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new architecture for a smarter Internet abstracts the immaitcomponents of the network from the hardware
that enables it. This is done via software agents that imeleisuch functions and are capable of relocating them-
selves over the network to optimize resources. To achiemanh need an algorithm that governs the way agents
distribute themselves in the physical network, and thisepgpesents our first effort towards this goal. We for-
mulate the problem as an optimization problem, where ageuss be distributed in the network, and can receive
resources from the nodes they occupy according to theirrepkirements. This optimization problem is then
solved in a hierarchical manner: A centralized (randomiaégbrithm optimizes the agent distribution among the
nodes, and a decentralized (convex optimization) algorperforms the resource allocation within each node.
We present simulation results showing that the hierartbjmimization algorithm achieves the desired objective.
Finally we discuss our next steps towards decentraliziagptioposed algorithm.

1 Introduction

Retransmissions, delays, and communication failures roayravhen a mobile device either moves across multi-
ple networks, or has an intermittent connection inside #imeesnetwork. Such problems are caused by the current
implementation of the Internet, which which delivers paske static locations. This assumption is no longer
valid when the communication task involves mobile devisas;e such devices may connect/disconnect without
no prior notice, and may even move across different netwaduki;mig the communication task [8].

A novel Internet architecture addressing these issues maeped by Jerez et al. [8]. This architecture essen-
tially postulates an abstract network that treats the naddshe traffic as digital entities, separating the funetion
components of the network from the hardware that enables.tlre this fashion, a logical (intelligent) network
is created on top of the physical network, enabling fundtitke persistent identification of different objects
and smarter routing to avoid retransmissions. The funatioamponents of the network are conceptualized as
software agents (e.g. routing agents, storage agents, DNISmentation agents, etc.), and the hardware is seen
as a resource to be used by these agents, such that theicaaslis efficiently executed (Figure 1).

Figure 1: Network example: Each platform in the network aamseveral processes concurrently. The network
is abstracted as a graph and the processes as agents (btée®) that can move among the nodes.

In this setting, each particular node in the physical nekwesicapable of simultaneously hosting more than
one agent. Moreover, agents can move around searchingdesnath more resources in order to complete their
tasks in the best possible way. Agents are viewed as gre¢itigenompeting with each other for the completion
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of their tasks (benefit), by consuming hardware resourapsned for the task execution. The objective is to use
the resources of the network so that the aggregate benefitbéagents in the network is maximized.

The previous paragraph sets the stage for an optimizataigm that, due to the nature of the network, must
be solved in a decentralized form. Each node needs to distrits resources among the agents that it hosts.
Agents need to decide whether they must migrate to a differade if this action increases their benefit. These
actions must be executed without a centralized authoritgrotling the whole network, meaning that the desired
solution of this problem should be in the form of local and stal policies (based on information about the
node currently occupied and its immediate neighbors).

Similar theoretical problems have been addressed in thiy studifferent Internet Congestion Control pro-
tocols, within an optimization and dynamical systems thidcamework [9, 13]. In [9] an optimization problem
is proposed to model a transmission control protocol (T@#P)1, 21] a system based on price and benefit in-
teracting dynamics is proved to solve a congestion contaitlpem in a decentralized manner. These and other
related results are surveyed in [18]. Peer-to-peer netsvaake also been the subject of study from a dynamical
systems perspective [13] obtaining characterizationisaf behavior and approximate requirements for desirable
performance.

It is important to note that an essential difference betwenproblem posed here, and prior literature on
multi-agent control systems is that our problem considgesnts moving between discrete locations on a graph;
the latter body of literature focuses on agents moving inrdinaous space [4,5,7,10,11,15,19].

In this paper we present an approach to solve the networkiresallocation problem described above. We
approach the problem from an optimization perspectivejrasyy initially that the topology of the network and
the number of agents are fixed. We show that this problem casolved hierarchically: On top we have the
combinatorial optimization problem of the distribution thie agents among the nodes, and at the bottom the
fully decentralized convex optimization problem of resmiassignment among agents within each node. The
solution to the convex optimization problem is obtainedggilassical techniques (Karush-Khun-Tucker condi-
tions [2, 14]), while the agent distribution problem is sshwsing randomized algorithms to avoid computational
complexity issues common to model-based techniques (embinatorial optimization [3], mixed integer pro-
gramming [6], etc). We illustrate the problem and the solutising a numerical example. Finally we discuss
future research steps to fully decentralize the algorithohr@lax some of the current assumptions related to the
topology of the network and the number of agents.

