

MIXED WASTE LANDFILL ANNUAL LONG-TERM MONITORING & MAINTENANCE REPORT APRIL 2021 – MARCH 2022

SANDIA NATIONAL LABORATORIES, NEW MEXICO LONG-TERM STEWARDSHIP

JUNE 2022

United States Department of Energy Sandia Field Office

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

MIXED WASTE LANDFILL ANNUAL LONG-TERM MONITORING & MAINTENANCE REPORT APRIL 2021 – MARCH 2022

Facility: Mixed Waste Landfill

Location: Sandia National Laboratories

Albuquerque, New Mexico

EPA ID No.: NM5890110518

Permit Basis: Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan,

submitted March 2012, effective January 8, 2014

Owner: United States Department of Energy

Sandia Field Office

Technical Contact: Dr. Adria Bodour, Engineering

U.S. Department of Energy, Sandia Field Office

P.O. Box 5400/MS 0184 Albuquerque, NM 87185-5400

505-845-6930

adria.bodour@nnsa.doe.gov

Operator: National Technology & Engineering Solutions of Sandia, LLC

Technical Contact: Mr. Michael Nagy, Manager

Environmental Restoration & Stewardship

Sandia National Laboratories P.O. Box 5800/MS 1103 Albuquerque, NM 87185-5800

(505) 845-3178 mdnagy@sandia.gov

EXECUTIVE SUMMARY

The Mixed Waste Landfill (MWL) at Sandia National Laboratories, New Mexico is a solid waste management unit that underwent corrective action in accordance with Title 20, Chapter 4, Part 1, Section 500 of the New Mexico Administrative Code (20.4.1.500 NMAC), incorporating Title 40, Code of Federal Regulations Part 264.101 (40 CFR 264.101); regulatory criteria found in the Final Order No. HWB 04-11(M) State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico, EPA ID# 5890110518 (NMED May 2005); the Compliance Order on Consent (NMED April 2004); and the Resource Conservation and Recovery Act Facility Operating Permit for Sandia National Laboratories, Environmental Protection Agency (EPA) Identification No. NM5890110518 (NMED January 2015, with all approved modifications).

As of March 13, 2016, the February 2016 Final Order No. HWB 15-18 (P), State of New Mexico Before the Secretary of the Environment in the Matter of Proposed Permit Modification for Sandia National Laboratories, EPA ID #5890110518, To Determine Corrective Action Complete with Controls at the Mixed Waste Landfill (NMED February 2016) became effective, granting the Class 3 Permit Modification to reflect that the MWL is Corrective Action Complete with Controls. The MWL Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012), which became effective on January 8, 2014 (Blaine January 2014), defines all monitoring, inspection, maintenance/repair, and reporting requirements for the MWL. This nineth MWL Annual Long-Term Monitoring & Maintenance Report documents monitoring, inspection, maintenance, and repair activities conducted at the MWL during the April 1, 2021 through March 31, 2022 reporting period.

Sampling activities for this reporting period included two semiannual monitoring events each for groundwater, radon, and soil vapor. Annual soil-moisture monitoring was conducted in April 2021, and annual tritium surface soil sampling and annual biota sampling were conducted in August 2021. All monitoring activities were conducted in accordance with LTMMP requirements and no monitoring results exceeded LTMMP trigger levels. All monitoring results were consistent with historical MWL monitoring data.

Inspections of the MWL final cover system, storm-water diversion structures, compliance monitoring systems, and security fence were performed in accordance with LTMMP requirements. Required maintenance and repairs were minor and completed during or shortly after the inspections.

The Evapotranspirative Cover continues to meet successful revegetation criteria and is in good condition with even coverage of mature, native perennial grasses. Minor maintenance was performed during the reporting period as best practice to promote the health of the desired native grass species by reducing competition with weedy species for limited moisture and nutrients.

Regulatory activities during the reporting period included submittal of the eighth MWL Annual Long-Term Monitoring & Maintenance Report, April 2020 - March 2021 and the first modification request for the LTMMP to the New Mexico Environment Department. The eighth annual report was approved in July 2021 and the LTMMP modification request was approved and became effective in February 2022.

All LTMMP requirements have been met for the April 1, 2021 through March 31, 2022 reporting period. Based upon monitoring, inspection, and maintenance results, the Evapotranspirative Cover and monitoring systems are functioning as designed and site conditions remain protective of human health and the environment.

TABLE OF CONTENTS

LIST OF FIG LIST OF TAE LIST OF ANN	URES BLES NEXES	BREVIATIONS	vii ix x
1.0 INTRODU	JCTION.		1-1
1.1 1.2		e and ScopeOrganization	
2.0 MONITO	RING AN	ID INSPECTION REQUIREMENTS	2-1
2.1 2.2		ring Requirementstion, Maintenance, and Repair Requirements	
	2.2.1 2.2.2 2.2.3 2.2.4	ET Cover ET Cover Biology Inspection ET Cover Surface and Physical Controls Inspection Monitoring Networks and Sampling Equipment	2-6 2-10
3.0 RADON	MONITO	RING RESULTS	3-1
3.1	Radon	Sampling Field Activities	3-1
	3.1.1 3.1.2 3.1.3	Radon Monitoring Detector Deployment and Collection Field Quality Control	3-4
3.2	Labora	tory Results	3-4
	3.2.1 3.2.2 3.2.3 3.2.4	Environmental Sample ResultsField Quality Control Sample ResultsData QualityVariances	3-5 3-5
3.3	Data E	valuation and Monitoring Trigger Level	3-5
4.0 TRITIUM	SURFAC	CE SOIL MONITORING RESULTS	4-1
4.1	Tritium	Surface Soil Monitoring Field Activities	4-1
	4.1.1 4.1.2	Field Quality Control	

TABLE OF CONTENTS (Continued)

4.2	Labora	atory Results	4-3
	4.2.1 4.2.2 4.2.3 4.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control and Data QualityVariances	4-3 4-3
4.3	Data E	valuation and Monitoring Trigger Level	
5.0 SOIL-VA		NITORING RESULTS	
5.1	Soil-Va	apor Monitoring Field Activities	5-1
	5.1.1 5.1.2 5.1.3	Well PurgingField Quality Control	5-3
5.2	Labora	atory Results and Trigger Level Evaluation	5-3
	5.2.1 5.2.2 5.2.3 5.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control and Data Quality Variances	5-6 5-8
5.3	Historio	cal Data Evaluation	5-9
6.0 SOIL-M	OISTURE	MONITORING RESULTS	6-1
6.1	Soil-Mo	oisture Monitoring Field Activities	6-1
	6.1.1 6.1.2	Field Quality ControlWaste Management	
6.2	Monito	ring Results	6-3
	6.2.1	Variances	6-3
6.3	Data E	valuation and Monitoring Trigger Level	6-3
7.0 GROUN	IDWATER	R MONITORING RESULTS	7-1
7.1	Enviror	nmental Sampling Field Activities	7-1
	7.1.1 7.1.2 7.1.3	Well PurgingField Quality Control	7-3

TABLE OF CONTENTS (Continued)

7.2	Labora	atory Results	7-4
	7.2.1 7.2.2 7.2.3 7.2.4	Environmental Sample Results	7-16 7-17
7.3	Hydrog	geologic Assessment	7-18
8.0 BIOTA N	MONITOR	RING RESULTS	8-1
8.1	Biota N	Monitoring Field Activities	8-1
	8.1.1 8.1.2	Field Quality ControlWaste Management	
8.2	Labora	atory Results	8-3
	8.2.1 8.2.2 8.2.3 8.2.4	Environmental Sample ResultsField Quality Control Sample ResultsLaboratory Quality Control Data QualityVariances	8-3 8-7
8.3	Data E	valuation and Monitoring Trigger Level	8-8
9.0 INSPEC	TION, MA	AINTENANCE, AND REPAIR RESULTS	9-1
9.1	Final C	Cover System	9-1
	9.1.1 9.1.2	Biology Inspection ET Cover System/Surface Inspection	
9.2 9.3 9.4 9.5 9.6 9.7	Soil-Va Soil-Mo Ground Securi	Water Diversion Structure Inspection	9-3 9-3 9-3
10.0 REGUL	_ATORY .	ACTIVITIES	10-1
10.1 10.2		Regulatory Submittals	10-1 10-1

TABLE OF CONTENTS (Concluded)

11.0 SUMMA	ARY AND CONCLUSIONS	1 1 -1
11.1	Monitoring Activities	11-1
11.2	Inspections/Maintenance/Repairs Activities	11-2
	Regulatory Activities	
	Conclusions	
12 0 REFER	FNCFS	12-1

LIST OF FIGURES

Figure		Page
1-1	Location of the Mixed Waste Landfill with Respect to Kirtland Air Force Base and the City of Albuquerque	1-2
1-2	Location of the Mixed Waste Landfill within Technical Area III	1-3
2-1	Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover Layers	s2-7
2-2	Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover and How it Works	2-8
2-3	Mixed Waste Landfill Engineered Storm-Water Drainage Swale	2-9
3-1	Mixed Waste Landfill Radon Detector Locations	3-2
4-1	Mixed Waste Landfill Tritium Surface Soil Sampling Locations	4-2
5-1	Mixed Waste Landfill Soil-Vapor Monitoring Well Locations	5-2
5-2	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports	5-13
5-3	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports	5-14
5-4	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports	5-15
5-5	PCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports	5-16
5-6	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports	5-17
5-7	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports	5-18
5-8	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports	5-19
5-9	TCE Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports	5-20

LIST OF FIGURES (Concluded)

Figure		Page
5-10	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports	5-21
5-11	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports	5-22
5-12	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports	5-23
5-13	Total VOCs Concentrations vs. Time, Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports	5-24
6-1	Mixed Waste Landfill Soil-Moisture Monitoring Locations	6-2
6-2	Mixed Waste Landfill MWL-VZ-1 Soil-Moisture Monitoring Results	6-4
6-3	Mixed Waste Landfill MWL-VZ-2 Soil-Moisture Monitoring Results	6-5
6-4	Mixed Waste Landfill MWL-VZ-3 Soil-Moisture Monitoring Results	6-6
7-1	Mixed Waste Landfill Groundwater Monitoring Well Locations	7-2
7-2	Nickel Concentrations vs. Time, Mixed Waste Landfill Groundwater Monitoring Wells	7-13
7-3	Uranium Concentrations vs. Time, Mixed Waste Landfill Groundwater Monitoring Wells	7-14
7-4	Gross Alpha Activity vs. Time, Mixed Waste Landfill Groundwater Monitoring Wells	7-15
7-5	Groundwater Level Elevations at Mixed Waste Landfill Groundwater Monitoring Wells	7-20
7-6	Localized Potentiometric Surface of the Regional Aquifer at the Mixed Waste Landfill, October 2021	7-21
8-1	Mixed Waste Landfill Biota Sampling Locations	8-2

LIST OF TABLES

Table	Pa	age
2-1	Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods	.2-2
2-2	Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements	.2-4
3-1	Summary of Radon Results, Mixed Waste Landfill Air Monitoring, Calendar Year 2021	.3-3
4-1	Summary of Tritium Results (EPA Method 906.0), Mixed Waste Landfill Surface Soil Monitoring, August 2021	.4-4
5-1	Summary of Detected VOCs (EPA Method TO-15), Mixed Waste Landfill Soil-Vapor Monitoring, May 2021	5-27
5-2	Summary of Detected VOCs (EPA Method TO-15), Mixed Waste Landfill Soil-Vapor Monitoring, November 2021	5-38
5-3	Summary of Duplicate Samples, Mixed Waste Landfill Soil-Vapor Monitoring, May and November 2021	.5-7
5-4	Summary of Historical PCE Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring5	5-10
5-5	Summary of Historical TCE Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring5	5-11
5-6	Summary of Historical Total VOCs Concentrations, Mixed Waste Landfill Soil-Vapor Monitoring	5-12
7-1	Summary of Method Detection Limits for VOCs (EPA Method 8260B), Mixed Waste Landfill Groundwater Monitoring, May and November 2021	.7-6
7-2	Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020B), Mixed Waste Landfill Groundwater Monitoring, May and November 2021	.7-7
7-3	Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results, Mixed Waste Landfill Groundwater Monitoring, May and November 2021	.7-9

LIST OF TABLES (Concluded)

Table	1	Page
7-4	Summary of Field Water Quality Measurements, Mixed Waste Landfill Groundwater Monitoring, May and November 2021	.7-11
7-5	Summary of Duplicate Sample Results, Mixed Waste Landfill Groundwater Monitoring, May and November 2021	.7-16
8-1	Summary of Metals Results (EPA Method 6010D/7471B), Mixed Waste Landfill Biota Monitoring, August 2021	
8-2	Summary of Gamma Spectroscopy Results (EPA Method 901.1), Mixed Waste Landfill Biota Monitoring, August 2021	8-6
8-3	Summary of Duplicate Sample Results, Mixed Waste Landfill Biota Monitoring, August 2021	8-7
9-1	Inspection Frequency and Dates Performed, Mixed Waste Landfill, April 2021 – March 2022 Reporting Period	9-2
10-1	Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittal History	.10-2
	LIST OF ANNEXES	
Annex		
Annex A	Mixed Waste Landfill Radon Monitoring Forms and Reports, January – December 2021	
Annex B	Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring Forms and Reports, April 2021 – March 2022	
Annex C	Mixed Waste Landfill Soil-Vapor Monitoring Forms and Reports, April 2021 – March 2022	
Annex D	Mixed Waste Landfill Soil-Moisture Monitoring Forms, April 2021 - March 20	22
Annex E	Mixed Waste Landfill Groundwater Monitoring Forms and Reports, April 2021 – March 2022	
Annex F	Mixed Waste Landfill Inspection Forms, April 2021 - March 2022	
Annex G	Mixed Waste Landfill Biology Report, April 2021 – March 2022	

ACRONYMS AND ABBREVIATIONS

ABCWUA Albuquerque Bernalillo County Water Utility Authority

AOP Administrative Operating Procedure AR/COC Analysis Request/Chain-of-Custody

CFR Code of Federal Regulations

CY calendar year

DOE U.S. Department of Energy DQO data quality objective

EPA U.S. Environmental Protection Agency

ET evapotranspirative eV electron volts

FLUTeTM Flexible Liner Underground Technology, Ltd.TM

FOP Field Operating Procedure
ft bgs feet below ground surface
GEL GEL Laboratories LLC.
gpm gallons per minute
HWB Hazardous Waste Bureau

HWB Hazardous Waste Bureau KAFB Kirtland Air Force Base

LTMM Long-Term Monitoring & Maintenance

LTMMP Long-Term Monitoring and Maintenance Plan

MDA minimum detectable activity
MDL method detection limit
mg/L milligrams per liter
MWL Mixed Waste Landfill

NMAC New Mexico Administrative Code NMED New Mexico Environment Department

PCE tetrachloroethene pCi/L picocuries per liter

Permit RCRA Facility Operating Permit for Sandia National

Laboratories, EPA ID No. NM5890110518

PID photoionization detector
PPE personal protective equipment
ppmv parts per million by volume
PQL practical quantitation limit

QC quality control

RCRA Resource Conservation and Recovery Act

RL reporting limit

RPD relative percent difference SAP Sampling and Analysis Plan

SME subject matter expert

SNL/NM Sandia National Laboratories, New Mexico

TCE trichloroethene

VOC volatile organic compound

This page intentionally left blank.

1.0 INTRODUCTION

Sandia National Laboratories, New Mexico (SNL/NM) is a multimission laboratory owned by the U.S. Department of Energy (DOE)/National Nuclear Security Administration. SNL/NM is managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc. Primary SNL/NM operations are located within the boundaries of Kirtland Air Force Base (KAFB), southeast of the City of Albuquerque in Bernalillo County, New Mexico (Figure 1-1). The Mixed Waste Landfill (MWL) is located 4 miles south of SNL/NM central facilities and 5 miles southeast of the Albuquerque International Sunport, in the north-central portion of Technical Area-III (Figure 1-2).

The MWL disposal area comprises 2.6 acres. From March 1959 to December 1988, the MWL accepted low-level radioactive waste, hazardous waste, and mixed waste from SNL/NM research facilities and off-site DOE and U.S. Department of Defense generators. More specific information regarding the MWL inventory and past disposal practices is presented in the MWL Phase 2 Resource Conservation and Recovery Act (RCRA) Facility Investigation Report (Peace et al. September 2002) and the extensive MWL Administrative Record.

All monitoring, inspection, and maintenance/repair requirements are defined in the MWL Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012) and have been met for the April 1, 2021 through March 31, 2022 reporting period. This nineth MWL Annual Long-Term Monitoring & Maintenance (LTMM) Report documents all activities and results as required by Section 4.8.1 of the LTMMP. Based upon monitoring, inspection, and maintenance results, the MWL Evapotranspirative (ET) Cover and all monitoring systems are functioning as designed, and site conditions remain protective of human health and the environment. No monitoring trigger levels were exceeded. Industrial land use is being maintained for the MWL consistent with LTMMP requirements.

The MWL is a solid waste management unit that underwent corrective action in accordance with the following regulatory criteria:

- New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) Final Order No. HWB 04-11(M), State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico, EPA ID# 5890110518 (NMED May 2005)
- Compliance Order on Consent (NMED April 2004)
- SNL/NM RCRA Permit
 - Module IV of RCRA Permit No. NM5890110518 (EPA August 1993)
 - Facility Operating Permit U.S. Environmental Protection Agency (EPA) Identification No. NM5890110518 (Permit) (NMED January 2015)
- New Mexico Administrative Code (NMAC), Title 20, Chapter 4, Part 1, Section 500 (20.4.1.500 NMAC) incorporating Title 40 of the Code of Federal Regulations (CFR), Part 264.101 (40 CFR 264.101)

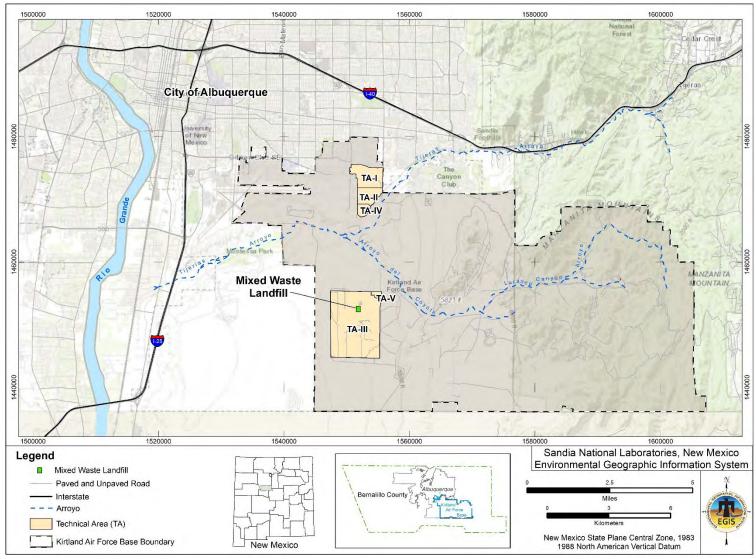


Figure 1-1 Location of the Mixed Waste Landfill with Respect to Kirtland Air Force Base and the City of Albuquerque

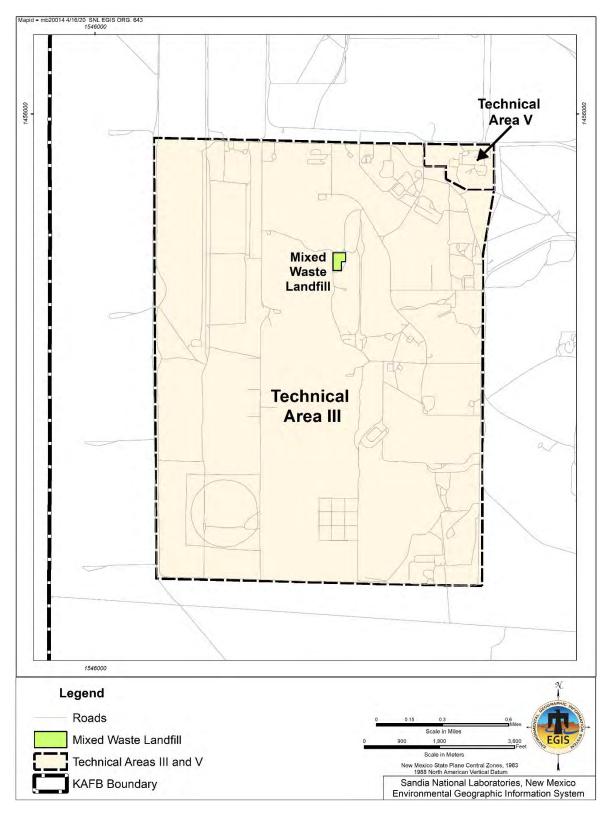
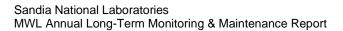


Figure 1-2
Location of the Mixed Waste Landfill within Technical Area III

On February 12, 2016, the NMED issued the *Final Order No. HWB 15-18 (P), State of New Mexico Before the Secretary of the Environment in the Matter of Proposed Permit Modification for Sandia National Laboratories, EPA ID #5890110518, To Determine Corrective Action Complete with Controls at the Mixed Waste Landfill (NMED February 2016). As of March 13, 2016, the February 2016 Final Order became effective, granting the Class 3 Permit Modification to reflect that the MWL is Corrective Action Complete with Controls. All controls required for the MWL are defined in the LTMMP that was approved by the NMED on January 8, 2014 (Blaine January 2014) and is included by reference in Attachment M of the Permit (Kieling February 2016). Long-term monitoring and maintenance are conducted in accordance with the Permit (NMED January 2015, with all approved modifications).*

1.1 Purpose and Scope

The purpose and scope of this Annual LTMM Report is to document monitoring, inspection, maintenance, and repair activities conducted during the April 1, 2021 through March 31, 2022 annual reporting period as required by Section 4.8.1 of the LTMMP.


1.2 **Report Organization**

This report is organized as follows:

- Chapter 1 presents background information, purpose and scope, and report organization.
- Chapter 2 presents LTMMP monitoring and inspection requirements.
- Chapter 3 presents radon monitoring activities and results.
- Chapter 4 presents tritium surface soil monitoring activities and results.
- Chapter 5 presents vadose zone soil-vapor monitoring activities and results.
- Chapter 6 presents vadose zone soil-moisture monitoring activities and results.
- Chapter 7 presents groundwater monitoring activities and results.
- Chapter 8 presents biota monitoring activities and results.
- Chapter 9 presents inspection, maintenance, and repair activities and results.
- Chapter 10 summarizes regulatory activities.
- Chapter 11 presents a general summary and conclusions for the reporting period.
- Chapter 12 lists the references cited in this report.

Annexes to this report provide supporting information as follows:

- Annex A Radon Monitoring Forms and Reports
- Annex B Surface Soil Tritium and Biota Monitoring Forms and Reports
- Annex C Soil-Vapor Monitoring Forms and Reports
- Annex D Soil-Moisture Monitoring Forms
- Annex E Groundwater Monitoring Forms and Reports
- Annex F Inspection Forms
- Annex G Biology Report

April 2021 - March 2022

This page intentionally left blank.

2.0 MONITORING AND INSPECTION REQUIREMENTS

Monitoring, inspection, maintenance, and repair requirements are defined in Chapters 3 and 4 of the MWL LTMMP (SNL/NM March 2012) and are briefly summarized in this chapter. Monitoring requirements are described in Section 2.1 and resulting empirical data are evaluated to assess site conditions. Inspection requirements are described in Section 2.2 and include requirements to perform maintenance and/or repairs. These activities ensure the physical controls at the MWL are maintained, perform as designed, and provide the information needed to assess ET Cover performance and site conditions.

2.1 Monitoring Requirements

The primary objective of MWL monitoring activities is to ensure that the ET Cover and site conditions are protective of human health and the environment. Monitoring activities include sampling and analysis of air, surface soil, vadose zone, groundwater, and biota. The multimedia monitoring program is summarized in Table 2-1, which presents information for each monitoring activity including the sampling media, monitoring parameters, frequency, number of samples, locations, and monitoring methods. Radon monitoring is performed over two six-month periods instead of one twelve-month period due to time exposure limitations of the detectors. Based upon experience, vadose zone soil-vapor monitoring is performed at a semiannual instead of annual frequency as a best practice to help keep the sample port and tubing clear.

The data quality objective (DQO) of all monitoring activities is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective. The DQO is accomplished through implementation of standard operating procedures and analytical procedures/methods, including quality assurance measures, quality control (QC) samples, and data evaluation protocols. Monitoring results are compared to trigger levels defined in LTMMP Section 5.2 and historical MWL monitoring results.

Sampling and Analysis Plans (SAPs) for each monitoring activity are included in the LTMMP, Appendices C through G. Results for monitoring activities conducted at the MWL during the April 1, 2021 through March 31, 2022 reporting period are presented in Chapters 3 through 8.

2.2 Inspection, Maintenance, and Repair Requirements

The primary objective of MWL inspection, maintenance, and repair activities is to ensure that the ET Cover, other physical controls at the site (e.g., surface-water diversion features and perimeter security fence), and the monitoring systems (groundwater and vadose zone networks) perform as designed.

Inspection parameters, specifications, frequency, and repair requirements are detailed in Chapter 4 of the LTMMP and summarized in Table 2-2. Repair work is initiated, as needed, based upon the results of the inspections and tracked to completion on the respective inspection forms. Long-term monitoring inspection checklists/forms are contained in the LTMMP, Appendix I. Results of inspection activities conducted at the MWL during the subject

Table 2-1
Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods

Sampling Media	Monitoring Parameters ^a / Constituents of Concern	Monitoring Frequency ^a	Number of Samples Per Event	Monitoring Locations	Monitoring Method ^b	Comments
Air	Radon-222	Year 1 – Quarterly Year 2 – Quarterly Year 3 – Semiannual Year 4 – Semiannual Year 5 and subsequent years – Annual	17	10 detectors placed at corners and midpoints of perimeter fence 5 detectors placed on completed cover 2 detectors at background locations	Radon detectors (at breathing zone height) capable of long exposure periods; sampling and analysis per LTMMP Appendix C	Samples are time- weighted average and will be collected over a 3-month to 1-year period. The first quarterly monitoring period begins in January of each year.
Surface Soil	Tritium	Annual	4	One sample collected from each corner of the ET Cover	Grab samples of soil collected; moisture extracted and analyzed for tritium using liquid scintillation per LTMMP Appendix G	Samples collected from the MWL ground surface at the four corners of the ET Cover.
Vadose Zone	VOCs in soil vapor	Year 1 – Semiannual Year 2 – Semiannual Year 3 – Semiannual Year 4 and subsequent years – Annual	17	Samples collected from 2 single-port soil-vapor monitoring points installed through the ET Cover (MWL-SV01 and MWL-SV02) and 3 perimeter multi-port FLUTe™ wells (MWL-SV03, MWL-SV04, and MWL-SV05)	Sampling and analysis of soil vapor per LTMMP Appendix D	MWL-SV01 and MWL-SV02 have a sampling port approximately 35 ft below the original ground surface. MWL-SV03, MWL-SV04, and MWL-SV05 have sampling ports at depths of approximately 50, 100, 200, 300, and 400 ft bgs.
Vadose Zone	Moisture content beneath the ET Cover	Year 1 – Semiannual Year 2 – Semiannual Year 3 and subsequent years – Annual	171	3 soil-moisture monitoring access tubes Measurements obtained at 1-ft increments from 4 ft to 25 ft bgs, then 5-ft increments to total depth of the access tube (200 linear ft)	Soil-moisture monitoring per LTMMP Appendix E	Moisture content in vadose zone beneath the cover is measured using a neutron probe to evaluate moisture infiltration through the ET Cover.

Refer to footnotes at end of table.

Table 2-1 (Concluded) Mixed Waste Landfill Monitoring Parameters, Frequencies, and Methods

Sampling Media	Monitoring Parametersa/ Constituents of Concern	Monitoring Frequency ^a	Number of Samples Per Event	Monitoring Locations	Monitoring Method ^b	Comments
Groundwater	VOCs, metals ^c , tritium, radon, gamma- emitting radionuclides ^d , and gross alpha/beta activity	Semiannual	4	MWL compliance groundwater monitoring well network: MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9	Sampling and analysis of groundwater samples per LTMMP Appendix F	Monitoring wells MWL-MW4, MWL-MW5, and MWL-MW6 retained for monitoring groundwater elevation only.
Biota – Surface Soil	Metals ^e and gamma- emitting radionuclides ^f	Annual	Up to 4 (2 each, if they exist)	Variable - ant hills and animal burrows on the ET Cover located during ET Cover inspections, if present	Grab sampling and analysis of surface soil at animal burrow and/or ant hill features per LTMMP Appendix G	If no features are identified, no samples will be collected.
Biota – Cover Vegetation	Gamma- emitting radionuclides ^f in vegetation	Annual	Up to 2 if they exist	Variable - potentially deep-rooted vegetation overlying former disposal areas located during ET Cover inspections, if present	Grab sampling and analysis of vegetation, including the plant and root system per LTMMP Appendix G	If no potentially deep- rooted plants are present, no samples will be collected.

Notes:

fRadionuclide results reported for biota include cesium-137, cobalt-60, radium-226, thorium-232, uranium-235, and uranium-238.

bgs = Below ground surface. LTMMP = Long-Term Monitoring and Maintenance Plan.

ET = Evapotranspirative. MWL = Mixed Waste Landfill.

FLUTe™ = Flexible Liner Underground Technologies, Ltd.™ RCRA = Resource Conservation and Recovery Act.

ft = Foot (feet). VOC = Volatile organic compound.

^aMonitoring parameters and frequency will be reevaluated every five years in the Five-Year Report. Frequency may be more conservative than required (e.g., Year 5 and subsequent years for radon air monitoring can be guarterly or semiannual versus annual).

bSampling and Analysis Plans and sampling requirements are provided in appendices of the MWL LTMMP (SNL/NM March 2012).

^cRequired metals analyses include cadmium, chromium, nickel, and uranium (SNL/NM March 2012).

dRadionuclide results reported for groundwater include americium-241, cesium-137, and cobalt-60.

eRequired metals analyses include RCRA metals plus copper, nickel, vanadium, zinc, cobalt, and beryllium (SNL/NM March 2012).

Table 2-2
Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements

MWL System to be Inspected	Inspection Frequency/ Performed by	Inspection Parameters	Maintenance Implementation	Maintenance/ Repair Frequency ^a
ET Cover Surface	Quarterly until vegetation is established, annually	Vegetation Inventory	Soil augmentations and/or reseeding	Within 60 days of discovery of needed
Biology Inspection	thereafter by a staff biologist ^b	Contiguous areas of no vegetation >200 ft ²	Revegetate barren areas that exceed prescribed limits	repairs. Reseeding repairs
(Cover vegetation and signs of animal activity)		Animal intrusion burrows in excess of 4 inches in diameter	Repair cover system damage that exceeds prescribed limits	may be delayed to wait for the appropriate growing season.
ET Cover System (Surface)	Quarterly by a field technician	Settlement of cover surface in excess of 6 inches	Repair cover system damage that exceeds prescribed limits	Within 60 days of discovery of needed
		Erosion of cover soil in excess of 6 inches deep		repairs. Reseeding repairs
		Ponding of water on the ET Cover surface in excess of 100 ft ²		may be delayed to wait for the
		Animal intrusion burrows in excess of 4 inches in diameter		appropriate growing season.
		Contiguous areas of no vegetation >200 ft ² °	Revegetate barren areas that exceed prescribed limits c	Within 60 days of discovery of needed repairs.
ET Cover Surface-Water (Storm water) Drainage Features	Quarterly by a field technician	Channel or sidewall erosion in excess of 6 inches deep	Repair erosion that exceeds prescribed limits	Within 60 days of discovery of needed
		Accumulations of sediment in excess of 6 inches deep or debris that blocks more than 1/3 of the channel width	Remove sediment and debris accumulations that exceed prescribed limits	repairs.
Soil-Vapor Monitoring Wells, Soil- Moisture Monitoring Access	Groundwater and Vadose Zone Network	Concrete pads, stanchions, and protective casings	Maintain, clean, repair, replace, re-label, as appropriate	Within 60 days of discovery of needed
Tubes, and Groundwater Monitoring Wells	Components: Field technician to inspect at	Well cover caps and Swagelok® (or equivalent) dust caps		repairs.
	same frequency/time that monitoring occurs	Monitoring wells and soil-vapor sampling port labels		
		Locks		
		Sampling pumps and tubing Neutron probe and cable system		

Refer to footnotes at end of table.

Table 2-2 (Concluded) Mixed Waste Landfill Inspection, Maintenance, and Repair Requirements

MWL System to be Inspected	Inspection Frequency/ Performed by	Inspection Parameters	Maintenance Implementation	Maintenance/ Repair Frequency ^a
ET Cover Physical Controls	Quarterly by a field technician	Presence of windblown plants and debris Condition of fence wires, posts, gates, gate locks, warning signs, and survey monuments in the local area	Remove windblown plants and debris Repair broken wire sections and posts, repair/oil gates, clean/replace locks, repair/replace warning signs, clear dirt/debris from monuments	Within 60 days of discovery of needed repairs.

Notes:

> = Greater than.

ET = Evapotranspirative.

ft² = Square feet.

MWL = Mixed Waste Landfill.

^aMaintenance/repairs will be performed as necessary, based upon the results of inspections.

^bThe transition from quarterly to annual inspections by a staff biologist is based upon meeting successful revegetation criteria as determined by the staff biologist (SNL/NM March 2012), which occurred as of the August 2014 growing season inspection.

^cBarren areas exceeding >200 ft² will not require corrective action after ET Cover vegetation is determined to have met successful revegetation criteria if they are the result of relatively short-term climate stresses (e.g., severe short-term drought), and the staff biologist determines they will naturally fill in over time. However, these areas will be noted and tracked during inspections and reviewed annually by the staff biologist to determine whether action is required based upon comparison to surrounding vegetation.

reporting period are presented in Chapter 9. The following sections provide additional background information on the ET Cover, inspections, and associated maintenance/repairs.

2.2.1 ET Cover

The ET Cover consists of four main layers: Compacted Subgrade, Rock Biointrusion, Compacted Native Soil, and Topsoil Layers (Figure 2-1). A thin soil layer was placed on top of the Biointrusion Layer to fill void space and create an even surface upon which the Native Soil Layer was constructed. The Compacted Subgrade varies in thickness from 0 to 3.3 feet and the combined average thickness of the overlying ET Cover layers is 5.37 feet. The Topsoil Layer was seeded with native grasses to mitigate surface erosion and promote evapotranspiration. The native grass species were selected based upon biological assessments of Technical Area-III (Sullivan and Knight 1992; Peace et al. November 2004). As shown in Figure 2-1, the asconstructed thickness of the ET Cover layers exceeds as-designed thicknesses, resulting in a more protective ET Cover. A conceptual schematic profile of the ET Cover and how it works is provided in Figure 2-2.

The ET Cover surface slopes gently to the west (2 percent slope) and sheds surface-water runoff to the west and down the side slopes. An engineered drainage swale located immediately east, north, and south of the ET Cover diverts surface run-on from the east (upgradient) side of the ET Cover and run-off from the side slopes around the northern and southern ends of the ET Cover to the west (Figure 2-3). As documented in the June 2017 MWL Annual LTMM Report, from November 2016 through February 2017 the site access and perimeter road was improved. The surface of the road was raised, road ditches were installed on each side, and culverts were installed (SNL/NM June 2017, Figure 9-1). These improvements provide additional site drainage control, intercepting surface water and channeling it away from the ET Cover area.

2.2.2 ET Cover Biology Inspection

ET Cover vegetation monitoring was accomplished in two phases. The first phase of quarterly inspections by the staff biologist focused on establishing native vegetation on the ET Cover such that successful revegetation criteria were met as defined in Section 4.1 of the LTMMP. The August 2014 Biology Inspection was the last quarterly inspection conducted as part of the first phase. After completion of the first phase, the second phase of annual inspections began that are performed near the end of the growing season (August–September) to determine the coverage of living plants. The staff biologist documents the flora coverage and signs of animal and insect activity during these annual inspections.

Damage to cover vegetation that exceeds the criteria listed in Section 4.2.2 of the LTMMP is noted on the Biology Inspection Checklist/Form and appropriate maintenance/repairs must be completed within 60 days of the inspection. Reseeding repairs may be delayed until the appropriate time during the growing season (Table 2-2).

At the end of each reporting year, the staff biologist summarizes the results of the annual inspection, presents local climate trends, and makes recommendations in a summary Biology

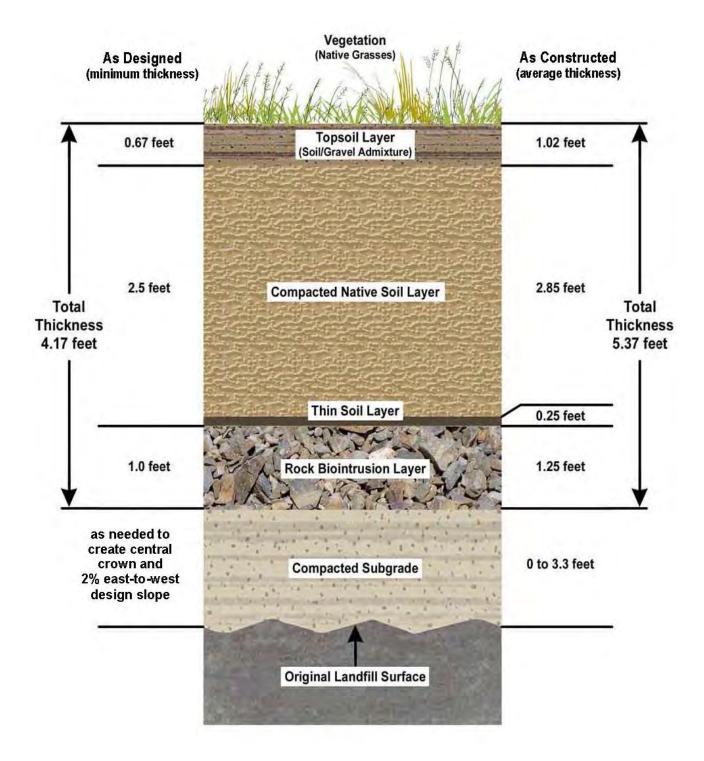


Figure 2-1
Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover Layers

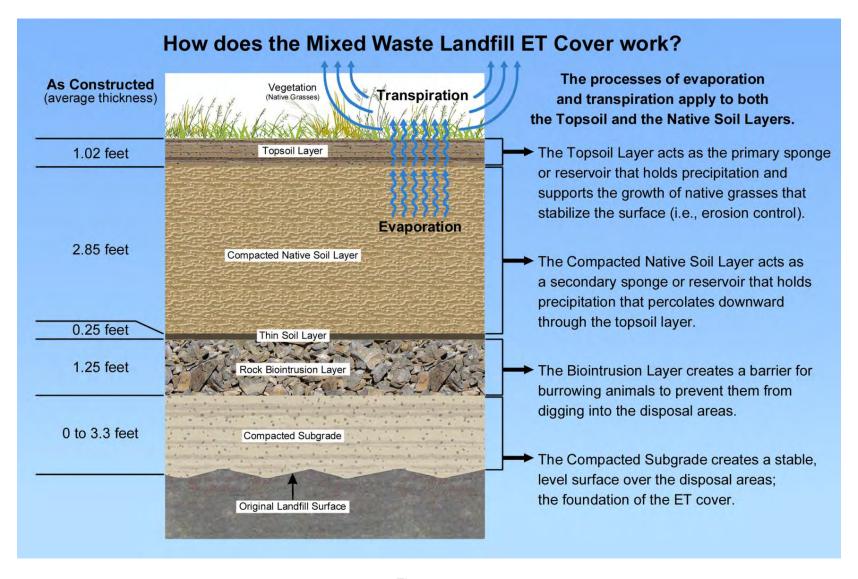


Figure 2-2
Schematic Profile of the Mixed Waste Landfill Evapotranspirative Cover and How it Works

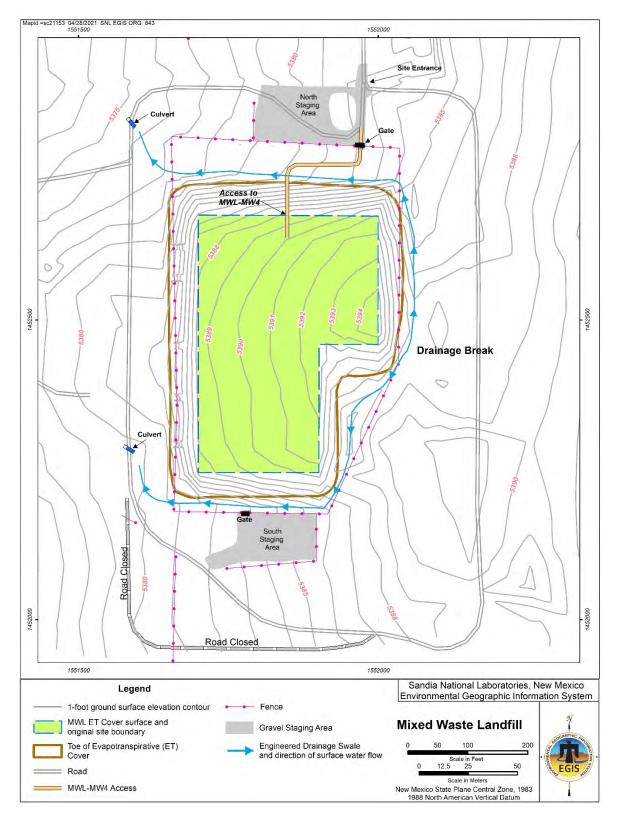


Figure 2-3
Mixed Waste Landfill Engineered Storm-Water Drainage Swale

Report included in the Annual LTMM Report (Annex G). The annual Biology Inspection Checklist/Form is also included in the Annual LTMM Report (Annex F).

