3.

Assumption 4(Utility functions). Each agent k has an expression of its utility function Uk(xk) : R
Nr → R where

xk = (xk,1,xk,1, ...,xk,Nr )
T . The utility function is of the form:

Uk(xk) =
Nr

∑
j=1

uk, j(xk, j) (1)

where uk, j(xk, j ) : R →R is assumed to be a strictly concave, strictly increasing, and differentiable function of xk, j
for all k ∈ A and all j ∈ R . Moreover, we assume that uk, j(xk, j) →−∞ as xk, j → 0

Note that this assumption is not very restrictive; the leastinformation that each agent should have is its
own benefit. Moreover, it is reasonable to assume that the more resources an agent obtains, the more benefit it
achieves (strictly increasing utility function). The concavity assumption allows us to apply convex optimization
techniques [2,14] without restricting the problem solution (it is only necessary to look for the appropriate function
that fits this constraint), and the requirement thatuk, j(xk, j) →−∞ asxk, j → 0 allows us to avoid the possibility of
any agent getting no resources.

We thus pose the following optimization problem:

max
(x1,x2,...,xNa),

(v1,v2,...,vNa)

Na

∑
k=1

Uk(xk) (2)

subject to

xk, j ≥ 0, for all (k, j) ∈ A ×R (3a)

vk ∈ V , for all k∈ A (3b)

∑
{k:vk=i}

xk, j ≤ r i, j , for all (i, j) ∈ V ×R (3c)

Remark 1. Implicit in equation(3c) is the fact that given that an agent is located at a particularnode, it can
only have access to the resources of that particular node.

1The communication links however may be asymmetric. This would have an impact on how often and with how much delay the nodes
may be able to access information about their neighbors. This is a possible future line of research, but is outside the scope of this paper.
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To solve the optimization problem (2)-(3), it is only necessary for the graphG to be connected because in the
current setting, the problem is centralized. We assume thatall the information about the network is globally avail-
able. The topology of the network becomes important when we pursue the decentralization of the optimization
algorithm.

3 Hierarchical Solution Architecture

The optimization problem stated in equations (2) and (3), depends on two types of variables: The continuous
resource allocated to the agents, and the discrete locations chosen for each one of them. This type of problem is
in general quite complex, but Remark 1 greatly simplifies theproblem into one that can be solved hierarchically
as explained below.

Inspection of equations (2) and (3) reveals that if agents were not allowed to move, so that they may only
compete for the resources at the node where each one of them islocated, the problem would become that of
solving a separate optimization problem inside each node. Moreover, the individual solution of each node’s
optimization problem would guarantee the solution of the complete network optimization problem of equations
(2) and (3).

Let Vi be the set of agents located at nodei, i.e.Vi = {k∈ A : vk = i}.

Proposition 1. Given a fixed possible distribution of agents(v1,v2, ...vNa), the solution of equations(2) and (3)
is given by the solution of:

max
(xα,xβ,...,xγ):
α,β,...,γ∈Vi

∑
{κ∈Vi}

Uκ(xκ) (4)

subject to

xk, j ≥ 0, for all (k, j) ∈Vi ×R (5a)

∑
{k∈Vi}

xk, j ≤ r i, j , for all j ∈ R (5b)

for each i∈ V .

Proof. Assigning a fixed valuei ∈ V to eachvk allows us to discard equation (3b), rewrite equation (2) as

∑
{i∈V }

[

max
(xα,xβ,...,xγ):
vα=i,vβ=i,

...,vγ=i

∑
{κ:vκ=i}

Uκ(xκ)

]

using the observation in Remark 1. Equations (3a) and (3c) are also rewritten as a set of equations indexed byV
that are independent of the choice ofvk. This proves the claim.