2 Problem Formulation

Consider a set of agents capable of calculating their owefitexs a function of the resources that they are using
from the network. The network has nodes with different typesesources, capable of deciding how much of
each resource is allocated to each agent within each node.nddhes are connected over a network of fixed
topology, and agents can move between any two connected.node

Let G = (V,E) be a graph with nodes indexed By = {1,2,...,N,} and edge€ = {(v,w) : vwe V v#
w, andv connected tov}. We call the graph undirected (f,w) € £ whenever(w,v) € E, and time-invariant if
the set of noded’ and the set of edges remain unchanged over time. A graph is connected if therepitla
between any pair of nodes in the graph, where a path frtonw is a sequence of different nodes starting ahd
ending atv such that consecutive nodes are connected.

Assumption 1(Network). The network is a time-invariant undirected gragh= (7, £) where the total number
of nodes is N

Assumption 2(Resources)We assume there exist types of resources in the network (e.g. bandwidth, memory,
connectivity). For each nodes 7 we have the set of fixed available amount of resourges R 1,ri 2,...ri n, },
where j € R is the amount of resource of type j available at node i. WerassthatO <r;j < « for alli € ¥
andall je R ={1,2,....N  }.
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Assumption 3 (Agents) There is a fixed number of agentg, fhdexed by the sef = {1,2,...,Na}. The state

of each agent k 4 consists of an ordered tupleq 1, X2, ..., XN » Vi), Where X j € R represents the amount
of resource of type | allocated to agent k, andev?’ denotes the location of agent k in the graph. Note that
0<x¢j<owoforallkc 4andall jc R.

If Assumption 1 is relaxed then we seek a solution to the tieehproblem described in section 1 where the
topology, and the number of nodes change over time. If Assiomp is relaxed, we can then allow for time
varying resources. Note however that this is strongly eelab the topology of the network, because as we show
below, the unavailability of resources at a particular nisd=guivalent to the disappearance of that node from the
network. Finally, if Assumption 3 is relaxed, we can allowia#ions in the number of agents over time.

The description of the network as an undirected graph in igtion 1, the existence of a fixed number of type
of (non-negative but finite) resources in Assumption 2, deddescription of the agents states in Assumption 3
are reasonable. Communications in a network are usualisebitbnal so that information flow in both directions
may safely be assum&dThe devices enabling the network probably generate a kegef type of resources
to be allocated, but this set is still finite. The agents bémEpends upon their location in the network and
the resources allocated to them, so the relevant informdtiothe agents is contained in the state description
introduced in Assumption 3.

Assumption 4 (Utility functions). Each agent k has an expression of its utility functig®d) : RN — R where
Xk = (X1, Xk 1, XN, ) |- The utility function is of the form:

Ny

Uk(Xk) = ) Ukj(Xj) ()
k(Xk ;lk; i

where (% j) : R — R is assumed to be a strictly concave, strictly increasingj @ifferentiable function ofy;
forallk € Zand all j € . Moreover, we assume thag (X j) — —oasxj — 0

Note that this assumption is not very restrictive; the leakirmation that each agent should have is its
own benefit. Moreover, it is reasonable to assume that the mesources an agent obtains, the more benefit it
achieves (strictly increasing utility function). The canity assumption allows us to apply convex optimization
techniques [2,14] without restricting the problem solotfit is only necessary to look for the appropriate function
that fits this constraint), and the requirement that(x j) — —o asxx ; — 0 allows us to avoid the possibility of
any agent getting no resources.

We thus pose the following optimization problem:

Na
max Uk (X 2
<X1!X2"”"XNa)’kZ1 k(Xk) "
(V1,V2,...,VNa)
subject to
%20, forall (kj) € Ax R (3)
eV, forallke A e
X <rfij, forall(i,j)e ¥ <K (3¢)

{kvg=i}

Remark 1. Implicit in equation(3c) is the fact that given that an agent is located at a particulade, it can
only have access to the resources of that particular node.