2.2.3 ET Cover Surface and Physical Controls Inspection

The ET Cover surface, side slopes, and physical controls (i.e., storm-water drainage swale, security fence, locks, gates, signs, and survey monuments) are inspected by a field technician on a quarterly basis. Inspection parameters, specifications, frequency, and required maintenance/repair activities for the ET Cover are summarized in Table 2-2. Documentation of animal burrows in excess of 4 inches in diameter and contiguous areas lacking vegetation in excess of 200 square feet are noted on both the quarterly Cover Inspection and annual Biology Inspection Checklists/Forms. If inspection item specifications are exceeded, they will be noted on the Cover Inspection Checklist/Form and appropriate maintenance/repairs will be completed within 60 days of the inspection. Reseeding repairs may be delayed until the appropriate time during the growing season (Table 2-2).

2.2.4 Monitoring Networks and Sampling Equipment

Groundwater monitoring wells, soil-vapor monitoring wells, soil-moisture monitoring access tubes, and associated sampling/monitoring equipment are inspected during each monitoring event (i.e., they are inspected at the same frequency as the required monitoring). All inspection parameters, specifications, and required maintenance/repair activities are detailed in Table 2-2. The inspections and any associated maintenance and repair activities are documented on monitoring network-specific inspection checklists/forms. There is a separate inspection checklist/form for each of the three monitoring networks and associated sampling/monitoring equipment.

If conditions are observed that require maintenance, repair, or replacement they will be noted on the associated Monitoring Network Inspection Checklist/Form and appropriate actions will be completed within 60 days (Table 2-2).

3.0 RADON MONITORING RESULTS

This chapter presents radon monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.2.1 and Appendix C (SNL/NM March 2012). The monitoring objective is to collect data to evaluate radon gas flux (i.e., movement of radon-222) to the atmosphere at the MWL. This monitoring provides an early warning detection system for changing conditions so that timely action can be taken, if necessary. The trigger level defined in LTMMP Section 5.2.1 applies only to results from the monitoring stations located along the perimeter security fence (locations RN1 through RN10).

Radon monitoring field activities are described in Section 3.1, analytical laboratory results and a discussion of data quality are presented in Section 3.2, and data evaluation requirements and a comparison of results to the trigger level are presented in Section 3.3. A summary of radon monitoring activities and results is provided in Section 11.1.

3.1 Radon Sampling Field Activities

Monitoring was conducted covering calendar year (CY) 2021, fulfilling the LTMMP minimum requirement of annual monitoring. Radon monitoring presented for this April 1, 2021 through March 31, 2022 reporting period covers the period January 18, 2021 through January 17, 2022.

The radon air measurements were obtained using alpha-track radon gas detectors manufactured by Radonova (formerly Landauer® Nordic). Radtrak2® detectors were used for two six-month monitoring events during CY 2021. Radon sampling locations are designated as RN1 through RN17 and are shown in Figure 3-1. Locations RN1 through RN10 are located on the perimeter security fence and are the compliance locations to which the trigger level applies. Locations RN11 through RN15 are located on the ET Cover surface directly above pits and trenches with known sealed radium-226 sources. Radon is generated by the decay of radium-226, so results from these locations provide an early warning if sealed sources degrade. Locations RN16 and RN17 are background locations established away from the MWL, but in the general vicinity. Table 3-1 presents the dates of deployment and collection, location number, time-weighted average radon air concentrations in picocuries per liter (pCi/L) for each six-month period, and the CY 2021 range of radon air concentrations.

Radon monitoring results were reviewed and evaluated by an SNL/NM Health Physics subject matter expert (SME) and documented in a data evaluation memorandum. The SME data evaluation memoranda, which include the Analysis Request/Chain-of-Custody form (AR/COCs), the laboratory report, and a map showing all monitoring locations, are provided in Annex A. The results of CY 2021 radon monitoring are summarized in Section 3.2.1.

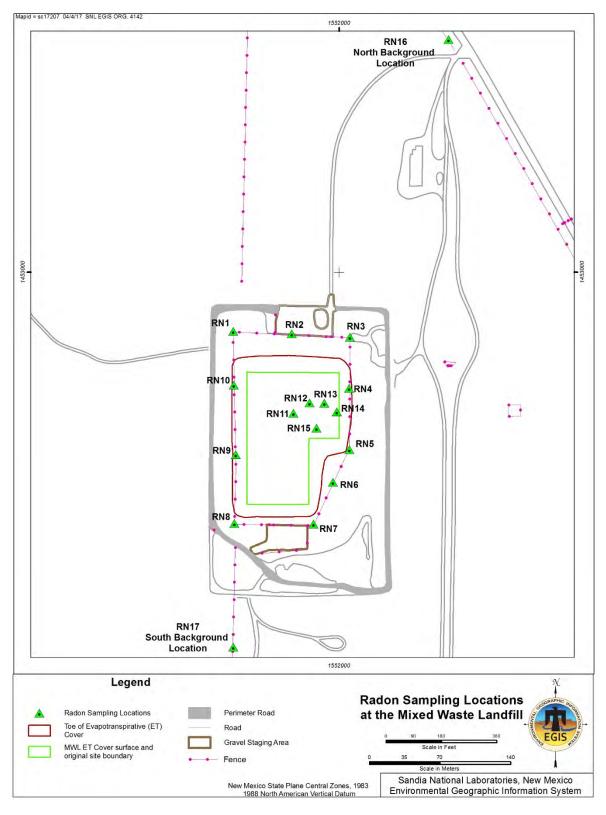


Figure 3-1
Mixed Waste Landfill Radon Detector Locations

Table 3-1 Summary of Radon Results Mixed Waste Landfill Air Monitoring Calendar Year 2021

	1st Half CY 2021		2 nd Half CY 2021			
	Detector Deployment	Detector	Detector Deployment	Detector		
	Date	Collection Date	Date	Collection Date	CY 2021	
	1/18/2021	7/19/2021	7/19/2021	1/17/2022	Radon Air Concentration	Trigger Level
Sample Location ^a	Semiannual Tir	ne-Weighted Avera	ge Radon Air Concentration (pCi/L)		Range (pCi/L)	(pCi/L)
RN1	0.3 ± 0.2		<0.3 ^b		<0.3 to 0.3	4
RN2	0.4 ± 0.2		0.4 ± 0.2		0.4	4
RN3	0.3 ± 0.2		0.3 ± 0.2		0.3	4
RN4	0.2 ± 0.2		<0.3 ^b		0.2 to <0.3	4
RN5	0.3 ± 0.2		0.4 ± 0.2		0.3 to 0.4	4
RN6	0.2 ± 0.2		0.3 ± 0.2		0.2 to 0.3	4
RN7	<0.2 ^b		0.4 ± 0.2		<0.2 to 0.4	4
RN8	0.5 ± 0.2		0.3 ± 0.2		0.3 to 0.5	4
RN9	<0.2 ^b		<0.2 ^b		<0.2	4
RN10	<0.3b		0.2 ± 0.2		0.2 to <0.3	4
RN11	0.2 ± 0.2		0.3 ± 0.2		0.2 to 0.3	NA
RN12	0.3 ± 0.2		0.8 ± 0.2		0.3 to 0.8	NA
RN13	<0.2 ^b		<0.2 ^b		<0.2	NA
RN14	0.5 ± 0.2		<0.2 ^b		<0.2 to 0.5	NA
RN15	0.3 ± 0.2		0.3 ± 0.2		0.3	NA
RN16	0.2 ± 0.2		0.2 ± 0.2		0.2	NA
RN17	<0.2 ^b		<0.3 ^b		<0.2 to <0.3	NA
RNTB	0.3 ± 0.2		0.3 ± 0.2		0.3	NA

Notes:

< = Less than.
CY = Calendar year.
NA = Not applicable.
pCi/L = Picocuries per liter.

RNTB = Trip blank.

^aBolded sample locations are the compliance locations where the trigger level applies.

^bNot detected, result is less than the minimum detectable activity.

3.1.1 Radon Monitoring Detector Deployment and Collection

The Radtrak2® radon detectors were deployed and collected on a semiannual schedule in CY 2021 at the 17 monitoring locations and represent the time periods January through June and July through December (Table 3-1). During the months between deployment and collection, inspections were conducted as a best practice to ensure the deployed detectors and associated protective housing were in good condition. All detectors were found in good condition during the monitoring period and at the times of collection. Minor maintenance to remove spider webs and maintain the protective housing at each monitoring location was performed at the time of the inspections. Deployment/collection and monthly inspection forms are included in Annex A.

3.1.2 Field Quality Control

Field QC measures associated with each monitoring period include two types of samples, one field control sample (trip blank) and two field background samples. The trip blank sample is used to confirm detectors were not contaminated during storage and shipment to the analytical laboratory. Two field background samples (RN16 and RN17) were collected at areas outside of the MWL, but within Technical Area-III, to confirm natural radon activities in the vicinity of the MWL (Figure 3-1). The two field background sample results were compared to results from detectors located immediately above the disposal areas (RN11 through RN15) and around the perimeter (RN1 through RN10).

3.1.3 Waste Management

No waste is generated during radon monitoring field activities.

3.2 **Laboratory Results**

This section summarizes radon air monitoring results for CY 2021. The detectors were submitted to Radonova (formerly Landauer® Nordic) for analysis. Laboratory reports and contract verification reviews are filed in the SNL/NM Record Center and included in Annex A.

3.2.1 Environmental Sample Results

The compiled semiannual monitoring results are presented in Table 3-1. The CY 2021 range of results for all monitoring locations was less than 0.2 (i.e., not detected) to 0.8 pCi/L. The two background location results were 0.2 pCi/L (both results for RN16) and less than 0.2 to less than 0.3 pCi/L (at RN17 both results were non-detections). No sample locations exceeded the trigger level of 4 pCi/L and all results confirm low levels of radon consistent with natural background levels and historical results.

3.2.2 Field Quality Control Sample Results

A trip blank (designated as RNTB in Table 3-1) was submitted with the detectors collected at the end of each semiannual sampling period. For the January through June and July through December 2021 monitoring periods, the trip blank results were 0.3 pCi/L. These results indicate the other detectors may have been potentially exposed to very low activities of radon during shipping and/or at the laboratory.

The two field background sample results (RN16 and RN17) for each semiannual period were similar to the semiannual monitoring results for detectors RN1 through RN15 and confirm radon activities in air at the MWL are equivalent to background conditions.

3.2.3 Data Quality

There were no data quality issues associated with RN1 through RN17 results for the two semiannual monitoring periods. All data were determined to be acceptable and met the DQOs.

3.2.4 Variances

There were no variances from the LTMMP radon monitoring requirements.

3.3 Data Evaluation and Monitoring Trigger Level

The trigger level for radon in air is 4 pCi/L (time-weighted average), which applies to detectors RN1 through RN10 located on the perimeter fence. The trigger level of 4 pCi/L is the same as the EPA-recommended action level for radon in households. There was no exceedance of the 4 pCi/L trigger level at any of the radon monitoring locations during CY 2021. The highest reported CY 2021 result was 0.8 pCi/L at location RN12 (July through December) on the ET Cover. These results confirm low levels of radon activity in air at the MWL consistent with natural background levels and historical results and indicate there were no releases of radon gas from the disposal areas.

April 2021 - March 2022

This page intentionally left blank.

4.0 TRITIUM SURFACE SOIL MONITORING RESULTS

This chapter presents tritium monitoring field activities and results (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.3 and Appendix G (SNL/NM March 2012). The monitoring objective is to collect data to evaluate tritium flux (i.e., movement) to the atmosphere from soil moisture in surface soil at the MWL. This monitoring provides an early warning detection system for changing conditions so that timely action can be taken, if necessary. Results are compared to the trigger level defined in LTMMP Section 5.2.2.1.

Tritium surface soil monitoring field activities are described in Section 4.1 and analytical laboratory results and a discussion of data quality are presented in Section 4.2. Data evaluation and a comparison of results to the trigger level are presented in Section 4.3. A summary of tritium surface soil monitoring activities and results is provided in Section 11.1.

4.1 Tritium Surface Soil Monitoring Field Activities

Surface soil samples were collected at the four ET Cover corner monitoring locations on August 16, 2021, fulfilling the annual monitoring requirement (Figure 4-1). Samples were collected during the New Mexico monsoon season to ensure adequate soil moisture for analysis. Monitoring results were reviewed and evaluated by an SNL/NM Health Physics SME. Annex B contains the data evaluation memorandum prepared by the Health Physics SME, contract verification and data validation reviews, and AR/COC forms. The August 2021 results are presented in the following sections.

4.1.1 Field Quality Control

A field QC sample (environmental duplicate soil sample) was collected as part of the August 16, 2021 tritium sampling event in accordance with the Tritium and Biota SAP (Appendix G, Table G-4.2-1 of the LTMMP), which requires that one environmental and environmental duplicate sample pair be collected for every twenty environmental samples or one per sample batch sent to the laboratory. The environmental-duplicate sample pair for the August 2021 sampling event was collected at the southeast corner of the ET Cover, tritium monitoring location MWL TS-2SE (Figure 4-1).

4.1.2 Waste Management

Waste generated during sampling activities included personal protective equipment (PPE) (i.e., gloves) and decontamination wipes and was managed in accordance with all applicable requirements. Process knowledge and sampling event analytical results were used to characterize the waste. Based upon this information the waste was managed as non-hazardous solid waste.

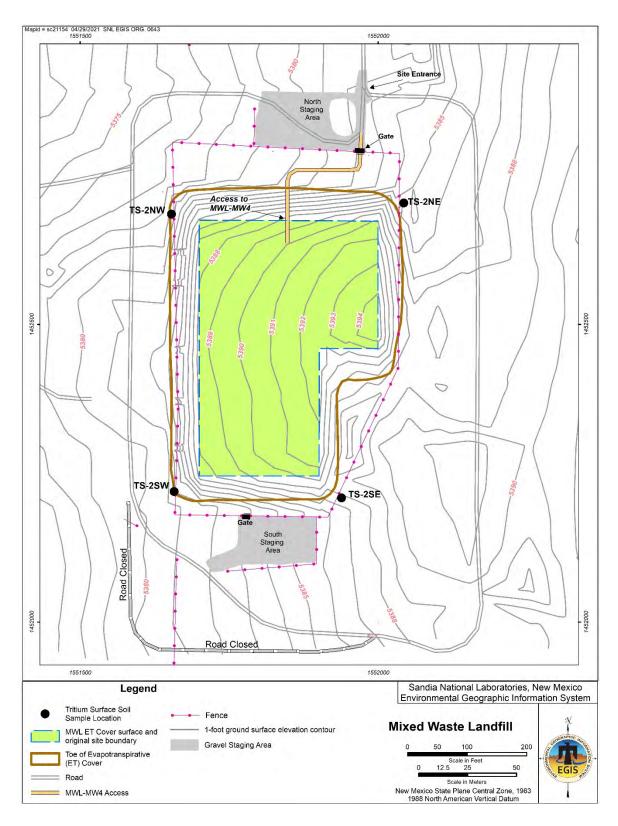


Figure 4-1
Mixed Waste Landfill Tritium Surface Soil Sampling Locations

4.2 Laboratory Results

Soil samples and field QC samples were submitted to GEL Laboratories, LLC. (GEL) for analyses. Samples were analyzed by liquid scintillation in accordance with EPA Method 906.0. Tritium activity is measured in water extracted from the soil sample, so analytical results are sensitive to in-situ moisture content. Analytical results that are below the minimum detectable activity (MDA) are qualified with a "U" and are designated as below the detection level. Analytical laboratory reports, including certificates of analyses, analytical methods, sample results, dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

4.2.1 Environmental Sample Results

Table 4-1 summarizes the tritium surface soil results for the August 2021 sampling event. Similar to previous years, tritium was not detected in any of the samples. Reported activities were all below the MDA. All samples had good soil-moisture content, ranging from 5.10 to 9.28 percent by mass, and the MDA ranged from 141 pCi/L to 182 pCi/L. The results are consistent with historical results and are below the trigger level of 20,000 pCi/L.

4.2.2 Field Quality Control Sample Results

The relative percent difference (RPD) between the environmental sample and corresponding environmental duplicate results is calculated if both samples have results greater than the MDA. Tritium was not detected above the MDA in the environmental-duplicate sample pair; therefore, an RPD value was not calculated.

4.2.3 Laboratory Quality Control and Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and the EPA method. These included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All radiochemical data were reviewed and qualified in accordance with SNL/NM Administrative Operating Procedure (AOP) AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020).

Based upon data validation and review criteria, all tritium results were determined to be acceptable and met the DQOs. Laboratory QC sample results comply with analytical method and laboratory procedure requirements. Annex B includes data validation and contract verification reviews.

4.2.4 Variances

There were no variances from the LTMMP tritium monitoring requirements.

Table 4-1 Summary of Tritium Results (EPA Method 906.0a) Mixed Waste Landfill Surface Soil Monitoring August 2021

Sample	Result (pCi/L)	Percent Soil Moisture	MDA (pCi/L)	Laboratory Qualifier ^b	Validation Qualifier ^b	Trigger Level (pCi/L)
Location		A	ugust 2021			
MWL TS-2NW	13.4	5.10	141	U	BD, FR3	
MWL TS-2SW	7.57	6.34	177	U	BD, FR3	
MWL TS-2SE	50.6	7.87	144	U	BD, FR3	20,000
MWL TS-2SE (Duplicate)	89.4	7.81	148	U	BD, FR3	
MWL TS-2NE	130	9.28	182	U	BD, FR3	

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

Laboratory Qualifier

U = Analyte activity is below the detection limit.

Validation Qualifier

BD = Result that is not statistically different from zero.

FR3 = Result is less than the MDA or less than the 2-sigma total propagated uncertainty.

EPA = U.S. Environmental Protection Agency.

MDA = Minimum detectable activity.

MWL = Mixed Waste Landfill. pCi/L = Picocuries per liter.

4.3 Data Evaluation and Monitoring Trigger Level

The trigger level for tritium as measured in soil moisture from surface soil samples is 20,000 pCi/L. No August 2021 sample results exceeded the trigger level.

Tritium is the primary contaminant of concern and the most mobile radionuclide at the MWL. Surface soil sampling for tritium has been conducted at the MWL since August 1985 at various locations at and around the perimeter of the MWL. The tritium sampling being performed under the LTMMP is a continuation of this monitoring effort. The August 2021 results are consistent with historical data and reflect very low levels of tritium activity that are below the laboratory MDA. The results are consistent with the short half-life of tritium (12.30 years), indicate tritium is decaying over time, and that there are no new releases from the disposal areas.

^bLaboratory/Validation Qualifier

5.0 SOIL-VAPOR MONITORING RESULTS

This chapter presents soil-vapor monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.4.1 and Appendix D (SNL/NM March 2012). The soil-vapor monitoring objective is to provide spatial and temporal concentration data for volatile organic compounds (VOCs) in the soil vapor at various depths throughout the approximately 500-foot-thick vadose zone (i.e., unsaturated soil and sediments above the Regional Aquifer) beneath the MWL. These monitoring data serve as an early warning detection system for the protection of groundwater so that timely action can be taken, if necessary. Results from the deepest sampling ports of the deepest soil-vapor wells are compared to trigger levels defined in LTMMP Section 5.2.3.1.

Soil-vapor monitoring field activities are described in Section 5.1; analytical laboratory results, a comparison of results to monitoring trigger levels, and a discussion of data quality are presented in Section 5.2; and historical data evaluation is presented in Section 5.3. A summary of soil-vapor monitoring activities and results is provided in Section 11.1.

5.1 Soil-Vapor Monitoring Field Activities

MWL-SV01 and MWL-SV02 are single-sampling-port wells installed through the ET Cover; each has one sampling port at depths of 42.5 and 41.5 feet below ground surface (ft bgs), respectively. MWL-SV03, MWL-SV04, and MWL-SV05 are Flexible Liner Underground Technology, Ltd.TM (FLUTeTM) multi-sampling-port wells. Each has 5 sampling ports at depths of approximately 50, 100, 200, 300, and 400 ft bgs. The location of these five soil-vapor monitoring wells are shown in Figure 5-1.

Two soil-vapor monitoring events were conducted during the April 1, 2021 through March 31, 2022 reporting period exceeding the LTMMP annual monitoring requirement. The semiannual frequency is being maintained based on experience; more frequent purging and sampling helps keep the sample ports and related tubing clear. Field forms and documentation that address well evacuation, purge volumes, and vacuum pressure readings for each sample container are provided in Annex C. The two soil-vapor monitoring events are described as follows.

- The first sampling event was conducted on May 6, 2021. Soil-vapor samples were collected from all monitoring well sampling ports. Duplicate samples were collected from two MWL-SV03 sampling ports (50 and 400 ft bgs).
- The second sampling event was conducted on November 5, 2021. Soil-vapor samples were collected from all monitoring well sampling ports. Environmental duplicate samples were collected from two MWL-SV04 sampling ports (200 and 400 ft bgs).

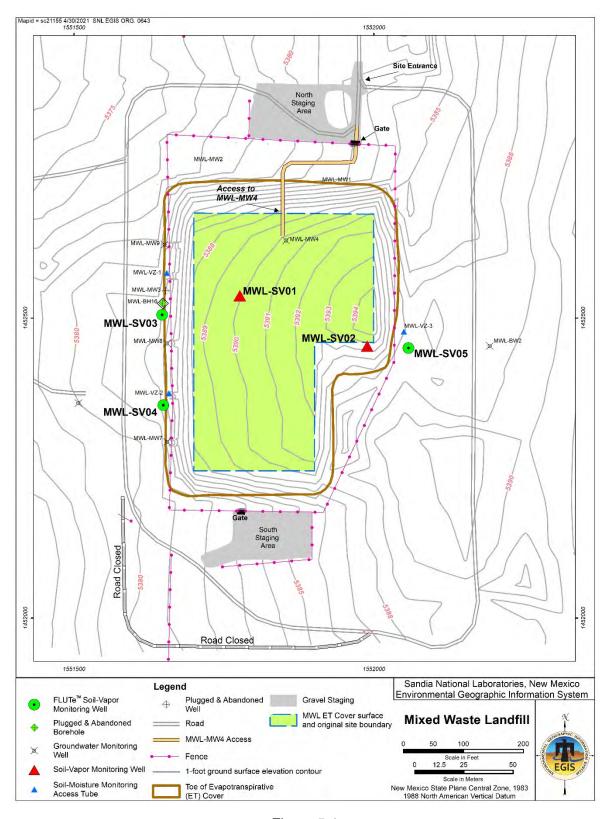


Figure 5-1
Mixed Waste Landfill Soil-Vapor Monitoring Well Locations

5.1.1 Well Purging

Purging removes stagnant air from each sampling port and associated sample tubing and draws representative soil vapor from the soil/sediment pore space surrounding the sampling port in the subsurface. All wells were purged to remove a minimum of three tubing volumes of air, and until VOC levels stabilized (i.e., 3 photoionization detector [PID] measurements after purging 3 tubing volumes within plus or minus 10 percent), in accordance with procedures described in field operating procedure (FOP) FOP 08-22, "Soil-Vapor Monitoring" (SNL/NM October 2019) and LTMMP Appendix D. All wells were purged using a dedicated MWL vacuum pump. Real time continuous VOC screening was performed with a PID to determine stabilization during the purging process.

5.1.2 Field Quality Control

Field QC samples include environmental duplicate samples (two per semiannual monitoring event) and field blank samples. Field QC samples were submitted for analysis with the environmental soil-vapor samples and analytical results are presented in Section 5.2.2 and Annex C. The environmental-duplicate sample pairs were collected simultaneously using a split-stream sampling manifold system (i.e., the duplicate samples were collected at the same time) to reduce variability caused by time and/or sampling mechanics.

Field blank samples were prepared in the field during sampling activities by collecting an ultrapure grade nitrogen gas sample at each monitoring well. Results were used to assess whether contamination of the samples may have resulted from ambient field conditions and/or during shipment and analysis at the laboratory.

The field QC sampling protocol for the May and November 2021 sampling events included the collection of an environmental-duplicate sample pair from monitoring well MWL-SV03 (sampling ports located at 50 ft bgs and 400 ft bgs) in May, and the sampling ports located at 200 ft bgs and 400 ft bgs at monitoring well MWL-SV04 in November (i.e., MWL-SV04-200 and MWL-SV04-400). For both sampling events, a total of five QC field blank samples were associated with the environmental samples and submitted for analysis. Field QC sample results are presented in Section 5.2.2.

5.1.3 Waste Management

A small volume of solid waste (e.g., PPE that does not come into contact with contaminants) was generated during the two soil-vapor monitoring events. This waste was combined with solid waste generated during groundwater monitoring activities and managed as non-hazardous solid waste as described in Section 7.1.3.

5.2 Laboratory Results and Trigger Level Evaluation

Environmental and field QC soil-vapor samples were submitted to Eurofins TestAmerica for analyses. Samples were analyzed in accordance with EPA Method TO-15. Analytical laboratory reports, including certificates of analyses, analytical methods, method detection limits (MDLs),

reporting limits (RLs), dates of analyses, and data validation reports are filed in the SNL/NM Record Center.

As defined in the LTMMP Section 5.2.3.1, trigger levels for VOCs in soil vapor are 20 parts per million by volume (ppmv) for tetrachloroethene (PCE), 20 ppmv for trichloroethene (TCE), and 25 ppmv for Total VOCs (i.e., the sum of validated detected VOC concentrations). The trigger levels apply only to samples collected from the deepest sampling port (i.e., 400 ft bgs port) in each of the three FLUTeTM multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05).

All VOC concentrations for the three deepest sampling ports are below the trigger levels. The PCE maximum concentration was 0.320 ppmv from the May MWL-SV03-400 environmentalduplicate sample pair. The TCE maximum concentration was 0.180 ppmv from the May MWL-SV03-400 environmental-duplicate sample pair. The maximum Total VOCs concentration was 0.55690 ppmy from the May MWL-SV03-400 environmental duplicate sample. All May and November 2021 VOC soil-vapor results are presented in Tables 5-1 and 5-2 at the end of this section.

5.2.1 **Environmental Sample Results**

This section summarizes soil-vapor monitoring results for the April 1, 2021 through March 31, 2022 reporting period. A summary of compounds detected in each semiannual event is provided below, and a summary of historical data (i.e., soil-vapor results collected since implementation of the LTMMP in January 2014) is presented in Section 5.3.

First Sampling Event – May 6, 2021

A total of 18 compounds were detected above MDLs in May 2021 samples. All of these VOCs were also detected in the November 2021 samples.

Acetone Benzene 2-Butanone Carbon Disulfide Carbon Tetrachloride Chlorobenzene Chloroform 1,2-Dichloro-1,1,2,2-tetrafluoroethane

Dichlorodifluoromethane

1,1-Dichloroethene cis-1,2-Dichloroethene Tetrachloroethene

1,1,2-Trichloro-1,2,2-trifluoroethane

1.1.1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene

1,1-Dichloroethane

Trichlorofluoromethane

PCE and TCE are the primary VOCs of concern, exhibit the highest concentrations, and were reported at low concentrations in all environmental samples from all sampling ports. PCE was detected at concentrations ranging from 0.042 ppmv (MWL-SV05-50) to 0.320 ppmv (MWL-SV03-400). TCE concentrations ranged from 0.044 ppmv (MWL-SV02-41.5) to 0.220 ppmv (MWL-SV03-200). Total VOCs concentrations ranged from 0.19377 ppmv (MWL-SV04-50) to 0.68124 ppmv (MWL-SV03-200). Other VOCs detected in all monitoring wells, generally at lower concentrations include chloroform; dichlorodifluoromethane; 1,1-dichloroethane; 1,1-dichloroethane; cis-1,2-dichloroethene; 1,1,2-trichloro-1,2,2-trifluoroethane; and trichlorofluoromethane. The highest sample port VOC concentration was the PCE result of 0.320 ppmv from MWL-SV03-400.

For the May 2021 results from the three deepest sampling ports of MWL-SV03, MWL-SV04, and MWL-SV05, PCE concentrations ranged from 0.080 ppmv (MWL-SV05-400) to 0.320 ppmv (MWL-SV03-400). TCE concentrations ranged from 0.067 ppmv (MWL-SV05-400) to 0.180 ppmv (MWL-SV03-400). Total VOCs concentrations ranged from 0.23766 ppmv (MWL-SV05-400) to 0.55690 ppmv (MWL-SV03-400 environmental duplicate sample).

Second Sampling Event – November 5, 2021

A total of 23 compounds were detected above MDLs in November 2021 samples. Eighteen of these compounds were detected in the May 2021 samples. Chlorobenzene was reported as a detected compound by the laboratory; however, all detections were subsequently qualified as not detected during the data validation process based on laboratory QC sample results as discussed in Section 5.2.3.

Acetone 1,1-Dichloroethene Benzene cis-1,2-Dichloroethene

Bromodichloromethane 2-Hexanone Tetrachloroethene

Carbon Disulfide 1,1,2-Trichloro-1,2,2-trifluoroethane

Carbon Tetrachloride 1,1,1-Trichloroethane
Chlorobenzene 1,1,2-Trichloroethane
Chloroform Trichloroethene

1,2-Dibromoethane

Trichlorofluoromethane

1,2-Dibromoethane

Visual acetate

1,2-Dichloro-1,1,2,2-tetrafluoroethane Vinyl acetate
Dichlorodifluoromethane m-,p-Xylene
1,1-Dichloroethane

PCE and TCE exhibited the highest concentrations and were reported in all environmental samples from all sampling ports. PCE was detected at concentrations ranging from 0.042 ppmv (MWL-SV05-50) to 0.310 ppmv (MWL-SV01-42.5). TCE concentrations ranged from 0.041 ppmv (MWL-SV04-50) to 0.170 ppmv (MWL-SV03-300). Total VOCs concentrations ranged from 0.19307 ppmv (MWL-SV04-50) to 0.64320 ppmv (MWL-SV01-42.5). Other VOCs detected in all monitoring wells, generally at lower concentrations include chloroform; dichlorodifluoromethane; 1,1-dichloroethane; 1,1-dichloroethene; cis-1,2-dichloroethene; 1,1,2-trichloro-1,2,2-trifluoroethane; 1,1,1-trichloroethane; and trichlorofluoromethane. The highest sample port VOC concentration was a PCE result of 0.310 ppmv from MWL-SV01-42.5.

For the November 2021 results from the three deepest sampling ports of MWL-SV03, MWL-SV04, and MWL-SV05, PCE concentrations ranged from 0.089 ppmv (MWL-SV05-400) to 0.140 ppmv (MWL-SV03-400). TCE concentrations ranged from 0.051 ppmv (MWL-SV04-400, environmental duplicate sample) to 0.120 ppmv (MWL-SV03-400). Total VOCs concentrations ranged from 0.25363 ppmv (MWL-SV04-400, environmental duplicate sample) to 0.32208 ppmv (MWL-SV05-400).

Tables 5-1 and 5-2 (provided at the end of this chapter) summarize detected VOCs results for the May 2021 and November 2021 sampling events, respectively, and include laboratory and data validation qualifiers.

5.2.2 Field Quality Control Sample Results

As described in Section 5.1.2, the field QC sampling protocol for the May and November 2021 sampling events included the collection and analysis of environmental-duplicate sample pairs and field blank samples. Field QC sample results met the sampling DQOs and validated the field sampling procedures and protocol. The analytical results for each field QC sample type are presented in this section.

Table 5-3 summarizes results of environmental-duplicate sample pair analyses and the calculated RPD values for the May and November 2021 sample pairs. An RPD was calculated when compounds were reported in both environmental and duplicate samples at concentrations greater than or equal to five times the laboratory RL. The environmental-duplicate sample pair results and QC field blank results are summarized below.

First Sampling Event – May 6, 2021

The two environmental-duplicate sample pairs collected during the May 2021 sampling event were analyzed for all analytical parameters. The calculated RPDs show good agreement for the environmental-duplicate sample pairs, ranging from less than 1 to 24. An RPD of 50 or less demonstrates acceptable precision of the sampling and analytical processes consistent with soil-vapor monitoring protocol established at the SNL/NM Chemical Waste Landfill (NMED October 2009 and subsequent revisions).

A total of five field blank samples were submitted for analysis with the May 2021 environmental samples. Validated VOC detections in field blank samples at very low concentrations include: acetone (3 samples); benzene (2 samples); 2-butanone (2 samples); carbon disulfide (4 samples); chlorobenzene (2 samples); methylene chloride (1 sample); PCE (2 samples); and trichlorofluoromethane (1 sample). No corrective action was required for methylene chloride, PCE, or trichlorofluoromethane since these compounds were not detected in associated environmental samples or detected at concentrations greater than five times the field blank concentration. As shown in Table 5-1, acetone, benzene, 2-butanone, carbon disulfide, and chlorobenzene results were qualified as not detected during data validation for various environmental samples when these compounds were reported at concentrations less than the RL in both the field blank and environmental samples.

Table 5-3 Summary of Duplicate Samples Mixed Waste Landfill Soil-Vapor Monitoring May and November 2021

	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a
Well ID/Parameter		omv)	(%)
May 2021 Environmental-Duplicate S		,	(1.1)
MWL-SV03-50			
Dichlorodifluoromethane	0.023	0.022	4
1,1-Dichloroethene	0.0092	0.0091	1
Tetrachloroethene	0.14	0.11	24
1,1,2-Trichloro-1,2,2-trifluoroethane	0.058	0.057	2
Trichloroethene	0.10	0.10	< 1
Trichlorofluoromethane	0.021	0.020	5
MWL-SV03-400	·	·	
1,1-Dichloroethene	0.014	0.014	< 1
Tetrachloroethene	0.32	0.32	< 1
1,1,2-Trichloro-1,2,2-trifluoroethane	0.025	0.025	< 1
Trichloroethene	0.18	0.18	< 1
November 2021 Environmental-Dupli	cate Sample Pair Results		
MWL-SV04-200			
Dichlorodifluoromethane	0.041	0.046	11
1,1-Dichloroethene	0.020	0.022	10
Tetrachloroethene	0.10	0.12	18
1,1,2-Trichloro-1,2,2-trifluoroethane	0.10	0.12	18
Trichloroethene	0.13	0.14	7
Trichlorofluoromethane	0.035	0.039	11
MWL-SV04-400			
Dichlorodifluoromethane	0.020	0.020	< 1
1,1-Dichloroethene	0.0067	0.0059	13
Tetrachloroethene	0.094	0.097	3
1,1,2-Trichloro-1,2,2-trifluoroethane	0.067	0.066	2
Trichloroethene	0.053	0.051	4
Trichlorofluoromethane	0.012	0.011	9

^aRPD = Relative percent difference is calculated with the following equation and rounded to nearest whole number.

$$RPD = \frac{|R_1 - R_2|}{[(R_1 + R_2)/2]} \times 100$$

where:

 R_1 = Analysis result.

= Duplicate analysis result.

= Percent. = Less than. ID = Identification.

MWL = Mixed Waste Landfill. ppmv = Parts per million by volume.

Second Sampling Event - November 5, 2021

The two environmental-duplicate sample pairs collected during the November 2021 sampling event were analyzed for all analytical parameters. The calculated RPDs show good agreement for the environmental-duplicate sample pairs. The RPD values ranged from less than 1 to 18.

A total of five field blank samples were submitted for analysis with the November 2021 samples. Validated VOC detections in field blank samples at very low concentrations included acetone (4 samples), 2-butanone (1 sample), chloromethane (1 sample), PCE (1 sample), and 1,1,2-trichloroethane (1 sample). No corrective action was required for chloromethane, PCE, or 1,1,2-trichloroethane since these compounds were not detected in associated environmental samples or detected at concentrations greater than five times the field blank sample concentration. As shown in Table 5-2, acetone and 2-butanone results for various environmental samples were qualified as not detected during data validation when they were detected at concentrations less than the RL in both the field blank and associated environmental samples.

5.2.3 Laboratory Quality Control and Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spikes samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. All laboratory control sample results met the accuracy (i.e., percent recovery [% recovery]) requirement of 50 to 130 for detected compounds (Section 2.2 of LTMMP Appendix D), except as explained below.

For the May 2021 sampling event, the LTMMP accuracy requirement for laboratory control samples of 50 to 130% recovery was not met for 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene associated with all samples; bromomethane associated with specific samples from monitoring wells MWL-SV01, MWL-SV03, MWL-SV04, and MWL-SV05; and bromoform and vinyl chloride associated with the MWL-SV05-200 environmental sample. The % recovery was within the EPA Method TO-15 limits, which vary from the LTMMP-specified limits, for some of the hexachlorobutadiene and bromoform analyses. In accordance with the data validation process, no environmental sample data were qualified and most associated results were non-detections. Due to laboratory method blank results, carbon disulfide and chlorobenzene were qualified as not detected during data validation in various environmental and field blank samples when they were detected at concentrations less than their respective RLs in the laboratory method blank and associated samples. The field blank results that were qualified as not detected for these two compounds were not applied to the associated environmental samples.

For the November 2021 sampling event, all laboratory control sample % recovery results were within the EPA Method TO-15 and LTMMP-specified limits for detected compounds. Due to laboratory method blank results, benzene, carbon disulfide, chlorobenzene, and 1,2-dibromoethane were qualified as not detected during data validation in various environmental and field blank samples when they were detected at concentrations less than their respective RLs in the laboratory method blank and associated samples. The field blank results for these

compounds that were qualified as not detected were not applied to the associated environmental samples.

All chemical data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020). Based upon the data validation and review criteria, the May and November 2021 environmental sample analytical data were determined to be acceptable and met the DQOs. Laboratory QC sample results comply with analytical method and laboratory procedure requirements except as noted above. Corrective action was implemented in accordance with the data validation procedure and included qualification of specific results as documented in Tables 5-1 and 5-2 and the data validation reviews. Data validation reviews that include AR/COC forms, contract verification reviews, and certificates of analysis are provided in Annex C.

5.2.4 Variances

One variance from requirements in the LTMMP was identified for the May and November 2021 soil-vapor monitoring activities. This variance is considered minor because it has no adverse impact on data quality. During the purging process, a PID with an 11.7 electron volts (eV) lamp was used instead of an 11.8 eV lamp as specified in Section 3.3 in Appendix D of the LTMMP. 11.8 eV lamps are not currently available from the manufacturer or distributors. A permit modification request that addresses this minor variance was submitted to the NMED and approved during the reporting period as detailed in Section 10.2.

5.3 **Historical Data Evaluation**

Tables 5-4, 5-5, and 5-6 summarize the 2021 and historical results for PCE, TCE, and Total VOCs, respectively, which are graphically presented in Figures 5-2 through 5-13. Trigger levels are not shown on the figures due to scale. Each table presents results for the 16 semiannual monitoring events conducted since implementation of the LTMMP in 2014. Key points from the evaluation of the 2014 through 2021 soil-vapor monitoring results are summarized below.

- All individual VOC results for all monitoring well sampling ports are low concentrations, less than 0.600 ppmv.
- Concentrations throughout the 500-foot thick vadose zone are relatively consistent; shallow results do not vary considerably from deeper results.
- The soil-vapor monitoring results are consistent with an old source that has slowly dissipated throughout the vadose zone through diffusion.
- The distribution of concentrations in the vadose zone indicates the VOC soil-vapor plume is stable, with no evidence of new releases from the disposal area.
- Results for the three deepest sampling ports of MWL-SV03 through MWL-SV05 (400 ft bgs) are stable and below the trigger levels.
- The VOC concentrations indicate the VOC soil-vapor plume is not a threat to groundwater.