The problem described in Proposition 1, represents part of the original optimization problem (2)-(3). In
order to achieve an equivalent description, the agent distribution (v1,v2, ...,vNa) must be considered as a decision
variable. LetNd = NNa

v be the number of possible ways of distributing the agents among the nodes in the network.
This number is guaranteed to be finite because the nodes and the agents are finite, but it may be very large. Let
D = {Dl : l ∈ {1,2, ...,Nd}} be the set of possible distributions of agents in the network, where each individual
distributionDl can be expressed in the form of a bipartite graph, where the set of nodes inDl is composed by the
nodes in the networkV and the agentsA , and the edges (that may only link an agent to a node) represent the
node assignment for each agent, i.e.Dl = (V

S

A ,ED), whereE l
D = {(χ,α) : χ ∈ V ,α ∈ A ,vα = χ}.
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Assume that the solution of the problem in Proposition 1 is available for any given distribution of agentsDl ,
then in order to solve the problem in (2)-(3), it is sufficientto obtain the agent distribution that maximizes the
benefit of the complete network, i.e.

D∗ = arg max
{Dl :1≤l≤Nd}

Ul (6)

where

Ul = ∑
{i∈V }

[

∑
{κ:κ∈Vi}

Uκ(xl∗
κ )

]

(7)

where xl∗κ denotes the optimal solution of the convex optimization problem (4)-(5) for agentκ duringl th possible
distribution.

We have thus transformed the mixed continuous and discrete optimization problem (2)-(3) into the hierarchi-
cal optimization problem (4),(5), and (6), where the continuous part (4)-(5) can be solved inside each node in the
network, while the discrete part (6) has to be solved in a centralized form. The proposed approach in this paper
is to obtain an analytical solution for the continuous portion (4)-(5), such that its numerical solution requires a
low-computational-cost algorithm. The discrete part can then be solved using randomized algorithms such that a
quasi-optimal solution (with high confidence) can be achieved. The procedure is summarized in Figure 2.

Randomized Algorithm


Node

Receives agents


Allocates resources

Computes performance


Node
 Node


Distributes agents

among the nodes


Computes total performance

form each node's performance


Node
 Node


Figure 2: Hierarchical solution structure. The randomizedalgorithm distributes the agents. The resource is then
allocated by each node to the agents it hosts so it can computeits benefit. Finally the centralized algorithm obtains
the aggregate benefit.

4 Decentralized Part: Convex Optimization

In this section we provide a solution for the problem stated in Proposition 1. The solution is obtained by applying
Karush-Khun-Tucker conditions [14] to our optimization problem, after some transformations that are described
below.

From equations (1) and (4) the utility function for each nodei ∈ V is written, (by reordering the sums) as,

Ui =
Nr

∑
j=1

(

∑
{k∈Vi}

uk, j(xk, j)

)

(8)
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Sinceuk, j(xk, j) is a strictly concave function ofxk, j for each(k, j) ∈ A ×R , the terms inside the parentheses
of equation (8), and the utility functionUi are all concave functions of their arguments. This fact allows us to
decentralize the problem even further, and to considerNr independent optimization problems within each node
(one for each resource). Thus, the optimization problem in equations (5) and (8) can be restated as: For each
(i, j) ∈ V ×R maximize:

Ui, j = ∑
{k∈Vi}

uk, j(xk, j) (9)

subject to

xk, j ≥ 0, for all k∈Vi (10a)

∑
{k∈Vi}

xk, j ≤ r i, j (10b)

In order to simplify our notation, we drop thei and j subindexes from the previous equations, with the under-
standing that the problem stated below is solved for each resource inside each node of the network. The problem
is then stated as: Maximize

U =
na

∑
k=1

uk(xk), (11)

subject to

xk ≥ 0, for all k∈ {1,2, ...,na} (12a)
na

∑
k=1

xk ≤ r (12b)

wherena is the number of agents residing in each node (the notation ofthis variable is also simplified by dropping
its dependence oni ∈ V ).

Lemma 1. Let λp ∈ R for all p ∈ {1,2, ...,na+1}. The necessary and sufficient conditions for(x∗1,x
∗
2, ...,x

∗
na

) to
be the maximal solution of the problem in(11)-(12)are:

dup

dxp
+ λna+1−λp = 0 ∀p∈ {1,2, ...,na} (13a)

λpxp = 0 ∀p∈ {1,2, ...,na} (13b)

λna+1

(

na

∑
k=1

(xk)− r

)

= 0 (13c)

−xp ≤ 0 ∀p∈ {1,2, ...,na} (13d)
na

∑
k=1

(xk)− r ≤ 0 (13e)