1The communication links however may be asymmetric. Thisld/bave an impact on how often and with how much delay the nodes
may be able to access information about their neighbors i$ta possible future line of research, but is outside thpesobthis paper.
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To solve the optimization problem (2)-(3), it is only necassfor the graplg to be connected because in the
current setting, the problem is centralized. We assumaeathidite information about the network is globally avail-
able. The topology of the network becomes important when weye the decentralization of the optimization
algorithm.

3 Hierarchical Solution Architecture

The optimization problem stated in equations (2) and (3pedes on two types of variables: The continuous
resource allocated to the agents, and the discrete losattoysen for each one of them. This type of problem is
in general quite complex, but Remark 1 greatly simplifiespgtablem into one that can be solved hierarchically
as explained below.

Inspection of equations (2) and (3) reveals that if agentewet allowed to move, so that they may only
compete for the resources at the node where each one of thiewaied, the problem would become that of
solving a separate optimization problem inside each noderebVer, the individual solution of each node’s
optimization problem would guarantee the solution of theplete network optimization problem of equations
(2) and (3).

LetV; be the set of agents located at nodiee. Vi = {ke 4 : w =i}.

Proposition 1. Given a fixed possible distribution of agelftg, v2, ...vy, ), the solution of equation&) and (3)
is given by the solution of:

max U (X 4
(X"’XB*""Xv):{Kg\/i} K( K) (4)
a,B,....yevi
subject to
Xcj >0, forall (k,j)eVixR (5a)
Xej <rij, forallje R (5b)
{keVi}
for each ie V.

Proof. Assigning a fixed valuee 7’ to eachv allows us to discard equation (3b), rewrite equation (2) as

max Uy (Xk)

(i1} (Xq,Xp,...,Xy)Z (KVe=i}
Vo =i,vg=i,

W=l

using the observation in Remark 1. Equations (3a) and (8cilao rewritten as a set of equations indexedby
that are independent of the choicewf This proves the claim. O

The problem described in Proposition 1, represents parheforiginal optimization problem (2)-(3). In
order to achieve an equivalent description, the agentloligion (v1, v, ..., vn,) must be considered as a decision
variable. LetNg = N2 be the number of possible ways of distributing the agentsaytize nodes in the network.
This number is guaranteed to be finite because the nodes aag¢imts are finite, but it may be very large. Let
D={D":1€{12,..Ng}} be the set of possible distributions of agents in the netwohere each individual
distributionD' can be expressed in the form of a bipartite graph, where thef sedes inD' is composed by the
nodes in the networ’ and the agentsl, and the edges (that may only link an agent to a node) représen
node assignment for each agent, Dé= (/U 4, o), whereE) = {(X,a) : X € V,0 € 4,vq = X}
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Assume that the solution of the problem in Proposition 1 &ilable for any given distribution of ageni,
then in order to solve the problem in (2)-(3), it is sufficiémtobtain the agent distribution that maximizes the
benefit of the complete network, i.e.

D*=arg max U (6)
{D":1<I<Ng}
where

U = l UK(x'K*)] (7)
{ieV} L{kKkeVi}

where %* denotes the optimal solution of the convex optimizatiorbpem (4)-(5) for agenk duringl™" possible

distribution.

We have thus transformed the mixed continuous and discpgimiaation problem (2)-(3) into the hierarchi-
cal optimization problem (4),(5), and (6), where the camtins part (4)-(5) can be solved inside each node in the
network, while the discrete part (6) has to be solved in areéinéd form. The proposed approach in this paper
is to obtain an analytical solution for the continuous port{4)-(5), such that its numerical solution requires a
low-computational-cost algorithm. The discrete part ¢entbe solved using randomized algorithms such that a
quasi-optimal solution (with high confidence) can be adhievi he procedure is summarized in Figure 2.

Randomized Algorithm

Distributes agents Computes total performance
among the nodes form each nods performance
Node Node Node Node Node

Receives agents
Allocates resources
Computes performance

Figure 2: Hierarchical solution structure. The randomiakgbrithm distributes the agents. The resource is then
allocated by each node to the agents it hosts so it can cortgbtnefit. Finally the centralized algorithm obtains
the aggregate benefit.

4 Decentralized Part: Convex Optimization

In this section we provide a solution for the problem stateBrioposition 1. The solution is obtained by applying
Karush-Khun-Tucker conditions [14] to our optimizatioroptem, after some transformations that are described
below.