Table 5-4 Summary of Historical PCE Concentrations Mixed Waste Landfill Soil-Vapor Monitoring

Well ID & Sample Port Depth ^a	Sept. 2014 ^b (ppmv)	Oct. 2014 ^b (ppmv)	April 2015 ^b (ppmv)	Oct. 2015 ^b (ppmv)	April 2016 ^b (ppmv)	Oct. 2016 ^b (ppmv)	May 2017 ^b (ppmv)	Oct. 2017 ^b (ppmv)	April 2018 ^b (ppmv)	Oct. 2018 ^b (ppmv)	May 2019 ^b (ppmv)	Oct. 2019 ^b (ppmv)	May 2020 ^b (ppmv)	Nov. 2020 ^b (ppmv)	May 2021 ^b (ppmv)	Nov. 2021 ^b (ppmv)
MWL-SV01-42.5	0.560	0.400	0.460	0.470	0.410	0.450	0.300	0.420	0.370	0.370	0.470	0.210	0.450	0.380	0.260	0.310
MWL-SV02-41.5	0.086	0.067	0.075	0.068	0.068	0.070	0.071	0.072	0.059	0.059	0.090	0.062	0.081	0.055	0.048	0.061
MWL-SV03-50	0.140	0.120	0.150	0.110	0.170	0.140	0.100	0.140	0.130	0.130	0.210	0.150	0.160	0.150	0.140	0.100
MWL-SV03-100	0.210	0.230	0.240	0.220	0.240	0.240	0.160	0.220	0.210	0.170	0.280	0.210	0.210	0.210	0.210	0.140
MWL-SV03-200	0.300	0.320	0.310	0.290	0.270	0.270	0.210	0.260	0.240	0.210	0.280	0.180	0.230	0.260	0.230	0.170
MWL-SV03-300	0.290	0.320	0.290	0.370	0.310	0.300	0.220	0.280	0.270	0.200	0.310	0.190	0.180	0.250	0.200	0.210
MWL-SV03-400	0.390	0.400	0.420	0.450	0.430	0.440	0.390	0.310	0.370	0.320	0.450	0.230	0.320	0.240	0.320	0.140
MWL-SV04-50	0.072	0.076	0.076	0.074	0.078	0.077	0.052	0.063	0.062	0.060	0.076	0.073	0.020	0.059	0.055	0.053
MWL-SV04-100	0.130	0.120	0.120	0.120	0.130	0.130	0.089	0.110	0.110	0.120	0.110	0.073	0.100	0.120	0.100	0.100
MWL-SV04-200	0.180	0.180	0.170	0.150	0.180	0.150	0.110	0.130	0.120	0.120	0.130	0.094	0.130	0.110	0.110	0.120
MWL-SV04-300	0.110	0.130	0.110	0.120	0.130	0.130	0.095	0.120	0.098	0.110	0.130	0.110	0.110	0.110	0.110	0.110
MWL-SV04-400	0.110	0.140	0.120	0.140	0.150	0.130	0.100	0.110	0.120	0.120	0.130	0.083	0.120	0.150	0.110	0.097
MWL-SV05-50	0.052	0.048	0.055	0.040	0.060	0.045	0.044	0.021	0.045	0.040	0.050	0.047	0.035	0.039	0.042	0.042
MWL-SV05-100	0.092	0.096	0.100	0.077	0.099	0.095	0.089	0.070	0.085	0.075	0.091	0.082	0.079	0.065	0.069	0.070
MWL-SV05-200	0.140	0.170	0.150	0.120	0.170	0.140	0.140	0.100	0.130	0.120	0.150	0.140	0.120	0.140	0.110	0.110
MWL-SV05-300	0.090	0.120	0.097	0.110	0.100	0.110	0.110	0.091	0.098	0.091	0.099	0.099	0.110	0.077	0.081	0.110
MWL-SV05-400	0.100	0.110	0.080	0.120	0.110	0.110	0.100	0.092	0.092	0.081	0.100	0.110	0.098	0.084	0.080	0.089

Notes:

All concentrations are not rounded so they match the reported concentrations in corresponding data tables; in some cases a zero is added to maintain significant digit consistency.
^aPort depth is the last number in the Well ID and is in feet below ground surface.

blf an environmental duplicate sample was collected, then the maximum concentration of the environmental-duplicate sample pair is shown.

ID = Identification.

MWL = Mixed Waste Landfill.
PCE = Tetrachloroethene.

ppmv = Parts per million by volume.

Table 5-5 Summary of Historical TCE Concentrations Mixed Waste Landfill Soil-Vapor Monitoring

Well ID & Sample Port Depth ^a	Sept. 2014 ^b (ppmv)	Oct. 2014 ^b (ppmv)	April 2015 ^b (ppmv)	Oct. 2015 ^b (ppmv)	April 2016 ^b (ppmv)	Oct. 2016 ^b (ppmv)	May 2017 ^b (ppmv)	Oct. 2017 ^b (ppmv)	April 2018 ^b (ppmv)	Oct. 2018 ^b (ppmv)	May 2019 ^b (ppmv)	Oct. 2019 ^b (ppmv)	May 2020 ^b (ppmv)	Nov. 2020 ^b (ppmv)	May 2021 ^b (ppmv)	Nov. 2021 ^b (ppmv)
MWL-SV01-42.5	0.110	0.090	0.099	0.110	0.091	0.100	0.071	0.086	0.081	0.070	0.100	0.045	0.084	0.081	0.057	0.063
MWL-SV02-41.5	0.075	0.058	0.067	0.065	0.063	0.065	0.070	0.067	0.056	0.050	0.073	0.054	0.068	0.055	0.044	0.050
MWL-SV03-50	0.100	0.082	0.097	0.080	0.140	0.110	0.098	0.120	0.110	0.100	0.170	0.120	0.120	0.120	0.100	0.090
MWL-SV03-100	0.190	0.190	0.200	0.200	0.210	0.210	0.130	0.180	0.190	0.150	0.240	0.170	0.180	0.160	0.180	0.130
MWL-SV03-200	0.300	0.300	0.290	0.310	0.250	0.270	0.250	0.230	0.240	0.190	0.260	0.180	0.200	0.220	0.220	0.160
MWL-SV03-300	0.190	0.210	0.170	0.260	0.200	0.220	0.200	0.210	0.190	0.140	0.180	0.130	0.170	0.170	0.140	0.170
MWL-SV03-400	0.290	0.280	0.260	0.350	0.300	0.320	0.250	0.230	0.270	0.230	0.330	0.170	0.220	0.190	0.180	0.120
MWL-SV04-50	0.061	0.059	0.060	0.066	0.070	0.067	0.054	0.058	0.055	0.051	0.062	0.058	0.035	0.048	0.045	0.041
MWL-SV04-100	0.130	0.120	0.120	0.130	0.140	0.150	0.120	0.120	0.110	0.110	0.110	0.080	0.096	0.120	0.100	0.096
MWL-SV04-200	0.210	0.210	0.190	0.200	0.220	0.200	0.180	0.170	0.170	0.140	0.160	0.120	0.160	0.140	0.160	0.140
MWL-SV04-300	0.076	0.091	0.064	0.093	0.081	0.097	0.087	0.094	0.067	0.076	0.091	0.075	0.089	0.063	0.079	0.084
MWL-SV04-400	0.075	0.096	0.060	0.097	0.070	0.091	0.085	0.081	0.087	0.072	0.081	0.055	0.080	0.110	0.080	0.053
MWL-SV05-50	0.067	0.061	0.064	0.052	0.074	0.058	0.049	0.042	0.055	0.051	0.058	0.059	0.047	0.049	0.048	0.047
MWL-SV05-100	0.140	0.130	0.130	0.120	0.130	0.130	0.110	0.100	0.110	0.099	0.120	0.110	0.100	0.084	0.087	0.096
MWL-SV05-200	0.200	0.240	0.210	0.200	0.210	0.200	0.190	0.150	0.190	0.170	0.210	0.210	0.180	0.220	0.160	0.160
MWL-SV05-300	0.100	0.130	0.082	0.120	0.096	0.120	0.120	0.120	0.110	0.120	0.097	0.110	0.130	0.110	0.088	0.130
MWL-SV05-400	0.094	0.100	0.066	0.120	0.089	0.100	0.087	0.097	0.089	0.077	0.089	0.100	0.090	0.083	0.067	0.088
Notes:																

Notes:

All concentrations are not rounded so they match the reported concentrations in corresponding data tables; in some cases a zero is added to maintain significant digit consistency. ^aPort depth is the last number in the Well ID and is in feet below ground surface.

blf an environmental duplicate sample was collected, then the maximum concentration of the environmental-duplicate sample pair is shown.

ID = Identification.

MWL = Mixed Waste Landfill. ppmv = Parts per million by volume.

TCE = Trichloroethene.

Table 5-6
Summary of Historical Total VOCs Concentrations
Mixed Waste Landfill Soil-Vapor Monitoring

Well ID & Sample Port Depth ^a	Sept. 2014 ^b (ppmv)	Oct. 2014 ^b (ppmv)	April 2015 ^b (ppmv)	Oct. 2015 ^b (ppmv)	April 2016 ^b (ppmv)	Oct. 2016 ^b (ppmv)	May 2017 ^b (ppmv)	Oct. 2017 ^b (ppmv)	April 2018 ^b (ppmv)	Oct. 2018 ^b (ppmv)	May 2019⁵ (ppmv)	Oct. 2019 ^b (ppmv)	May 2020⁵ (ppmv)	Nov. 2020 ^b (ppmv)	May 2021 ^b (ppmv)	Nov. 2021 ^b (ppmv)
MWL-SV01-42.5	1.14010	1.00870	1.11670	1.03620	0.93510	0.97570	0.74072	0.89810	0.82938	0.76617	0.98919	0.53118	0.97060	0.82923	0.58583	0.64320
MWL-SV02-41.5	0.71822	0.67880	0.76470	0.69150	0.71030	0.70780	0.62944	0.67594	0.62856	0.58550	0.73830	0.55429	0.67467	0.60661	0.51844	0.49784
MWL-SV03-50	0.36957	0.31750	0.37076	0.30743	0.48016	0.42248	0.34860	0.42918	0.37492	0.37254	0.55177	0.421459	0.44393	0.43056	0.35810	0.31554
MWL-SV03-100	0.61151	0.63820	0.69490	0.74420	0.73270	0.73682	0.53366	0.62881	0.64167	0.51641	0.79405	0.61022	0.61274	0.61284	0.59904	0.43953
MWL-SV03-200	0.91906	0.94754	0.99016	0.93230	0.84151	0.87920	0.78555	0.78590	0.75426	0.63905	0.82572	0.58767	0.69157	0.73170	0.68124	0.49996
MWL-SV03-300	0.64917	0.67835	0.59506	0.83120	0.68678	0.74430	0.61278	0.71640	0.64246	0.51890	0.69218	0.47090	0.56427	0.60664	0.47783	0.54864
MWL-SV03-400	0.87270	0.81410	0.85950	0.95920	0.8798	0.89730	0.69654	0.62930	0.77359	0.67374	0.95564	0.49530	0.65647	0.51541	0.55690	0.30104
MWL-SV04-50	0.25949	0.26359	0.28424	0.28232	0.30064	0.29728	0.232861	0.25573	0.23944	0.22375	0.25427	0.26788	0.20406	0.21711	0.19377	0.19307
MWL-SV04-100	0.45631	0.42879	0.44346	0.46616	0.50930	0.53785	0.40932	0.43340	0.42102	0.40980	0.39089	0.287837	0.38758	0.42548	0.35855	0.36890
MWL-SV04-200	0.68361	0.66935	0.64340	0.63160	0.72689	0.66068	0.56579	0.56287	0.58006	0.52679	0.53017	0.433208	0.57680	0.50409	0.51862	0.49749
MWL-SV04-300	0.26624	0.32355	0.27345	0.34519	0.32831	0.37126	0.32319	0.35562	0.31116	0.30295	0.34700	0.32013	0.34070	0.30656	0.33209	0.32207
MWL-SV04-400	0.25031	0.3246	0.26702	0.35374	0.35148	0.38251	0.31282	0.32932	0.33570	0.31229	0.32006	0.25402	0.33832	0.40556	0.31586	0.25685
MWL-SV05-50	0.36547	0.31833	0.33990	0.30406	0.37770	0.35609	0.29951	0.26189	0.32248	0.28946	0.30571	0.299856	0.27950	0.30139	0.29754	0.28619
MWL-SV05-100	0.56578	0.54556	0.57169	0.53248	0.59430	0.61891	0.54760	0.51172	0.52584	0.47217	0.52797	0.51177	0.52332	0.44824	0.44363	0.47678
MWL-SV05-200	0.70237	0.82115	0.73680	0.65830	0.80567	0.73190	0.69410	0.57349	0.68820	0.60710	0.72360	0.73212	0.65330	0.73969	0.54869	0.57280
MWL-SV05-300	0.35628	0.42371	0.33576	0.44336	0.36421	0.46092	0.47695	0.44050	0.41957	0.40427	0.35226	0.40869	0.46383	0.39804	0.35572	0.46944
MWL-SV05-400	0.54096	0.39521	0.25075	0.45245	0.30765	0.40839	0.29962	0.29543	0.29875	0.30373	0.29021	0.33322	0.36440	0.27466	0.23766	0.32208
Maria			. ,					. ,								

Notes:

Some concentrations are rounded and/or a zero is added to maintain significant digit consistency, so they may not exactly match the reported concentrations in corresponding data tables.

^a Port depth is the last number in the Well ID and is in feet below ground surface.

ID = Identification.

MWL = Mixed Waste Landfill.
ppmv = Parts per million by volume.
VOC = Volatile organic compound.

b If an environmental duplicate sample was collected, then the maximum concentration of the environmental-duplicate sample pair is shown.

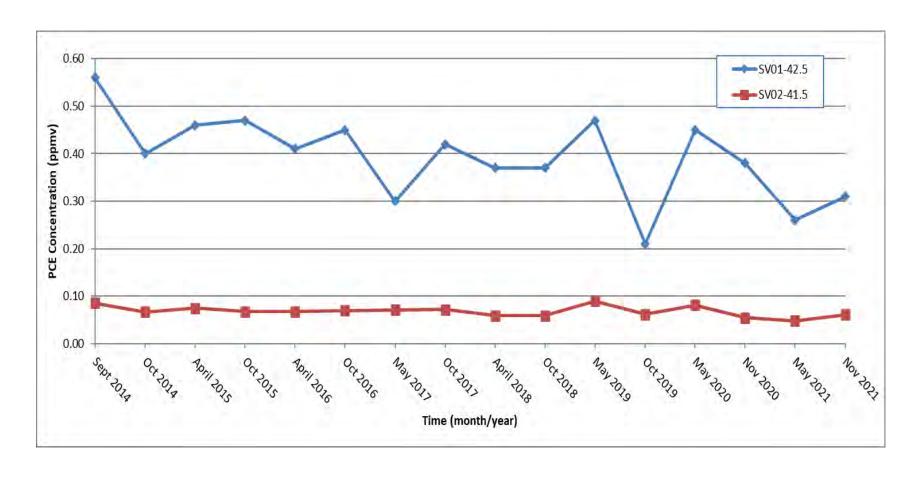


Figure 5-2
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports

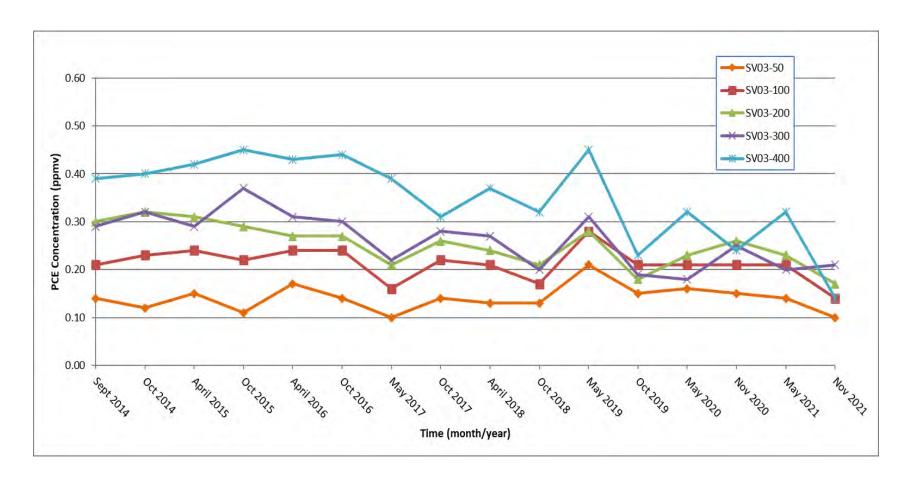


Figure 5-3
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports



Figure 5-4
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports

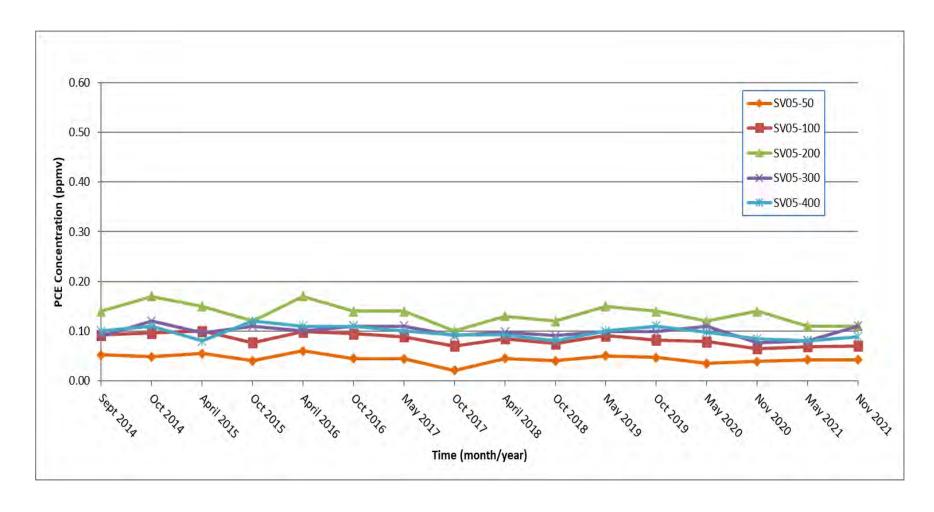


Figure 5-5
PCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports

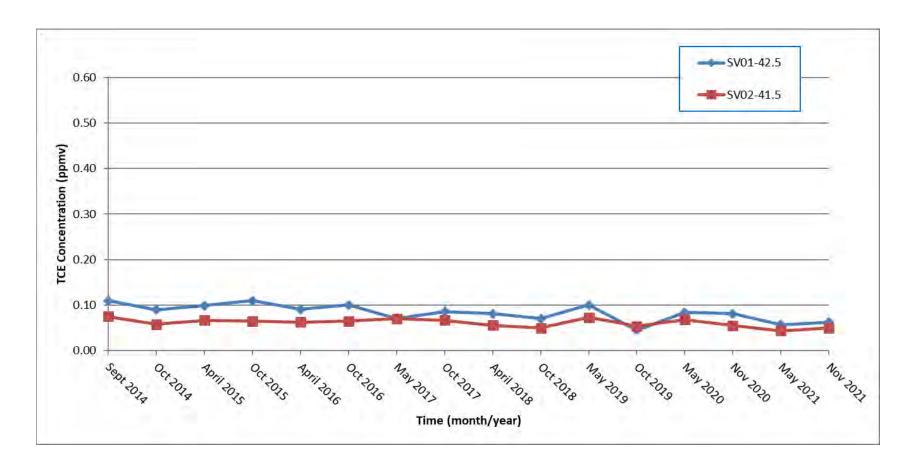


Figure 5-6
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports

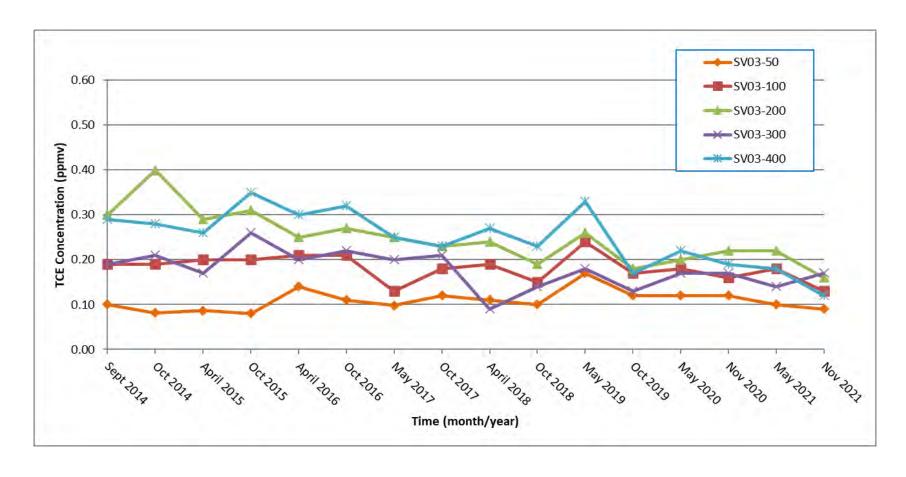


Figure 5-7
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports

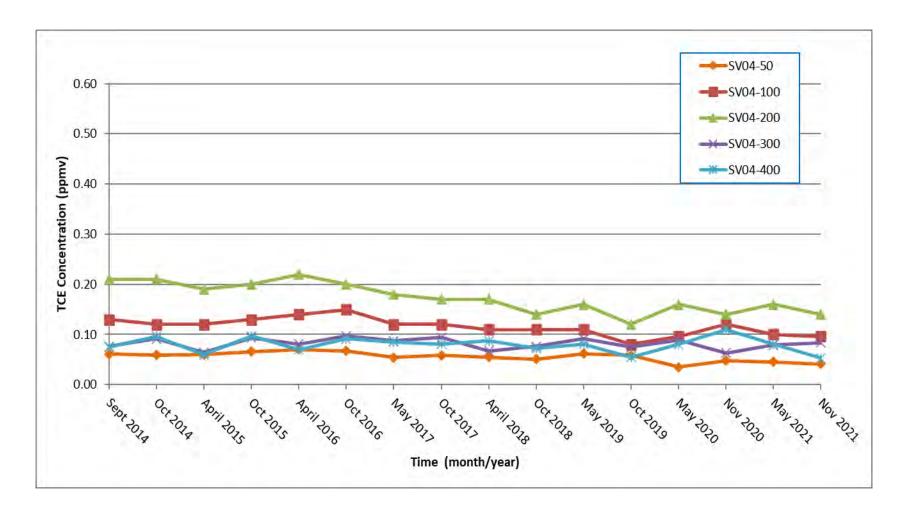


Figure 5-8
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports

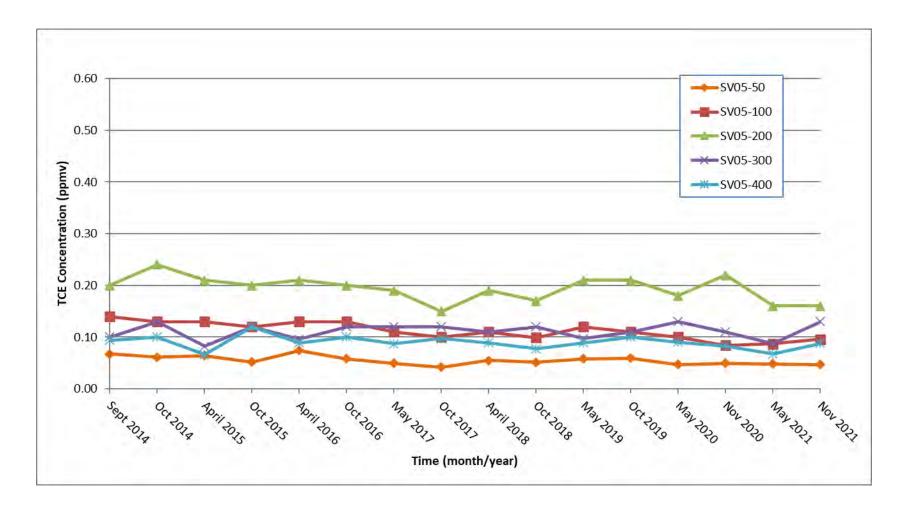


Figure 5-9
TCE Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports

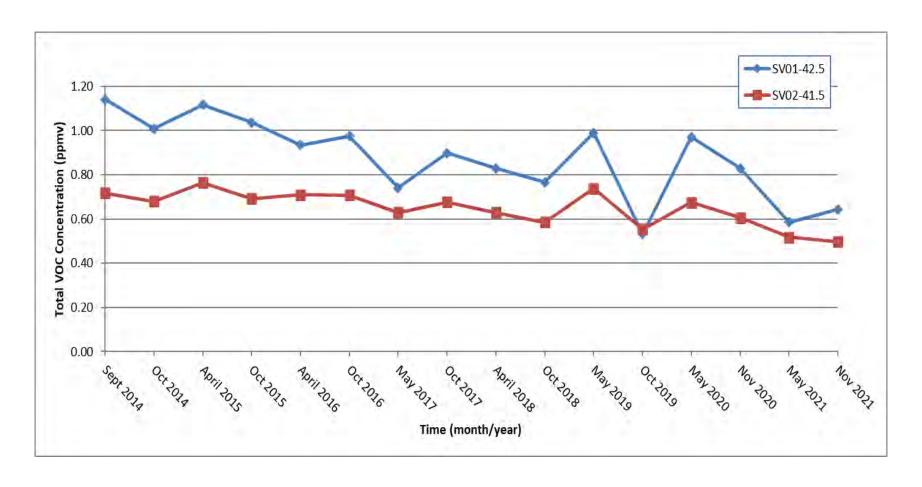


Figure 5-10
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Wells SV01 and SV02 Ports

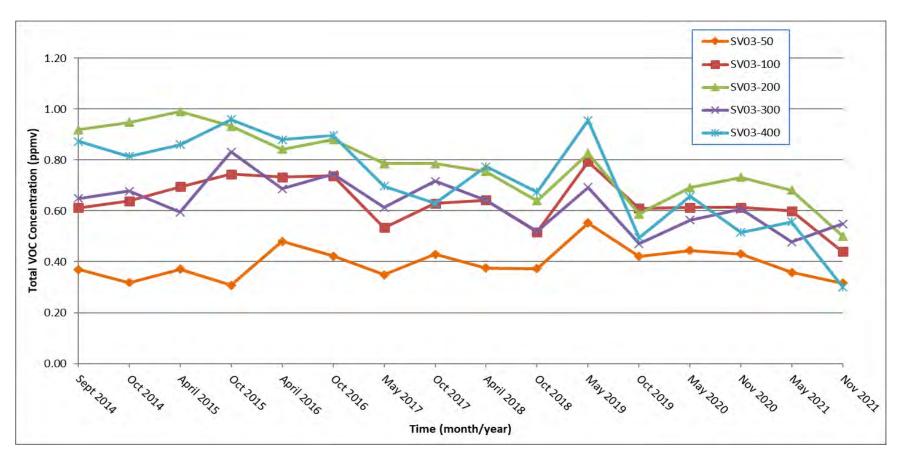


Figure 5-11
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV03 Ports

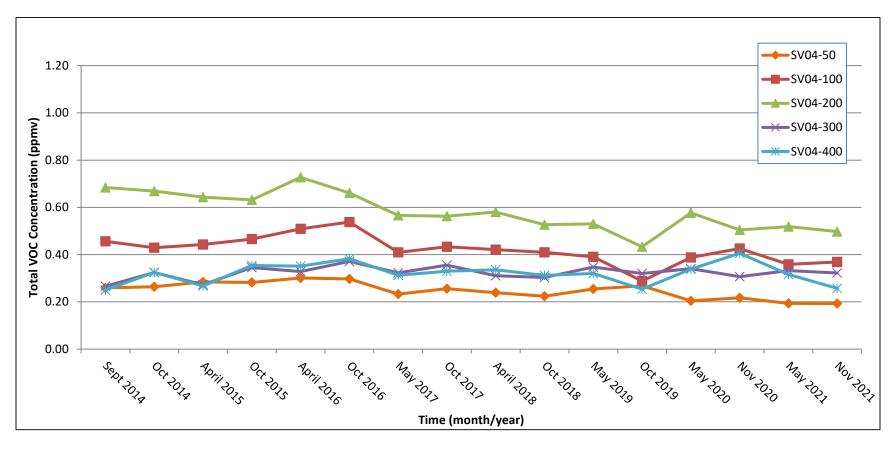


Figure 5-12
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV04 Ports

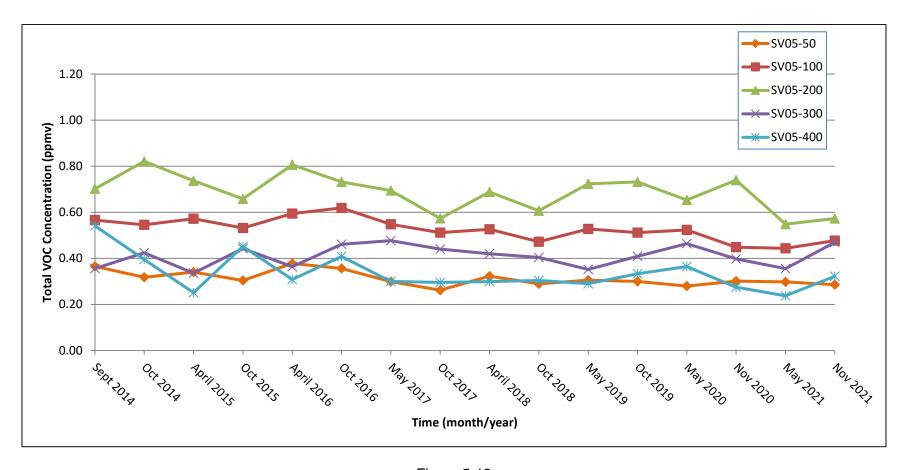


Figure 5-13
Total VOCs Concentrations vs. Time
Mixed Waste Landfill Soil-Vapor Monitoring Well SV05 Ports

Table 5-1 Summary of Detected VOCs – May 2021

Table 5-2 Summary of Detected VOCs – November 2021

April 2021 - March 2022

This page intentionally left blank.

Table 5-1
Summary of Detected VOCs (EPA Method TO-15a)
Mixed Waste Landfill Soil-Vapor Monitoring
May 2021

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL⁵ (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV01-42.5	Carbon disulfide	0.0012	0.00057	0.010	B, J	0.01U
06-May-21	Chloroform	0.010	0.00036	0.0042		
	Dichlorodifluoromethane	0.067	0.00073	0.0042		
	1,1-Dichloroethane	0.0015	0.00036	0.0042	J	
	1,1-Dichloroethene	0.0045	0.00042	0.0042		
	cis-1,2-Dichloroethene	0.00083	0.00052	0.0042	J	
	Tetrachloroethene	0.26	0.00036	0.0042		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.048	0.00042	0.0042		
	1,1,1-Trichloroethane	0.017	0.0019	0.0042		
	Trichloroethene	0.057	0.00068	0.0021		
	Trichlorofluoromethane	0.12	0.00057	0.0042		
	Total Organics ^d	0.58583	NA	NA	NA	NA
MWL-SV02-41.5	Acetone	0.029	0.022	0.079	J	0.079U
06-May-21	Benzene	0.00036	0.00031	0.0031	J	0.0031U
	2-Butanone	0.0074	0.0029	0.016	J	0.016U
	Carbon disulfide	0.0018	0.00043	0.0079	B, J	0.0079U
	Chloroform	0.0021	0.00027	0.0031	J	
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.00058	0.00047	0.0031	J, *+	
	Dichlorodifluoromethane	0.082	0.00055	0.0031		
	1,1-Dichloroethane	0.0015	0.00027	0.0031	J	
	1,1-Dichloroethene	0.0067	0.00031	0.0031		
	cis-1,2-Dichloroethene	0.00056	0.00039	0.0031	J	
	Tetrachloroethene	0.048	0.00027	0.0031		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.035	0.00031	0.0031		
	1,1,1-Trichloroethane	0.038	0.0015	0.0031		
	Trichloroethene	0.044	0.00051	0.0016		
	Trichlorofluoromethane	0.26	0.00043	0.0031		
	Total Organicsd	0.51844	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-50	Benzene	0.00026	0.000091	0.00091	J	0.00091U
06-May-21	Carbon disulfide	0.00024	0.00012	0.0023	B, J	0.0023U
	Carbon tetrachloride	0.00020	0.000080	0.00091	J	
	Chloroform	0.0013	0.000080	0.00091		
	Dichlorodifluoromethane	0.023	0.00016	0.00091		
	1,1-Dichloroethane	0.0025	0.000080	0.00091		
	1,1-Dichloroethene	0.0092	0.000091	0.00091		
	cis-1,2-Dichloroethene	0.0014	0.00011	0.00091		
	Tetrachloroethene	0.14	0.000080	0.00091		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.058	0.000091	0.00091		
	1,1,1-Trichloroethane	0.0015	0.00042	0.00091		
	Trichloroethene	0.10	0.00015	0.00045		
	Trichlorofluoromethane	0.021	0.00012	0.00091		
	Total Organicsd	0.35810	NA	NA	NA	NA
MWL-SV03-50 (Duplicate)	Benzene	0.00025	0.000066	0.00066	J	0.00066U
06-May-21	Carbon disulfide	0.00042	0.000091	0.0017	B, J	0.0017U
	Carbon tetrachloride	0.00022	0.000058	0.00066	J	
	Chloroform	0.0012	0.000058	0.00066		
	Dichlorodifluoromethane	0.022	0.00012	0.00066		
	1,1-Dichloroethane	0.0024	0.000058	0.00066		
	1,1-Dichloroethene	0.0091	0.000066	0.00066		
	cis-1,2-Dichloroethene	0.0014	0.000083	0.00066		
	Tetrachloroethene	0.11	0.000096	0.0011		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.057	0.000066	0.00066		
	1,1,1-Trichloroethane	0.0014	0.00031	0.00066		
	1,1,2-Trichloroethane	0.000090	0.000058	0.00066	J	
	Trichloroethene	0.10	0.00011	0.00033		
	Trichlorofluoromethane	0.020	0.000091	0.00066		
	Total Organics ^d	0.32481	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^c (ppm v/v)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-100	Benzene	0.00023	0.00012	0.0012	J	0.0012U
06-May-21	Carbon disulfide	0.0034	0.00016	0.0030	В	
	Carbon tetrachloride	0.00031	0.00010	0.0012	J	
	Chloroform	0.0020	0.00010	0.0012		
	Dichlorodifluoromethane	0.041	0.00021	0.0012		
	1,1-Dichloroethane	0.0043	0.00010	0.0012		
	1,1-Dichloroethene	0.016	0.00012	0.0012		
	cis-1,2-Dichloroethene	0.0026	0.00015	0.0012		
	Tetrachloroethene	0.21	0.00010	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.10	0.00012	0.0012		
	1,1,1-Trichloroethane	0.0023	0.00055	0.0012		
	1,1,2-Trichloroethane	0.00013	0.00010	0.0012	J	
	Trichloroethene	0.18	0.00019	0.00060		
	Trichlorofluoromethane	0.037	0.00016	0.0012		
	Total Organicsd	0.59904	NA	NA	NA	NA
MWL-SV03-200	Benzene	0.00026	0.00012	0.0012	J	0.0012U
06-May-21	Carbon disulfide	0.00041	0.00016	0.0029	B, J	0.0029U
•	Carbon tetrachloride	0.00034	0.00010	0.0012	J	
	Chlorobenzene	0.00012	0.000088	0.0012	B, J	0.0012U
	Chloroform	0.0020	0.00010	0.0012		
	Dichlorodifluoromethane	0.045	0.00020	0.0012		
	1,1-Dichloroethane	0.0052	0.00010	0.0012		
	1,1-Dichloroethene	0.021	0.00012	0.0012		
	cis-1,2-Dichloroethene	0.0032	0.00015	0.0012		
	Tetrachloroethene	0.23	0.00010	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.12	0.00012	0.0012		
	1,1,1-Trichloroethane	0.0015	0.00054	0.0012		
	Trichloroethene	0.22	0.00019	0.00058		
	Trichlorofluoromethane	0.033	0.00016	0.0012		
	Total Organicsd	0.68124	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL° (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-300	Benzene	0.00025	0.00017	0.0017	J	0.0017U
06-May-21	Carbon disulfide	0.00031	0.00023	0.0042	B, J	0.0042U
	Carbon tetrachloride	0.00023	0.00015	0.0017	J	
	Chlorobenzene	0.00019	0.00013	0.0017	J	0.0017U
	Chloroform	0.0011	0.00015	0.0017	J	
	Dichlorodifluoromethane	0.032	0.00029	0.0017		
	1,1-Dichloroethane	0.0020	0.00015	0.0017		
	1,1-Dichloroethene	0.012	0.00017	0.0017		
	cis-1,2-Dichloroethene	0.0015	0.00021	0.0017	J	
	Tetrachloroethene	0.20	0.00015	0.0017		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.077	0.00017	0.0017		
	Trichloroethene	0.14	0.00027	0.00083		
	Trichlorofluoromethane	0.012	0.00023	0.0017		
	Total Organics ^d	0.47783	NA	NA	NA	NA
MWL-SV03-400	Benzene	0.00031	0.00022	0.0022	J	0.0022U
06-May-21	Carbon disulfide	0.00049	0.00030	0.0055	B, J	0.0055U
•	Carbon tetrachloride	0.00021	0.00019	0.0022	J	
Trigger Levels	Chlorobenzene	0.00026	0.00016	0.0022	J	0.0022U
Tetrachloroethene = 20 ppmv	Chloroform	0.0011	0.00019	0.0022	J	
Trichlolorethene = 20 ppmv	Dichlorodifluoromethane	0.0048	0.00038	0.0022		
Total Organics = 25 ppmv	1,1-Dichloroethane	0.0025	0.00019	0.0022		
	1,1-Dichloroethene	0.014	0.00022	0.0022		
	cis-1,2-Dichloroethene	0.0014	0.00027	0.0022	J	
	Tetrachloroethene	0.32	0.00019	0.0022		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.025	0.00022	0.0022		
	Trichloroethene	0.18	0.00036	0.0011		
	Trichlorofluoromethane	0.0073	0.00030	0.0022		
	Total Organics ^d	0.55631	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^a (ppmv)	MDL ^b (ppmv)	RL⁵ (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-400 (Duplicate)	Benzene	0.00035	0.00022	0.0022	J	0.0022U
06-May-21	Carbon disulfide	0.00037	0.00030	0.0055	B, J	0.0055U
	Chloroform	0.0012	0.00019	0.0022	J	1
Trigger Levels	Dichlorodifluoromethane	0.0051	0.00038	0.0022		1
Tetrachloroethene = 20 ppmv	1,1-Dichloroethane	0.0026	0.00019	0.0022		
Trichlolorethene = 20 ppmv	1,1-Dichloroethene	0.014	0.00022	0.0022		1
Total Organics = 25 ppmv	cis-1,2-Dichloroethene	0.0015	0.00027	0.0022	J	1
	Tetrachloroethene	0.32	0.00019	0.0022		1
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.025	0.00022	0.0022		
	Trichloroethene	0.18	0.00036	0.0011		
	Trichlorofluoromethane	0.0075	0.00030	0.0022		
	Total Organics ^d	0.5569	NA	NA	NA	NA
MWL-SV04-50	Acetone	0.0044	0.0041	0.015	J	0.015U
06-May-21	Benzene	0.00024	0.000058	0.00058	J	1
	2-Butanone	0.00068	0.00053	0.0029	J	0.0029U
	Carbon disulfide	0.00015	0.000080	0.0015	B, J	0.0015U
	Carbon tetrachloride	0.00015	0.000051	0.00058	J	1
	Chloroform	0.0014	0.000051	0.00058		
	Dichlorodifluoromethane	0.015	0.00010	0.00058		-
	1,1-Dichloroethane	0.00097	0.000051	0.00058		1
	1,1-Dichloroethene	0.0046	0.000058	0.00058		
	cis-1,2-Dichloroethene	0.00041	0.000073	0.00058	J	
	Tetrachloroethene	0.055	0.000051	0.00058		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.043	0.000058	0.00058		
	1,1,1-Trichloroethane	0.0050	0.00027	0.00058		==
	Trichloroethene	0.045	0.000094	0.00029		==
	Trichlorofluoromethane	0.023	0.000080	0.00058		-
	Total Organicsd	0.19377	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^ь (ppmv)	RL° (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-100	Benzene	0.00029	0.000099	0.00099	J	
06-May-21	Carbon disulfide	0.00024	0.00014	0.0025	B, J	0.0025U
	Carbon tetrachloride	0.00026	0.000087	0.00099	J	
	Chlorobenzene	0.00012	0.000075	0.00099	B, J	0.00099U
	Chloroform	0.0017	0.000087	0.00099		
	Dichlorodifluoromethane	0.028	0.00017	0.00099		
	1,1-Dichloroethane	0.0021	0.000087	0.00099		
	1,1-Dichloroethene	0.011	0.000099	0.00099		
	cis-1,2-Dichloroethene	0.0011	0.00012	0.00099		
	Tetrachloroethene	0.10	0.000087	0.00099		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.075	0.000099	0.00099		
	1,1,1-Trichloroethane	0.0041	0.00046	0.00099		
	Trichloroethene	0.10	0.00016	0.00050		
	Trichlorofluoromethane	0.035	0.00014	0.00099		
	Total Organicsd	0.35855	NA	NA	NA	NA
MWL-SV04-200	Benzene	0.00041	0.00015	0.0015	J	
06-May-21	Carbon disulfide	0.00031	0.00021	0.0038	B, J	0.0038U
	Carbon tetrachloride	0.00041	0.00013	0.0015	J	
	Chloroform	0.0014	0.00013	0.0015	J	
	Dichlorodifluoromethane	0.047	0.00026	0.0015		
	1,1-Dichloroethane	0.0042	0.00013	0.0015		
	1,1-Dichloroethene	0.023	0.00015	0.0015		
	cis-1,2-Dichloroethene	0.0025	0.00019	0.0015		
	Tetrachloroethene	0.11	0.00013	0.0015		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.13	0.00015	0.0015		
	1,1,1-Trichloroethane	0.0017	0.00069	0.0015		
	Trichloroethene	0.16	0.00024	0.00075		
	Trichlorofluoromethane	0.038	0.00021	0.0015		
	Total Organics ^d	0.51862	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-300	Benzene	0.00040	0.00016	0.0016	J	
06-May-21	Carbon disulfide	0.00038	0.00021	0.0039	B, J	0.0039U
	Carbon tetrachloride	0.00027	0.00014	0.0016	J	
	Chloroform	0.00069	0.00014	0.0016	J	
	Dichlorodifluoromethane	0.030	0.00027	0.0016		
	1,1-Dichloroethane	0.0011	0.00014	0.0016	J	
	1,1-Dichloroethene	0.012	0.00016	0.0016		
	cis-1,2-Dichloroethene	0.00073	0.00020	0.0016	J	
	Tetrachloroethene	0.11	0.00014	0.0016		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.080	0.00016	0.0016		
	1,1,1-Trichloroethane	0.00090	0.00072	0.0016	J	
	Trichloroethene	0.079	0.00025	0.00078		
	Trichlorofluoromethane	0.017	0.00021	0.0016		
	Total Organics ^d	0.33209	NA	NA	NA	NA
MWL-SV04-400	Acetone	0.012	0.0044	0.015	J	0.015U
06-May-21	Benzene	0.00053	0.000061	0.00061	J	
	2-Butanone	0.0018	0.00056	0.0031	J	0.0031U
Trigger Levels	Carbon disulfide	0.00077	0.000084	0.0015	B, J	0.0015U
Tetrachloroethene = 20 ppmv	Carbon tetrachloride	0.00018	0.000054	0.00061	J	
Trichlolorethene = 20 ppmv	Chlorobenzene	0.000067	0.000046	0.00061	B, J	0.00061U
Total Organics = 25 ppmv	Chloroform	0.00055	0.000054	0.00061	J	
	Dichlorodifluoromethane	0.025	0.00011	0.00061		
	1,1-Dichloroethane	0.00086	0.000054	0.00061		
	1,1-Dichloroethene	0.0085	0.000061	0.00061		
	cis-1,2-Dichloroethene	0.00061	0.000077	0.00061		
	Tetrachloroethene	0.11	0.00011	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.075	0.000061	0.00061		
	1,1,1-Trichloroethane	0.00063	0.00028	0.00061		
	Trichloroethene	0.080	0.000099	0.00031		
	Trichlorofluoromethane	0.014	0.000084	0.00061		
	Total Organics ^d	0.31586	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL⁵ (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-50	Acetone	0.0077	0.0046	0.016	J	
06-May-21	Benzene	0.00017	0.000064	0.00064	J	
	2-Butanone	0.00086	0.00059	0.0032	J	
	Carbon disulfide	0.00025	0.000089	0.0016	B, J	0.0016U
	Carbon tetrachloride	0.00026	0.000056	0.00064	J	
	Chlorobenzene	0.000063	0.000048	0.00064	J	
	Chloroform	0.00099	0.000056	0.00064		
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.00017	0.000097	0.00064	J, *+	
	Dichlorodifluoromethane	0.042	0.00011	0.00064		
	1,1-Dichloroethane	0.0012	0.000056	0.00064		
	1,1-Dichloroethene	0.0078	0.000064	0.00064		
	cis-1,2-Dichloroethene	0.00053	0.000081	0.00064	J	
	Tetrachloroethene	0.042	0.000056	0.00064		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.037	0.000064	0.00064		
	1,1,1-Trichloroethane	0.0088	0.00030	0.00064		
	Trichloroethene	0.048	0.00010	0.00032		
	Trichlorofluoromethane	0.10	0.000089	0.00064		
	Total Organicsd	0.297543	NA	NA	NA	NA
MWL-SV05-100	Benzene	0.00031	0.00015	0.0015	J	
06-May-21	Carbon disulfide	0.0043	0.00020	0.0037	В	
•	Carbon tetrachloride	0.00037	0.00013	0.0015	J	
	Chlorobenzene	0.00015	0.00011	0.0015	J	
	Chloroform	0.0015	0.00013	0.0015		
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.00024	0.00022	0.0015	J, *+	
	Dichlorodifluoromethane	0.065	0.00026	0.0015		
	1,1-Dichloroethane	0.0023	0.00013	0.0015		
	1,1-Dichloroethene	0.016	0.00015	0.0015		
	cis-1,2-Dichloroethene	0.00096	0.00019	0.0015	J	
	Tetrachloroethene	0.069	0.00013	0.0015		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.068	0.00015	0.0015		
	1,1,1-Trichloroethane	0.0085	0.00068	0.0015		
	Trichloroethene	0.087	0.00024	0.00074		
	Trichlorofluoromethane	0.12	0.00020	0.0015		
	Total Organics ^d	0.44363	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-200	Benzene	0.00038	0.00015	0.0015	J	
06-May-21	Carbon disulfide	0.00027	0.00021	0.0038	J	
	Carbon tetrachloride	0.00067	0.00013	0.0015	J	
	Chlorobenzene	0.00017	0.00011	0.0015	J	
	Chloroform	0.0015	0.00013	0.0015		
	Dichlorodifluoromethane	0.058	0.00026	0.0015		
	1,1-Dichloroethane	0.0034	0.00013	0.0015		
	1,1-Dichloroethene	0.026	0.00015	0.0015		
	cis-1,2-Dichloroethene	0.0018	0.00019	0.0015		
	Tetrachloroethene	0.11	0.00013	0.0015		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.11	0.00015	0.0015		
	1,1,1-Trichloroethane	0.0025	0.00069	0.0015		
	Trichloroethene	0.16	0.00024	0.00075		
	Trichlorofluoromethane	0.074	0.00021	0.0015		
	Total Organicsd	0.54869	NA	NA	NA	NA
MWL-SV05-300	Benzene	0.00032	0.00012	0.0012	J	
06-May-21	Carbon disulfide	0.00027	0.00017	0.0031	B, J	0.0031U
	Carbon tetrachloride	0.00061	0.00011	0.0012	J	
	Chloroform	0.00070	0.00011	0.0012	J	
	Dichlorodifluoromethane	0.038	0.00022	0.0012		
	1,1-Dichloroethane	0.0014	0.00011	0.0012		
	1,1-Dichloroethene	0.019	0.00012	0.0012		
	cis-1,2-Dichloroethene	0.00077	0.00016	0.0012	J	
	Tetrachloroethene	0.081	0.00011	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.096	0.00012	0.0012		
	1,1,1-Trichloroethane	0.00092	0.00058	0.0012	J	
	Trichloroethene	0.088	0.00020	0.00062		
	Trichlorofluoromethane	0.029	0.00017	0.0012		
	Total Organics ^d	0.35572	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-400	Benzene	0.00034	0.00012	0.0012	J	
06-May-21	Carbon disulfide	0.00035	0.00016	0.0030	B, J	0.003U
	Carbon tetrachloride	0.00029	0.00010	0.0012	J	
Trigger Levels	Chlorobenzene	0.00013	0.000089	0.0012	J	
Tetrachloroethene = 20 ppmv	Chloroform	0.00057	0.00010	0.0012	J	
Trichlolorethene = 20 ppmv	Dichlorodifluoromethane	0.016	0.00021	0.0012		
Total Organics = 25 ppmv	1,1-Dichloroethane	0.0010	0.00010	0.0012	J	
	1,1-Dichloroethene	0.012	0.00012	0.0012		
	cis-1,2-Dichloroethene	0.00051	0.00015	0.0012	J	
	Tetrachloroethene	0.080	0.00010	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.039	0.00012	0.0012		
	1,1,1-Trichloroethane	0.00082	0.00055	0.0012	J	
	Trichloroethene	0.067	0.00019	0.00059		
	Trichlorofluoromethane	0.020	0.00016	0.0012		
	Total Organics ^d	0.23766	NA	NA	NA	NA