λp ≤ 0 ∀p∈ {1,2, ...,na+1} (13f)

Proof. Let gp = −xp for all p ∈ {1,2, ...,na}, andgna+1 = ∑na
k=1(x

∗
k)− r which are the constraints (12) of the

problem. Then, and using Lagrange multipliers, the Karush-Khun-Tucker conditions for optimality [14] become

∂U

∂xp
+

na+1

∑
j=1

λ j
∂g j

∂xp
= 0 ∀p∈ {1,2, ...,na}

λpgp = 0 ∀p∈ {1,2, ...,na+1}

gp ≤ 0 ∀p∈ {1,2, ...,na+1}

λp ≤ 0 ∀p∈ {1,2, ...,na+1}

6
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Evaluating the derivatives we obtain∂U
∂xp

=
dup
xp

for all p∈ {1,2, ...,na},

∂g j

∂xp
=

{

0 j 6= p

−1 j = p

for all j, p ∈ {1,2, ...,na}, and ∂gna+1
∂xp

= 1 for all p ∈ {1,2, ...,na}. Substituting these derivatives back into the
previous equations we obtain equation (13). Since both the utility function (11) and the constraints (12) are strictly
concave, equation (13) becomes a necessary and sufficient condition for the optimality of(x∗1,x

∗
2, ...,x

∗
na

).

Consider equation (13e), and note that sincexp ≥ 0 for all p ∈ {1,2, ...,na} and thatup(xp) is a strictly
increasing function ofxp for all p∈ {1,2, ...,na}, any choice of(x1,x2, ...,xna) for (13e) such that∑na

k=1(xk)− r < 0
will be suboptimal. Thus equation (13e) must be modified as∑na

k=1(xk)− r = 0. This conclusion automatically
discards equation (13c) because it is trivially satisfied.

Equation (13b) provides two choices for eachp: λp = 0 or xp = 0. The second choice however yields
up(xp) = −∞, violating the maximization of the utility functionU. Thusλp = 0 for all p∈ {1,2, ...,na}. The
same argument leads to the modification of equation (13d) to−xp < 0 for all p∈ {1,2, ...,na}. As a consequence
of these observations (13a) and (13f) are simplified. Conditions (13) are then modified as:

dup

dxp
+ λ = 0 ∀p∈ {1,2, ...,na} (14a)

na

∑
k=1

(xk)− r = 0 (14b)

xp > 0 ∀p∈ {1,2, ...,na} (14c)

λ ≤ 0 (14d)

whereλna+1 has been renamed asλ. We thus have the following result.

Lemma 2. The solution(x∗1,x
∗
2, ..,x

∗
na

,λ∗
1,λ∗

2, ...λ∗
na+1) of equation(13) is given byλ∗

p = 0 for p ∈ {1,2, ...,na}
and by equations(14) for (x∗1,x

∗
2, ..,x

∗
na

,λ∗
na+1) whereλ = λ∗

na+1.

Applying Lemmas 1 and 2 to equations (9) and (10), the main result of this section is stated as:

Theorem 1. Given the available resource ri, j of type j∈R in the node i∈ V , the utility function(9) is maximized
by (x∗α, j ,x

∗
β, j , ...,x

∗
γ, j ), whereα,β, ...γ ∈Vi subject to(10) if and only if for each(i, j) ∈ V ×R , (x∗α, j ,x

∗
β, j , ...,x

∗
γ, j )

satisfies:

duκ, j

dxκ, j

∣

∣

∣

xκ, j =x∗κ, j

+ λ∗
i, j = 0 ∀κ ∈Vi (15a)

∑
κ∈Vi

(x∗κ, j)− r i, j = 0 (15b)

x∗κ, j > 0 ∀κ ∈Vi (15c)

λ∗
i, j ≤ 0 (15d)

5 Centralized Part: Randomized Optimization

In this section we propose a centralized algorithm to solve equation (6). This is a combinatorial optimization
problem [3] in general, but in this paper we pursue an alternative path through the use of randomized algorithms,
which have proven useful in a different but somewhat relatedproblem [12]. We choose randomized algorithms for

7
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this part of the problem because as opposed to model-based techniques, their computational complexity does not
depend exclusively on the complexity of the problem itself.For example, an alternative would have been to use
mixed integer programming [6] to solve the whole problem, but the computational complexity of this technique is
NP-complete on the integer variables ( [17] Ch. 18), which inour case is large as noted in the simulation example
presented in Section 6.