From equations (1) and (4) the utility function for each node? is written, (by reordering the sums) as,

Nr
U = i (X j 8
JZL<{kezvi}UK"(Xk'])> ©
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Sinceuy j (X« j) is a strictly concave function of j for each(k, j) € 4 x K, the terms inside the parentheses
of equation (8), and the utility functiof; are all concave functions of their arguments. This factvalais to
decentralize the problem even further, and to condldndependent optimization problems within each node
(one for each resource). Thus, the optimization problengumaéons (5) and (8) can be restated as: For each
(i,j) € ¥V x R maximize:

Uj= 3y Ukjlxj) 9)
{kevi}
subject to
Xcj >0, forallkeV (10a)
Xk, j < Fij (10b)
{kevi}

In order to simplify our notation, we drop theand j subindexes from the previous equations, with the under-
standing that the problem stated below is solved for eadjures inside each node of the network. The problem

is then stated as: Maximize .
a

U= (%), (12)
K=1
subject to
Xk >0, forallke {1,2,....na} (12a)
Na
3 X< (12b)
K=

wheren, is the number of agents residing in each node (the notatitn¥ariable is also simplified by dropping
its dependence anc 7).

Lemmal. LetAp € Rforall p € {1,2,...,na+ 1}. The necessary and sufficient conditions(fdr x5, ..., X5, ) to
be the maximal solution of the problem(itil)}(12) are:

dup
d +)\na+]_ )\p:O VpE{l,Z,,na} (13a)
Xp
Na
Ana+1< 3 (%) — r) -0 (13¢)
k=1
—Xp <0 Vpe{l,2..,n} (13d)
Na
> (%) —r=<0 (13e)
k=1
Ap<0Vpe{l,2,...n.+1} (13f)

Proof. Let gp = —Xp for all p € {1,2,...,na}, andgn,+1 = 32, (%) — r which are the constraints (12) of the
problem. Then, and using Lagrange multlpl|ers the Kamﬁbbn Tucker conditions for optimality [14] become

na+1 ag
+ Z 3 :3: vpe {12, ..ny}
Apgp=0 Vpe{l,2,..,na+1}

gp <0 vpe{1,2,...,na+1}
Ap<O vpe{1,2,...,n;+1}
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Evaluating the derivatives we obtagéé = dx—l;p forall pe {1,2,...,n3},

ag; _JoO i#p

forall j,pe{1,2,...,n,}, andag‘;‘—;:;l =1forall pe{1,2,...,n,}. Substituting these derivatives back into the
previous equations we obtain equation (13). Since bothttlity function (11) and the constraints (12) are strictly
concave, equation (13) becomes a necessary and sufficiaditioa for the optimality of(x{, x5, ..., X, )- O

Consider equation (13e), and note that simge> 0 for all p € {1,2,...,na} and thatup(xp) is a strictly
increasing function of, for all p€ {1,2,...,na}, any choice ofxy, X, ..., X, ) for (13e) such thay 2 ; (x¢) —r <0
will be suboptimal. Thus equation (13e) must be modifiet{%;sl(xk) —r = 0. This conclusion automatically
discards equation (13c) because it is trivially satisfied.

Equation (13b) provides two choices for eagh A, = 0 or X, = 0. The second choice however yields
Up(Xp) = —oo, violating the maximization of the utility functioll. ThusAp =0 for all pe {1,2,...,na}. The
same argument leads to the modification of equation (13dxipo< 0 for all p € {1,2,...,na}. As a consequence
of these observations (13a) and (13f) are simplified. Cantt(13) are then modified as:

%4—)\:0 Vpe{1,2,...,na} (14a)
dxp
Na
z (x)—r=0 (14b)
K=1
Xp>0Vpe{l,2..,n} (14c)

A<0 (14d)

whereA,,+1 has been renamed AsWe thus have the following result.

Lemma 2. The solution(x, X3, .., X, A1,A%, .. A, 1) of equation(13) is given byA}, = 0 for p € {1,2,...,na}
and by equationgl4)for (xi,X3,..,Xy,,Ah 1) whereA = A; ;.