Notes:

^aU.S. Environmental Protection Agency, 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination Of Volatile Organic Compounds In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bResults, MDL, and RL are reported in parts per million by volume.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- B = Compound was found in the blank sample.
- J = Result is greater than the MDL but less than the RL; the concentration is an approximate value.
- *+ = Laboratory control sample and/or laboratory control sample duplicate is outside acceptance limits, high biased.

Validation Qualifier

U = The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit (i.e., RL) in units of ppmv, in accordance with the data validation process.

^dTotal Organics or Total VOCs - Sum of validated detected organic analytes (i.e., results for analytes qualified during data validation as not detected are not included in the total).

EPA = U.S. Environmental Protection Agency.

ID = Identification.

MWL = Mixed Waste Landfill.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99 percent confidence that the analyte is present (i.e., greater than zero).

NA = Not applicable.

ppmv = Parts per million by volume.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

VOC = Volatile organic compound.

Table 5-2 Summary of Detected VOCs (EPA Method TO-15^a) Mixed Waste Landfill Soil-Vapor Monitoring November 2021

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV01-42.5	Bromodichloromethane	0.00057	0.00035	0.0016	J	
05-Nov-21	2-Butanone	0.0024	0.0014	0.0078	J	
	Carbon disulfide	0.00030	0.00021	0.0039	J	
	Carbon tetrachloride	0.00024	0.00014	0.0016	J	
	Chlorobenzene	0.00025	0.00012	0.0016	B, J	0.0016U
	Chloroform	0.012	0.00014	0.0016		
	1,2-Dibromoethane	0.00016	0.00014	0.0016	J	
	Dichlorodifluoromethane	0.057	0.00027	0.0016		
	1,1-Dichloroethane	0.0014	0.00014	0.0016	J	
	1,1-Dichloroethene	0.0046	0.00016	0.0016		
	cis-1,2-Dichloroethene	0.0012	0.00020	0.0016	J	
	Tetrachloroethene	0.31	0.00014	0.0016		J
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.049	0.00016	0.0016		
	1,1,1-Trichloroethane	0.021	0.00072	0.0016		
	1,1,2-Trichloroethane	0.00033	0.00014	0.0016	J	
	Trichloroethene	0.063	0.00025	0.00078		
	Trichlorofluoromethane	0.12	0.00021	0.0016	==	
	Total Organicsd	0.64320	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
/IWL-SV02-41.5	Acetone	0.0081	0.0022	0.0077		
05-Nov-21	Benzene	0.00013	0.000031	0.00031	B, J	0.00031U
	2-Butanone	0.0074	0.00028	0.0015		1
	Carbon disulfide	0.00013	0.000042	0.00077	J	-
	Carbon tetrachloride	0.00028	0.000027	0.00031	J	
	Chloroform	0.0021	0.000027	0.00031		-
	1,2-Dibromoethane	0.000039	0.000027	0.00031	J	1
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.00026	0.000046	0.00031	J	
	Dichlorodifluoromethane	0.059	0.00054	0.0031		
	1,1-Dichloroethane	0.0014	0.000027	0.00031		
	1,1-Dichloroethene	0.0070	0.000031	0.00031		
	cis-1,2-Dichloroethene	0.00057	0.000038	0.00031		==
	2-Hexanone	0.00056	0.000061	0.00077	J	
	Tetrachloroethene	0.061	0.000027	0.00031		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.035	0.000031	0.00031		
	1,1,1-Trichloroethane	0.045	0.00014	0.00031	==	
	Trichloroethene	0.050	0.000050	0.00015	==	
	Trichlorofluoromethane	0.22	0.00042	0.0031		
	Total Organics ^d	0.497839	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-50	Acetone	0.0026	0.0023	0.0081	J	0.0081U
05-Nov-21	Benzene	0.00019	0.000032	0.00032	B, J	0.00032U
	2-Butanone	0.00042	0.00029	0.0016	J	
	Carbon disulfide	0.000081	0.000044	0.00081	J	
	Carbon tetrachloride	0.00024	0.000028	0.00032	J	
	Chloroform	0.0013	0.000028	0.00032		
	1,2-Dibromoethane	0.000041	0.000028	0.00032	J	
	Dichlorodifluoromethane	0.020	0.000056	0.00032		
	1,1-Dichloroethane	0.0024	0.000028	0.00032		
	1,1-Dichloroethene	0.0090	0.000032	0.00032		
	cis-1,2-Dichloroethene	0.0016	0.000040	0.00032		
	2-Hexanone	0.00019	0.000064	0.00081	J	
	Tetrachloroethene	0.10	0.00019	0.0021		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.065	0.000032	0.00032		J
	1,1,1-Trichloroethane	0.0019	0.00015	0.00032		
	1,1,2-Trichloroethane	0.000094	0.000028	0.00032	J	
	Trichloroethene	0.090	0.00035	0.0011		
	Trichlorofluoromethane	0.023	0.000044	0.00032		
	Vinyl acetate	0.00027	0.00011	0.0016	J	
	Total Organics ^d	0.315536	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-100	Acetone	0.0049	0.0043	0.015	J	0.015U
05-Nov-21	Benzene	0.00017	0.000061	0.00061	B, J	0.00061U
	2-Butanone	0.00064	0.00055	0.0030	J	
	Carbon tetrachloride	0.00029	0.000053	0.00061	J	
	Chlorobenzene	0.00011	0.000046	0.00061	B, J	0.00061U
	Chloroform	0.0019	0.000053	0.00061		1
	Dichlorodifluoromethane	0.028	0.00011	0.00061		1
	1,1-Dichloroethane	0.0038	0.000053	0.00061		1
	1,1-Dichloroethene	0.013	0.000061	0.00061		
	cis-1,2-Dichloroethene	0.0025	0.000076	0.00061		1
	Tetrachloroethene	0.14	0.00027	0.0030		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.087	0.000061	0.00061		
	1,1,1-Trichloroethane	0.0023	0.00028	0.00061		
	1,1,2-Trichloroethane	0.00010	0.000053	0.00061	J	
	Trichloroethene	0.13	0.00049	0.0015		-
	Trichlorofluoromethane	0.030	0.000084	0.00061		1
	Total Organics ^d	0.43953	NA	NA	NA	NA
MWL-SV03-200	Benzene	0.00046	0.00032	0.0032	B, J	0.0032U
05-Nov-21	Chlorobenzene	0.00072	0.00024	0.0032	B, J	0.0032U
	Chloroform	0.0019	0.00028	0.0032	J	1
	1,2-Dibromoethane	0.00036	0.00028	0.0032	J	1
	Dichlorodifluoromethane	0.029	0.00055	0.0032		
	1,1-Dichloroethane	0.0047	0.00028	0.0032		I
	1,1-Dichloroethene	0.016	0.00032	0.0032		1
	cis-1,2-Dichloroethene	0.0034	0.00040	0.0032		1
	Tetrachloroethene	0.17	0.00028	0.0032		1
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.089	0.00032	0.0032		1
	1,1,1-Trichloroethane	0.0016	0.0015	0.0032	J	
	Trichloroethene	0.16	0.00051	0.0016		-
	Trichlorofluoromethane	0.024	0.00043	0.0032		-
	Total Organicsd	0.49996	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV03-300	Benzene	0.00030	0.00010	0.0010	B, J	0.001U
05-Nov-21	Carbon disulfide	0.00020	0.00014	0.0026	J	
	Carbon tetrachloride	0.00036	0.000092	0.0010	J	
	Chlorobenzene	0.00023	0.000079	0.0010	B, J	0.001U
	Chloroform	0.0013	0.000092	0.0010		
	1,2-Dibromoethane	0.000095	0.000092	0.0010	J	
	Dichlorodifluoromethane	0.030	0.00018	0.0010		
	1,1-Dichloroethane	0.0027	0.000092	0.0010		
	1,1-Dichloroethene	0.016	0.00010	0.0010		
	cis-1,2-Dichloroethene	0.0022	0.00013	0.0010		
	Tetrachloroethene	0.21	0.00027	0.0031		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.10	0.00010	0.0010		
	1,1,1-Trichloroethane	0.00078	0.00048	0.0010	J	
	Trichloroethene	0.17	0.00017	0.00052		
	Trichlorofluoromethane	0.015	0.00014	0.0010		
	Total Organics ^d	0.548635	NA	NA	NA	NA
/IWL-SV03-400	Acetone	0.0074	0.0054	0.019	J	0.019U
5-Nov-21	Benzene	0.00021	0.000076	0.00076	B, J	0.00076U
	2-Butanone	0.00092	0.00069	0.0038	J	
rigger Levels	Carbon disulfide	0.00018	0.00010	0.0019	J	
etrachloroethene = 20 ppmv	Carbon tetrachloride	0.00025	0.000066	0.00076	J	
richlolorethene = 20 ppmv	Chloroform	0.00092	0.000066	0.00076		
otal Organics = 25 ppmv	Dichlorodifluoromethane	0.0041	0.00013	0.00076		
	1,1-Dichloroethane	0.0017	0.000066	0.00076		
	1,1-Dichloroethene	0.0078	0.000076	0.00076		
	cis-1,2-Dichloroethene	0.0013	0.000094	0.00076		
	Tetrachloroethene	0.14	0.000066	0.00076		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.018	0.000076	0.00076		
	1,1,1-Trichloroethane	0.00058	0.00035	0.00076	J	
	1,1,2-Trichloroethane	0.000090	0.000066	0.00076	J	
	Trichloroethene	0.12	0.00012	0.00038		
	Trichlorofluoromethane	0.0052	0.00010	0.00076		
	Total Organics ^d	0.301040	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-50	Benzene	0.00029	0.000089	0.00089	B, J	0.00089U
05-Nov-21	Carbon disulfide	0.00059	0.00012	0.0022	B, J	0.0022U
	Carbon tetrachloride	0.00022	0.000078	0.00089	J	
	Chlorobenzene	0.00015	0.000066	0.00089	B, J	0.00089U
	Chloroform	0.0017	0.000078	0.00089		
	Dichlorodifluoromethane	0.017	0.00016	0.00089		
	1,1-Dichloroethane	0.0011	0.000078	0.00089		
	1,1-Dichloroethene	0.0042	0.000089	0.00089		
	cis-1,2-Dichloroethene	0.00035	0.00011	0.00089	J	
	Tetrachloroethene	0.053	0.000078	0.00089		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.042	0.000089	0.00089		
	1,1,1-Trichloroethane	0.0065	0.00041	0.00089		
	Trichloroethene	0.041	0.00014	0.00044		
	Trichlorofluoromethane	0.026	0.00012	0.00089		
	Total Organics ^d	0.19307	NA	NA	NA	NA
MWL-SV04-100	Carbon disulfide	0.00025	0.00017	0.0031	B, J	0.0031U
05-Nov-21	Carbon tetrachloride	0.00030	0.00011	0.0012	J	
	Chlorobenzene	0.00017	0.000092	0.0012	B, J	0.0012U
	Chloroform	0.0021	0.00011	0.0012		
	Dichlorodifluoromethane	0.032	0.00021	0.0012		
	1,1-Dichloroethane	0.0029	0.00011	0.0012		
	1,1-Dichloroethene	0.012	0.00012	0.0012		
	cis-1,2-Dichloroethene	0.0013	0.00015	0.0012		
	Tetrachloroethene	0.10	0.00011	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.076	0.00012	0.0012		
	1,1,1-Trichloroethane	0.0053	0.00057	0.0012		
	Trichloroethene	0.096	0.00020	0.00061		
	Trichlorofluoromethane	0.041	0.00017	0.0012		
	Total Organics ^d	0.36890	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-200	Benzene	0.00044	0.00021	0.0021	B, J	0.0021U
05-Nov-21	Carbon disulfide	0.00049	0.00029	0.0053	B, J	0.0053U
	Carbon tetrachloride	0.00031	0.00018	0.0021	J	
	Chloroform	0.0013	0.00018	0.0021	J	
	Dichlorodifluoromethane	0.041	0.00037	0.0021		
	1,1-Dichloroethane	0.0040	0.00018	0.0021		
	1,1-Dichloroethene	0.020	0.00021	0.0021		
	cis-1,2-Dichloroethene	0.0019	0.00026	0.0021	J	
	Tetrachloroethene	0.10	0.00018	0.0021		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.10	0.00021	0.0021		
	1,1,1-Trichloroethane	0.0015	0.00097	0.0021	J	
	Trichloroethene	0.13	0.00034	0.0011		
	Trichlorofluoromethane	0.035	0.00029	0.0021		
	Total Organics ^d	0.43501	NA	NA	NA	NA
/IWL-SV04-200 (Duplicate)	Benzene	0.00030	0.00013	0.0013	B, J	0.0013U
5-Nov-21	Carbon tetrachloride	0.00039	0.00011	0.0013	J	
	Chloroform	0.0015	0.00011	0.0013		
	Dichlorodifluoromethane	0.046	0.00022	0.0013		
	1,1-Dichloroethane	0.0044	0.00011	0.0013		
	1,1-Dichloroethene	0.022	0.00013	0.0013		
	cis-1,2-Dichloroethene	0.0024	0.00016	0.0013		
	Tetrachloroethene	0.12	0.00011	0.0013		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.12	0.00013	0.0013		
	1,1,1-Trichloroethane	0.0018	0.00058	0.0013		
	Trichloroethene	0.14	0.00021	0.00063		
	Trichlorofluoromethane	0.039	0.00017	0.0013		==
	Total Organicsd	0.49749	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-300	Acetone	0.0069	0.0056	0.020	J	0.02U
05-Nov-21	Benzene	0.00030	0.000078	0.00078	B, J	0.00078U
	2-Butanone	0.0011	0.00071	0.0039	J	0.0039U
	Carbon disulfide	0.00019	0.00011	0.0020	J	
	Carbon tetrachloride	0.00035	0.000068	0.00078	J	
	Chloroform	0.00066	0.000068	0.00078	J	
	1,2-Dibromoethane	0.00010	0.000068	0.00078	J	
	Dichlorodifluoromethane	0.022	0.00014	0.00078		
	1,1-Dichloroethane	0.0011	0.000068	0.00078		
	1,1-Dichloroethene	0.012	0.000078	0.00078		
	cis-1,2-Dichloroethene	0.00074	0.000098	0.00078	J	
	Tetrachloroethene	0.11	0.000068	0.00078		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.075	0.000078	0.00078		
	1,1,1-Trichloroethane	0.00093	0.00036	0.00078		
	Trichloroethene	0.084	0.00013	0.00039		
	Trichlorofluoromethane	0.015	0.00011	0.00078		
	Total Organics ^d	0.32207	NA	NA	NA	NA
MWL-SV04-400	Acetone	0.0072	0.0047	0.016	J	0.016U
05-Nov-21	Benzene	0.00069	0.000066	0.00066	В	
	2-Butanone	0.00098	0.00060	0.0033	J	0.0033U
Trigger Levels	Carbon disulfide	0.0010	0.000090	0.0016	J	
Tetrachloroethene = 20 ppmv	Carbon tetrachloride	0.00019	0.000057	0.00066	J	
Trichlolorethene = 20 ppmv	Chlorobenzene	0.00011	0.000049	0.00066	B, J	0.00066U
Total Organics = 25 ppmv	Chloroform	0.00050	0.000057	0.00066	J	
.,	1,2-Dibromoethane	0.000074	0.000057	0.00066	J	
	Dichlorodifluoromethane	0.020	0.00011	0.00066		
	1,1-Dichloroethane	0.00062	0.000057	0.00066	J	
	1,1-Dichloroethene	0.0067	0.000066	0.00066		
	cis-1,2-Dichloroethene	0.00045	0.000082	0.00066	J	
	Tetrachloroethene	0.094	0.000057	0.00066		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.067	0.000066	0.00066		
	1,1,1-Trichloroethane	0.00055	0.00030	0.00066	J	
	1,1,2-Trichloroethane	0.000073	0.000057	0.00066	J	
	Trichloroethene	0.053	0.00011	0.00033		
	Trichlorofluoromethane	0.012	0.000090	0.00066		
	Total Organics ^d	0.256847	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV04-400 (Duplicate)	Benzene	0.00061	0.000066	0.00066	B, J	0.00066U
05-Nov-21	Carbon disulfide	0.00079	0.000091	0.0017	J	
	Carbon tetrachloride	0.00019	0.000058	0.00066	J	
	Chlorobenzene	0.00015	0.000050	0.00066	B, J	0.00066U
Trigger Levels	Chloroform	0.00041	0.000058	0.00066	J	
Tetrachloroethene = 20 ppmv	Dichlorodifluoromethane	0.020	0.00012	0.00066		
Trichlolorethene = 20 ppmv	1,1-Dichloroethane	0.00055	0.000058	0.00066	J	
Total Organics = 25 ppmv	1,1-Dichloroethene	0.0059	0.000066	0.00066		
	cis-1,2-Dichloroethene	0.00037	0.000083	0.00066	J	
	Tetrachloroethene	0.097	0.000058	0.00066		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.066	0.000066	0.00066		
	1,1,1-Trichloroethane	0.00042	0.00031	0.00066	J	
	Trichloroethene	0.051	0.00011	0.00033		
	Trichlorofluoromethane	0.011	0.000091	0.00066		
	Total Organics ^d	0.25363	NA	NA	NA	NA
MWL-SV05-50	Benzene	0.00017	0.000026	0.00026	B, J	0.00026U
05-Nov-21	Carbon disulfide	0.000095	0.000035	0.00064	J	
	Carbon tetrachloride	0.00031	0.000023	0.00026		
	Chlorobenzene	0.000047	0.000019	0.00026	B, J	0.00026U
	Chloroform	0.0010	0.000023	0.00026		
	1,2-Dibromoethane	0.000046	0.000023	0.00026	J	
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.000086	0.000039	0.00026	J	
	Dichlorodifluoromethane	0.034	0.000045	0.00026		
	1,1-Dichloroethane	0.0012	0.000023	0.00026		
	1,1-Dichloroethene	0.0068	0.000026	0.00026		
	cis-1,2-Dichloroethene	0.00053	0.000032	0.00026		
	Tetrachloroethene	0.042	0.000023	0.00026		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.034	0.000026	0.00026		
	1,1,1-Trichloroethane	0.0090	0.00012	0.00026		
	1,1,2-Trichloroethane	0.000026	0.000023	0.00026	J	
	Trichloroethene	0.047	0.000042	0.00013		
	Trichlorofluoromethane	0.11	0.00018	0.0013		
	m,p-Xylene	0.000094	0.000093	0.00026	J	
	Total Organics ^d	0.286187	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-100	Benzene	0.00024	0.000031	0.00031	B, J	0.00031U
05-Nov-21	2-Butanone	0.00030	0.00028	0.0016	J	
	Carbon disulfide	0.00013	0.000043	0.00078	J	
	Carbon tetrachloride	0.00057	0.000027	0.00031		
	Chlorobenzene	0.000066	0.000023	0.00031	B, J	0.00031U
	Chloroform	0.0017	0.000027	0.00031		
	1,2-Dibromoethane	0.000031	0.000027	0.00031	J	
	1,2-Dichloro-1,1,2,2-tetrafluoroethane	0.00015	0.000047	0.00031	J	
	Dichlorodifluoromethane	0.057	0.000055	0.00031		
	1,1-Dichloroethane	0.0026	0.000027	0.00031		
	1,1-Dichloroethene	0.016	0.000031	0.00031		
	cis-1,2-Dichloroethene	0.0013	0.000039	0.00031		
	Tetrachloroethene	0.070	0.00011	0.0012		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.071	0.00012	0.0012		
	1,1,1-Trichloroethane	0.010	0.00014	0.00031		
	Trichloroethene	0.096	0.00020	0.00062		
	Trichlorofluoromethane	0.15	0.00017	0.0012		
	Total Organics ^d	0.476781	NA	NA	NA	NA
MWL-SV05-200	Benzene	0.00037	0.000063	0.00063	B, J	0.00063U
05-Nov-21	Carbon disulfide	0.00015	0.000087	0.0016	J	
	Carbon tetrachloride	0.00088	0.000055	0.00063		
	Chloroform	0.0019	0.000055	0.00063		
	1,2-Dibromoethane	0.000065	0.000055	0.00063	J	
	Dichlorodifluoromethane	0.056	0.00011	0.00063		
	1,1-Dichloroethane	0.0041	0.000055	0.00063		
	1,1-Dichloroethene	0.031	0.000063	0.00063		
	cis-1,2-Dichloroethene	0.0022	0.000079	0.00063		
	Tetrachloroethene	0.11	0.00022	0.0025		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.12	0.00025	0.0025		
	1,1,1-Trichloroethane	0.0035	0.00029	0.00063		
	Trichloroethene	0.16	0.00041	0.0013		
	Trichlorofluoromethane	0.083	0.000087	0.00063		
	Total Organics ^d	0.572795	NA	NA	NA	NA

Well ID/Sample Port	Analyte	Result ^b (ppmv)	MDL ^b (ppmv)	RL ^b (ppmv)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL-SV05-300	Acetone	0.0058	0.0056	0.020	J	
05-Nov-21	Benzene	0.00036	0.000078	0.00078	B, J	0.00078U
	2-Butanone	0.00071	0.00071	0.0039	J	
	Carbon disulfide	0.00016	0.00011	0.0020	J	
	Carbon tetrachloride	0.00090	0.000068	0.00078		
	Chlorobenzene	0.00013	0.000059	0.00078	B, J	0.00078U
	Chloroform	0.0011	0.000068	0.00078		
	1,2-Dibromoethane	0.000070	0.000068	0.00078	J	
	Dichlorodifluoromethane	0.037	0.00014	0.00078		
	1,1-Dichloroethane	0.0020	0.000068	0.00078		
	1,1-Dichloroethene	0.024	0.000078	0.00078		
	cis-1,2-Dichloroethene	0.0011	0.000098	0.00078		
	Tetrachloroethene	0.11	0.000068	0.00078		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.12	0.000078	0.00078		
	1,1,1-Trichloroethane	0.0016	0.00036	0.00078		
	Trichloroethene	0.13	0.00013	0.00039		
	Trichlorofluoromethane	0.035	0.00011	0.00078		
	Total Organics ^d	0.469440	NA	NA	NA	NA
MWL-SV05-400	Acetone	0.0051	0.0036	0.013	J	
05-Nov-21	Benzene	0.00038	0.000051	0.00051	B, J	0.00051U
	2-Butanone	0.00048	0.00046	0.0025	J	
Trigger Levels	Carbon disulfide	0.00015	0.000070	0.0013	J	
Tetrachloroethene = 20 ppmv	Carbon tetrachloride	0.00059	0.000044	0.00051		
Trichlolorethene = 20 ppmv	Chloroform	0.00067	0.000044	0.00051		
Total Organics = 25 ppmv	Dichlorodifluoromethane	0.024	0.000088	0.00051		
	1,1-Dichloroethane	0.0017	0.000044	0.00051		
	1,1-Dichloroethene	0.018	0.000051	0.00051		
	cis-1,2-Dichloroethene	0.00069	0.000063	0.00051		
	Tetrachloroethene	0.089	0.00011	0.0013		
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.054	0.000051	0.00051		
	1,1,1-Trichloroethane	0.0017	0.00023	0.00051		
	Trichloroethene	0.088	0.000082	0.00025		
	Trichlorofluoromethane	0.038	0.000070	0.00051		
	Total Organics ^d	0.32208	NA	NA	NA	NA

Notes:

^aU.S. Environmental Protection Agency, 1999, "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination Of Volatile Organic Compounds In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

^bResults, MDL, and RL are reported in parts per million by volume.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- B = Compound was found in blank and sample.
- J = Result is greater than the MDL but less than the RL; the concentration is an approximate value.

Validation Qualifier

- U = The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit (i.e., RL) in units of ppmv, in accordance with the data validation process.
- J = The associated value is an estimated quantity.

^dTotal Organics or Total VOCs - Sum of validated detected organic analytes (i.e., results for analytes qualified during data validation as not detected not included in the total).

EPA = U.S. Environmental Protection Agency.

ID = Identification.

MWL = Mixed Waste Landfill.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99 percent confidence that the analyte is present (i.e., greater than zero).

NA = Not applicable.

ppmv = Parts per million by volume.

RL = Reporting limit. Minimum concentration that can be reported with a statistically established degree of confidence.

VOC = Volatile organic compound.

This page intentionally left blank.

6.0 SOIL-MOISTURE MONITORING RESULTS

This chapter presents soil-moisture monitoring activities (i.e., data collection and evaluation) in accordance with MWL LTMMP Section 3.4.2 and Appendix E (SNL/NM March 2012). The monitoring objective is to establish soil-moisture trends in the vadose zone beneath the MWL to evaluate ET Cover performance. The soil-moisture monitoring system functions as an early warning detection system for water percolation and infiltration through the ET Cover and disposal area so that timely action can be taken, if necessary. Results for the depth range of 8.7 to 86.6 ft bgs for each soil-moisture access tube are compared to the trigger level defined in LTMMP Section 5.2.3.2.

Soil-moisture monitoring field activities and results are described in Sections 6.1 and 6.2, respectively. Data evaluation and comparison of results to the monitoring trigger level are presented in Section 6.3. A summary of soil-moisture monitoring activities and results is provided in Section 11.1.

6.1 Soil-Moisture Monitoring Field Activities

One annual soil-moisture monitoring event was conducted during the April 1, 2021 through March 31, 2022 reporting period fulfilling the LTMMP annual monitoring requirement. The monitoring event was conducted on April 19, 2021. Figure 6-1 shows the soil-moisture monitoring locations MWL-VZ-1, MWL-VZ-2, and MWL-VZ-3, which are angled boreholes (60 degrees from the horizontal ground surface) that project beneath the MWL. Soil-moisture monitoring field forms and tables that compare soil-moisture content values to baseline values for the three access tubes are provided in Annex D.

Neutron count data collected in the field were correlated to percent soil-moisture content by volume as described in LTMMP Section 3.4.2 and Appendix E (SNL/NM March 2012). Baseline for soil-moisture content was determined for each access tube prior to the ET Cover subgrade work in September 2006 by averaging data collected during ten monitoring events conducted between May 27, 2004 and August 8, 2006.

6.1.1 Field Quality Control

The CPN 503DR neutron probe was operated in accordance with the field operating procedure and the manufacturer's operating manual. A standard count was taken on the day of the monitoring event, prior to the moisture logging, to ensure the instrument was functioning properly and to confirm measurement accuracy. The results of the standard counts are provided on the MWL Neutron Logging Data Field Form provided in Annex D.

6.1.2 Waste Management

No wastes were generated from soil-moisture monitoring activities.

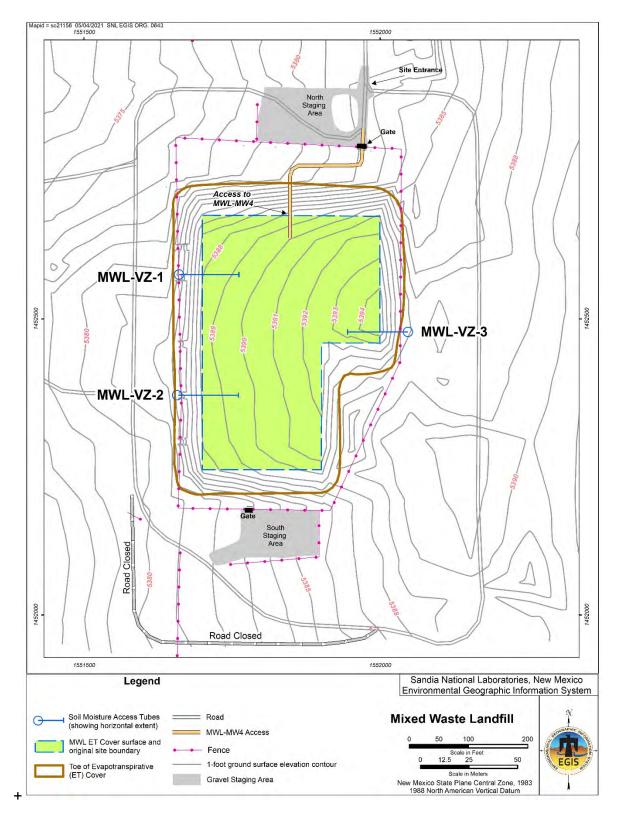


Figure 6-1
Mixed Waste Landfill Soil-Moisture Monitoring Locations

6.2 Monitoring Results

Soil-moisture monitoring data for this reporting period are presented in Figures 6-2, 6-3, and 6-4 for MW-VZ-1, MWL-VZ-2, and MWL-VZ-3, respectively. The results for the April 19, 2021 annual monitoring event are plotted on these figures along with the baseline soil-moisture content and the trigger level for comparison. The April 2021 results track very closely with the established soil-moisture baseline for the three access tubes and indicate a dry vadose zone.

6.2.1 Variances

There were no variances from the LTMMP soil-moisture monitoring requirements.

6.3 Data Evaluation and Monitoring Trigger Level

Soil-moisture data collected during the reporting period did not exceed the trigger level and tracked closely to baseline soil-moisture data, indicating the ET Cover is performing as designed. The trigger level is 23 percent soil moisture by volume and applies to the depth range of 8.7 to 86.6 ft bgs beneath the ET Cover. The April 2021 soil-moisture monitoring results are shown in Figures 6-2, 6-3, and 6-4 along with the baseline soil-moisture data and trigger level for comparison.

During this reporting period, the soil-moisture content measurements for the trigger level depth interval at MWL-VZ-1 ranged from 1.8 to 4.2 percent, compared to 1.7 to 5.6 percent baseline. At MWL-VZ-2 the soil-moisture content ranged from 2.1 to 4.3 percent, compared to 2.1 to 5.5 percent baseline. At MWL-VZ-3 the soil-moisture content ranged from 1.4 to 3.9 percent, compared to 1.8 to 4.5 percent baseline.