The main idea of using randomized algorithms is that insteadof looking for the solution that exactly optimizes
the problem, we seek a solution that is close to the optimal one with high confidence. This is done by generating
a given number of samples from the set of possible solutions and choosing the one with the best performance.
This can be stated more formally as follows: LetD = {l : 1 ≤ l ≤ Nd} be the index set of all possible agent
distributions.

Definition 1 (Probable Near Maximum). Given the set of all possible network benefits{Ul : l ∈ D}, δ ∈ (0,1),
andα ∈ (0,1), a numberU0 ∈ R is said to be a probable near maximum of{Ul : l ∈ D} to levelα and confidence
1− δ if there exists a set̃D ⊆ D with Pr{D̃} ≤ α such that

Pr
{

sup
l∈D

Ul ≥ U0 ≥ sup
l∈D\D̃

Ul
}

≥ 1− δ (16)

Thus, this definition states that the probability of finding abetter solution than the Probable Near Maximum
is less thanα with a confidence greater than 1− δ. One result that will be used to obtain the number of samples
needed to achieve a Probable Near Maximum as a function of thedesired confidence and probability of finding a
better solution is the following:

Lemma 3 (Theorem 9.1 [20]). Suppose(Y,SY,PY) is a probability space, and thatν : Y → R is a random
variable. Let y1,y2, ...,ym ∈ Y be m independent and identically distributed (i.i.d.) samples drawn according to
PY, and define

ν0(y) = max
1≤i≤m

ν(yi) (17)

Given anyα ∈ (0,1) andδ ∈ (0,1), if

m≥
ln(1/δ)

ln(1/(1−α))
(18)

then, with probability greater than1− δ, we have PY
{

ν(y) > ν0(y)
}

≤ α, i.e.

Prm{PY
{

ν(y) > ν0(y)
}

≤ α
}

≥ 1− δ (19)

Note that equation (19) resembles (16), implying that the bound provided in (18) may be used to compute the
minimum number of samples needed to guarantee that the solution obtained through the randomized algorithm is
sufficiently close to the actual solution. We thus have the following result:

Theorem 2. Given δ ∈ (0,1) and α ∈ (0,1), if M i.i.d. samples D1,D2, ...,DM are taken fromD such that

M ≥ ln(1/δ)
ln(1/(1−α))

then

U0 = max
{1≤η≤M}

Uη

is a Probable Near Maximum of{Ul : l ∈ D} to levelα and confidence1− δ and the corresponding D0 is the
Probable Near Optimal distribution of agents in the network.

Theorems 1 and 2 allow us to establish Algorithm 1.

8
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Algorithm 1 Hierarchical Optimization

Require: α, δ, V , A , r i, j for all (i, j) ∈ V ×R , andUk(xk) for all k∈ A .
Ensure: U0 andD0.

1: l ⇐ 1
2: ComputeM according to Theorem 2.
3: while l ≤ M do
4: Generate an agent distributionDl ∈ D.
5: For each(i, j) ∈ V ×R , computex∗κ, j for all κ ∈Vi (according to Theorem 1).
6: Compute the aggregate benefit

Ul = ∑
A

Uk(xk).

7: l ⇐ l +1
8: end while
9: ChooseU0 = min1≤l≤M Ul and the correspondingD0.

6 Simulation Results

6.1 Experimental set-up

We present simulation results for the complete algorithm (Algorithm 1) to illustrate the benefits and limitations
of the proposed technique. The test involves 40 nodes (Nv = 40) in the network, and 50 agents (Na = 50) that
must be distributed among the nodes.

Each node is assumed to have three types of resources, e.g. bandwidth, processing power, and storage memory
(Nr = 3), so three constantsr i,1, r i,2, r i,3 are assigned to each nodei ∈ V , representing the amount of each type
of resource available to each node, i.e. the capability of each node. For the test, these constants were chosen
at random according to a uniform distribution between 0 and 1. The choices were made independently for each
constant, and before starting the test.