Applying Lemmas 1 and 2 to equations (9) and (10), the maimtre§this section is stated as:

Theorem 1. Given the available resourcejrof type je K in the node E ¥/, the utility function(9) is maximized
by(x;,j,x’élj,...,x\*”), wherea, 3,...y € V; subject to(10)if and only if for each(i, j) € ¥ x R, (xglj,x’éj,...,x\*”)
satisfies: ' o '

dqu
_— +A=0VkeV 15a
dXK,j ‘XK,J':X;'J‘ b I ( )
Z/(Xz,j)_ri,j =0 (15b)
KeVj
X >0 VKeV; (15c)
Aj<0 (15d)

5 Centralized Part: Randomized Optimization

In this section we propose a centralized algorithm to sotygagon (6). This is a combinatorial optimization
problem [3] in general, but in this paper we pursue an alterapath through the use of randomized algorithms,
which have proven useful in a different but somewhat relptetilem [12]. We choose randomized algorithms for
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this part of the problem because as opposed to model-bageidees, their computational complexity does not
depend exclusively on the complexity of the problem itsEtfr example, an alternative would have been to use
mixed integer programming [6] to solve the whole problent the computational complexity of this technique is
NP-complete on the integer variables ([17] Ch. 18), whicbuncase is large as noted in the simulation example
presented in Section 6.

The main idea of using randomized algorithms is that instéémbking for the solution that exactly optimizes
the problem, we seek a solution that is close to the optimalaith high confidence. This is done by generating
a given number of samples from the set of possible solutiodschoosing the one with the best performance.
This can be stated more formally as follows: 1Bt= {l : 1 <1 < Ny} be the index set of all possible agent
distributions.

Definition 1 (Probable Near Maximum)Given the set of all possible network benefitd : | € D}, & € (0,1),
anda € (0,1), anumbelJ? € R is said to be a probable near maximum{af' : 1 € D} to levela and confidence
1—dif there exists a seD C D with Pr{D} < a such that

Pr{supu' >U%> sup U'} >1-35 (16)
leD leD\D

Thus, this definition states that the probability of findingedter solution than the Probable Near Maximum
is less thar with a confidence greater than-15. One result that will be used to obtain the number of samples
needed to achieve a Probable Near Maximum as a function ofetsieed confidence and probability of finding a
better solution is the following:

Lemma 3 (Theorem 9.1 [20]) Suppos€Y, .Sy, Py) is a probability space, and that:Y — R is a random
variable. Lety,y»,...,ym € Y be m independent and identically distributed (i.i.d.) p®s drawn according to
Py, and define

Vo(y) = maxv(y) (17)
Given anya € (0,1) andd € (0,1), if
then, with probability greater tham — 3, we have P{v(y) >V°(y)} < a, i.e.
Pro{R{v(y) >V(y)} <a} >1-38 (19)

Note that equation (19) resembles (16), implying that thendgrovided in (18) may be used to compute the
minimum number of samples needed to guarantee that thesgoblitained through the randomized algorithm is
sufficiently close to the actual solution. We thus have thiedang result:

Theorem 2. Givend € (0,1) anda € (0,1), if M i.i.d. samples B,D?,....DM are taken from? such that

In(1/3)
M > WL/ (—a)) then

U2= max U"
{1<n<m}
is a Probable Near Maximum dqiU' : | € D} to levela and confidencd — & and the corresponding bis the
Probable Near Optimal distribution of agents in the network

Theorems 1 and 2 allow us to establish Algorithm 1.
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Algorithm 1 Hierarchical Optimization
Require: a, 9, V, 4,1 forall (i,]) € ¥ x R, andUyx(x) for allk € 4.
Ensure: U° andD®.
1Ll<1
: ComputeM according to Theorem 2.
: whilel <M do
Generate an agent distributi® € D.
Foreach(i,j) e VxR, computex ; for all k € V; (according to Theorem 1).
Compute the aggregate benefit

o9k wDd

UI = Z Uk(Xk).
Aa

l<I+1
end while
9: ChooseJ® = miny<j<y U' and the correspondiri@’.

© N

6 Simulation Results

6.1 Experimental set-up

We present simulation results for the complete algorithig@fithm 1) to illustrate the benefits and limitations
of the proposed technique. The test involves 40 noligs40) in the network, and 50 agentd,(= 50) that
must be distributed among the nodes.