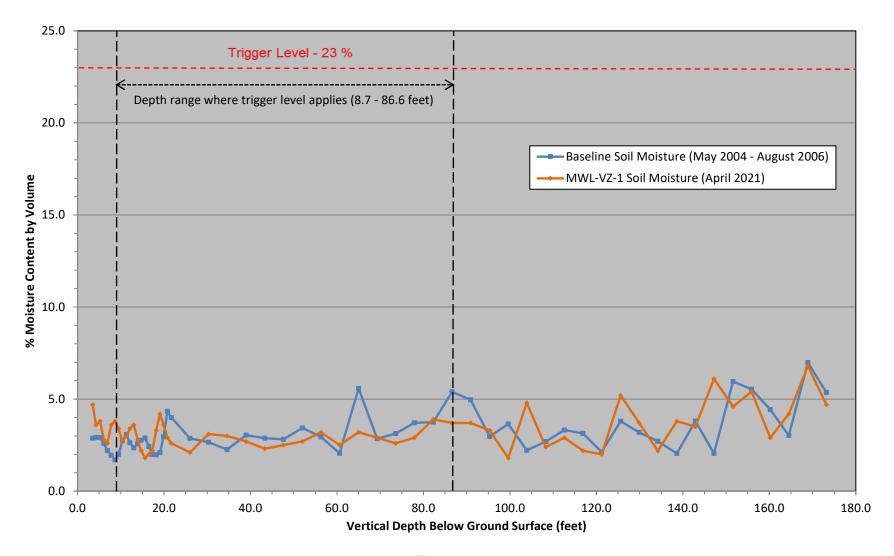


Figure 6-2
Mixed Waste Landfill MWL-VZ-1 Soil-Moisture Monitoring Results

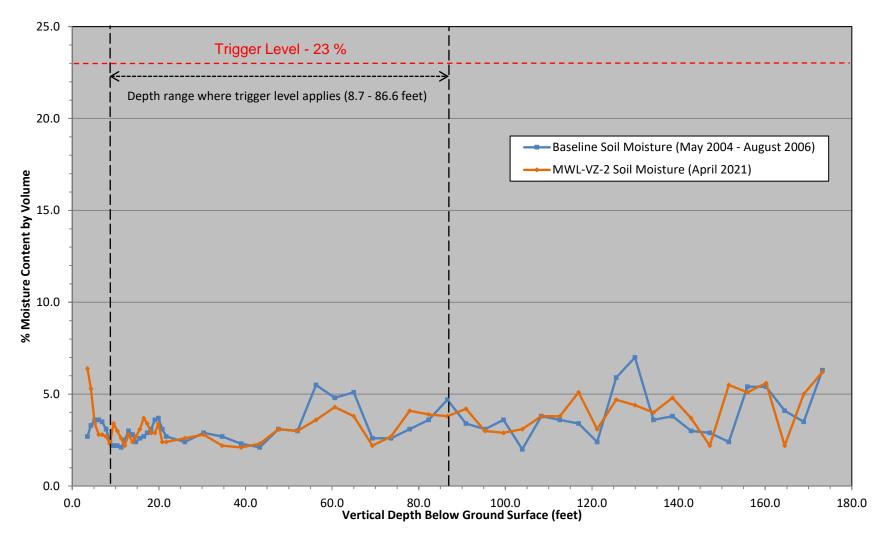


Figure 6-3
Mixed Waste Landfill MWL-VZ-2 Soil-Moisture Monitoring Results

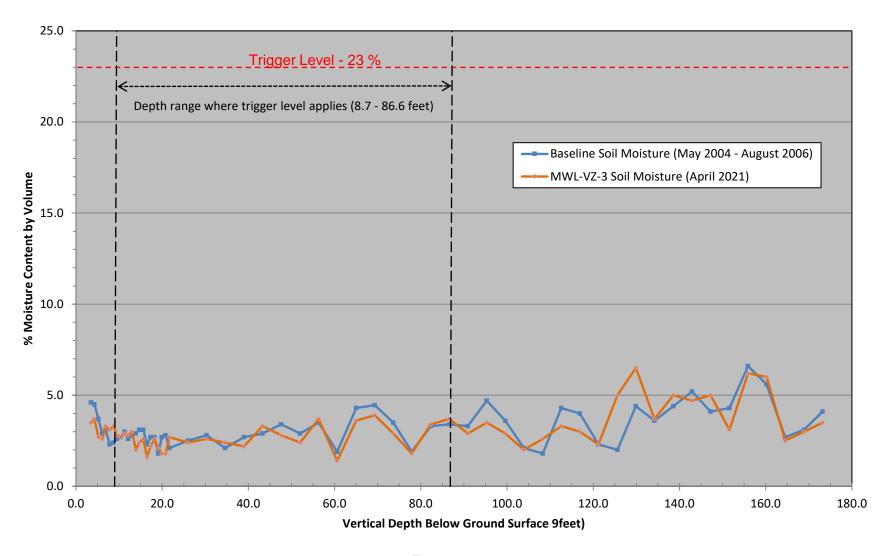


Figure 6-4
Mixed Waste Landfill MWL-VZ-3 Soil-Moisture Monitoring Results

7.0 GROUNDWATER MONITORING RESULTS

This chapter presents groundwater monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.5 and Appendix F (SNL/NM March 2012). The monitoring objective is to obtain groundwater analytical results representative of the uppermost part of the Regional Aquifer beneath the MWL and compare them to the trigger levels defined in Table 5.2.4-1 of the LTMMP. Groundwater monitoring, combined with soil-vapor monitoring, functions as an early warning detection system for changing conditions so that timely action can be taken, if necessary.

Groundwater sampling field activities are described in Section 7.1, analytical laboratory results are presented and compared to trigger levels in Section 7.2, followed by a discussion of data quality and data evaluation results. Hydrogeologic information on the Regional Aquifer is presented in Section 7.3. A summary of groundwater monitoring activities and results is provided in Section 11.1.

7.1 Environmental Sampling Field Activities

Two groundwater monitoring events were conducted during the April 1, 2021 through March 31, 2022 reporting period, fulfilling the LTMMP semiannual monitoring requirement. Groundwater samples were collected from monitoring wells MWL-BW2, MWL-MW7, MWL-MW8, and MWL-MW9. Well locations are shown in Figure 7-1. The samples were analyzed for VOCs, metals (cadmium, chromium, nickel, and uranium), gamma-emitting radionuclides (americium-241, cesium-137, and cobalt-60), gross alpha and beta activity, tritium, and radon-222. Field forms and documentation that address calibration of equipment, well purging and water quality measurements, and equipment decontamination activities are provided in Annex E.

The first sampling event was conducted between May 10 and 13, 2021. An environmental-duplicate sample pair was collected from MWL-BW2.

The second sampling event was conducted between November 1 and 4, 2021. An environmental-duplicate sample pair was collected from MWL-MW9.

7.1.1 Well Purging

Purging removes stagnant water from the well so that a representative environmental sample can be obtained. In accordance with LTMMP Appendix F, the minimum purge requirement is one saturated screen volume. Purging continued beyond the minimum purge volume until four stable field measurements for temperature, specific conductivity, potential of hydrogen (i.e., pH), and turbidity were obtained. Field measurements for water quality parameters were collected using an In-Situ Incorporated Aqua TROLL® 600 Multiparameter Water Quality Sonde and a HACHTM Model 2100Q portable turbidity meter. Additional water quality measurements included oxidation-reduction potential and dissolved oxygen.

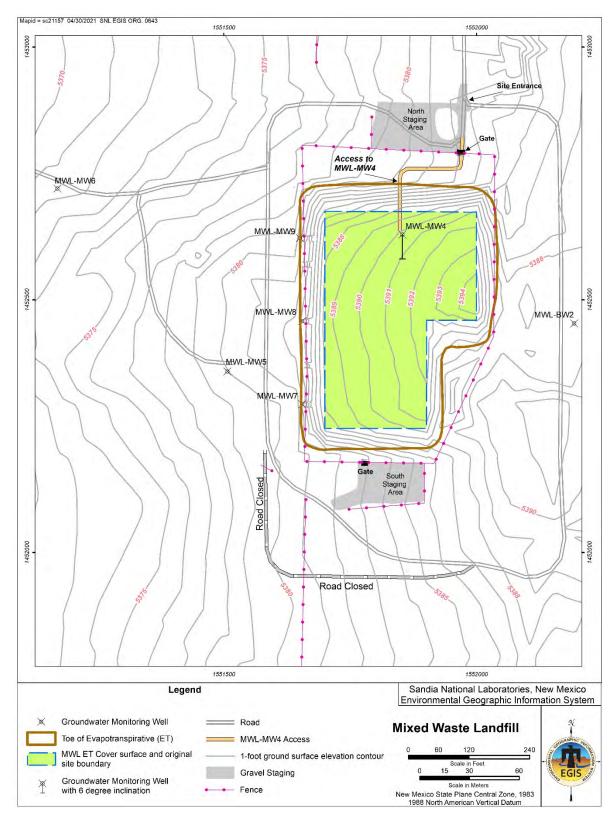


Figure 7-1
Mixed Waste Landfill Groundwater Monitoring Well Locations

A portable BennettTM groundwater sampling system was used to collect environmental samples from all wells. Purge requirements were satisfied at all monitoring wells. In accordance with LTMMP Appendix F requirements designed to decrease the purging flow rate as low as possible for wells that potentially purge dry, the portable BennettTM groundwater sampling system was equipped with a flow meter valve located along the discharge line and with small diameter tubing (1/4-inch inner diameter). The average flow rates ranged from 0.155 gallons per minute (gpm) at MWL-MW9 to 0.292 gpm at MWL-BW2 for the May 2021 sampling event. The average flow rates ranged from 0.152 gpm at MWL-BW2 to 0.196 gpm at MWL-MW7 for the November 2021 sampling event.

7.1.2 Field Quality Control

Field QC samples were collected as part of each sampling event and included duplicate, equipment blank, field blank, and trip blank samples. The sampling pump and tubing bundle used to collect environmental samples were decontaminated prior to sampling each monitoring well.

Environmental duplicate samples were collected and analyzed to evaluate the overall precision and reproducibility of the sampling and analytical process. The duplicate samples were collected immediately after the environmental groundwater sample to reduce variability caused by time and/or sampling mechanics. Duplicate samples were analyzed for the same constituents as the groundwater samples.

Equipment blank (also referred to as rinsate blank) samples were collected after equipment decontamination to verify effectiveness of the decontamination process. Equipment blank samples consisted of deionized water that was pumped through the sampling system and analyzed for the same constituents as the environmental groundwater samples.

Field blank samples were collected and analyzed for VOCs to detect potential sample contamination resulting from ambient field conditions. The field blanks were prepared by pouring deionized water into sample containers at the sample point (i.e., inside the sampling truck at each monitoring well) to simulate the transfer of environmental samples from the sampling system to the sample container.

Trip blank samples consist of laboratory reagent-grade water with hydrochloric acid preservative. They are prepared by the analytical laboratory and accompany the sample containers from the laboratory, through sampling activities, and are shipped back to the laboratory with the environmental samples. Trip blank samples were submitted with groundwater samples collected for analysis of VOCs to assess whether contamination of the samples occurred during sampling, transportation, analysis, and/or storage.

The field QC samples were submitted for analysis with the environmental samples. A brief explanation of the field QC sampling protocol for the May and November 2021 sampling events is provided below. Analytical results are presented in Section 7.2.

First Sampling Event - May 10-13, 2021

One duplicate sample was collected at MWL-BW2. One equipment blank sample was collected prior to sampling monitoring well MWL-BW2. Five field blank samples were collected, one at each monitoring well location, and one was collected from the source water used for the equipment decontamination process. Six trip blank samples were submitted with groundwater samples for VOC analysis.

Second Sampling Event - November 1-4, 2021

One duplicate sample was collected at MWL-MW9. One equipment blank sample was collected prior to sampling MWL-MW9. Five field blank samples were collected, one at each monitoring well location, and one was collected from the source water used for the equipment decontamination process. Six trip blank samples were submitted with groundwater samples for analysis of VOCs.

7.1.3 Waste Management

Purge and decontamination wastewater generated from sampling activities was collected in 55-gallon containers and stored at the Environmental Resources Field Office waste accumulation area. All wastewater was managed as non-hazardous waste based upon historical sample results and process knowledge of monitoring well locations. All wastewater was discharged to the sanitary sewer in accordance with Albuquerque Bernalillo County Water Utility Authority (ABCWUA) requirements after characterization data were compared to discharge limits. Approximately 224 gallons of wastewater were generated during the May 2021 groundwater sampling event and approximately 222 gallons were generated during the November 2021 sampling event.

PPE and other solid waste generated during May and November 2021 soil-vapor and groundwater monitoring activities were managed in accordance with all applicable requirements. Analytical data from the sampling events were used to supplement the waste management process. Based on historical data and sampling results, all solid waste was managed as non-hazardous solid waste.

7.2 Laboratory Results

Environmental and field QC samples were submitted to GEL for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. For comparison, trigger levels are included in the analytical results tables in this Annual LTMM Report. Both analytical laboratory and data validation qualifiers are included in the groundwater data tables presented in this section. Analytical laboratory reports, including certificates of analyses, analytical methods, MDLs, practical quantitation limits (PQLs), dates of analyses, results of QC analyses, and data validation reports are filed in the SNL/NM Record Center.

7.2.1 Environmental Sample Results

This section summarizes groundwater monitoring results for the reporting period. Groundwater monitoring results were compared to historical MWL groundwater monitoring results and LTMMP trigger levels. All results were below applicable LTMMP trigger levels and were comparable to historical MWL groundwater monitoring results. After the general summary provided below, environmental and field QC sample results are presented for the two semiannual monitoring events.

No VOCs were detected in the May or November 2021 sampling events. Methylene chloride was qualified as not detected during data validation in the May 2021 MWL-MW8 and MWL-MW9 environmental samples and in the November 2021 MWL-MW8 environmental sample since methylene chloride was reported in the environmental and associated trip blank samples at concentrations less the than the PQL. Table 7-1 summarizes the MDLs for all VOCs. The May and November 2021 cadmium, chromium, nickel, and uranium results are presented in Table 7-2, and the radionuclide, gross alpha, gross beta, tritium, and radon-222 results are provided in Table 7-3. Table 7-4 summarizes field water quality measurements taken prior to environmental groundwater sample collection.

Radionuclide activity in groundwater samples is determined through specific radiological analyses as presented in Table 7-3. In addition, gross alpha and beta activities are measured to screen for indications of other radionuclides (i.e., radiological anomalies). Gross alpha activity values are corrected by subtracting naturally occurring uranium in accordance with 40 CFR 141. Uranium is measured independently and results are presented in Table 7-2.

Trigger levels provide early detection of potentially changing conditions that require additional testing and further investigation (SNL/NM March 2012). Groundwater radiological trigger levels for tritium (4 millirem per year), radon (1,000 pCi/L), gross alpha activity (15 pCi/L), and gross beta activity (4 millirem per year) are shown in Table 7-3. The units for the tritium and gross beta triggers relate to a dose rate and not a specific activity per volume (pCi/L) measurement. For tritium, the approximate equivalent activity is 20,000 pCi/L, assuming an onsite resident using the groundwater underlying the MWL as their primary drinking water source.

Gross alpha and beta results are used as a broad radiological screening tool to look for other potential radionuclides besides tritium, radon, and the radionuclides already addressed by gamma spectroscopy analysis (i.e., the radionuclides of concern). The screening analyses do not provide radionuclide-specific identification necessary to calculate a dose. If the gross alpha trigger is exceeded, additional radiological analysis may be required to identify the specific radionuclide(s) that are contributing to the gross alpha result. Gross beta results are compared to the extensive SNL/NM groundwater monitoring data set to determine if there are indications of radiological anomalies. In other words, the gross beta activity is compared to natural background beta activity. If there are indications of radiological anomalies, additional analysis may be required to identify the specific radionuclide that is causing the anomalous beta activity. Once the specific radionuclide is identified, the corresponding dose to a human receptor can be calculated and compared to the trigger of 4 millirem per year. Additional analysis based on elevated gross alpha or gross beta screening results would only be required if the results are not explained by the other radionuclide-specific results. In summary, the screening and evaluation process ensures that if radiological contamination is present, it will be detected, evaluated, and appropriate follow-up actions will be taken.

Table 7-1
Summary of Method Detection Limits for VOCs (EPA Method 8260Ba)
Mixed Waste Landfill Groundwater Monitoring
May and November 2021

	MDL
Analyte	(μg/L)
1,1,1-Trichloroethane	0.300-0.333
1,1,2,2-Tetrachloroethane	0.300-0.333
1,1,2-Trichloroethane	0.300-0.333
1,1-Dichloroethane	0.300-0.333
1,1-Dichloroethene	0.300-0.333
1,2-Dichloroethane	0.300-0.333
1,2-Dichloropropane	0.300-0.333
2-Butanone	1.50-1.67
2-Hexanone	1.50-1.67
4-Methyl-2-pentanone	1.50-1.67
Acetone	1.50-1.67
Benzene	0.300-0.333
Bromodichloromethane	0.300-0.333
Bromoform	0.300-0.333
Bromomethane	0.300-0.333
Carbon disulfide	1.50-1.67
Carbon tetrachloride	0.300-0.333
Chlorobenzene	0.300-0.333
Chloroethane	0.300-0.333
Chloroform	0.300-0.333
Chloromethane	0.300-0.333
Dibromochloromethane	0.300-0.333
Dichlorodifluoromethane	0.300-0.355
Ethylbenzene	0.300-0.333
Methylene chloride	0.500-1.00
Styrene	0.300-0.333
Tetrachloroethene	0.300-0.333
Toluene	0.300-0.333
Trichloroethene	0.300-0.333
Vinyl acetate	1.50-1.67
Vinyl chloride	0.300-0.333
Xylene	0.300-1.00
cis-1,2-Dichloroethene	0.300-0.333
cis-1,3-Dichloropropene	0.300-0.333
trans-1,2-Dichloroethene	0.300-0.333
trans-1,3-Dichloropropene	0.300-0.333

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

EPA = U.S. Environmental Protection Agency.

MDL = Method detection limit. The minimum concentration that can be measured and reported with 99 percent confidence that the analyte is greater than zero.

μg/L = Micrograms per liter.

VOC = Volatile organic compound.

Table 7-2
Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020Ba)
Mixed Waste Landfill Groundwater Monitoring
May and November 2021

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Trigger Level (mg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
May 2021 Sam	pling Event						
MWL-BW2	Cadmium	ND	0.0003	0.001	0.0025	U	
11-May-2021	Chromium	ND	0.003	0.010	0.043	U	
	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00657	0.000067	0.0002	0.015		
MWL-BW2	Cadmium	ND	0.0003	0.001	0.0025	U	
(Duplicate)	Chromium	ND	0.003	0.010	0.043	U	-
11-May-2021	Nickel	ND	0.0006	0.002	0.050	U	-
	Uranium	0.00685	0.000067	0.0002	0.015		
MWL-MW7	Cadmium	ND	0.0003	0.001	0.0025	U	
10-May-2021	Chromium	ND	0.003	0.010	0.043	U	
	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00757	0.000067	0.0002	0.015		
MWL-MW8	Cadmium	ND	0.0003	0.001	0.0025	U	
13-May-2021	Chromium	ND	0.003	0.010	0.043	U	
	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00771	0.000067	0.0002	0.015		
MWL-MW9	Cadmium	ND	0.0003	0.001	0.0025	U	
12-May-2021	Chromium	ND	0.003	0.010	0.043	U	
	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00867	0.000067	0.0002	0.015		

Table 7-2 (Concluded)

Summary of Cadmium, Chromium, Nickel, and Uranium Results (EPA Method 6020Ba) Mixed Waste Landfill Groundwater Monitoring May and November 2021

Well ID	Analyte	Result (mg/L)	MDL (mg/L)	PQL (mg/L)	Trigger Level (mg/L)	Laboratory Qualifier ^b	Validation Qualifier ^b
November 2021	Sampling Ever	nt					
	Cadmium	ND	0.0003	0.001	0.0025	U	
MWL-BW2	Chromium	ND	0.003	0.010	0.043	U	
November 2021 S MWL-BW2 01-Nov-2021 MWL-MW7 02-Nov-2021 MWL-MW8 04-Nov-2021 MWL-MW9 03-Nov-2021	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00673	0.000067	0.0002	0.015	В	
	Cadmium	ND	0.0003	0.001	0.0025	U	
MWL-MW7	Chromium	ND	0.003	0.010	0.043	U	
02-Nov-2021	Nickel	ND	0.0006	0.002	0.050	U	
	Uranium	0.00745	0.000067	0.0002	0.015	В	-
	Cadmium	ND	0.0003	0.001	0.0025	U	-
MWL-MW8	Chromium	ND	0.003	0.010	0.043	U	-
04-Nov-2021	Nickel	ND	0.0006	0.002	0.050	U	-
	Uranium	0.00766	0.000067	0.0002	0.015	В	-
	Cadmium	ND	0.0003	0.001	0.0025	U	-
MWL-MW9	Chromium	ND	0.003	0.010	0.043	U	-
03-Nov-2021	Nickel	0.000640	0.0006	0.002	0.050	J	-
	Uranium	0.00912	0.000067	0.0002	0.015	В	-
NAVAL NAVALO	Cadmium	ND	0.0003	0.001	0.0025	U	
(Duplicate)	Chromium	ND	0.003	0.010	0.043	U	
03-Nov-2021	Nickel	ND	0.0006	0.002	0.050	U	
00 1404-2021	Uranium	0.00917	0.000067	0.0002	0.015	В	

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

^bLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- B = The analyte was detected in the blank above the effective MDL.
- J = Estimated value, the analyte concentration fell above the effective MDL and below the effective PQL
- U = Analyte was not detected.
- EPA = U.S. Environmental Protection Agency.
- ID = Identification.
- MDL = Method detection limit. The minimum concentration or activity that can be measured and reported with 99 percent confidence that the analyte is greater than zero, analyte is matrix-specific.
- mg/L = Milligrams per liter.
- MWL = Mixed Waste Landfill.
- ND = Not detected (at MDL).
- PQL = Practical quantitation limit. The lowest concentration of analytes in a sample that can be reliably determined within specified limits of precision and accuracy by the applicable method under routine laboratory operating conditions.

Table 7-3
Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results
Mixed Waste Landfill Groundwater Monitoring
May and November 2021

Well ID	Analyte	Result ^a (pCi/L)	MDA ^b (pCi/L)	Trigger Level	Laboratory Qualifier ^c	Validation Qualifier ^c	Analytical Method ^d
May 2021 Samplin	ng Event	N 1					
MWL-BW2	Americium-241	11.6 ± 13.9	21.3	NE	U	BD	EPA 901.1
11-May-2021	Cesium-137	1.98 ± 3.09	3.40	NE	U	BD	EPA 901.1
	Cobalt-60	-0.402 ± 1.94	3.56	NE	U	BD	EPA 901.1
	Gross Alpha	5.09	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	6.12 ± 1.10	1.62	4 mrem/yr		J	EPA 900.0
	Tritium ^f	27.7 ± 67.9	118	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	368 ± 96.3	62.0	1,000 pCi/L			SM7500-Rn B
MWL-BW2	Americium-241	-4.09 ± 9.10	15.5	NĒ	U	BD	EPA 901.1
(Duplicate)	Cesium-137	-1.04 ± 1.93	3.07	NE	U	BD	EPA 901.1
11-May-2021	Cobalt-60	1.18 ± 2.17	3.90	NE	U	BD	EPA 901.1
	Gross Alpha	2.36	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	6.09 ± 0.973	1.38	4 mrem/yr		J	EPA 900.0
	Tritium ^f	13.8 ± 68.6	122	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	385 ± 100	62.2	1,000 pCi/L			SM7500-Rn B
MWL-MW7	Americium-241	3.74 ± 10.2	17.1	NE	U	BD	EPA 901.1
10-May-2021	Cesium-137	0.720 ± 1.95	3.47	NE	Ü	BD	EPA 901.1
	Cobalt-60	0.720 ± 1.93 0.355 ± 1.87	3.52	NE	U	BD	EPA 901.1
	Gross Alpha	4.04	NA	15 pCi/L	NA NA	None	EPA 900.0
			1.28			J	
	Gross Beta ^e	5.36 ± 0.912	1.26	4 mrem/yr	 U	BD	EPA 900.0
	Tritium ^f	-50.6 ± 64.1		4 mrem/yr			EPA 906.0M
BANA/I BANA/O	Radon-222	108 ± 53.8	74.5	1,000 pCi/L		J	SM7500-Rn B
MWL-MW8	Americium-241	1.50 ± 6.00	9.83	NE	U	BD	EPA 901.1
13-May-2021	Cesium-137	-0.0135 ± 1.39	2.49	NE	U	BD	EPA 901.1
	Cobalt-60	-0.217 ± 1.57	2.89	NE	U	BD	EPA 901.1
	Gross Alpha	6.23	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	4.70 ± 0.878	1.25	4 mrem/yr		J	EPA 900.0
	Tritium ^f	-17.4 ± 65.1	120	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	162 ± 46.6	41.5	1,000 pCi/L		J	SM7500-Rn B
MWL-MW9	Americium-241	4.78 ± 9.29	15.2	NE	U	BD	EPA 901.1
12-May-2021	Cesium-137	0.171 ± 2.11	3.32	NE	U	BD	EPA 901.1
	Cobalt-60	0.708 ± 1.68	3.19	NE	U	BD	EPA 901.1
	Gross Alpha	3.55	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	5.85 ± 0.971	1.28	4 mrem/yr		J	EPA 900.0
	Tritium ^f	12.7 ± 63.8	113	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	519 ± 123	49.5	1,000 pCi/L			SM7500-Rn B
November 2021 S	ampling Event						
MWL-BW2	Americium-241	-2.70 ± 9.41	15.1	NE	U	BD	EPA 901.1
01-Nov-2021	Cesium-137	0.205 ± 1.79	3.09	NE	U	BD	EPA 901.1
	Cobalt-60	0.731 ± 1.89	3.45	NE	U	BD	EPA 901.1
	Gross Alpha	2.32	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	8.79 ± 1.52	2.18	4 mrem/yr			EPA 900.0
	Tritium	-7.63 ± 88.9	163	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	347 ± 99.4	79.5	1,000 pCi/L			SM7500-Rn B
MWL-MW7	Americium-241	2.58 ± 3.72	5.72	NE	U	BD	EPA 901.1
02-Nov-2021	Cesium-137	3.49 ± 3.69	4.52	NE	Ü	BD	EPA 901.1
	Cobalt-60	1.83 ± 2.93	5.40	NE	Ü	BD	EPA 901.1
	Gross Alpha	0.51	NA	15 pCi/L	NA NA	None	EPA 900.0
	Gross Alpha Gross Beta ^e	3.79 ± 1.88	2.54	4 mrem/yr	INA 	J	EPA 900.0
				,	U	BD	
	Tritium ^f	50.4 ± 90.5	156	4 mrem/yr			EPA 906.0M
Refer to notes at end	Radon-222	174 ± 61.5	67.1	1,000 pCi/L		J	SM7500-Rn B

Table 7-3 (Concluded)

Summary of Gamma Spectroscopy, Gross Alpha, Gross Beta, Tritium, and Radon Results Mixed Waste Landfill Groundwater Monitoring May and November 2021

Well ID	Analyte	Result ^a (pCi/L)	MDA ^b (pCi/L)	Trigger Level	Laboratory Qualifier ^c	Validation Qualifier ^c	Analytical Method ^d
November 2021	Sampling Event (co	ntinued)		•		•	
MWL-MW8	Americium-241	2.12 ± 5.64	9.21	NE	U	BD	EPA 901.1
04-Nov-2021	Cesium-137	3.04 ± 2.21	3.36	NE	U	BD	EPA 901.1
	Cobalt-60	-2.24 ± 2.13	3.06	NE	U	BD	EPA 901.1
	Gross Alpha	0.77	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	6.33 ± 0.978	1.25	4 mrem/yr			EPA 900.0
	Tritium ^f	46.7 ± 90.6	157	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	196 ± 70.0	76.6	1,000 pCi/L		J	SM7500-Rn B
MWL-MW9	Americium-241	3.67 ± 5.97	9.27	NE	U	BD	EPA 901.1
03-Nov-2021	Cesium-137	1.54 ± 1.95	3.00	NE	U	BD	EPA 901.1
	Cobalt-60	0.872 ± 1.77	3.26	NE	U	BD	EPA 901.1
	Gross Alpha	4.59	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Betae	12.7 ± 1.21	1.53	4 mrem/yr			EPA 900.0
	Tritium ^f	-28.8 ± 85.9	161	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	470 ± 117	56.1	1,000 pCi/L			SM7500-Rn B
MWL-MW9	Americium-241	3.77 ± 6.49	9.66	NE	U	BD	EPA 901.1
(Duplicate)	Cesium-137	-0.924 ± 1.84	3.10	NE	U	BD	EPA 901.1
03-Nov-2021	Cobalt-60	0.874 ± 1.95	3.61	NE	U	BD	EPA 901.1
	Gross Alpha	1.40	NA	15 pCi/L	NA	None	EPA 900.0
	Gross Beta ^e	4.72 ± 0.873	1.24	4 mrem/yr			EPA 900.0
	Tritium ^f	13.6 ± 90.8	163	4 mrem/yr	U	BD	EPA 906.0M
	Radon-222	396 ± 101	56.3	1,000 pCi/L			SM7500-Rn B

Votes:

^aGross alpha activity measurements were corrected by subtracting the total uranium activity from the total gross alpha result (Title 40 Code of Federal Regulations Parts 9, 141, and 142, Table I-4). Negative numbers indicate the sample count or result was less than the instrument background.

^bMDA is the minimal detectable activity or minimum measured activity in a sample required to ensure 95 percent probability that the measured activity is accurately quantified above the critical level.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

NA = Not applicable because the gross alpha result shown is adjusted for naturally occurring uranium.

J = Analyte was below detection limit.

Validation Qualifier

BD = Result is not statistically different from zero.

J = The associated value is an estimated quantity.

None = No data validation for corrected gross alpha activity.

^dAnalytical Methods EPA 900.0, EPA 901.1, and EPA 906.0M:

- U.S. Environmental Protection Agency, 1980, "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

Analytical Method SM7500-Rn B:

 - Ámerican Public Health Association, American Water Works Association, and Water Environment Federation, 1988, "Standard Methods for the Examination of Water and Wastewater," SM7500-Rn B Method, 22nd Edition, published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, D.C., 1988.

^eRefer to Section 7.2.1 for an explanation of the gross beta trigger level.

The approximate equivalent activity for the 4 mrem/yr tritium trigger level is 20,000 pCi/L.

EPA = U.S. Environmental Protection Agency.

ID = Identification.

MWL = Mixed Waste Landfill.

mrem/yr = Millirem per year.

NE = Not established.

pCi/L = Picocuries per liter.

SM = Standard method.

Table 7-4 Summary of Field Water Quality Measurements^a Mixed Waste Landfill Groundwater Monitoring May and November 2021

Well ID	Temperature (°C)	SC (µmhos/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (% Sat)	DO (mg/L)
May 2021 Sampling		((()	() C C C C	(g)
MWL-BW2	19.89	717.12	132.3	7.33	2.27	42.18	3.19
MWL-MW7	21.30	477.89	129.1	7.53	0.85	87.53	6.36
MWL-MW8	21.00	684.62	131.8	7.46	1.01	47.43	3.51
MWL-MW9	20.52	622.02	108.5	7.30	0.76	16.71	1.25
November 2021 Sam	pling Event						
MWL-BW2	20.62	702.26	157.5	7.42	1.90	35.22	2.84
MWL-MW7	18.73	568.43	172.2	7.58	0.25	87.99	7.34
MWL-MW8	19.31	577.26	178.3	7.53	0.90	52.80	4.38
MWL-MW9	20.47	593.70	165.9	7.49	3.14	22.03	1.78

Notes:

^aField measurements collected prior to sampling.

°C = Degrees Celsius.
% Sat = Percent saturation.
DO = Dissolved oxygen.
ID = Identification.
mg/L = Milligrams per liter.
MWL = Mixed Waste Landfill.
µmhos/cm = Micromhos per centimeter.

mV = Millivolts.

NTU = Nephelometric turbidity units.
ORP = Oxidation-reduction potential.

pH = Potential of hydrogen (negative logarithm of the hydrogen ion concentration).

SC = Specific conductivity.

First Sampling Event - May 10-13, 2021

VOCs were not detected in the environmental samples above MDLs. Methylene chloride was qualified as not detected during data validation in the MWL-MW8 and MWL-MW9 environmental samples due to similar, very low concentrations detected in the associated trip blank samples (i.e., reported concentrations were less than the PQL).

Cadmium, chromium, and nickel were not detected above the associated MDLs. Uranium was detected below the LTMMP trigger level in all groundwater samples. Uranium concentrations ranged from 0.00657 milligrams per liter (mg/L) at MWL-BW2 (environmental sample) to 0.00867 mg/L at MWL-MW9. All metals results are consistent with historical MWL groundwater monitoring results and below LTMMP trigger levels.

MWL groundwater samples were screened for gamma-emitting radionuclides, gross alpha activity, gross beta activity, tritium, and radon-222. There were no detections of gamma-emitting radionuclides (as determined by gamma spectroscopy) or tritium (as determined by liquid scintillation counting). Gross alpha activity was detected below the LTMMP trigger level of 15 pCi/L in all samples ranging from 2.36 pCi/L (MWL-BW2 environmental duplicate sample) to 6.23 pCi/L (MWL-MW8). Gross beta activity ranged from 4.70 pCi/L (MWL-MW8) to 6.12 pCi/L (MWL-BW2 environmental sample); results are consistent with background levels. Radon-222

was detected in all samples below the LTMMP trigger level of 1,000 pCi/L, with activities ranging from 108 pCi/L (MWL-MW7) to 519 pCi/L (MWL-MW9). All radiological results were reviewed by an SNL/NM Health Physics SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the groundwater sample results. Results are consistent with historical results and background activities for MWL groundwater, and below LTMMP trigger levels.

Second Sampling Event – November 1-4, 2021

VOCs were not detected in the environmental samples above MDLs. Methylene chloride was qualified as not detected during data validation in the MWL-MW8 environmental sample due to a similar, very low concentration detected in the associated trip blank sample (i.e., reported concentrations were less than the PQL).

Cadmium and chromium were not detected above the associated MDLs. Nickel was detected in the MWL-MW9 environmental sample at a concentration of 0.000640 mg/L. There were no other detections of nickel. Uranium was detected in all samples at concentrations ranging from 0.00673 mg/L at MWL-BW2 to 0.00917 mg/L at MWL-MW9 (environmental duplicate sample). All metals results are consistent with historical MWL groundwater monitoring results and are below LTMMP trigger levels.

MWL groundwater samples were screened for gamma-emitting radionuclides, gross alpha activity, gross beta activity, tritium, and radon-222. There were no detections of gamma-emitting radionuclides (as determined by gamma spectroscopy) or tritium (as determined by liquid scintillation counting). Gross alpha activity was detected in all samples ranging from 0.51 pCi/L (MWL-MW7) to 4.59 pCi/L (MWL-MW9 environmental sample). Gross beta activity was detected in all samples ranging from 3.79 pCi/L (MWL-MW7) to 12.7 pCi/L (MWL-MW9 environmental sample). Radon-222 was detected in all samples, with activities ranging from 174 pCi/L at MWL-MW7 to 470 pCi/L at MWL-MW9 (environmental sample). All radiological results were reviewed by an SNL/NM Health Physics SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the groundwater sample results. Results are consistent with historical results and background activities for MWL groundwater, and below LTMMP trigger levels.

Nickel and Uranium Concentration and Gross Alpha Activity Plots

Concentrations or activities over time of nickel, uranium, and gross alpha activity are presented in Figures 7-2 through 7-4, respectively for all groundwater monitoring events conducted since implementation of the LTMMP in 2014. Trigger levels are shown at the top of these plots and have not been exceeded. For non-detect results the MDL or MDA was used, and for environmental-duplicate sample pairs only the highest result was used. Variation shown in these plots reflects natural background variation in the concentration of these constituents within the Regional Aquifer. The superposition of concentration lines in Figure 7-2 reflects mostly non-detection results for nickel in the groundwater samples from all four compliance monitoring wells.

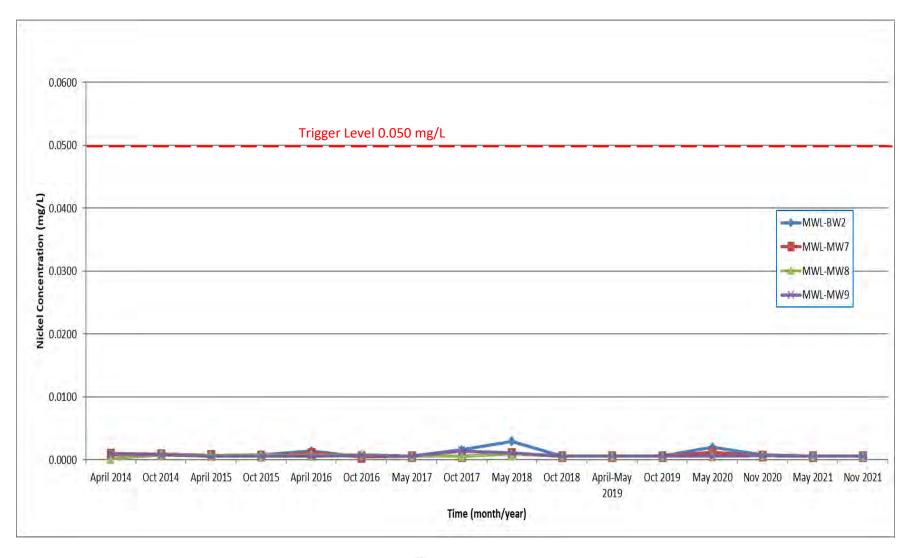


Figure 7-2 Nickel Concentrations vs. Time Mixed Waste Landfill Groundwater Monitoring Wells

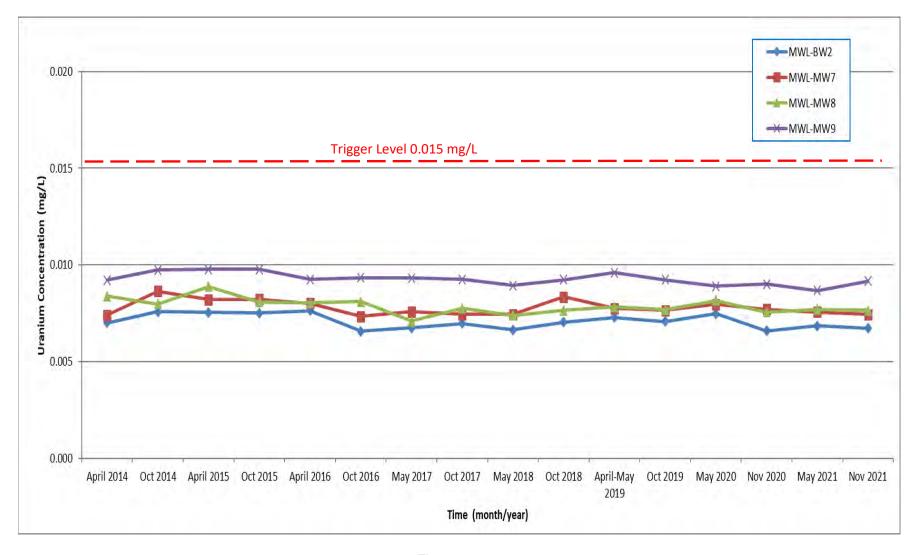


Figure 7-3
Uranium Concentrations vs. Time
Mixed Waste Landfill Groundwater Monitoring Wells

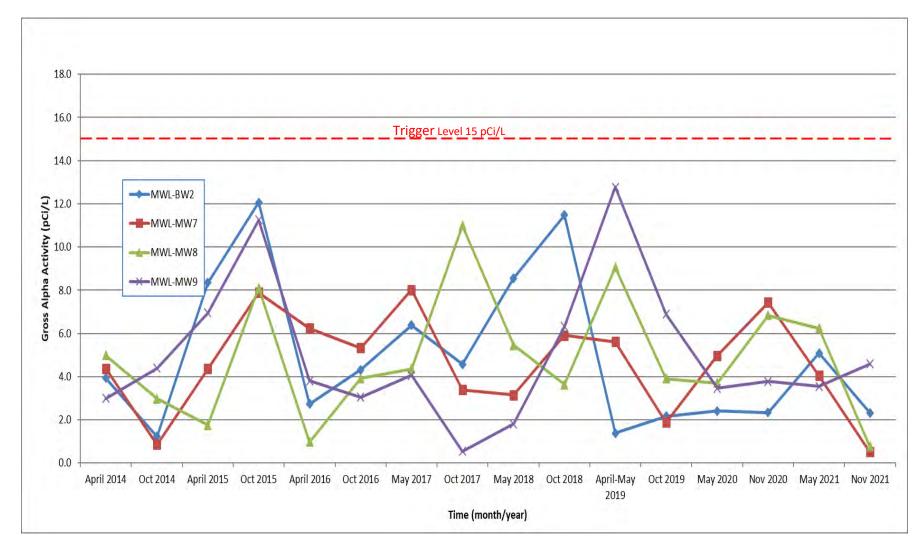


Figure 7-4
Gross Alpha Activity vs. Time
Mixed Waste Landfill Groundwater Monitoring Wells

7.2.2 Field Quality Control Sample Results

Field QC sample results met the sampling DQOs and validated the field sampling procedures and protocol. The analytical results for each field QC sample type are presented in this section.

Table 7-5 summarizes results of environmental-duplicate sample pair results and the calculated RPD values for the May and November 2021 data sets. RPDs were calculated for constituents that exceeded the MDL in the sample pairs. Only the metal uranium was detected above the associated MDLs in the two sample pairs. Calculated RPDs for uranium show good agreement (i.e., RPD values less than or equal to 35 for metals per LTMMP Appendix F, Section 2.2) for both sampling events, ranging from 1 to 4.

Table 7-5
Summary of Duplicate Sample Results
Mixed Waste Landfill Groundwater Monitoring
May and November 2021

Well ID/Parameter	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a (%)		
May 2021 Sampling Event	May 2021 Sampling Event				
MWL-BW2					
Uranium (mg/L)	0.00657	0.00685	4		
November 2021 Sampling E	November 2021 Sampling Event				
MWL-MW9					
Uranium (mg/L)	0.00912	0.00917	1		

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole number.

$$RPD = \frac{|R_I - R_2|}{[(R_I + R_2)/2]} \times 100$$

where: R_1 = Environmental sample result.

R₂ = Duplicate sample result.

% = Percent.
ID = Identification.
mg/L = Milligrams per liter.
MWL = Mixed Waste Landfill.

A discussion of equipment, field, and trip blank results for the May and November 2021 sampling events is provided below.