The utility function for each agentk∈ A is of the form

Uk(xk) =
3

∑
j=1

wk, j ln(xk, j ) (20)

wherewi, j were also independently chosen at random according to a uniform distribution between 0 and 1, and
before running the test. Utility function (20) satisfies Assumption 4. Note thatwk, j are weighting factors for each
type of resource on each agent, and are used to quantify the importance that each resource has for each agent
(the greater the value ofwk, j the more important is resourcej for agentk.) Note that the particular choice of
utility function for this test is commonly referred to as proportional fairness in the mathematical modeling for the
Internet literature [1,9,16,18,21].

6.2 Algorithm execution

We now explain how Algorithm 1 behaves in this example:

Step 2 Givenα andδ, the number of samplesM is calculated. The following steps are then repeatedM times.

Steps 3-4 A sample of an agent distribution is generated. This is done by assigning a node to each agent in the
system. Each assignment is picked independently and according to a uniform distribution among the nodes. Note
that each distribution sample must be independent of the previous ones.

9
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Step 5 Given the agent distribution obtained in the previous step,the algorithm must now solve the decentralized
resource allocation for each resource in each node. This implies that (9), (10) must be solved using Theorem 1
(with the substitution (20) as utility the function for eachagent.) However, it is possible to simplify this step
analytically so that the computational time for the simulation is reduced. Then, applying Theorem 1 to (20) we
obtain the following optimal solution for each(i, j) ∈ V ×R :

x∗k, j =
r i, jwk, j

∑{κ∈Vi}wκ, j
∀k∈Vi (21a)

λ∗
k, j = −

1
r i, j

∑
{κ∈Vi}

wκ, j ∀k∈Vi (21b)

Thus, given the resources for each noder i, j and the weights for each agentwk, j , this step can be completed by
substituting this information into (21).

Step 6 Once the resources have been distributed among the agents, the algorithm calculates the utility of the
current distribution.

Step 9 Finally the algorithm chooses as optimal the distribution that yields the best performance among the
tested samples.

6.3 Overall performance of the algorithm

The first test consists of running the optimization algorithm several times in order to relate its performance to
different values forα andδ. The chosen values for the experiment are summarized in Table I. The third row of
this table provides the number of samplesM corresponding to eachα− δ pair. The test is designed as follows.

α 0.01 0.01 0.005 0.005 0.005 0.001 0.001
δ 0.01 0.005 0.01 0.005 0.001 0.005 0.001
M 458 528 919 1058 1379 5296 6905

Table I: Values forα andδ used in the first test.

For eachα− δ pair, twelve different instantiations of Algorithm 1 are executed. From these twelve cases, the
average, the standard deviation, and the maximum performance are computed. The results for eachα− δ pair
are shown in Figure 3. As can be seen from this figure, the performance of the algorithm improves on average as
the number of samples is increased. Moreover, the standard deviation tends to decrease with a higher number of
samples which is an indication of the improvement on the repeatability of the algorithm. However, there is also an
increase of the standard deviation on the tests with 6905 samples, which contradicts the tendency. This is because
the algorithm obtained a much better, but rare optimal solution, that can be seen in the “∗” located approximately
at (6905,−78.3). This rare case does not a contradict Theorem 2, because the Theorem only guarantees that the
probability of finding a better solution is small, not zero. In fact, there could be a much better solution that is
never identified by the samples. This is the price to pay for the simplicity provided by the randomized algorithm.
Even so, it must be noted that the number of samples needed to obtain a reasonable result (6905), is much smaller
compared to the number of possible arrangements of agents inthe network that is given byNNa

v , which for our
test is 1.2677×1080.

6.4 Further discussion on the results

To gain insight in the behavior of the algorithm, we perform asecond test, where only one optimization (with
identical set-up to the previous) was performed, but more variables were stored. The confidence and level pa-

10
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Figure 3: Plot of the average, standard deviation and maximum performance for each number of samples in table
I. “o” is used for average performance, “△” for average plus standard deviation, “∇” for average minus standard
deviation and “∗” for maximum performance.

rameters are chosen asα = δ = 0.0001 yielding a number of samplesM = 6905. The optimal performance is
U0 =−82.8748, which is close to the average performance obtained forthat number of samples (shown in Figure
3) but not the best possible known which was about−78.3 (also shown in Figure 3). This confirms that the
randomized approach only guarantees a good approximation to the optimal solution.