Each node is assumed to have three types of resources, edyvildth, processing power, and storage memory
(N = 3), so three constantss, ri 2, ri 3 are assigned to each node ¥/, representing the amount of each type
of resource available to each node, i.e. the capability oheede. For the test, these constants were chosen
at random according to a uniform distribution between 0 antlte choices were made independently for each
constant, and before starting the test.

The utility function for each ageikte 4 is of the form

3
U(Xk) =S Wi jIn(xj) (20)
k(Xk J; i IN(c j

wherew; ; were also independently chosen at random according to aramiistribution between 0 and 1, and
before running the test. Utility function (20) satisfies Asgption 4. Note thaty ; are weighting factors for each
type of resource on each agent, and are used to quantify theriamce that each resource has for each agent
(the greater the value afi ; the more important is resourdefor agentk.) Note that the particular choice of
utility function for this test is commonly referred to as postional fairness in the mathematical modeling for the
Internet literature [1,9, 16, 18, 21].

6.2 Algorithm execution

We now explain how Algorithm 1 behaves in this example:
Step 2 Givena andd, the number of sampled is calculated. The following steps are then repedetmes.

Steps 3-4 A sample of an agent distribution is generated. This is dgresisigning a node to each agentin the
system. Each assignment is picked independently and angdada uniform distribution among the nodes. Note
that each distribution sample must be independent of thequre ones.
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Step5 Given the agentdistribution obtained in the previous stepalgorithm must now solve the decentralized
resource allocation for each resource in each node. Thisasihat (9), (10) must be solved using Theorem 1
(with the substitution (20) as utility the function for eaabent.) However, it is possible to simplify this step
analytically so that the computational time for the simiglatis reduced. Then, applying Theorem 1 to (20) we
obtain the following optimal solution for eadh j) € ¥ x R

Fi,j Wi j

po= LKL gpey 21a

X > {kevi} Wk, j I (2la)
1

K=o Y Wk VKEV (21b)
i (v

Thus, given the resources for each nogeand the weights for each ages j, this step can be completed by
substituting this information into (21).

Step 6 Once the resources have been distributed among the ademtsgbrithm calculates the utility of the
current distribution.

Step 9 Finally the algorithm chooses as optimal the distributibattyields the best performance among the
tested samples.

6.3 Overall performance of the algorithm

The first test consists of running the optimization algaritbeveral times in order to relate its performance to
different values forx andd. The chosen values for the experiment are summarized ire Tafilhe third row of
this table provides the number of sampblscorresponding to eaa— 6 pair. The test is designed as follows.

o | 001] 0.01 | 0.005| 0.005| 0.005| 0.001| 0.001

o | 0.01| 0.005| 0.01 | 0.005| 0.001| 0.005| 0.001

M | 458 | 528 919 | 1058 | 1379 | 5296 | 6905
Table I: Values foio andd used in the first test.

For eacha — d pair, twelve different instantiations of Algorithm 1 areesuted. From these twelve cases, the
average, the standard deviation, and the maximum perfarenare computed. The results for each 6 pair

are shown in Figure 3. As can be seen from this figure, the pagoce of the algorithm improves on average as
the number of samples is increased. Moreover, the stan@aidtiobn tends to decrease with a higher number of
samples which is an indication of the improvement on theatgi®lity of the algorithm. However, there is also an
increase of the standard deviation on the tests with 690plsswhich contradicts the tendency. This is because
the algorithm obtained a much better, but rare optimal smluthat can be seen in the™located approximately

at (6905 —78.3). This rare case does not a contradict Theorem 2, becausé#oeeim only guarantees that the
probability of finding a better solution is small, not zera fact, there could be a much better solution that is
never identified by the samples. This is the price to pay fersimplicity provided by the randomized algorithm.
Even so, it must be noted that the number of samples needéthin @ reasonable result (6905), is much smaller
compared to the number of possible arrangements of agetiie imetwork that is given b2, which for our
testis 12677x 10°.

6.4 Further discussion on the results

To gain insight in the behavior of the algorithm, we perforreegond test, where only one optimization (with
identical set-up to the previous) was performed, but mor&abkes were stored. The confidence and level pa-

10
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Benefit

-94 . . -

| | | | |
528 919 1058 1379 5296
Number of samples

Figure 3: Plot of the average, standard deviation and maxiperformance for each number of samples in table

I. “0” is used for average performancey™for average plus standard deviatiom’‘for average minus standard
deviation and %" for maximum performance.