First Sampling Event – May 10-13, 2021

The equipment blank sample for the May 2021 sampling event was analyzed for all constituents. Acetone, 2-butanone, bromodichloromethane, chloroform, and dibromochloromethane were detected above laboratory MDLs. No corrective action was necessary since these compounds were not detected in the MWL-BW2 environmental and environmental duplicate samples.

Validated VOC detections in the five field blank samples at very low concentrations included acetone, bromodichloromethane, chloroform, and dibromochloromethane. No corrective action was necessary since these compounds were not detected in the associated environmental samples.

Methylene chloride was the only VOC detected above the MDL in the six trip blank samples associated with the May 2021 sampling event. It was reported below the PQL in the trip blank samples associated with MWL-MW8 and MWL-MW9 environmental samples. Methylene chloride was qualified as not detected in these environmental samples during data validation since the reported concentrations were similar to the trip blank sample concentrations (i.e., above the MDL but below the PQL). The trip blank sample associated with one field blank sample was analyzed outside the analytical method hold time requirement and the results were qualified as not usable during data validation. No corrective action was required since the results did not impact environmental sample results.

Second Sampling Event - November 1-4, 2021

The equipment blank sample for the November 2021 sampling event was analyzed for all constituents. Acetone, bromodichloromethane, chloroform, and dibromochloromethane were detected above the MDLs. No corrective action was necessary since these compounds were not detected in the MWL-MW9 environmental and environmental duplicate samples.

Validated VOC detections in the five field blank samples at very low concentrations included bromodichloromethane, bromoform, chloroform, and dibromochloromethane. No corrective action was necessary since these compounds were not detected in the associated environmental samples.

Methylene chloride was the only VOC detected above the MDL in the six trip blank samples associated with the November 2021 sampling event. It was reported below the PQL in the trip blank samples associated with the MWL-MW8 environmental sample and the field blank sample collected from the source water used for the equipment decontamination process. Methylene chloride was qualified as not detected in the environmental and field blank sample during data validation since the reported concentrations were similar to the trip blank sample concentration (i.e., above the MDL but below the PQL).

7.2.3 Laboratory Quality Control and Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA methods. These samples included laboratory control samples, method blanks, matrix spike and matrix spike duplicate samples, surrogate spike samples, and replicate samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods. Reported laboratory QC sample results comply with analytical method and laboratory procedure requirements. Laboratory QC sample results that effected environmental sample results are discussed below.

First Sampling Event – May 10-13, 2021

All laboratory control sample results met the accuracy (i.e., % recovery) requirement of 50 to 130 for VOCs and 75 to 125 for metals (Section 2.1 of LTMMP Appendix F), except for chloromethane and dichlorodifluoromethane. These compounds recovered outside LTMMP limits but within laboratory and analytical method acceptance limits in laboratory control samples associated with MWL-MW8 and MWL-MW9 environmental samples. Dichlorodifluoromethane recovered outside both LTMMP and analytical method limits in the laboratory control sample associated with the MWL-BW2 environmental samples. In accordance with data validation, no corrective action was required and none of these compounds was detected in the environmental samples.

Second Sampling Event - November 1-4, 2021

All laboratory control sample results met the accuracy (i.e., % recovery) requirement of 50 to 130 for VOCs and 75 to 125 for metals (Section 2.1 of LTMMP Appendix F), except for vinyl chloride. Vinyl chloride recovered outside LTMMP and analytical method acceptance limits in the laboratory control sample associated with the MWL-MW8 environmental sample. No corrective action was necessary since this compound was not detected in the environmental sample.

All chemical data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020). Based upon the data validation and review criteria, all environmental sample analytical data were determined to be acceptable and met the DQOs. Laboratory QC sample results comply with analytical method and laboratory procedure requirements except as noted above. Corrective action was not required based upon the data validation procedure. Data validation reviews that include AR/COCs and contract verification reviews are provided in Annex E.

Variances and Non-Conformances 7.2.4

Variances and non-conformances are defined in the LTMMP Appendix F, Section 6 for groundwater monitoring. There were no variances or non-conformances from LTMMP requirements for groundwater monitoring during the May and November 2021 sampling events.

7.3 **Hydrogeologic Assessment**

A detailed conceptual site model is provided in the MWL Phase 2 RCRA Facility Investigation Report (Peace et al. September 2002) and the Mixed Waste Landfill Groundwater Report, 1990 through 2001 (Goering et al. December 2002). An update to the conceptual site model integrating the findings from the current groundwater monitoring well network installed in 2008 is presented in the Mixed Waste Landfill Annual Groundwater Monitoring Report, Calendar Year 2009 (SNL/NM June 2010).

The upper surface of the Regional Aguifer at the MWL is contained within the interfingering. unconsolidated, fine-grained alluvial-fan deposits of the Santa Fe Group. The more

transmissive, coarser-grained Ancestral Rio Grande sediments underlie the fine-grained alluvial deposits beneath the MWL. The depth to water is approximately 500 ft bgs and groundwater flows generally westward, away from the Manzanita Mountains and towards the Rio Grande. Several production wells operated by KAFB and the ABCWUA have profoundly modified the natural groundwater flow regime near the MWL by creating a trough in the water table in the western and northern portions of KAFB. As a result, water levels at the MWL have historically declined since monitoring began in 1990.

Figure 7-5 shows the change in groundwater elevation at MWL groundwater monitoring wells for the time period 2000 through 2021. Since about 2010, the rate of groundwater elevation decline in all wells has been relatively slow. Some wells have shown very small increases in groundwater elevations. The rate of groundwater elevation decline in the upper screen interval of MWL-MW4 has generally stabilized since April 2010; this well shows more variation due to the strong downward gradient in the Regional Aguifer beneath the MWL and the presence of an inflatable packer between the upper (across the water table) and lower (at least partially within the Ancestral Rio Grande sediments) screen intervals. The overall decline in MWL-BW2, located on the east side of the MWL, reflects a higher rate of decline than observed in the other wells on the western side of the MWL. Monitoring wells on the west side of the MWL (MWL-MW5 through MWL-MW9) have shown a slight increase in the groundwater elevation over the past three years. From October 2020 to October 2021 in the four compliance wells, the groundwater elevation declined in MWL-BW2 (0.25 feet), did not significantly change in MWL-MW7 and MWL-MW8 (0 to 0.01 foot decrease, respectively), and rose in MWL-MW9 (0.12 feet). Changes were similar for the other three monitoring wells; MWL-MW4 showed a slight decline (0.07 feet) whereas MWL-MW5 and MWL-MW6, screened below the top of the water table with part of their screen intervals within the Ancestral Rio Grande, both showed an increase of 0.11 feet. This is likely due to the depth of their screen intervals and decreased pumping of ABCWUA production wells to the north.

Recharge from infiltration of direct precipitation at the MWL is negligible due to high evapotranspiration, low precipitation, the thick sequence of unsaturated Santa Fe Group deposits above the water table, and the presence of the ET Cover. Regional recharge has been affected by extended drought conditions that continued in 2021. Groundwater recharge of the Regional Aquifer occurs primarily by the infiltration of precipitation in the Manzanita Mountains located approximately 5 miles to the east.

Figure 7-6 shows the October 2021 potentiometric surface of the Regional Aquifer beneath the MWL. Based on the potentiometric contours, the hydraulic gradient is to the west-northwest. Measured orthogonally from the potentiometric surface contours, the horizontal gradient for October 2021 ranges from approximately 0.03 to 0.08 feet per foot. Groundwater velocities in the alluvial-fan sediments were calculated using the current potentiometric surface gradient, the average hydraulic conductivity obtained from slug testing of the four compliance monitoring wells, and an effective porosity of 25 percent. The calculated 2021 groundwater velocity remains consistent with previous years, and ranges from 0.02 to 0.06 feet per day; the average is 0.04 feet per day. These very low values and the general position of the groundwater elevation contours have not changed over the past six years and are consistent with previous estimates for horizontal groundwater flow at the water table in the MWL vicinity.

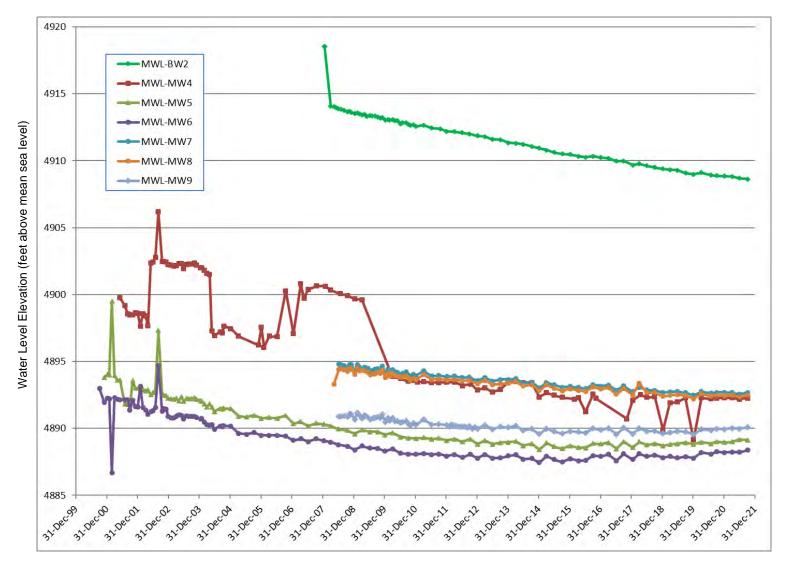


Figure 7-5
Groundwater Level Elevations at Mixed Waste Landfill Groundwater Monitoring Wells

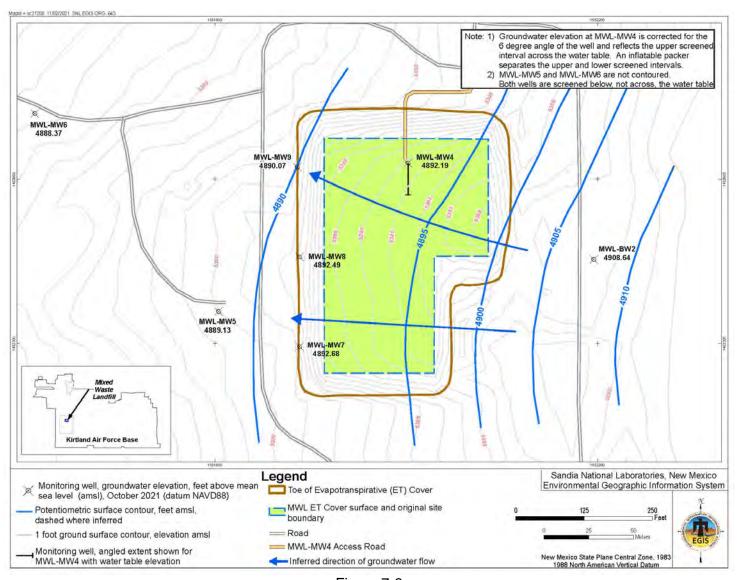


Figure 7-6
Localized Potentiometric Surface of the Regional Aquifer at the Mixed Waste Landfill, October 2021

This page intentionally left blank.

8.0 BIOTA MONITORING RESULTS

This chapter presents biota monitoring activities (i.e., sampling and analysis), analytical results, and data evaluation in accordance with MWL LTMMP Section 3.6 and Appendix G (SNL/NM March 2012). The monitoring objective is to provide data to evaluate biotic mobilization of contaminants (i.e., metals and radionuclides) from the subsurface to surface. Sampling of surface soil from animal burrows and ant hills, and potentially deep-rooted vegetation, is performed if these features are identified during the annual ET Cover Biology Inspection. Biota monitoring functions as an early warning detection system so that timely action can be taken, if necessary. Results are compared to trigger levels and background levels defined in LTMMP Section 5.2.2.2.

Biota monitoring field activities are described in Section 8.1, analytical laboratory results and a discussion of data quality are presented in Section 8.2, and data evaluation and a comparison of results to monitoring trigger levels are presented in Section 8.3. A summary of biota monitoring activities and results is provided in Section 11.1.

8.1 **Biota Monitoring Field Activities**

One biota sampling event was conducted during the April 1, 2021 through March 31, 2022 reporting period fulfilling the LTMMP annual monitoring requirement. The biota sampling locations were identified during the annual ET Cover Biology Inspection performed on August 16, 2021. The sampling locations are shown in Figure 8-1 and consist of two ant hills (MWL AHSS-01-2021 and MWL AHSS-02-2021). There were no animal burrows or potentially deeprooted plants identified on the ET Cover during the Biology Inspection. The two ant hill locations selected for surface soil sampling on the ET Cover were active and provided different locations relative to last year's biota sample locations. Surface soil samples were collected at these locations on August 19, 2021 and analyzed for metals and gamma emitting radionuclides by gamma spectroscopy.

8.1.1 Field Quality Control

In accordance with the Tritium and Biota SAP (LTMMP Appendix G, Table G-4.2-1), one field QC sample (duplicate sample) was collected at MWL AHSS-02-2021.

8.1.2 Waste Management

Waste generated during sampling activities included PPE (i.e., gloves) and decontamination wipes. Historical data and analytical results from the sampling event were used to characterize the waste; it was determined to be non-hazardous solid waste and was managed accordingly.

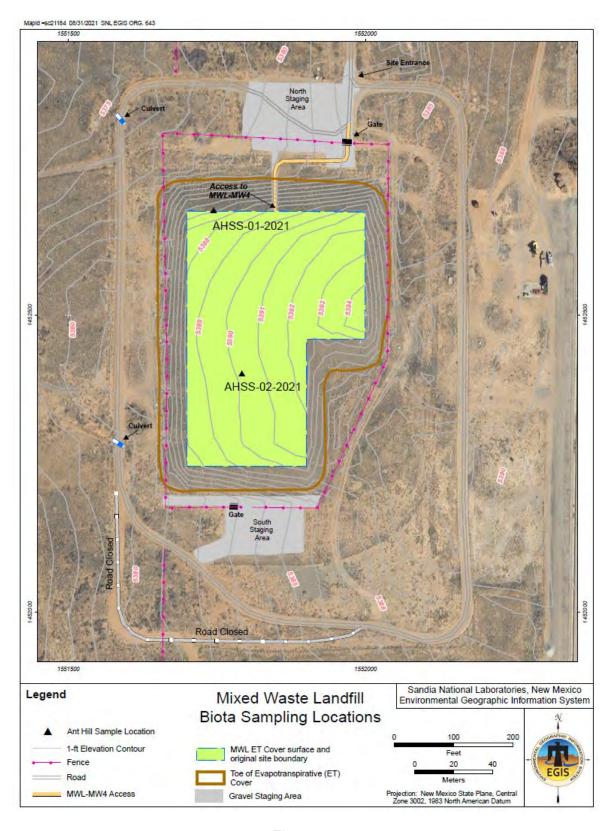


Figure 8-1
Mixed Waste Landfill Biota Sampling Locations

8.2 **Laboratory Results**

Biota surface soil samples were submitted to GEL for analyses. Samples were analyzed in accordance with applicable EPA analytical methods. Results that are below the MDL (metals) or MDA (gamma spectroscopy) are qualified with a "U" and are designated as not detected. Both laboratory and data validation qualifiers are included in the data tables presented in this section. Analytical laboratory reports, including certificates of analyses, analytical methods, MDAs and MDLs, sample results, dates of analyses, and results of QC analyses, are filed in the SNL/NM Record Center.

8.2.1 Environmental Sample Results

Table 8-1 summarizes metals results and Table 8-2 summarizes gamma spectroscopy results for the two ant hill surface soil sample locations. LTMMP trigger levels are included in Table 8-1 and NMED-approved background concentrations and activities (Dinwiddie September 1997) are provided in both Tables 8-1 and 8-2 for comparison.

All metals results were below trigger levels and the respective NMED-approved background concentrations.

All gamma spectroscopy radionuclide activities were low, below the respective NMED-approved background activities. Seven of the 18 results were non-detects. The gamma spectroscopy results were reviewed by an SNL/NM Health Physics SME to screen for potential indications of radiological contamination; there were no indications of radiological anomalies in the biota soil sample results.

8.2.2 Field Quality Control Sample Results

Table 8-3 summarizes results of the environmental-duplicate sample pair and the RPD values calculated for the August 2021 biota data set. An RPD was calculated when metals concentrations greater than the RL were reported in both the environmental and duplicate sample, and when radionuclides were reported in both the environmental and duplicate sample at activities greater than the MDA. Calculated RPDs for metals and radiological constituents show good agreement, ranging from 2 to 28. As defined in Section 2.3, Appendix G of the LTMMP, an RPD of less than or equal to 35 is considered acceptable for metals results.

Table 8-1 Summary of Metals Results (EPA Method 6010D/7471Ba) Mixed Waste Landfill Biota Monitoring August 2021

Sample Location	Parameter	Result (mg/kg)	MDL (mg/kg)	Reporting Limit (mg/kg)	NMED Background ^b (mg/kg)	Trigger Level (mg/kg)	Laboratory Qualifier ^c	Validation Qualifier ^c
MWL AHSS-01-2021	Arsenic	0.968	0.464	2.78	5.6	17.7	J	
19-Aug-2021	Barium	20.6	0.0928	0.464	130	100,000	*	J, RP2
	Beryllium	0.136	0.0928	0.464	0.65	2,260	J	
	Cadmium	ND	0.0928	0.464	<1	897	U	
	Chromium	1.46	0.139	0.928	17.3	63.1	*	J, RP2
	Cobalt	0.272	0.139	0.464	5.2	20,500	*, J	J-, B4, B5, RP2
	Copper	1.26	0.278	1.86	15.4	45,400	*, J	J, RP2
	Lead	2.70	0.306	1.86	21.4	800	В	J+, B, B3
	Mercury	ND	0.00698	0.0208	< 0.25	73.6	U	
	Nickel	1.05	0.139	0.464	11.5	22,500	*, B	J, RP2
	Selenium	0.965	0.464	2.78	<1	5,680	BJ	2.78U, B
	Silver	ND	0.0928	0.464	<1	5,680	U	
	Vanadium	2.61	0.0928	0.464	20.4	5,680	*	J, RP2
	Zinc	6.69	0.371	1.86	62	100,000	*, B	J, RP2
MWL AHSS-02-2021	Arsenic	3.10	0.454	2.72	5.6	17.7	-	
19-Aug-2021	Barium	64.8	0.0907	0.454	130	100,000	*	J, RP2
	Beryllium	0.529	0.0907	0.454	0.65	2,260	-	
	Cadmium	ND	0.0907	0.454	<1	897	U	
	Chromium	7.88	0.136	0.907	17.3	63.1	*	J, RP2
	Cobalt	2.49	0.136	0.454	5.2	20,500	*	J, RP2
	Copper	7.20	0.272	1.81	15.4	45,400	*	J, RP2
	Lead	5.74	0.299	1.81	21.4	800	В	
	Mercury	ND	0.00691	0.0206	< 0.25	73.6	U	
	Nickel	5.28	0.136	0.454	11.5	22,500	*, B	J, RP2
	Selenium	ND	0.454	2.72	<1	5,680	U	
	Silver	ND	0.0907	0.454	<1	5,680	U	
	Vanadium	17.3	0.0907	0.454	20.4	5,680	*	J, RP2
	Zinc	20.1	0.363	1.81	62	100,000	*, B	J, RP2
MWL AHSS-02-2021	Arsenic	3.01	0.484	2.90	5.6	17.7		
(Duplicate)	Barium	86.3	0.0967	0.484	130	100,000	*	J, RP2
19-Aug-2021	Beryllium	0.625	0.0967	0.484	0.65	2,260		
	Cadmium	ND	0.0967	0.484	<1	897	U	
	Chromium	8.01	0.145	0.967	17.3	63.1	*	J, RP2
	Cobalt	2.91	0.145	0.484	5.2	20,500	*	J, RP2
	Copper	6.44	0.290	1.93	15.4	45,400	*	J, RP2
	Lead	6.99	0.319	1.93	21.4	800	В	
	Mercury	ND	0.00753	0.0225	<0.25	73.6	U	
	Nickel	5.98	0.145	0.484	11.5	22,500	*, B	J, RP2
	Selenium	ND	0.484	2.90	<1	5,680	U	
	Silver	ND	0.0967	0.484	<1	5,680	U	
	Vanadium	19.4	0.0967	0.484	20.4	5,680	*	J, RP2
	Zinc	23.3	0.387	1.93	62	100,000	*, B	J, RP2

Refer to notes at end of table.

Table 8-1 (Concluded) Summary of Metals Results (EPA Method 6010D/7471Ba) Mixed Waste Landfill Biota Monitoring August 2021

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.

^bDinwiddie September 1997, Letter from R.S. Dinwiddie (NMED) to M.J. Zamorski (DOE), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," dated September 24, 1997.
^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- = Recovery or percent RPD not within acceptance limits and/or spike amount not compatible with the sample or the duplicate RPD's are not applicable where the concentration falls below the effective practical quantitation limit.
- B = The analyte was found in the method blank above the effective MDL.
- BJ = The analyte was found in the method blank above the effective MDL and the concentration is an estimated value greater than the MDL but less than the Reporting Limit.
- Estimated value, the analyte concentration is greater than the MDL but less than the Reporting Limit.
- U = Result less than the MDL.

Validation Qualifier

- B = Method blank contamination at concentration greater than the MDL.
- B3 = Calibration blank contamination at concentration greater than the MDL.
- B4 = Negative value for calibration blank absolute value less than the MDL.
- B5 = Negative value for method blank absolute value less than the MDL.
- J = The associated value is an estimated quantity.
- J- = The associated numerical value is an estimated quantity with a suspected negative bias.
- J+ = The associated numerical value is an estimated quantity with a suspected positive bias.

RP2 = Replicate RPD failed.

U = The analyte was reported as a detection by the laboratory but was qualified during data validation as not detected. The associated numerical value is the revised sample quantitation limit (i.e., Reporting Limit) in units of mg/kg, in accordance with the data validation process.

< = Less than.

DOE = U.S. Department of Energy.

EPA = U.S. Environmental Protection Agency.

MDA = Minimum detectable activity.

MDL = Method detection limit.

mg/kg = Milligrams per kilogram.

MWL = Mixed Waste Landfill.

ND = Not detected above the MDL.

NMED = New Mexico Environment Department.

RPD = Relative percent difference.

SNL/KAFB = Sandia National Laboratories/Kirtland Air Force Base.

Table 8-2 Summary of Gamma Spectroscopy Results (EPA Method 901.1a) Mixed Waste Landfill Biota Monitoring August 2021

			MDA	NMED Background ^b	Laboratory	Validation
Sample Location	Parameter	Result (pCi/g)	(pCi/g)	(pCi/g)	Qualifier	Qualifier
MWL AHSS-01-2021	Cesium-137	0.0337 ± -0.0255	0.0238	1.5		J, FR7
19-Aug-2021	Cobalt-60	-0.00809 ± 0.0147	0.0242	NA	U	BD, FR3
	Radium-226	0.482 ± 0.0776	0.0439	2.7		
	Thorium-232 ^d	0.767 ± 0.0803	0.0352	1.5		
	Uranium-235	0.0671 ± 0.131	0.126	0.18	U	BD, FR3
	Uranium-238	1.61 ± 1.80	1.17	2.3	X	R, Z2
MWL AHSS-02-2021	Cesium-137	0.0675 ± 0.0317	0.0341	1.5		J, FR7
19-Aug-2021	Cobalt-60	-0.00420 ± 0.0158	0.0293	NA	U	BD, FR3
	Radium-226	0.713 ± 0.114	0.0584	2.7		
	Thorium-232d	0.858 ± 0.0941	0.0449	1.5		
	Uranium-235	0.0464 ± 0.0941	0.173	0.18	U	BD, FR3
	Uranium-238	1.76 ± 1.69	1.29	2.3		J, FR7
MWL AHSS-02-2021	Cesium-137	0.0848 ± 0.0267	0.0236	1.5		
(Duplicate)	Cobalt-60	0.0158 ± 0.0170	0.0312	NA	U	BD, FR3
19-Aug-2021	Radium-226	0.691 ± 0.100	0.0433	2.7		
	Thorium-232 ^d	0.884 ± 0.0930	0.0366	1.5		
	Uranium-235	0.00941 ± 0.142	0.133	0.18	U	BD, FR3
N. d	Uranium-238	0.587 ± 0.979	0.773	2.3	U	BD, FR3

Notes:

Negative numbers indicate the sample count or result was less than the instrument background.

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste,

Physical/Chemical Methods," SW-846, 3rd edition, Office of Solid Waste and Emergency Response,

U.S. Environmental Protection Agency, Washington, D.C.

^bDinwiddie September 1997, Letter from R.S. Dinwiddie (NMED) to M.J. Zamorski (DOE), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," dated September 24, 1997. Cobalt-60 is not naturally occurring; therefore, it does not have a listed background activity.

^cLaboratory/Validation Qualifier: If cell is blank (--), then all quality control samples met acceptance criteria with respect to submitted samples.

Laboratory Qualifier

- U = Analyte is below detection limit.
- X = Uncertain identification for gamma spectroscopy.

Validation Qualifier

- BD = Result is not statistically different from zero.
- FR3 = Result is less than the MDA or less than 2-sigma the total propagated uncertainty.
- FR7 = Result is greater than or equal to the MDA and less than 3 times the MDA.
- J = The associated value is an estimated quantity.
- R = The data are unusable (compound may or may not be present).
- Z2 = Minimum peak criteria not met.

^dThorium-232 activity is quantified and reported using the daughter isotope Lead-212 results.

DOE = U.S. Department of Energy.

EPA = U.S. Environmental Protection Agency.

MDA = Minimum detectable activity.

MWL = Mixed Waste Landfill.

NA = Not applicable.

NMED = New Mexico Environment Department.

pCi/g = Picocuries per gram.

SNL/KAFB = Sandia National Laboratories/Kirtland Air Force Base.

Table 8-3
Summary of Duplicate Sample Results
Mixed Waste Landfill Biota Monitoring
August 2021

Sample Location	Environmental Sample (R ₁)	Duplicate Sample (R ₂)	RPD ^a (%)			
MWL AHSS-02-2021 - Meta	MWL AHSS-02-2021 – Metals (mg/kg)					
Arsenic	3.10	3.01	3			
Barium	64.8	86.3	28			
Beryillium	0.529	0.625	17			
Chromium	7.88	8.01	2			
Cobalt	2.49	2.91	16			
Copper	7.20	6.44	11			
Lead	5.74	6.99	20			
Nickel	5.28	5.98	12			
Vanadium	17.3	19.4	11			
Zinc	20.1	23.3	15			
MWL AHSS-02-2021 – Radionuclides (pCi/g)						
Cesium-137	0.0675	0.0848	23			
Radium-226	0.713	0.691	5			
Thorium-232	0.858	0.884	3			

Notes:

^aRPD = Relative percent difference is calculated with the following equation and rounded to the nearest whole number.

$$RPD = \frac{|R_I - R_2|}{[(R_I + R_2)/2]} \times 100$$

where: R_1 = Environmental sample result. R_2 = Duplicate sample result.

% = Percent.

mg/kg = Milligrams per kilogram.

MWL = Mixed Waste Landfill.

pCi/g = Picocuries per gram.

8.2.3 Laboratory Quality Control Data Quality

Internal laboratory QC samples were analyzed concurrently with all environmental samples in accordance with laboratory procedures and EPA analytical methods. These included laboratory control samples, method blanks, matrix spike, and replicate samples for the metals analyses. For the radiological analyses, method blanks, laboratory control samples, and replicate samples were analyzed with the environmental samples. The results were used to evaluate potential contamination associated with the laboratory analytical process and to determine the accuracy and precision of the analytical methods.

The selenium result at MWL AHSS-01-2021 was qualified as not detected during data validation detection due to contamination in the method blank above the MDL. Various results were qualified during data validation as estimated or "J" values due to laboratory replicate sample results, replicate RPDs that exceeded analytical method limits, and/or laboratory method blank and continuing calibration blank sample results greater than the MDL.

For the gamma spectroscopy results, one uranium-238 value was qualified during data validation as unusable due to the minimum peak requirement not being met (i.e., uncertainty in identifying the radionuclide).

All metals and gamma spectroscopy data were reviewed and qualified in accordance with SNL/NM AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data" (SNL/NM June 2020). Based upon the data validation and review criteria, all environmental sample analytical data were determined to be acceptable and to meet the DQOs. Laboratory QC sample results comply with analytical method and laboratory procedure requirements except as noted above. Corrective action was implemented in accordance with the data validation procedure and included qualification of specific results as documented in Tables 8-1 and 8-2 and the data validation reviews. Data validation reviews that include AR/COC forms and contract verification reviews are provided in Annex B.

8.2.4 Variances

There were no variances from the LTMMP biota monitoring requirements.

8.3 Data Evaluation and Monitoring Trigger Level

Trigger levels for metals in biota surface soil samples are included in Table 8-1. No surface soil metals results exceeded the trigger levels.

There are no trigger levels established for radionuclides. In accordance with LTMMP Section 5.2.2.2, the gamma spectroscopy results are compared with NMED-approved background activity levels (Dinwiddie September 1997), but the background activities are not considered trigger levels. All radionuclide results for biota surface soil samples were below the NMED-approved background activity levels. No deep-rooted vegetation was identified for sampling.

These results indicate contaminants from the disposal areas are not being mobilized to the surface by plant or animal activity.

9.0 INSPECTION, MAINTENANCE, AND REPAIR RESULTS

This chapter presents a summary of inspection, maintenance, and repair activities conducted in accordance with requirements in MWL LTMMP Section 4.0 and Appendix I, MWL Long-Term Monitoring Inspection Checklists/Forms (SNL/NM March 2012). Inspection requirements are summarized in Table 2-2 of this Annual LTMM Report. Table 9-1 lists the date each type of inspection was performed during the April 1, 2021 through March 31, 2022 reporting period. Inspection results are presented in the following sections and documented on the inspection forms/checklists listed in Table 9-1 and provided in Annex F. A summary of inspection activities and results is provided in Section 11.2.

9.1 Final Cover System

The final cover system includes the ET Cover vegetation and ET Cover surface (note the term ET Cover includes the side slopes). ET Cover vegetation is inspected annually by an SNL/NM staff biologist, documented on the Biology Inspection Checklist/Form for the MWL Cover, and summarized in Section 9.1.1. The ET Cover surface is inspected quarterly by a field technician, documented on the Cover Inspection Checklist/Form, and summarized in Section 9.1.2. During the quarterly inspections the field technician also inspects the storm-water diversion structures, security fence and access controls, and survey monuments, which are summarized in Sections 9.2 and 9.6.

9.1.1 Biology Inspection

One ET Cover Biology Inspection was performed by the staff biologist on August 16, 2021 fulfilling the requirement for an annual Biology Inspection during the reporting period growing season (Table 9-1). The ET Cover vegetation continues to meet all LTMMP criteria for successful revegetation. The approximate foliar coverage on the ET Cover was 41 percent, with 99 percent of this coverage composed of native vegetation. The foliar coverage is dominated by native grasses, with Galleta grass comprising approximately 30 percent of the total foliar coverage. There were no contiguous areas without vegetation exceeding 200 square feet in size and no plants capable of developing deep root systems were identified. No small animal burrows were identified on the ET Cover. Fourteen active ant hills and one inactive ant hill were observed mostly on the side slopes. No action or repairs were required based on the Biology Inspection.

Overall, the ET Cover vegetation and surface is in good condition with even coverage of mature, native perennial grasses. Additional information is provided on the August 16, 2021 Biology Inspection Checklist/Form (Annex F) and in the Biology Report (Annex G). The Biology Report summarizes ET Cover background information, local climate trends, and recommendations for the ET Cover based upon inspections performed during the reporting period. Although only the annual Biology Inspection is required, the staff biologist performed biology verification inspections to support the quarterly ET Cover surface inspections performed by a field technician (Section 9.1.2) as a best practice. These verification inspections are documented in memorandums included in Annex F with the quarterly site/cover inspection forms.

Table 9-1 Inspection Frequency and Dates Performed Mixed Waste Landfill April 2021 – March 2022 Reporting Period

Inspection Type	Frequency	Checklist/Form ^a	Date Performed
ET Cover Biology Inspection	Annual ^b	Biology Inspection Checklist/Form	August 16, 2021
			June 1, 2021
ET Cover Surface	Quarterly	Cover Inspection	September 23, 2021
Inspection		Checklist/Form	December 8, 2021
			March 1, 2022
			June 1, 2021
Storm-Water Diversion	Quarterly	Cover Inspection Checklist/Form	September 23, 2021
Structure Inspection ^c			December 8, 2021
			March 1, 2022
Soil-Vapor Monitoring	Semiannual ^d	Soil-Vapor Monitoring	May 6, 2021
Network Inspection		Network Checklist/Form	November 5, 2021
Soil-Moisture Monitoring Network Inspection	Annual ^d	Soil-Moisture Monitoring Network Checklist/Form	April 19, 2021
Groundwater Monitoring	Semiannual ^d	Groundwater Monitoring	May 10, 2021
Network Inspection		Network Checklist/Form	November 1, 2021
Security Fence Inspection ^c	e Quarterly		June 1, 2021
		Cover Inspection Checklist/Form	September 23, 2021
			December 8, 2021
			March 1, 2022

Notes:

ET = Evapotranspirative.

LTMMP = Long-Term Monitoring and Maintenance Plan.

9.1.2 ET Cover System/Surface Inspection

Four ET Cover surface inspections were performed by a field technician during the reporting period fulfilling the LTMMP quarterly inspection requirement (Table 9-1). The quarterly inspections were supported by the staff biologist. There were no inspection items that required maintenance or repairs, although some minor best practice maintenance was performed as discussed in Section 9.7.

9.2 Storm-Water Diversion Structure Inspection

Storm-water diversion structure inspections were combined with the quarterly ET Cover System/Surface Inspections during the reporting period, fulfilling the LTMMP quarterly inspection requirement (Table 9-1). These inspections were documented on the same Cover Inspection Checklist/Form and addressed the storm-water diversion swale on the north, east,

^aAll reporting period LTMMP-required inspection forms are provided in Annex F. Best practice monthly supplemental radon monitoring location inspections are provided in Annex A.

^bTransition from quarterly to annual inspection frequency based upon meeting successful revegetation criteria as determined by the staff biologist during the August 14, 2014 growing season Biology Inspection.

^cThese inspections, conducted at the same time as the ET Cover Surface Inspection, include access controls (gates, locks, signs) and survey monuments, and are documented on the same inspection form.

^dMonitoring network inspections are performed at the same frequency and at the same time as the associated monitoring.

and south sides of the ET Cover (just beyond the toe of the cover side slopes) and the site access road culverts (on the west side of the site), which are shown in Figure 2-3. No inspection items required follow-up actions. Accumulation of dead, windblown tumbleweeds were identified and removed from the road drainage culverts by the field technicians at time of the June 1, 2021 inspection and shortly after the March 1, 2022 inspection on March 10, 2022.

9.3 Soil-Vapor Monitoring Network Inspection

Two inspections of the soil-vapor monitoring network were performed as part of the semiannual soil-vapor monitoring events conducted during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). No inspection items required follow-up actions.

9.4 Soil-Moisture Monitoring Network Inspection

One inspection of the soil-moisture monitoring network was performed as part of the annual monitoring event conducted during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). No inspection items required follow-up actions.

9.5 Groundwater Monitoring Well Network Inspection

Two inspections of the groundwater monitoring well network were performed as part of the semiannual monitoring events conducted during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). No inspection items required follow-up actions.

9.6 **Security Fence Inspection**

Perimeter security fence inspections were combined with the four quarterly ET Cover System/Surface Inspections during the reporting period, fulfilling the LTMMP inspection requirement (Table 9-1). The inspections addressed the security fence, access controls (gates, locks, signs), and survey monuments, and were documented on the same Cover Inspection Checklist/Form. Results of the quarterly inspections are provided below.

June 1, 2021 Inspection

Accumulation of dead, windblown tumbleweeds were identified along the perimeter fence. The plant debris was removed by the field technicians at the time of the inspection.

September 23, 2021 Inspection

Accumulation of dead, windblown tumbleweeds were identified along the perimeter fence. The plant debris was removed by the field technicians at the time of the inspection. The south gate security lock was replaced on September 26, 2021.

December 8, 2021 Inspection

Accumulation of dead, windblown tumbleweeds were identified along the perimeter fence. The plant debris was removed by the field technicians at the time of the inspection.

March 1, 2022 Inspection

Accumulation of dead, windblown tumbleweeds were identified along the perimeter fence. The plant debris was removed on March 10, 2022 by the field technicians.

9.7 ET Cover Maintenance and Supplemental Watering

Efforts completed since ET Cover construction in 2009 to establish self-sustaining, native grasses on the ET Cover have been successful as verified through inspections. Supplemental watering was not conducted during this reporting period and only minimal ET Cover maintenance was needed.

Four minor weed control events were conducted during this reporting period that included live and windblown, dead weed removal as well as selective herbicide sterilant application (May 2021 event) to control weed growth. All removed weed material was loaded in a trailer and disposed at the KAFB Landfill. The objective of this best practice work is to promote the health of the existing native grasses on the ET Cover and perimeter area by reducing competition with weedy species for limited moisture and nutrients and to minimize future maintenance. This ET Cover maintenance work was performed by a contractor under the supervision of SNL/NM personnel.

March 8-9, 2021

Live and dead weeds were removed from the ET Cover, the perimeter fence and 3-foot area outside the fence, the area between the north toe of the ET Cover and the north fence, the western perimeter area between the fence and access road, the area surrounding all perimeter monitoring well erosion control features, and the perimeter drainage (i.e., swale on the east, north, and south sides of the ET Cover). Debris and weeds were also cleared from all the access road drainage culvert inlets and outlets. A total of approximately 16 cubic yards of weed material was removed.

May 4 and 6, 2021

Live and dead weeds were removed from the ET Cover, the perimeter fence and 3-foot area outside the fence, the area between the north toe of the ET Cover and the north fence, the western perimeter area between the fence and access road, the area surrounding all perimeter monitoring well erosion control features, and the perimeter drainage (i.e., swale on the east, north, and south sides of the ET Cover). Debris and weeds were also cleared from all the access road drainage culvert inlets and outlets. A total of approximately 8 cubic yards of weed material was removed.

Weed control activities included the application of the herbicide sterilant, Hyvar, to the North and South Staging Areas. Hyvar is approved for use at SNL/NM, does not carry a bee precaution rating according to the University of California Integrated Pest Management, and is applied annually following the manufacturer's instructions.

July 8-9, 2021

Live and dead weeds were removed from the ET Cover, the perimeter fence and 3-foot area outside the fence, the area between the north toe of the ET Cover and the north fence, the western perimeter area between the fence and access road, the area surrounding all perimeter monitoring well erosion control features, and the perimeter drainage (i.e., swale on the east, north, and south sides of the ET Cover). Debris and weeds were also cleared from all the access road drainage culvert inlets and outlets. A total of approximately 8 cubic yards of weed material was removed.

October 28-29, 2021

Live and dead weeds were removed from the ET Cover, the perimeter fence and 3-foot area outside the fence, the area between the north toe of the ET Cover and the north fence, the western perimeter area between the fence and access road, the area surrounding all perimeter monitoring well erosion control features, and the perimeter drainage (i.e., swale on the east, north, and south sides of the ET Cover). Debris and weeds were also cleared from all the access road drainage culvert inlets and outlets. A total of approximately 16 cubic yards of weed material was removed.

April 2021 - March 2022

This page intentionally left blank.

10.0 REGULATORY ACTIVITIES

On January 8, 2014, the NMED approved the MWL LTMMP (Blaine January 2014). All MWL regulatory submittals that occurred during this April 1, 2021 through March 31, 2022 reporting period are summarized in Section 10.1, along with submittals since approval of the LTMMP. LTMMP modification requests made during the reporting period are summarized in Section 10.2.

10.1 **MWL Regulatory Submittals**

Regulatory submittals during this reporting period include the eighth MWL Annual LTMM Report, April 2020 – March 2021 (SNL/NM June 2021) that was approved by the NMED (Maestas July 2021). There were no submittals of updated reference documents cited in the LTMMP SAPs.

All MWL regulatory submittals that occurred after NMED approval of the LTMMP are summarized in Table 10-1, including submittals that occurred during this reporting period. A summary of regulatory submittals associated with full implementation of the LTMMP is presented in the MWL Annual LTMM Report, April 2014 – March 2015 (SNL/NM June 2015).

10.2 MWL LTMMP Modifications

The first LTMMP modification request was submitted to the NMED during this reporting period (Hauck December 2021). The Class 1 Permit Modification request included minor changes to monitoring, analytical laboratory quality control, inspection forms, and reference documents that update, improve, and streamline monitoring and inspection activities and remove unnecessary documents from the lists of operating procedures in the various LTMMP SAPs. Changes were also made to update descriptions to current conditions (e.g., name change for SNL/NM management and operating contractor). The proposed modifications do not substantially alter the permit conditions and do not reduce the protection of human health and the environment. The permit modification request was approved by the NMED (Shean February 2022) and took effect upon approval.