The decentralized (convex) optimization algorithm distributes the resources on each node among the agents
located in it, according to the weightswk, j of each agent’s utility function. An example of such distribution is
given in Table II, which summarizes the resource allocationfor node 1, where agents 21 and 30 are located after
the optimization. In this table, each resourcer1, j is distributed according to the weightsw21, j , andw30, j (following
21), resulting on the allocation given byx21, j , andx30, j . These results satisfy the conditions given in Theorem 1
for the proportional fairness allocation (21a) as expected.

j 1 2 3
r1, j 0.9501 0.8381 0.7948

w21, j 0.6833 0.2319 0.2974
w30, j 0.5751 0.9943 0.7334
x21, j 0.5159 0.1585 0.2293
x30, j 0.4342 0.6796 0.5655

Table II: Resource distribution for node 1 with agents 21 and30.

We were also interested in observing the behavior of the randomized algorithm with respect to the weights in
each agent’s utility function. Specifically, it would be desirable that large amounts of resources were allocated to
agents with large weight values. Figures 4, 5, 6 show that this happens on average, as we explain below.

11
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Figure 4: Allocated resourcexk,1 with respect to weighing factorwk,1 for resourcej = 1. “o” represents each
(wk,1,xk,1) pair and the line shows the tendency according to a linear fit function (Although the distribution of
points does not suggest a linear model, we use the line to highlight the tendency of the algorithm to allocate more
resources to agents with higher weights in their utility function).

We present three figures, one for each resource in the experiment (Figure 4 for the first resource, Figure 5 for the
second, and Figure 6 for the third). Each “o”-mark in the figures represents an amount of allocated resource that
corresponds to each agents weight, i.e.(wk, j ,xk, j). Then if for resourcej = 1 an “o”-mark is located at(0.4,0.2)
it means that 0.2 of the first resource was allocated to an agent that had a weight of 0.4 for such resource.
Additionally, each figure shows a tendency line that was constructed by sorting the pairs(wk, j ,xk, j ) in increasing
order with respect to(wk, j and then obtaining a linear fit function from the ordered data(wk, j ,xk, j) for k∈ A . The
linear fit function was only used to highlight the overall tendency of the solution. We do not claim that the data
follows a linear model, in fact the obtained regression coefficient is too low to imply that.

These figures show that for all three resources the expected tendency of allocating more resources to agents
with higher weights is fulfilled. However, these figures alsoshow several weight-allocation pairs that contradict
the tendency completely (“o”-marks located near the points(0,1) and(1,0)). These points are indicators that a
better solution may yet be achieved, which we know is true because the best possible known performance was
higher than that achieved in this test. This happens becausethe randomized algorithm only guarantees that the
solution will be very good with very high confidence, but not necessarily the best one.

7 Conclusion

We have modeled a network agent distribution problem as a continuous resource allocation on a discrete environ-
ment (a graph), where the decision variables are the location of each agent in the network and the resources each
of them receive. This optimization problem was solved usingtwo different algorithms configured in a hierarchical
structure. The agent distribution algorithm is centralized and of a randomized nature, while within each node,
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Figure 5: Allocated resourcexk,2 with respect to weighing factorwk,2 for resourcej = 2. “o” represents each
(wk,2,xk,2) pair and the line shows the tendency according to a linear fit function

the decentralized resource allocation algorithm relies onthe Karush-Khun-Tucker conditions. Simulation results
have been presented showing that the approach yields the anticipated results.

The main limitation of our current algorithm lies in its centralized part. Within each node however, the
decentralized part of the optimization problem resembles that of Kelly’s mathematical modeling of TCP protocols
[9,18]. This suggests that the decentralization of our algorithm may be achieved using the primal-dual approach
that corresponds to this type of modeling [1, 16, 18] as starting point, augmenting this algorithm with switching
logic that controls the movement of agents between nodes in the network.
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