458 6905

rameters are chosen as= 6 = 0.0001 yielding a number of samplés = 6905. The optimal performance is

U® = —82.8748, which is close to the average performance obtainetidnumber of samples (shown in Figure
3) but not the best possible known which was abeiB.3 (also shown in Figure 3). This confirms that the
randomized approach only guarantees a good approximatitve toptimal solution.

The decentralized (convex) optimization algorithm disites the resources on each node among the agents
located in it, according to the weight ; of each agent’s utility function. An example of such diattibn is
given in Table Il, which summarizes the resource allocaftsmode 1, where agents 21 and 30 are located after
the optimization. In this table, each resourcgis distributed according to the weights, j, andwsg j (following
21), resulting on the allocation given bys j, andxag j. These results satisfy the conditions given in Theorem 1
for the proportional fairness allocation (21a) as expected

i 1 2 3

r,; | 0.9501 0.8381] 0.7948
W1 | 0.6833| 0.2319 | 0.2974
waoj | 0.5751| 0.9943 | 0.7334
X21; | 0.5159 | 0.1585 | 0.2293
x30; | 0.4342| 0.6796 | 0.5655

Table II: Resource distribution for node 1 with agents 21 aod

We were also interested in observing the behavior of theaauizkd algorithm with respect to the weights in
each agent’s utility function. Specifically, it would be @able that large amounts of resources were allocated to
agents with large weight values. Figures 4, 5, 6 show thatithppens on average, as we explain below.

11
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Figure 4: Allocated resource 1 with respect to weighing factomy ; for resourcej = 1. “0” represents each
(Wi 1,X¢ 1) pair and the line shows the tendency according to a lineantfittfon (Although the distribution of
points does not suggest a linear model, we use the line tdigiiglthe tendency of the algorithm to allocate more
resources to agents with higher weights in their utilitydtion).

We present three figures, one for each resource in the exgrriffigure 4 for the first resource, Figure 5 for the
second, and Figure 6 for the third). Each “0”-mark in the fegurepresents an amount of allocated resource that
corresponds to each agents weight, (V@ j, X« j). Then if for resourcg = 1 an “o"-mark is located at0.4,0.2)

it means that @ of the first resource was allocated to an agent that had ahtvefg0.4 for such resource.
Additionally, each figure shows a tendency line that was tanted by sorting the pait@vy j, X« j) in increasing
order with respect towi j and then obtaining a linear fit function from the ordered datg;, X j) fork € 4. The
linear fit function was only used to highlight the overalldemcy of the solution. We do not claim that the data
follows a linear model, in fact the obtained regressionficieht is too low to imply that.

These figures show that for all three resources the expestel@ncy of allocating more resources to agents
with higher weights is fulfilled. However, these figures adb@w several weight-allocation pairs that contradict
the tendency completely (“o”-marks located near the pdidt&) and(1,0)). These points are indicators that a
better solution may yet be achieved, which we know is truexbse the best possible known performance was
higher than that achieved in this test. This happens bedhesandomized algorithm only guarantees that the
solution will be very good with very high confidence, but netassarily the best one.

7 Conclusion

We have modeled a network agent distribution problem as tire@mus resource allocation on a discrete environ-
ment (a graph), where the decision variables are the latafieach agent in the network and the resources each
of them receive. This optimization problem was solved usivgdifferent algorithms configured in a hierarchical
structure. The agent distribution algorithm is centralizead of a randomized nature, while within each node,

12
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Figure 5: Allocated resource > with respect to weighing factom  for resourcej = 2. “0” represents each
(Wk 2, X 2) pair and the line shows the tendency according to a linearrittfon

the decentralized resource allocation algorithm relietherKarush-Khun-Tucker conditions. Simulation results
have been presented showing that the approach yields ticgated results.

The main limitation of our current algorithm lies in its cealized part. Within each node however, the
decentralized part of the optimization problem resembblasdf Kelly’s mathematical modeling of TCP protocols
[9,18]. This suggests that the decentralization of ourréligmn may be achieved using the primal-dual approach
that corresponds to this type of modeling [1, 16, 18] asist@oint, augmenting this algorithm with switching
logic that controls the movement of agents between nodd®indtwork.
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