Table 10-1
Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittal History

Date of Submittal ^a	LTMMP Requirement	Description of Submittal
January 15, 2014	Section 3.4.1	Installation Work Plan for Three Soil-Vapor Monitoring Wells at the Mixed Waste Landfill • Approved in February 2014
September, 2014	Section 3.4.1	Installation Report for Three Soil-Vapor Monitoring Wells at the Mixed Waste Landfill • Approved in September 2014
March 6, 2014	Appendices C through G	Procedures, plans, and documents cited in the LTMMP used by SNL/NM personnel for air, surface soil, soil-vapor, soil-moisture, biota, and groundwater monitoring.
June 18, 2014	Section 4.8.1	MWL Annual LTMM Report, January – March 2014 • Approved in August 2014
July 9, 2014	Appendices C, D, F, and G	Updates to two documents used by SNL/NM personnel to validate analytical data from contract laboratories and conduct activities related to sampling MWL soil-vapor wells. Updates to the health and safety plan for groundwater monitoring at the MWL.
February 18, 2015	Appendix F	Updates to five reference documents used by SNL/NM personnel to conduct groundwater monitoring activities at the MWL.
June 8, 2015	Section 4.8.1	MWL Annual LTMM Report, April 2014 – March 2015 • Approved in October 2015
May 20, 2016	Appendices C, D, E, F, and G	Updates to three documents used by SNL/NM personnel to perform monitoring activities at the MWL.
June 23, 2016	Section 4.8.1	MWL Annual LTMM Report, April 2015 – March 2016 • Approved in July 2016
November 9, 2016	Appendices C, D, F, and G	Updates to four documents used by SNL/NM personnel to perform monitoring activities at the MWL.
June 6, 2017	Section 4.8.1	MWL Annual LTMM Report, April 2016 – March 2017 • Approved in April 2018
July 6, 2017	Appendices D, F, and G	Updates to one document used by SNL/NM personnel to validate analytical data from contract laboratories.
February 8, 2018	Appendix F	Updates to four documents used by SNL/NM personnel to conduct groundwater monitoring activities at the MWL.
June 7, 2018	Section 4.8.1	MWL Annual LTMM Report, April 2017 – March 2018 • Approved in July 2018
December 14, 2018	Section 4.8.2	MWL Five-Year Report (first Five-Year Report) • Approved in July 2021
January 15, 2019	Appendices D, F, and G	Update to the SNL/NM Statement of Work for Analytical Laboratories used for monitoring sample analysis.

Refer to notes on next page.

Table 10-1 (Concluded)
Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan Document Submittal History

Date of Submittal ^a	LTMMP Requirement	Description of Submittal		
June 21, 2019	Section 4.8.1	MWL Annual LTMM Report, April 2018 – March 2019 • Approved in September 2019		
May 8, 2019	Appendix D, E, F, and G	Updates to three reference documents used by SNL/NM personnel to conduct soil-moisture monitoring, analytical data verification, and sample management activities at the MWL.		
November 8, 2019	Appendix C, D, F, and G	Updates to four reference documents used by SNL/NM personnel to conduct soil-vapor monitoring activities, sample management, and contract laboratory quality control. Updates to the health and safety plan for groundwater monitoring at the MWL.		
February 28, 2020	Appendices D, F, and G	Update to the SNL/NM Statement of Work for Analytical Laboratories used for monitoring sample analysis.		
May 27, 2020	Section 4.8.1	MWL Annual LTMM Report, April 2019 – March 2020 • Approved in July 2020		
June 26, 2020	Appendices D, F, and G	Updates to one document used by SNL/NM personnel to validate analytical data from contract laboratories.		
February 9, 2021	Appendix F	Updates to four documents used by SNL/NM personnel to conduct groundwater monitoring activities at the MWL.		
April 2021 through March 2022 Reporting Period Submittals				
June 15, 2021	Section 4.8.1	MWL Annual LTMM Report, April 2020 – March 2021 • Approved in July 2021		
December 16, 2021	Section 1.4.6	Request for Modification 21-019 to the Resource Conservation and Recovery Act Facility Operating Permit, SNL/NM. • Approved and became effective on February 16, 2022		

Notes:

 $^{\rm a}\textsc{Date}$ represents the date stamp on the DOE transmittal letter for the submittal.

DOE = U.S. Department of Energy.

LTMM = Long-Term Monitoring and Maintenance. LTMMP = Long-Term Monitoring and Maintenance Plan.

MWL = Mixed Waste Landfill.

SNL/NM = Sandia National Laboratories/New Mexico.

April 2021 - March 2022

This page intentionally left blank.

11.0 SUMMARY AND CONCLUSIONS

This chapter presents a summary of MWL LTMMP monitoring, inspection, and maintenance/repair activities performed during the April 1, 2021 through March 31, 2022 reporting period, followed by conclusions based upon these activities and results.

11.1 Monitoring Activities

All monitoring activities for the April 1, 2021 through March 31, 2022 reporting period were completed in accordance with LTMMP requirements. The results for each monitoring activity are summarized as follows.

Radon Monitoring

The radon air monitoring minimum frequency is annual and was performed over two six-month periods covering CY 2021. The range of radon activity for all monitoring locations was less than 0.2 to 0.8 pCi/L, and the two background location results were 0.2 pCi/L (both results for RN16) and less than 0.2 to less than 0.3 pCi/L (both results were non detections at RN17). No sample locations exceeded the trigger level of 4 pCi/L and all results confirm low levels of radon consistent with natural background levels and historical results. There were no indications of releases of radon gas from the disposal areas.

Tritium Surface Soil Monitoring

The tritium surface soil monitoring frequency is annual. Soil samples were collected on August 16, 2021. Reported tritium activities were all non-detections below the MDA, consistent with historical data, and below the trigger level of 20,000 pCi/L. There were no indications of new releases of tritium from the disposal areas.

Soil-Vapor Monitoring

The minimum vadose zone soil-vapor monitoring frequency is annual, but it was performed at a semiannual frequency as best practice to keep sample port tubing clear. Soil-vapor samples were collected in May and November 2021. A total of 18 VOCs were detected during the May 2021 sampling event and a total of 23 VOCs were detected during the November 2021 sampling event. Results for PCE, TCE, and Total VOCs from the deepest sampling port of wells MWL-SV03, MWL-SV04, and MWL-SV05 (400 ft bgs) were below the 20 ppmv trigger level for PCE and TCE, and the 25 ppmv trigger level for Total VOCs. The maximum concentrations detected for PCE and TCE at the 400 ft bgs sampling ports for this reporting period were 0.320 ppmv and 0.180 ppmv, respectively. The maximum concentration for Total VOCs at the 400 ft bgs sampling ports was 0.55690 ppmv at. All maximum values were from the May 2021 monitoring event well MWL-SV03. Soil-vapor monitoring results indicate a relatively uniform distribution of low concentration VOCs throughout the 500-foot-thick vadose zone that are not a

threat to groundwater. This distribution is consistent with an old source that has dissipated throughout the vadose zone and indicates the VOC soil-vapor plume is stable and slowly diffusing with no new releases from the disposal area.

Soil-Moisture Monitoring

The vadose zone soil-moisture monitoring frequency is annual. Soil-moisture measurements were collected on April 19, 2021. The trigger level for soil moisture applies to the shallow depth interval of 8.7 to 86.6 ft bgs at the three monitoring locations. The soil-moisture content by volume for this depth interval at all three locations ranged from 1.4 to 4.3 percent, below the 23 percent soil-moisture content by volume trigger level. Soil-moisture monitoring results are consistent with baseline results established prior to ET Cover construction and indicate the ET Cover is performing as designed.

Groundwater Monitoring

The groundwater monitoring frequency is semiannual. Groundwater samples were collected in May and November 2021. No constituents were detected in groundwater at concentrations exceeding trigger levels and the results are consistent with background levels and historical MWL groundwater monitoring results. Soil-vapor and groundwater monitoring results indicate the Regional Aquifer beneath the MWL is protected.

Biota Monitoring

Biota monitoring frequency is annual. Soil samples were collected on August 19, 2021 at two active ant hill locations on the ET Cover. No animal burrows were identified for sampling during the August 16, 2021 Biology Inspection. All metals and radionuclide results were below respective NMED-approved background levels and trigger levels. There were no indications of biotic mobilization of contaminants to the surface.

11.2 Inspections/Maintenance/Repairs Activities

The annual ET Cover Biology Inspection was performed on August 16, 2021 during the reporting period growing season. The ET Cover continues to meet LTMMP successful revegetation criteria. Efforts completed since ET Cover construction in 2009 to establish self-sustaining, native grasses on the ET Cover have been successful. As a result, minimal maintenance and no repairs or supplemental watering were needed. The ET Cover vegetation is in good condition and no issues requiring maintenance or repairs were identified.

The ET Cover System/Surface Inspections were performed quarterly and no issues requiring maintenance or repairs were identified. Inspections of the engineered storm-water drainage swale, perimeter security fence and access controls (i.e., gates, locks, signs), and survey monuments were performed at the same time and frequency. No issues were identified requiring maintenance or repairs beyond that performed during or shortly after the inspections

(i.e., minor maintenance such as clearing dead, windblown tumbleweeds from the security fence and access road culverts and replacing a lock on one of the gates).

Inspections of the soil-vapor monitoring network, soil-moisture monitoring network, groundwater monitoring network, and associated sampling equipment were performed at required frequencies (i.e., concurrent with each monitoring event) and no issues requiring repairs or maintenance were identified. Routine equipment checks and preventive maintenance are performed by monitoring personnel as best practice throughout the monitoring process.

Four minor weed control events were conducted as a best practice for the ET Cover vegetation during the reporting period. These events included removal of live and dead weeds from the ET Cover and perimeter area, and removal of windblown tumbleweeds from the perimeter fence and drainage swale. In addition, an approved herbicide sterilant was applied to the North and South Staging area in early May 2021. These actions were performed as best practice to promote the health of the desired native grass species by reducing competition with weedy species for limited moisture and nutrients.

11.3 **Regulatory Activities**

Regulatory activities during the April 1, 2021 through March 31, 2022 reporting period included submittal of the eighth MWL Annual LTMM Report, April 2020 – March 2021 (SNL/NM June 2021) that was approved by the NMED (Maestas July 2021). There were no LTMMP updated reference document submittals. The first LTMMP modification request (Hauck December 2021) was submitted and approved by the NMED (Shean February 2022) during the reporting period.

11.4 Conclusions

All required LTMMP monitoring, inspection, and maintenance/repair activities for the April 1, 2021 through March 31, 2022 reporting period were performed and documented in this nineth Annual LTMM Report, which meets the requirements of the LTMMP, Section 4.8.1 (SNL/NM March 2012).

The monitoring and inspection results indicate the final remedy, which includes the ET Cover, monitoring systems, and related physical controls, is performing as designed. Institutional controls related to the MWL continue to be maintained. No monitoring trigger levels were exceeded and all monitoring results are consistent with historical MWL monitoring data. Based upon monitoring and inspection results, site conditions continue to be protective of human health and the environment.

April 2021 - March 2022

This page intentionally left blank.

12.0 REFERENCES

American Public Health Association American Water Works Association, and Water Environment Federation, 1988. "Standard Methods for the Examination of Water and Wastewater," SM7500-Rn B Method, 22nd Edition, published jointly by American Public Health Association, American Water Works Association, and Water Environment Federation. Washington, D.C., 1988.

Blaine, T. (New Mexico Environment Department), January 2014. Letter to G.L. Beausoleil (U.S. Department of Energy NNSA/Sandia Site Office) and S. Andrew Orrell (Sandia National Laboratories/New Mexico), "Approval, Mixed Waste Landfill Long-Term Monitoring and Maintenance Plan, March 2012, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-12-007," January 8, 2014.

Dinwiddie, R.S. (New Mexico Environment Department), September 1997. Letter to M.J. Zamorski (U.S. Department of Energy), "Request for Supplemental Information: Background Concentrations Report, SNL/KAFB," September 24, 1997.

EPA, see U.S. Environmental Protection Agency.

Goering, T.J., G.M. Haggerty, D. Van Hart, and J.L. Peace, December 2002. "Mixed Waste Landfill Groundwater Report, 1990 through 2001, Sandia National Laboratories, Albuquerque, New Mexico," SAND2002-4098, Sandia National Laboratories, Albuquerque, New Mexico.

Hauck, D.J., December 2021, Letter to Mr. Rick Shean (New Mexico Environment Department), "Request for Modification 21-019 to Resource Conservation and Recovery Act (RCRA) Facility Operating Permit, Sandia National Laboratories/New Mexico (SNL/NM)," December 16, 2021.

Kieling, J.E. (New Mexico Environment Department), February 2016. Letter to J.P. Harrell (U.S. Department of Energy NNSA/Sandia Field Office) and P.B. Davies (Sandia National Laboratories, New Mexico), "Approval, Final Decision on Proposal to Grant Corrective Action Complete with Controls Status for Mixed Waste Landfill, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-14-014," February 18, 2016.

Maestas, R. (New Mexico Environment Department), July 2021. Letter to J.P. Harrell (U.S. Department of Energy NNSA/Sandia Field Office) and P. Shoemaker (Sandia National Laboratories, New Mexico), "Approval, Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2020-March 2021, June 2021, Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-21-009," July 23, 2021.

New Mexico Environment Department (NMED), April 2004. "Compliance Order on Consent Pursuant to the New Mexico Hazardous Waste Act § 74-4-10," prepared by the New Mexico Environment Department in the matter of Respondents U.S. Department of Energy and Sandia Corporation, Sandia National Laboratories, Bernalillo County, New Mexico, April 29, 2004.

New Mexico Environment Department (NMED), May 2005. "Final Order No. HWB 04-11(M), State of New Mexico Before the Secretary of the Environment in the Matter of Request for a Class 3 Permit Modification for Corrective Measures for the Mixed Waste Landfill, Sandia National Laboratories, Bernalillo County, New Mexico, EPA ID# 5890110518." May 26, 2005.

New Mexico Environment Department (NMED), October 2009 and subsequent revisions. "Resource Conservation and Recovery Act, Post-Closure Care Permit, EPA ID No. NM5890110518, to the U.S. Department of Energy/Sandia Corporation, for the Sandia National Laboratories Chemical Waste Landfill," New Mexico Environment Department Hazardous Waste Bureau, Santa Fe, New Mexico, October 15, 2009. Revised November 7, 2013.

New Mexico Environment Department (NMED), January 2015 with all approved modifications. "Resource Conservation and Recovery Act Facility Operating Permit EPA ID Number NM5890110518 Issued to the U.S. Department of Energy/Sandia Corporation for the Sandia National Laboratories Hazardous and Mixed Waste Treatment and Storage Units and Post-Closure Care of the Corrective Action Management Unit," January 27, 2015.

New Mexico Environment Department (NMED), February 2016. "Final Order No. HWB 15-18 (P), State of New Mexico Before the Secretary of the Environment in the Matter of Proposed Permit Modification for Sandia National Laboratories, EPA ID #5890110518, To Determine Corrective Action Complete with Controls at the Mixed Waste Landfill," New Mexico Environment Department, Santa Fe, New Mexico, February 12, 2016.

NMED, see New Mexico Environment Department.

Peace, J.L., T.J. Goering, M.D. McVey, September 2002. "Report of the Mixed Waste Landfill Phase 2 RCRA Facility Investigation, Sandia National Laboratories, Albuquerque, New Mexico," SAND2002-2997, Sandia National Laboratories, Albuquerque, New Mexico.

Peace, J.L., P.J. Knight, T.S. Ashton, and T.J. Goering, November 2004. "Vegetation Study in Support of the Design and Optimization of Vegetative Soil Covers, Sandia National Laboratories, Albuquerque, New Mexico," SAND2004-6144, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2010. "Mixed Waste Landfill Groundwater Monitoring Report, Calendar Year 2009," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), March 2012. "Long-Term Monitoring and Maintenance Plan for the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2015. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2014 – March 2015," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2017a. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2016 – March 2017," Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), October 2019. "Field Operating Procedure, Soil Vapor Monitoring, Revision 05," SNL/NM FOP 08-22, Long-Term Stewardship Department, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2020. "Data Validation Procedure for Chemical and Radiochemical Data," AOP 00-03, Revision 5, Sample Management Office, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories, New Mexico (SNL/NM), June 2021. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, April 2020 – March 2021," Sandia National Laboratories, Albuquerque, New Mexico.

Shean, R. (New Mexico Environment Department), February 2022. Letter to D. Hauck (U.S. Department of Energy NNSA/Sandia Field Office) and J. Huff (Sandia National Laboratories, New Mexico), "Approval, Class 1 Permit Modification (With Prior Approval), Sandia National Laboratories, EPA ID# NM5890110518, HWB-SNL-21-016," February 16, 2022.

SNL/NM, see Sandia National Laboratories, New Mexico.

Sullivan, R.M., and P.J. Knight, 1992. "Biological Assessment for the Sandia National Laboratories Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico," Special Technical Report 1 (Contract AB4892), Physical Sciences Laboratory, Las Cruces, New Mexico.

- U.S. Environmental Protection Agency (EPA), 1980. "Prescribed Procedures for Measurement of Radioactivity in Drinking Water," EPA-600/4-80-032, Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.
- U.S. Environmental Protection Agency (EPA), November 1986 (and updates). "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd Edition, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- U.S. Environmental Protection Agency (EPA), August 1993. "Module IV. Special Conditions Pursuant to the 1984 Hazardous and Solid Waste Amendments (HSWA) to RCRA for Sandia National Laboratories/New Mexico, EPA I.D. Number NM 5890880518," U.S. Environmental Protection Agency, Region VI, Dallas, Texas. August 26, 1993.
- U.S. Environmental Protection Agency (EPA), January 1999. "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition, Compendium Method TO-15, Determination Of Volatile Organic Compounds In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry," Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio.

April 2021 - March 2022

This page intentionally left blank.

ANNEX A

Mixed Waste Landfill Radon Monitoring Forms and Reports

January-December 2021

Data Evaluation Memos

Field Forms

Contract Verification Forms

Radon Detector Inspection Forms

Mixed Waste Landfill Radon Monitoring

January-June 2021 Monitoring Period

Review of MWL Radon-in-Air Data 1st Semiannual CY 2021 (January – June 2021) August 30, 2021

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

Albuquerque, New Mexico 87185-0651

date: August 30, 2021

to: Mike Mitchell (8888), Robert Ziock (8888), and Bonnie Little (8888)

from: David Farrar (0618) drfarra@sandia.gov

subject: Review of MWL Radon Air Data – January through June 2021 Semiannual Monitoring Period

The purpose of this memo is to document my review of the radon air monitoring results for the January through June 2021 semiannual monitoring period. My review includes evaluation of the results and supporting documentation relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, Air Sampling and Analysis Plan for the Mixed Waste Landfill). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective.

Radon air monitoring measurements during this semiannual period were obtained using Radtrak2® detectors. The detectors were deployed at each monitoring location (Figure 1) on January 18, 2021 and were collected on July 19, 2021. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The detectors remained in the field for approximately six months and were submitted to the analytical laboratory, RADONOVA, for analysis on Analysis Request/Chain of Custody (AR/COC) #621657 along with a trip blank detector (RNTB). RNTB was received at the same time as the other deployed detectors and was stored in a hermetically sealed protective bag at the Environmental Resource Field Office.

The results for this semiannual period indicate very low activities of radon in the air at the MWL, consistent with historical results and background radon activity. Results ranged from <0.2 picocuries per liter ([pCi/L], i.e., non-detect, 5 out of 17 field location results) to 0.5 pCi/L (RN8 and RN14); there were twelve other detections ranging from 0.2 to 0.4 pCi/L. The detectors from the two background locations, RN16 and RN17, had results of 0.2 pCi/L and <0.2 pCi/L (i.e., non-detect), respectively. The trigger level of 4 pCi/L, which applies only to the results from the perimeter locations RN1 through RN10, was not exceeded by any of the individual sample results. A result of 0.3 pCi/L was reported for the trip blank (RNTB) indicating the other detectors may have been potentially exposed to very low activities of radon during shipping and/or at the laboratory.

The result for RN10 had a slightly higher detection limit (0.3 pCi/L) compared to the other non-detects (0.2 pCi/L). This was due to the different backgrounds in the materials from which the detectors were made.

DRF, 0618

Attachments:

Analysis Request/Chain of Custody #621657

Review of MWL Radon-in-Air Data 1st Semiannual CY 2021 (January – June 2021) August 30, 2021

RADONOVA Radon Monitoring Report 5757415:1 (analytical laboratory results for Radtrak2® detectors) Figure 1. Location of the Alpha Track Detectors at the MWL

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

Internal Lab													P	age 1 of 2
Batch No.	MA				SMO Use	ī					10	7	AR/COC	621657
Project/Task Project/Task Project/Task Service Orde	Manager: Number:	MWL RADON MONITOR Robert Ziock 195122.10.11.08 CF378-21	RIN Date Samples Carrier/Waybii Lab Contact: Lab Destinatio	II No.	3 Steve Leslie RADON	- 0-	378	SMO C	uthorization: ontact Phone Wendy Pa eport to SMC	alencia/50	5-844-3132		Waste Characterization RMA Released by COC No.	✓ 4° Celsius
			Contract No.:		1776616			100	Stephanie I	Montaño/5	05-284-255	3	Bill to: Sandia National Laboratorie	
Tech Area: Building:		Room:	Operational	Char									P.O. Bax 5800, MS-0154	
	Fraction			Depth (ft)	Date/ Colle		Sample	Туре	ontainer	Preserv-	Collection	Sample	Albuquerque, NM 87185-0154 Parameter & Method Requested	Lab Sample ID
114110	001	RN1/Radtrak2 428876	5-7	N/A	7/19/21	07:53	AF	N	O NA	NONE	С	SA	RADON	- Campion
114111	001	RN2/Radtrak2 139301	-6	N/A	7/19/21	07:54	AF	N	0 NA	NONE	С	SA	RADON	
114112	001	RN3/Radtrak2 220124	-2	N/A	7/19/21	07:25	AF	N	DNA	NONE	С	SA	RADON	
114113	001	RN4/Radtrak2 620707	-0	N/A	7/19/21	07:30	AF	N	0 NA	NONE	С	SA	RADON	
114114	001	RN5/Radtrak2 208263	14	N/A	7/19/21	07:35	AF	N	O NA	NONE	С	SA	RADON	
114115	001	RN6/Radtrak2 462609	-9	N/A	7/19/21	07:40	AF	N	0 NA	NONE	С	SA	RADON	
114116	001	RN7/Radtrak2 599198	1-9	N/A	7/19/21	07:42	AF	N	ONA	NONE	С	SA	RADON	
114117	001	RN8/Radtrak2 574197	-0	N/A	7/19/21	07:47	AF	N	0 NA	NONE	С	SA	RADON	
114118	001	RN9/Radtrak2 596090)-1	N/A	7/19/21	07:50	AF	N	0 NA	NONE	С	SA	RADON	
114119	001	RN10/Radtrak2 39862	0-5	N/A	7/19/21	07:52	AF	N	0 NA	NONE	С	SA	RADON	
Last Chain		Yes		Sample	Tracking		SMO	Use	Special Ins	structions	/QC Requi	rements:		Conditions on
Validation		✓ Yes		Date En	tered:				EDD		✓ Yes			Receipt
Backgroun		Yes		Entered				36.36	Turnaroun		7-Day	•	15-Day* ✓ 30-Day	
Confirmato	-	Yes		QC inits					Negotiated					
Sample	Danielle		ature	Init.		y/Organiza			Sample Di			to Client	Disposal by Lab	
Team Members	Robert Z		Him	X3	SNL/08854/ SNL/08888/			19-7143	Comments	Detector	s were dep		8/2021 to 7/19/2021; 182 al information	
Dolinguished	bu /	1 10710	10- BEC	T do	7/10/	2 : /	1225	D. II			-			Lab Use
Relinquished Received by	DY Z		Org. 060	~		2/Time C		Receive	ished by	محد	7	Org.		
Relinquished	by f	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 Org. 6 of 8		7120/	-	000			m	_	Org.		Time / P'in
Received by		DE GOVERN	Org.	Date				Receive				Org.		Time
	mation w	vith SMO required for 7 a		77 7 7 7 7 7 7	4-4		t					5/9	Doto	THE

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

AOP 95-16

Project Nam	ne:	MWL RADON MONITORIN	Designation to the									AR/COC	621657
Tech Area:			Project/Task Mana	ger:	Robert Zic	ock		Project/Ta	sk No.:	19512	2.10.11.08	3	
Building:		Room:											
Sample No.	Frantia		Depth		Date/Time		Co	ntainer	Preserv-	Collection	Sample	Parameter & Method	Lab use
		The section of		Colle	ected	ed Matrix	Type	Volume	ative	Method	Type	Requested	Sample ID
	001	RN11/Radtrak2 760717-	9 N/A	7/19/21	08:13	AF	N	0 NA	NONE	С	SA	RADON	oampie i
114121	001	RN12/Radtrak2 627619-	0 N/A	7/19/21	08:00	AF	N	0 NA	NONE	С	SA	RADON	100 100 000 000
114122	001	RN13/Radtrak2 736805-	3 N/A	7/19/21	08:02	AF	N	0 NA	NONE	С		RADON	V-500025
114123	001	RN14/Radtrak2 913312-	5 N/A	7/19/21	08:05	AF	N	0 NA			SA	RADON	160000
114124	001	RN15/Radtrak2 952730-		7/19/21	08:08	AF	N		NONE	С	SA		1000
114125	001	RN16/Radtrak2 476339-		7/19/21	07:20			0 NA	NONE	С	SA	RADON	0.690
114126	001	RN17/Radtrak2 516589-				AF	N	0 NA	NONE	С	SA	RADON	列音音片
114127	001	RNTB/Radtrak2 953208-		7/19/21	07:45	AF	N	0 NA	NONE	С	SA	RADON	12/2/20
	001	THAT DATACULARZ 955206-	6 N/A	7/19/21	08:20	AF	N	0 NA	NONE	С	SA	RADON	124 104
											TBRY	7/20/24	HURACE
											ν		STATE OF THE PARTY
													C2500000
													7/10/05/55
													(S) (S) (S)
													3183
													THE PARTY
							-						348657
							_						
													With the
													(Special
	0												-90,000

Review of MWL Radon-in-Air Data 1st Semiannual CY 2021 (January – June 2021) August 30, 2021

5757415:1 REPORT PAGE 1 of 3

REPORT NUMBER

07/29/2021 PRINT DATE 07/29/2021 OWN ID AR/COC 621657 BY NTESS, LLC REPORT RECEIVER(S) NTESS, LLC

REPORT DATE

NTESS

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak^{2®}) following the quality guidance in EPA 402-R-95-012.

The detector(s) arrived to Radonova Laboratories AB 07/21/2021. They were measured 07/28/2021.

Test data have been given by NTESS

Property data and address

MEASURE SITE ADDRESS AR/COC 621657

BUILDING ID

NTESS

Test results

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	FLOOR	RADON RESULT
428876-7 [Radtrak ^{2®}]	01/18/2021 - 07/19/2021	RN1		0.3 ± 0.2 pCi/L
139301-6 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN2		0.4 ± 0.2 pCi/L
220124-2 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN3		0.3 ± 0.2 pCi/L
620707-0 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN4		0.2 ± 0.2 pCi/L
208263-4 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN5		0.3 ± 0.2 pCi/L
462609-9 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN6		0.2 ± 0.2 pCi/L
599198-9 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN7		< 0.2 pCi/L
574197-0 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN8		0.5 ± 0.2 pCi/L
596090-1 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN9		< 0.2 pCi/L
398620-5 [Radtrak ² 8]	01/18/2021 - 07/19/2021	RN10		< 0.3 pCi/L

Comment to the results

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories AB Laboratory Measurement Specialist This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

DISCLAIMER

Radonova Inc. makes no warranty of any kind, express or implied, as regard to the use, operation or analysis of any Radonova Inc. monitor. Radonova Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Radonova inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data.

RADONOVA INC. 900 Oakmont Lane Suite 207 Westmont IL 60559 331.814.2200, help@radonova.com

NTESS

REPORT NUMBER 5757415:1 REPORT PAGE 2 of 3

07/29/2021

PRINT DATE
07/29/2021

OWN ID
AR/COC 621657

BY
NTESS, LLC
REPORT RECEIVER(S)
NTESS, LLC

REPORT DATE

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak²) following the quality guidance in EPA 402-R-95-012.

The detector(s) arrived to Radonova Laboratories AB 07/21/2021. They were measured 07/28/2021.

Test data have been given by NTESS

Property data and address

MEASURE SITE ADDRESS AR/COC 621657

BUILDING ID

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	FLOOR	RADON RESULT
760717-9 [Radtrak ^{2®}]	01/18/2021 - 07/19/2021	RN11		0.2 ± 0.2 pCi/L
627619-0 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN12		0.3 ± 0.2 pCi/L
736805-3 [Radtrak ²)	01/18/2021 - 07/19/2021	RN13		< 0.2 pCi/L
913312-5 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN14		0.5 ± 0.2 pCi/L
952730-0 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN15		0.3 ± 0.2 pCi/L
476339-7 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN16		0.2 ± 0.2 pCi/L
516589-9 [Radtrak ² ®]	01/18/2021 - 07/19/2021	RN17		< 0.2 pCi/L
953208-6 [Radtrak ² ®]	01/19/2021 - 07/19/2021	RNTB		0.3 ± 0.2 pCi/L

Comment to the results

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories AB Laboratory Measurement Specialist
This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

DISCLAIMER

Radonova Inc. makes no warranty of any kind, express or implied, as regard to the use, operation or analysis of any Radonova Inc. monitor. Radonova Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Radonova Inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data.

RADONOVA INC. 900 Oakmont Lane Suite 207 Westmont IL 60559 331.814.2200, help@radonova.com

REPORT NUMBER REPORT DATE
5757415:1 07/29/2021

REPORT PAGE PRINT DATE
3 of 3 07/29/2021

OWN ID AR/COC 621657

Measurement method: Closed alpha-track detector

The radon measurement was performed with a closed alpha-track detector following the quality assurance guidance given in EPA 402-R-95-012. The detector container is manufactured from electrically conducting plastic. Through a small slit (filter), radon gas enters the detector. The track-detecting material (film) inside the detector is hit by alpha particles generated by the radon entering the container and the decay products formed from it. On the film, the alpha particles make small tracks which are enlarged through chemical etching and later counted in a microscope in order to determine the radon exposure.

Radonova Laboratories AB (P.O. Box 6522, SE-751 38 Uppsala, Sweden) is accredited (no. 1489) by SWEDAC to conduct radon-gas measurements using the closed alpha-track detector method. The analysis equipment is checked daily and the detectors are calibrated at regular intervals. NRPP Licenses: 107831 AL, 107830 RT

Measured radon concentrations

For each detector, the measured value of the radon concentration is provided. For each value an uncertainty associated with the measurement to a 95% confidence level is also provided. For example a measurement result of 4.0 ± 0.5 pCi/L means that the radon concentration is most likely contained in the range 3.5 - 4.5 pCi/L. If the start or end date of the measurement has not been provided, the radon concentration cannot be calculated. In such cases, the total exposure in pCi*days/L will be reported. The reported measured values are related to the detectors as received by Radonova Laboratories AB. Detector deployment is not performed by Radonova Laboratories AB. Measurement information such as monitoring period (dates) and placement location is provided to Radonova Laboratories AB by the end user.

Codes on non-reportable detectors

DNR Not Reported – Detector Not Returned

VTW Not Reported – Visibly Tampered With

FBD Not Reported – Film Broken or Damaged

LIL Not Reported – Lost in Lab
DTO Not Reported – Detector Too Old

Radon measurements in Multifamily Buildings, Schools and Large Buildings

The United States Environmental Protection Agency (EPA) recommends remediation if the results of one long-term test or the average of two short-term tests conducted in an occupied room are 4.0 pCi/L or higher. The average yearly residential indoor radon level in the US is estimated to be around 1.3 pCi/L. Long-term tests are conducted for more than 90 days. Short-term tests are conducted between 2 and 90 days and should be performed under closed building conditions.

If an initial short-term test result is less than 4 pCi/L, a follow-up measurement is probably not needed.

If an initial short-term test result is between 4 pCi/L and 8 pCi/L, a long-term or a short-term follow-up measurement is recommended.

If an initial short-term test result is greater than 8 pCi/L, a short term follow-up measurement is recommended in order to get a fast result.

More information about radon measurements and mitigation can be found in the AARST and EPA publications:

- ANSI/AARST Protocol for Conducting Measurements of Radon and Radon-Decay Products in Schools and Large Buildings.
- · ANSI/AARST Protocol for Conducting Radon and Radon Decay Product Measurements in Multifamily Buildings.
- ANSI/AARST Radon Mitigation Standards for Schools and Large Buildings.
- · ANSI/AARST Radon Mitigation Standards for Multifamily Buildings.
- EPA Radon Measurements in Schools, EPA 402-R-92-014, July 1993.

For more information about the interpretation of your test results or about other radon related issues we suggest contacting your state radon office.

Signature on the report

With the signature on the report, the person responsible for the radon analysis at Radonova Laboratories AB hereby certifies that the measurement procedures follows the guidance in accordance with EPA 402-R-95-012 and that the demands from SWEDAC are fulfilled.

Measurement information displayed in italics on report has been provided by the customer.

Certification no:

107831-AL, 107830-RT, NRSB ARL1904

DISCLAIMER

RADONOVA INC.

Radonova Inc. makes no warranty of any kind, express or implied, as regard to the use, operation or analysis of any Radonova Inc. monitor. Radonova Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Radonova Inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data.

900 Oakmont Lane Suite 207 Westmont IL 60559 331.814.2200, help@radonova.com

RN 16 North Background Location RN2 RN 12 RN 13 ANSTRE RN 15 RN5 RN9 RN 17 South Background Location 155,8500 1992500 1551000 Legend Radon Sampling Locations Radion Sampling Locations at the Mixed Waste Landfill 1-t. Contour Interval Road Gravel Staging Area Toe of ET Cover Mired Waste Land's Sandia National Laboratories, New Mexico Environmental Geographic Information System

Figure 1. Location of Radon Detectors at the MWL

Mixed Waste Landfill Radon Detector Deployment/Collection Form

Name:	Danielle Michel	Signature Lale LMM	Activity (check all that apply): Deployment Collection
Name:	Robert Zlock	Signature: Albert 3	Deployment - Collection
Name:	Mike Mitchell	Signature: Al Hold	Deployment Collection
ARCO	C#: 621657	Detector Type: Radtrak2	No. of Exposure Days:

Sampling Location	Sample Number	Detector Serial Number	Deployment Date	Deployment Time	Collection Date	Collection Time	Notes* Y/N Date(s) of Notes
RN1	114110	428876-7	1/18/2021	1017	2/19/201	1753	N
RN2	114111	139301-6	To the second se	1020		075+	
RN3	114112	220124-2		0952		0725	
RN4	114113	620707-0		0954		0330	
RN5	114114	208263-4		0955		0735	
RN6	114115	462609-9		0958		07:40	
RN7	114116	599198-9		1000		0242	
RN8	114117	574197-0		1010		F460	
RN9	114118	596090-1		1013		GZFD	
RN10	114119	398620-5		1015		0752	
RN11	114120	760717-9		1024		081300 3053	-
RN12	114121	627619-0		1026		0000	
RN13	114122	736805-3		1029		2090	
RN14	114123	913312-5		1030		2090	
RN15	114124	952730-0		1027		0608	
RN16	114125	476339-7		035		OSFO	
RN17	114126	516589-9	V	1004	V	0745	
RNTB**	114127	953208-6	An	AL	V	0530	V

^{*}NOTES are documented on LTS RDN-2012-002 MWL Radon Detector Collection Inspection Form.

Send copy of this form with AR/COC.

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

^{**}Document deployment date/time even though trip blank is not actually deployed and stays in sealed bag during sample detector deployment. Collection date/time is when sealed bag is opened and trip blank detector is placed in zip top sample bag for analysis.

SMO-2019-CVR (4-2019) SMO-05-03

Contract Verification Form (CVR)

Project Leader ZIOCK

Project Name MWL RADON

Project/Task No. 195122_10.11.08

ARCOC No. 621657

Analytical Lab RADONOVA

SDG No. 5757415-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	N/A		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item	Complete?		lf no, explain
No.	Item		No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	N/A		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 621657

Line	Item	Com	olete?	If no, explain
No.	itom		No	ii iio, expiaiii
2.6	QC batch numbers provided	N/A		
2.7	Dilution factors provided and all dilution levels reported	N/A		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	N/A		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	N/A		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		

ARCOC No. 621657 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	N/A		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	N/A		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 621657 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 621657 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Lin No		Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 08-04-2021 15:36:00

Closed by: Wendy Palencia Date: 08-04-2021 15:36:00

ARCOC No. 621657 5 of 5

Mixed Waste Landfill Radon Monitoring

July-December 2021 Monitoring Period

Review of MWL Radon-in-Air Data 2nd Semiannual CY 2021 (July – December 2021) February 21, 2022

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

Albuquerque, New Mexico 87185-0651

date: February 21, 2022

to: Mike Mitchell (8888), Robert Ziock (8888), and Bonnie Little (8888)

from: David Farrar (0618) drfarra@sandia.gov

subject: Review of MWL Radon Air Data - July through December 2021 Semiannual Monitoring Period

The purpose of this memo is to document my review of the radon air monitoring results for the July through December 2021 semiannual monitoring period. My review includes evaluation of the results and supporting documentation relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix C, Air Sampling and Analysis Plan for the Mixed Waste Landfill). The DQO for this monitoring is to produce representative, accurate, defensible, and comparable analytical results to support the monitoring objective.

David Frakal

Radon air monitoring measurements during this semiannual period were obtained using Radtrak2® detectors. The detectors were deployed at each monitoring location (Figure 1) on July 19, 2021 and were collected on January 17, 2022. The protective casing and mounting hardware were inspected during the collection effort and repairs were made if needed. The detectors remained in the field for approximately six months and were submitted to the analytical laboratory, RADONOVA, for analysis on Analysis Request/Chain of Custody (AR/COC) #622183 along with a trip blank detector (RNTB). RNTB was received at the same time as the other deployed detectors and was stored in a hermetically sealed protective bag at the Environmental Resource Field Office.

The results for this semiannual period indicate very low activities of radon in the air at the MWL, consistent with historical results and background radon activity. Results ranged from less than the minimum detectable activity (i.e., non-detect, 6 out of 17 field location results) to 0.8 picocuries per liter (pCi/L) (RN12); note that the minimum detectable activity for this data set ranged from <0.2 to <0.3 pCi/L. There were eleven other detections ranging from 0.2 to 0.4 pCi/L. The detectors from the two background locations, RN16 and RN17, had results of 0.2 pCi/L and <0.3 pCi/L (i.e., non-detect), respectively. The trigger level of 4 pCi/L, which applies only to the results from the perimeter locations RN1 through RN10, was not exceeded by any of the individual sample results. A result of 0.3 pCi/L was reported for the trip blank (RNTB) indicating the other detectors may have been potentially exposed to very low activities of radon during shipping and/or at the laboratory.

DRF, 0618

Attachments:

Analysis Request/Chain of Custody #622183 RADONOVA Radon Monitoring Report 5928149:1 (analytical laboratory results for Radtrak2® detectors) Figure 1. Location of the Alpha Track Detectors at the MWL SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

AOP 95-16

Internal Lab														Pag	e 1 of 2	
Batch No.	NA			SI	MO Use						10	1	AR/C		622183	
	Manager Number:	enager: Robert Zlock Carrier/Way umber: 195122.10.11.08 Lab Contact		ed:	1/19	3 8 8 C	**************************************	ѕмо с	ontact Phone Wendy Pa	e: alencia/50	5-844-3132	_	Waste Characterization RMA Released by COC No.		✓ 4° Ceisius	
			Contract No.:	177	76616	" 第二份 10		1,000	Stephanie I		05-284-255	3	Bill to: Sandia National Lab	_		
Tech Area: Bailding:	_	Room:							14-17				P.O. Box 5800, MS-0154			
D'anumy.		Room:	Operational Site	_	Date		I .	_		10			Albuquerque, NM 87185-01			
Sample No.	Fraction	Sample Location D	etall (ft)		Colle		Sample Matrix	Туре	Volume	Preserv-	Collection Method	Sample Type	Parameter & Me Requested		Sample ID	
115275	001	RN1/Radtrak2 444108-5	N/A	1/	17 122	1412	AF	N	ONA	NONE	С	SA	RADON		智能。苏	
115276	001	RN2/Radtrak2 572104-8	N/A	1/	17 /22	1402	AF	N	DNA	NONE	С	SA	RADON		161233	
115277	001	RN3/Radtrak2 595772-5	N/A	1/	17/22	1346	AF	N	ONA	NONE	C	SA	RADON		L i	
115278	001	RN4/Radtrak2 625063-3	N/A	1/	17 /22	1348	AF	N	ONA	NONE	С	SA	RADON		Garage Co.	
115279	001	RN5/Radtrak2 261800-7	N/A	1/	17 /22	1350	AF	N	ONA	NONE	C	SA	RADON		SITTLE OF	
115280	001	RN6/Radtrak2 459145-9	N/A	1/	17-122	1352	AF	N	0 NA	NONE	С	SA	RADON		2312000	
115281	001	RN7/Radtrak2 401146-6	N/A	1/	17/22	1354	AF	N	0 NA	NONE	C	SA			NAME OF TAXABLE PARTY.	
115282	001	RN8/Radtrak2 715811-6	N/A		17/22	1359	AF	N	ONA	NONE	С	SA	RADON		E CONTROL	
115283	001	RN9/Radtrak2 972386-7	N/A	1/	17/22	1400	AF	N	0 NA	NONE	С	SA	RADON		8.190 - 8	
115284	001	RN10/Radtrak2 530792-	1 N/A	1/	17/22	1405	AF	N	0 NA	NONE	С	SA	RADON			
Last Chain	:	☐ Yes	Samp	le Trac	cking	SCHOOL	SMC	Use	Special Ins					100	Conditions on	
Validation	Reg'd:	☑ Yes	Date I	Entered	d:		AND DE		EDD		☑ Yes			in the	Receipt	
Backgroun		☐ Yes	Enter	d by:	10 340	TOWN TO	Ser June	ne de la	Turnaroun	d Time	7-Day	П	15-Day* 2 30-D	av		
Confirmato	ory:	☐ Yes	QC in	ts.:	1,500	N. T. WOOD		Late (Marie	Negotiated	TAT						
Sample		ame Signatu			Compan	y/Organizat	ion/Phon	e/Cell	Sample Dis	sposal	Return	to Clien	t Disposal by	Lab		
Team	Danielle		dmm	_	200	505-845-77			The state of the s	nples By:				100		
Members	Robert Z	lock Three S	MARK 12		ALCOHOLD DE CONTRA	505-845-04	200 C 100 C 100 C 100 C	38-3668		Detector	s were depl	oyed 7/19	9/2021 to 1/17/2022; 182	182		
R31-11-22	Michael I		m3			505-845-80			days. See	attached f	ield form for	addition	al Information.			
10	Caillin La	Chance Canelle	d	SNL	L/00641/	505-845-99	19									
Relinquished	hu -	Wheel Whork	200000	10 1-1	10-20	10.Th- /	0-	0-11		110	- 1			34,23	Lab Use	
Received by	China		Org. Of CAS Da		19/22	Time @		Relinqu			المح	Org.		21/2T		
Relinguished			Org. 1016/8 Da			2 Time Ø				an Wi	unerof	Org.		5/22 T		
Received by			Org. Da					Receive		_		Org.			Time	
		ith SMO required for 7 and				1 11110	4-	1 COUNTY	о оу			Org.	. Date		Time	

Review of MWL Radon-in-Air Data 2nd Semiannual CY 2021 (July – December 2021) February 21, 2022

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

AOP 95-16

roject Nam	ne:	MWL RADON MONITORIN Pro	iect/Task Mana	ger: Robert Zio	ol.						AR/COC	622183
ech Area:				ger. Nobel (210)	UK .		Project/Ta	sk No.:	195122	.10.11.08		
Building:		Room:										
Sample No.	Fraction	Sample Location Detail	Depth (ft)	Date/Time Collected	Sample Matrix	Type	ntainer	-	Collection		Parameter & Method	Lab use
115285	001	RN11/Radtrak2 460118-3	N/A	1/17/22 14/6	AF		Volume	ative	Method	Type	Requested	Sample II
115286	001	RN12/Radtrak2 943063-8	N/A	1/17/22 1419		N	0 NA	NONE	С	SA	RADON	
115287	001	RN13/Radtrak2 576548-2	N/A	1/17/22 424	AF	N	0 NA	NONE	С	SA	RADON	
115288		RN14/Radtrak2 499500-7	N/A	1/17/22 1472	AF	N	0 NA	NONE	С	SA	RADON	
115289		RN15/Radtrak2 281888-8	N/A	1/17/22 1427	AF	N	0 NA	NONE	С	SA	RADON	
115290		RN16/Radtrak2 933110-9	N/A	1 .	AF	N	0 NA	NONE	С	SA	RADON	
115291		RN17/Radtrak2 802820-1			AF	N	0 NA	NONE	С	SA	RADON	
115292	001	RNTB/Radtrak2 821298-7	N/A	1/17/22 400	AF	N	0 NA	NONE	С	SA	RADON	
	001	1111 B/Nadilak2 62 1296-7	N/A	1/17/22 1452	AF	N	0 NA	NONE	С	SA	RADON	
			_									
			_									
			_									
			_									
	-											
	-											
ecipient Init	1	1										

Mixed Waste Landfill NTESS REPORT NUMBER 5928149:1 REPORT PAGE 1 of 3

01/27/2022
PRINT DATE
01/27/2022
OWN ID
AR/COC 622183
BY
NTESS, LLC
REPORT RECEIVER(S)
Wjpalen@sandia.gov

REPORT DATE

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak²⁰) following the quality guidance in EPA 402-R-95-012.

The detector(s) arrived to Radonova Laboratories AB 01/21/2022. They were measured 01/26/2022.

Test data have been given by Robert Ziock

Property data and address

MEASURE SITE ADDRESS AR/COC 622183

BUILDING ID

Test results

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	FLOOR	RADON RESULT
444108-5 [Radtrak ²⁰]	07/19/2021 - 01/17/2022	RNI		< 0.3 pCi/L
572104-8 [Radtrak ²]	07/19/2021 - 01/17/2022	RN2		0.4 ± 0.2 pCi/L
595772-5 [Radtrak ²]	07/19/2021 - 01/17/2022	RN3		0.3 ± 0.2 pCi/L
625063-3 [Radtrak²®]	07/19/2021 - 01/17/2022	RN4		< 0.3 pCi/L
261800-7 [Radtrak ^{2®}]	07/19/2021 - 01/17/2022	RN5		0.4 ± 0.2 pCi/L
459145-9 [Radtrak ² ®]	07/19/2021 - 01/17/2022	RN6		0.3 ± 0.2 pCi/L
401146-6 [Radtrak ²]	07/19/2021 - 01/17/2022	RN7		0.4 ± 0.2 pCi/L
715811-6 [Radtrak ^{2®}]	07/19/2021 - 01/17/2022	RN8		0.3 ± 0.2 pCi/L
972386-7 [Radtrak ²]	07/19/2021 - 01/17/2022	RN9		< 0.2 pCi/L
530792-1 [Radtrak ²⁰]	07/19/2021 - 01/17/2022	RN10		0.2 ± 0.2 pCi/L

Comment to the results

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories AB Laboratory Measurement Specialist

This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

DISCLAIMER

Radonova Inc. makes no warranty of any kind, express or implied, as regard to the use, operation or analysis of any Radonova Inc. monitor. Radonova Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Radonova Inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data.

RADONOVA INC.
900 Oakmont Lane Suite 207
Westmont IL 60559

331.814.2200, help@radonova.com

Review of MWL Radon-in-Air Data 2nd Semiannual CY 2021 (July – December 2021) February 21, 2022

Mixed Waste Landfill NTESS REPORT NUMBER 5928149:1 REPORT PAGE 2 of 3 REPORT DATE
01/27/2022
PRINT DATE
01/27/2022
OWN ID
AR/COC 622183
BY
NTESS, LLC
REPORT RECEIVER(S)
Wjpalen@sandia.gov

RADON MONITORING REPORT

Description of the measurement

The measurement was performed with a closed alpha-track detector (Radtrak 20) following the quality guidance in EPA 402-R-95-012.

The detector(s) arrived to Radonova Laboratories AB 01/21/2022. They were measured 01/26/2022.

Test data have been given by Robert Ziock

Property data and address

MEASURE SITE ADDRESS AR/COC 622183

BUILDING ID

DETECTOR	MEASUREMENT PERIOD	DESCRIPTION / LOCATION	FLOOR	RADON RESULT
460118-3 [Radtrak ^{2®}]	07/19/2021 - 01/17/2022	RN11		0.3 ± 0.2 pCi/L
943063-8 [Radtrak ²]	07/19/2021 - 01/17/2022	RN12		0.8 ± 0.2 pCi/L
576548-2 [Radtrak ² ®]	07/19/2021 - 01/17/2022	RN13		< 0.2 pCi/L
499500-7 [Radtrak²®]	07/19/2021 - 01/17/2022	RN14		< 0.2 pCi/L
281888-8 [Radtrak ^{2®}]	07/19/2021 - 01/17/2022	RN15		0.3 ± 0.2 pCi/L
933110-9 [Radtrak²®]	07/19/2021 - 01/17/2022	RN16		0.2 ± 0.2 pCi/L
802820-1 [Radtrak ² ®]	07/19/2021 - 01/17/2022	RN17		< 0.3 pCi/L
821298-7 [Radtrak ²⁰]	07/19/2021 - 01/17/2022	RNTB		0.3 ± 0.2 pCi/L

Comment to the results

Tryggve Rönnqvist (Electronically signed)

Signature Radonova Laboratories AB Laboratory Measurement Specialist

This report may only be reproduced in full, unless issuing laboratory has given prior written approval.

ISCLAIMER

Radonova Inc. makes no warranty of any kind, express or implied, as regard to the use, operation or analysis of any Radonova Inc. monitor. Radonova Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Radonova Inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data.

PEDITE
Perred, no. 1489
Festing
FSV(IIISC 20124

RADONOVA INC. 900 Oakmont Lane Suite 207 Westmont IL 60559 331.814.2200, help@radonova.com

REPORT NUMBER REPORT DATE 5928149:1 01/27/2022 REPORT PAGE PRINT DATE 3 of 3 01/27/2022 OWN ID

AR/COC 622183

Measurement method: Closed alpha-track detector

The radon measurement was performed with a closed alpha-track detector following the quality assurance guidance given in EPA 402-R-95-012. The detector container is manufactured from electrically conducting plastic. Through a small slit (filter), radon gas enters the detector. The track-detecting material (film) inside the detector is hit by alpha particles generated by the radon entering the container and the decay products formed from it. On the film, the alpha particles make small tracks which are enlarged through chemical etching and later counted in a microscope in order to determine the

Radonova Laboratories AB (P.O. Box 6522, SE-751 38 Uppsala, Sweden) is accredited (no. 1489) by SWEDAC to conduct radon-gas measurements using the closed alpha-track detector method. The analysis equipment is checked daily and the detectors are calibrated at regular intervals, NRPP Licenses: 107831 AL. 107830 RT

Measured radon concentrations

For each detector, the measured value of the radon concentration is provided. For each value an uncertainty associated with the measurement to a 95% confidence level is also provided. For example a measurement result of 4.0 ± 0.5 pCi/L means that the radon concentration is most likely contained in the range 3.5 - 4.5 pCi/L. If the start or end date of the measurement has not been provided, the radon concentration cannot be calculated. In such cases, the total exposure in pCi*days/L will be reported. The reported measured values are related to the detectors as received by Radonova Laboratories AB. Detector deployment is not performed by Radonova Laboratories AB. Measurement information such as monitoring period (dates) and placement location is provided to Radonova Laboratories AB by the end user.

Codes on non-reportable detectors

DNR Not Reported - Detector Not Returned VTW Not Reported - Visibly Tampered With Not Reported - Film Broken or Damaged FRD LIL Not Reported - Lost in Lab Not Reported - Detector Too Old

Radon measurements in Multifamily Buildings, Schools and Large Buildings

The United States Environmental Protection Agency (EPA) recommends remediation if the results of one long-term test or the average of two short-term tests conducted in an occupied room are 4.0 pCi/L or higher. The average yearly residential indoor radon level in the US is estimated to be around 1.3 pCi/L. Long-term tests are conducted for more than 90 days. Short-term tests are conducted between 2 and 90 days and should be performed under closed building conditions.

If an initial short-term test result is less than 4 pCi/L, a follow-up measurement is probably not needed.

If an initial short-term test result is between 4 pCi/L and 8 pCi/L, a long-term or a short-term follow-up measurement is recommended.

If an initial short-term test result is greater than 8 pCi/L, a short term follow-up measurement is recommended in order to get a fast result.

More information about radon measurements and mitigation can be found in the AARST and EPA publications:

- ANSI/AARST Protocol for Conducting Measurements of Radon and Radon-Decay Products in Schools and Large Buildings.
- ANSI/AARST Protocol for Conducting Radon and Radon Decay Product Measurements in Multifamily Buildings.
- · ANSI/AARST Radon Mitigation Standards for Schools and Large Buildings.
- · ANSI/AARST Radon Mitigation Standards for Multifamily Buildings.
- EPA Radon Measurements in Schools, EPA 402-R-92-014, July 1993.

For more information about the interpretation of your test results or about other radon related issues we suggest contacting your state radon office.

Signature on the report

With the signature on the report, the person responsible for the radon analysis at Radonova Laboratories AB hereby certifies that the measurement procedures follows the guidance in accordance with EPA 402-R-95-012 and that the demands from SWEDAC are fulfilled.

Measurement information displayed in italics on report has been provided by the customer.

Certification no:

107831-AL, 107830-RT, NRSB ARL1904, NY ELAP ID: 12042,

DTO

Radonova Inc. makes no warranty of any kind, express or implied, as regard to the use, operation or analysis of any Radonova Inc. monitor, Radonova Inc. specifically disclaims implied warranties of merchantability and fitness for a particular purpose. Radonova Inc. is not responsible for any damage, including consequential damages, to persons or property resulting from the use of the monitor or the resulting data

RADONOVA INC. 900 Oakmont Lane Suite 207 Westmont IL 60559 331.814.2200, help@radonova.com

RN 16 North Background Location RN2 RN 12 RN 13 ANSTRE RN 15 RN5 RNS RN 17 South Background Location 1992000 1992500 1551000 Legend Radon Sampling Locations Radion Sampling Locations at the Mixed Waste Landfill 1-8. Contour Interval Road Toe of ET Cover Gravel Staging Area Miled Waste Land's Sandia National Laboratories, New Mexico Environmental Geographic Information System

Figure 1. Location of Radon Detectors at the MWL

Mixed Waste Landfill Radon Detector Deployment/Collection Form

Daniella Michal	Signature:	Activity (check all that apply Deployment Collection):
Name: Danielle Michel	Signature: 1/1	Propioyment Profiection	1
Name; Robert Zlock	Signature: The The	Deployment Collection	1
Name: Mike Mitchell	Signature: Mh M	Deployment Collection	1
ARCOC #: 622183	Detector Type: Radtrak2	No. of Exposure Days:	

Sampling Location	Sample Number	Detector Serial Number	Deployment Date	Deployment Time	Collection Date	Collection Time	Notes* Y/N Date(s) of Notes
RNI	115275	444108-5	7/19/201	ผรร	1/17/22	1412	. N -
RN2	115276	572104-8		0754	1/17/22	1408	N
RN3	115277	595772-5		0725	1/17/22	1346	N
RN4	115278	625063-3		0730	1/17/22	1348	N
RN5	115279	261800-7	1	0735	1/17/22	1350	N
RN6	115280	459145-9		0740	1/17/22	1352	N
RN7	115281	401146-6		0742	1/17/22	1354	N
RN8	115282	715811-6		6470	1/17/22	1359	N
RN9	115283	972386-7		0750	1/17/22	1406	N
RN10	115284	530792-1		0752	1/17/22	1405	N.
RN11	115285	460118-3		0813	1/17/22	1416	N
RN12	115286	943063-8		0800	1/17/22	1419	N
RN13	115287	576548-2		6080	1/17/22	1424	N
RN14	115288	499500-7		0205	1/17/22	1422	N
RN15	115289	281888-8		3080	1/17/22	V427	N
RN16	115290	933110-9		0720	1/17/22	1432	N
RN17	115291	802820-1 -	1	6745	1/17/22	1400	N
RNTB**	115292	821298-7	NA		1/17/22	452	N

^{*}NOTES are documented on LTS RDN-2012-002 MWL Radon Detector Collection Inspection Form.

Send copy of this form with AR/COC.

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

^{**}Document deployment date/time even though trip blank is not actually deployed and stays in sealed bag during sample detector deployment. Collection date/time is when sealed bag is opened and trip blank detector is placed in zip top sample bag for analysis.

Contract Verification Form (CVR)

Project Leader ZIOCK

Project Name MWL RADON MONITORING

Project/Task No. 195122_10.11.08

ARCOC No. 622183

Analytical Lab RADONOVA

SDG No. 5928149-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	N/A		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Χ		

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Χ		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	N/A		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622183

Line	ltem		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	N/A		
2.7	Dilution factors provided and all dilution levels reported	N/A		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	N/A		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	N/A		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	N/A		

ARCOC No. 622183 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	N/A		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	N/A		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 622183 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 622183 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	Item	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ○ No

Reviewed by: Wendy Palencia Date: 02-02-2022 07:47:00

Closed by: Wendy Palencia Date: 02-02-2022 07:47:00

ARCOC No. 622183 5 of 5

January-December 2021 Monitoring Period

Date: 1/18/2021 Name: Davielle Michel Signature: Dall										
Name:	Signature:									
Are detectors being collected? Yes D	Io									
Detector Type: Rad tral 2	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually						

Radon Monitoring Location Inspection Parameters (Yes or No)																	
	RN1	RN2		RN4		RN6			RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	Y	4	Y	Y	Y	Y	Y	7	7	Y	4.	Y	Y	Y	Y
1b. Action Required.	N	N	N	N	N	N	N	N	7	N	N	N	N	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	Y	Y	Y	Y	Y	7	Y	7	Y	Y	7	1	4	Y	Y	7	y
2b. Action Required.	N	N	N	N	N	N	7	N	7	N	N	N	N	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	4	Y	Y	Y	7	Y	4	Y	4	4	Y	4	Y	4	Y	Y	Y
3b. Action Required.	N	2	N	N	2	N	N	N	N	N	N	N	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	4	Y	7.	7	Y	Y.	Y	Y	Y	4	Y	4,	4	Y.	Y	Y	Υ.
4b. Action Required.	N	N	N	N	N	N	7	N	N	N	2	N	2	N	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	Y	4	4	4	4	7,	Y	Y	7	Y	4	Y	Y	+	4	Y,	Y
5b. Action Required.	N	N	N	N	N	N	1	N	N	N	N	7	2	1	N	N	N

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	Noné
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	cobwebs removed from enclosure
RN13	None
RN14	
RN15	
RN16	
RN17	

Page **2** of **2**

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

Name: Robert Zisch	Signature:	Gents	
Are detectors being collected? Yes	No		
Detector Type: Radtral 2	Radon Monitoring Frequency:	□ Quarterly	□ Annually

			Ins	Rador			Locati (Yes o										
	RN1	RN2	RN3						RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	yes	405	40	Ves	yes	ves	yes	yes	405	405	ves	yes	4PS	yes	1005	IPS	ves
1b. Action Required.	No	No	No	No	16	No	No	No	No	116	No	No	1/2	16	11/2	116	11
 Radon detector condition (in enclosure or after collection). 	yes	yes	Tes	yes	yes	405	405	yes	yes	yes	yes	yes	405	yes	YPS	ves	yes
2b. Action Required.	No	No	1/5	No	No	16	1/6	No	No	No	No	No	116	No	1/6	11%	11/2
3a. Radon detector enclosure securely fastened to post (fence or free standing).	yes	yes	425	405	405	485	405	405	YPC	yes	405	ves	405	Not	405	wes	406
3b. Action Required.	No	No.	No	No	116	Wo	1/2	116	110	W	Wo	1/1/0	No	11%	1/2	1/0	1/1/2
Radon detector enclosure and internal attachment components.	425	405	yes	yes	465	405	425	4es	405	yes	yes	VPS	yes	yes	yes	405	ves
4b. Action Required.	No	Wo	No.	No	No	INO	No	11/0	No	1/6	11/2	11/2	No	16	1/2	Wo	1/0
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	465	yes	405	yes	yes	yes	405	yes	425	yes	yes	yes	yes	yes	yes	YPS	yes
5b. Action Required.	No	100	No	16	No	No	1/2	16	No	1/16	No	1/13	No	1/10	No	VNO	1/1/2

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	Action Required (Note any action required and date resolved, otherwise recommendation)	(Note any action required and date resolved, otherwise note "None")									
RN1	None										
RN2											
RN3											
RN4											
RN5											
RN6											
RN7											
RN8											
RN9											
RN10											
RN11											
RN12											
RN13											
RN14											
RN15											
RN16											
RN17											

Date: 3 / 202	
Name: DIELE MICHE	Signature:
Name: Nobest took	Signature: What your

Are detectors being collected? Yes	No .			
Detector Type: Radtrala	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually

Radon Monitoring Location Inspection Parameters (Yes or No)																	
	RN1	RN2	RN3		RN5			-	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	405	ves	405	425	465	405	yes	yes	Ses.	485	vel	Ves	405	405	Ciex	YES	ves
1b. Action Required.	16	Wo	No	16	100	16	No.	No	16	126	Wo	116	No	1/6	M	10	16
2a. Radon detector condition (in enclosure or after collection).	yes	405	yes	405	4€5	705	yes	res	485	405	yes	yes	yes	yes	ye;	YES	yes
2b. Action Required.	No.	No	No	16	16	No	16	16	No	1/16	No	116	No	16	116	010	No
3a. Radon detector enclosure securely fastened to post (fence or free standing).	yes	Ves	yes	405	res	405	40	yes	WES	yes	485	405	704	495	405	YES	yes
3b. Action Required.	No	1/1/0	No	No	W6	No	16	No	116	116	No	116	116	No	1/10	NO	16
4a. Radon detector enclosure and internal attachment components.	yes	485	yes	yes	yes	yes	705	ves	yes	yes	yes	yes	725	YES	yes	YES	yes
4b. Action Required.	116	No	No	16	No	16	No.	16	16	1/16	116	No	16	116	1/6	118	16
5a. Radon dètector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	yes	yes	ye5	425	yes	403	yes	485	405	yes	405	yes	yes	yes	125	YES	465
5b. Action Required.	10	116	No	16	1/16	16	10	1/10	No	1/16	No	16	NB	116	No	NO	16

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")	
RN1	Nove	
RN2		
RN3		
RN4		
RN5		
RN6		
RN7		
RN8		
RN9		
RN10		
RN11		
RN12		
RN13		
RN14		
RN15		
RN16		
RN17	V	

Date: 1, 2021	181	7		
Name: Robert tock	Signature: Kellu	year		
Name:	Signature:			
Are detectors being collected? Yes No	0			
Detector Type: Redtrak 2	Radon Monitoring Frequency:	□ Quarterly	■ Semiannually	□ Annually

						itoring											
Inspection Parameters (Yes or No)																	
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	yes	405	yes	yes	ves	403	yes	yes	yes	Les	us.	405	405	yes	4es	1005	405
1b. Action Required.	10	16	No.	10	116	16	16	No	16	No	16	1/1	16	No	1/6	116	1/2
2a. Radon detector condition (in enclosure or after collection).	yes	yes	yes	yes.	405	yes	yes	yes	yes	yes	yes	yes	405	Urs	yes	yes	Mes
2b. Action Required.	No	No	No	No	16	No	No	NO	No	No	16	16	116	LAL	Wol	1/0	11/2
3a. Radon detector enclosure securely fastened to post (fence or free standing).	yes	yes	yes	yes	yes	yes	ue5	yes	401	Yes	yes	ves	ues	405	1 206	yes	405
3b. Action Required.	No	No	116	1/20	Wo	1/16	No	16	No	No	1/2	No	1/2	1/1/2	110	110	11/2
4a. Radon detector enclosure and internal attachment components.	yes	425	ues	yes	wes	yes	425	yes	yes	yes	UPS	ves	100	YPS	UPS	405	405
4b. Action Required.	No	16	1/10	No	1No	No	No	No	No	No	lib	No	No	Ma	16	No	1V
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	405	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	yes	165	ves	425	425	425
5b. Action Required.	No	16	No	No	No	No	No	No	No	No	No	16	16	16	16	No	No

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	3
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Name: Danifle Wichel Name:		ignatur ignatur)a_	2	H	Ju	•									
Are detectors being collected? Yes Detector Type:		idon M	(anita	uin a E		marii	1- (Quarte	mly,	600	miann	nally		Annual	lv/		
[(adtrail 2)	Ka	idon iv	ionno	ing I	reque	noy.	100	Zum te	aly .	200					-7		
			Ins	Rador	n Moni			r No)									
	RN1	RN2		RN4		_		RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	4	Y	Y	4	X	Y	4	Y	Y	Y	4	4	Y	Y	Y	Y
1b. Action Required.	7	N	2	7	N	N	N	N	N	N	N	N	N.	N	N	N	7
2a. Radon detector condition (in enclosure or after collection).	Y	Y	Y	7	Y	Y	Y	4	A	Y	Y	4	4	Y	Y	Y	Y
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

3a. Radon detector enclosure securely fastened to

4a. Radon detector enclosure and internal

5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).

post (fence or free standing).

3b. Action Required.

attachment components.

4b. Action Required.

5b. Action Required.

Page 1 of 2

Location	Action Required
DNII	(Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Name: Davielle Michel Name:	Signature: Signature:			
Are detectors being collected? Yes	NO			
Detector Type: Radtok 2	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually

			Ins	Rado	n Moni n Para												
	RN1	RN2		RN4					RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	4	Y	Y	Y	4	Y	1	Y	4	Y	Y	*	7	4	Y
1b. Action Required.	N	N	N	N	2	N	1	N	N	N	2	1	N.	N	N	7	N
2a. Radon detector condition (in enclosure or after collection).	y	7	Y	Y	4	4	Y	1	4	7	Y	Y	Y	Y	4	4	7
2b. Action Required.	N	N	2	1	N	N	N	N	N	N	N	N	N	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	4	7	Y	Y	Y.	4	4	Y	Y	Y	Y	4	A	Y	4	4	4
3b. Action Required.	N	N	17	N	N	N	N	N	N	N	N	N	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	4	7	4.	4	4	4	Y	Y	Y	4	4	Y	Y.	4	4	+	4
4b. Action Required.	N	N	N	N	N	N	N	N		N	N	N	N	N	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	4	4	4,	1	+	4	4	4	14	Y,	4	4	Y	1	K	7	4
5b. Action Required.	N	N	N	N	N	N	N	12	N	N	N	N	N	12	N	12	N

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")	
RN1	Jane 3notal	
RN2		
RN3		
RN4		
RN5		
RN6		
RN7		
RN8		
RN9		
RN10		
RN11		
RN12		
RN13		
RN14		
RN15		
RN16		
RN17		

Page 2 of 2

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

Date: 7/19/2021 Name: DO WELE NICHE		ignatuı ignatuı) a				U									
Are detectors being collected? ★Yes □	No									1							
Detector Type: Rad +-a 2		don M	lonito	ring F	reque	ncy:	_ (Quarte	rly	Se	miann	ually		Annual	ly		
				pection	n Moni n Para	meters	(Yes o	r No)							naute	DALL	DALLE
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	Y	Y	Y	y	X	A	Y	y	4	1	7	4	Y	1	4
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	Y	Y	4	4	4	Y	7	Y	Y	Y	4	Y	4	Y	Y	Y	1
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	12	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y	Y	Y	Y.	7	Y	Y	Y	7	Y	7	Y	Y	7	Y	1	4
3b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	Y	1	7	4	4	Y	7	7	Y	Y	Y	7	7	4	7	7	1
4b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	7	Y	Y	Y	4	Y	4	Y	7	4	Y	7	4	4	Y	1	1
5b. Action Required.	N	1	N	1	N	N	N	N	N	N	N	N	N	N	N	N	M

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	,
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

du-	Radon Detector Inspec	tion Form		
Name: Danielle Michal	Signature:	d de		
Name:	Signature:			
Are detectors being collected? Yes	No			
Detector Type: Radt-al 2	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually
	Radon Monitoring Inspection Parameters	(Yes or No)	PNIO PNII PNI2	RN13 RN14 RN15 RN16 RN

- 0			Ins	nection	Para	toring	(Yes o	r No)									
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	X	4	+	Y	+	Y	Y	Y	Y	Y	7	Y	Y	Y	Y	Y	4
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	7
 Radon detector condition (in enclosure or after collection). 	Y	Y	Y	A	A	Y	Y	7	Y.	Y	Y	4	Y	Y	7	4	14
2b. Action Required.	N	N	N	N	N	N	N	12	N	N	N	N	N	1	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	Y,	Y	¥	Y	7	Y	Y	Y.	Y	1	1	1	7	7	Y	4	14
3b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	7
Radon detector enclosure and internal attachment components.	Y	Y.	Y.	1×	7	Y	Y	Y	Y	4	7	Y	Y	A	1	4	Y
4b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	Y	YI	14,	Y.	7	Y	Y,	Y	Y	Y	7	Y	14	Y	14	4	X
5b. Action Required.	N	N	17	N	N	N	12	12	N	IN	N	N	N	N	11	1	12

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")	
RN1	NONE.	
RN2		
RN3		
RN4		
RN5		
RN6		
RN7		
RN8		
RN9		
RN10		
RN11		
RN12		
RN13		
RN14		
RN15		
RN16.		
RN17		

Date: 9/3/2021 at 11:57 to 12:2. Name: Robert Ziock	Signature: Miled	2 / /		
Name:	Signature:			
Are detectors being collected? □ Yes 🗶 N	Ĭo.			
D. t. d. T.		4		
Detector Type: Radtrak 2	Radon Monitoring Frequency:	□ Quarterly	★ Semiannually	□ Annually

				Rado	n Mon	itoring	Locati	ion									
Inspection Parameters (Yes or No) RN1 RN2 RN3 RN4 RN5 RN6 RN7 RN8 RN9 RN10 RN11 RN12 RN13 RN14 RN15 RN16 RN17																	
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	485	yes	Ye5	yes	405	yes	yes	ves	yes	yes	yes	yes	49	yes	yes	YP5	405
1b. Action Required.	No	No	No	100	10	No.	10	Wo.	No.	16	1/2	16	No	16	No	No	16
2a. Radon detector condition (in enclosure or after collection).	425	yes	465	yes	4es	yes	yps	485	405	405	yes	yes	yes	yes	yes	405	yes
2b. Action Required.	No	16	16	116	1/16	No	No.	1/1	No	No	No	No	No	1/0	1/0	1/2	No
3a. Radon detector enclosure securely fastened to post (fence or free standing).	yes,	yes	yes	yes	425	yes	yes	yes	45	YP5	Yes	yes	yes	405	405	405	UPS
3b. Action Required.	110	No	16	116	116	110	No.	No.	116	(No	1/2	1/0	16	111	16	110	11
4a. Radon detector enclosure and internal attachment components.	yes	yes	465	4es	425	yes	yes	465	yes	465	yes	yes	4e5	yes	ves	LIPS.	100
4b. Action Required.	100	No	13	116	1/16	No	16	No	11/0	INO	16	No	No	1/0	No	11/2	11/2
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	yes	yes	405	ye5	yes	yes	465	465	yes	405	yes	405	405	yes	yes	yes	yes
5b. Action Required.	No	No	No	1/6	No	No	No	No	No	No	16	No	16	No	No	No	1/2

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

Location	Action Required (Note any action required and date resolved, otherwise)	e note "None")
RN1	None	
RN2	1.	
RN3		4
RN4	,	
RN5		
RN6		e e e e
RN7		
RN8	i	
RN9		
RN10		
RN11		
RN12		
RN13		
RN14		
RN15		
RN16		
RN17 ,		

Name: Post Ziova Are detectors being collected? Yes	Signature: Rational Signature:	July 18			
Detector Type: Radtrak 2	Radon Monitoring Frequency:	□ Quarterly	Semiannually	□ Annually	
	•				

					ı Moni ı Paraı			r No)									
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	Y	Y	Y	Y	Y	Y	Y	Y	Y	7	×	7	7	Y	4	Y	7
1b. Action Required.	N	N	7	N	N	N	N	N	N	N	7	N	N	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	4	4	4	Y	7	Y	Y	4	X	7	Y	4	4	4	4	4	7
2b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	17	17	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or free standing).	4	Y	7	Y	Y	Y	A	Y	X	+	4	1	Y	Y	4	4	7
3b. Action Required.	N	N	N	N	12	N	N	N	N	N	N	N	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	4	17	7.	A	Y	Y	À	X	4	7.	4	4	X	1	4	4	1
4b. Action Required.	N	M	N	N	N	N	N	N	N	N	N	N	N	N	IN	N	N
5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).	+	Y	Y	4,	14,	Y,	Y	4	4	Y	4	4	X	14	4	17	14
5b. Action Required.	N	N	N	N	N	N	N	1	N	N	N	N	N	12	11	12	10

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

Page 1 of 2

Location	Action Required (Note any action required and date resolved, otherwise note "None")
RN1	None
RN2	
RN3	
RN4	
RN5	
RN6	
RN7	
RN8	
RN9	
RN10	
RN11	
RN12	
RN13	
RN14	
RN15	
RN16	
RN17	

Date: 11 1 2021 Name: Daviele Michel	S	ignatur	re:)a_	H	1	()	U	٩								
Name:	S	ignatu	re:			\wedge					-						
Are detectors being collected? Yes							_			(.							
Detector Type: Radfral 2	Ra	idon M	lonito	ring F	reque	ncy:	0 (Quarte	erly	★ Se	miann	ually		Annual	lly		_
				pection	n Moni n Para	meters	(Yes o	r No)									
	RN1	RN2	RN3	RN4	RN5	RN6	RN7	RN8	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN1
la. Monitoring location identification labeling.	Y	Y	1	Y	Y,	Y	Y	Y	Y	Y	+	Y	Y	1	Y	4	Y
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
 Radon detector condition (in enclosure or after collection). 	Y	Y	Y	4.	7	Y	Y	Y	Y	Y	Y	Y	Y	Y	4	Y.	Y
2h Action Required	1.		N	N		N	N	1	12	1	M	IN	11	N	NI	1	IN

Original to: Mixed Waste Landfill Operating Record

3a. Radon detector enclosure securely fastened to

4a. Radon detector enclosure and internal

5a. Radon detector enclosure interior clean of debris (dirt, insects, spider webs, etc.).

Copy to: SNL/NM Records Center

post (fence or free standing).

3b. Action Required.

attachment components.

4b. Action Required.

5b. Action Required.

Location		Action Required (Note any action required and date resolved, otherwise note "None")	
RN1	NONE		
RN2	7		
RN3			
RN4			
RN5			
RN6			
RN7			
RN8			
RN9			
RN10			
RN11			
RN12			
RN13			
RN14			
RN15			
RN16			
RN17			

Name: Davi FIE Michel Name: Cartlin Lathanu		ignatur ignatur	-		Z	2	M	Ju-									
	No									()							
Detector Type: Rad trak 2	Ra	don M	lonito	ring F	reque	ncy:	0	Quarte	erly	Se	miannı	ually		Annual	ly		
	RN1	RN2	Ins	pection	n Moni n Para RN5	meters		r No)	RN9	RN10	RN11	RN12	RN13	RN14	RN15	RN16	RN17
1a. Monitoring location identification labeling.	*	Y	Y	Y	Y	4	7	4.	4	Y	7	Y	Y	Y	7	Y	Y
1b. Action Required.	N	N	N	N	N	N	N	N	N	N	N	2	N	N	N	N	N
2a. Radon detector condition (in enclosure or after collection).	Y	Y.	Y	Y.	Y.	4	Y	4	Y	7	4	Y	Y,	1	1	Y	4
2b. Action Required.	N	N	12	N	N	N	N	N	N	N	N	N	N	N	N	N	N
3a. Radon detector enclosure securely fastened to post (fence or-free standing).	Y	Y	Y	11.	Y	Y	4	Y	Y,	Y	4	Y	7	X	4	Y	4
3b. Action Required.	7	N	12	IN	M	N	N	N	N	N	N	N	N	N	N	N	N
4a. Radon detector enclosure and internal attachment components.	Y	7	¥.	Y	4	Y	Y	4	y	Y	4	Y,	7,	Y	X	X	Y
4b. Action Required.	N	12	N	1	N	N	N	N	N	N	N	12	N	N	N	N	N
5a. Radon detector enclosure interior clean of	4	4	14	4	4	4	Y	Y	Y	17	Y	14	1	Y	14	X	4

Original to: Mixed Waste Landfill Operating Record Copy to: SNL/NM Records Center

5b. Action Required.

Page 1 of 2

Location			(Note any action	Action Required required and date resolved,	otherwise note "None")		ì
RN1	NOVE						
RN2	1						
RN3							
RN4				The second			
RN5							
RN6		iq	11				;
RN7						1	
RN8	(40)			1			
RN9							
RN10							
RN11							
RN12							
RN13					· .		
RN14							
RN15							
RN16							
RN17		N					

Page 2 of 2

ANNEX B

Mixed Waste Landfill Surface Soil Tritium and Biota Monitoring Forms and Reports

April 2021-March 2022

Data Evaluation Memo (tritium monitoring only)

Data Validation Reports

Contract Verification Forms

Mixed Waste Landfill Surface Soil Tritium Monitoring August 2021 Sampling Event

Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0101

date: September 28, 2021

to: Mike Mitchell (8888), Robert Ziock (8888), and Bonnie Little (8888)

from: David Farrar (0618) drfarra@sandia.gov David Fallol

subject: Review of Tritium-in-Soil Results for LTMMP Monitoring at the Mixed Waste Landfill

The purpose of this memo is to document my review of the surface soil tritium monitoring results for the August 16, 2021 sample event. My review includes evaluation of the results and supporting documentation relative to the data quality objective (DQO) and monitoring objectives specified in the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (Appendix G, *Tritium and Biota Sampling and Analysis Plan for the Mixed Waste Landfill*). All data was reviewed and qualified in accordance with AOP 00-03, "Data Validation Procedure for Chemical and Radiochemical Data." All data are determined as acceptable and reported quality control measures appear adequate.

Summary of Tritium Results (EPA Method 906.0^a) Mixed Waste Landfill Surface Soil Monitoring August 16, 2021

Sample Location	Result (pCi/L)	MDA (pCi/L)	Percent Soil Moisture	Laboratory Qualifier	Validation Qualifier	Trigger Level (pCi/L)
MWL TS-2NW	13.4 ± 76.8	141	5.10	U	BD, FR3	
MWL TS-2SW	7.57 ± 97.8	177	6.34	U	BD, FR3	
MWL TS-2SE	50.6 ± 83.5	144	7.87	U	BD, FR3	20,000
MWL TS-2SE (Duplicate)	89.4 ± 90.1	148	7.81	U	BD, FR3	,
MWL TS-2NE	130 ± 112	182	9.28	U	BD, FR3	

Notes:

^aU.S. Environmental Protection Agency, 1986 (and updates), "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods," SW-846, 3rd edition.

BD = Result is below the MDA.

EPA = U.S. Environmental Protection Agency.

FR3 = Result is < the MDA / MDL or < the 2- σ TPU (reason code).

MDA = Minimum detectable activity.

MDL = Method detection limit.

MWL = Mixed Waste Landfill.

pCi/L = Picocuries per liter.

TPU = Total Propagated Uncertainty.

U = Analyzed for but undetected.

The August 2021 results were all non-detections below the minimum detectable activity, which is consistent with the July 2020 monitoring results (MWL Annual LTMM Report, June 2021), historical MWL surface soil tritium results, and below the trigger level of 20,000 picocuries per liter.

cc: CFRC

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: September 23, 2021

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622376 SDG: 553123 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Five samples were prepared and analyzed with approved procedures using method GL-RAD-A-002 (tritium). Problems were identified with the data package that resulted in the qualification of data.

1. The sample results were either < the associated 2-sigma TPU or < the associated MDA and will be **qualified BD,FR3.**

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/Carriers were not a method requirement.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS met QC acceptance criteria.

Laboratory Replicate

The replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

The LCS met QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

A field duplicate was submitted on ARCOC 622376. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 09/24/2021

Sample Findings Summary

AR/COC: 622376 Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
GL-RAD-A-002			
	115665-001/MWL TS-2NW	Tritium (10028-17-8)	BD, FR3
	115666-001/MWL TS-2SW	Tritium (10028-17-8)	BD, FR3
	115667-001/MWL TS-2SE	Tritium (10028-17-8)	BD, FR3
	115668-001/MWL TS-2NE	Tritium (10028-17-8)	BD, FR3
	115669-001/MWL TS-2SE	Tritium (10028-17-8)	BD, FR3

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

						•					
ARCOC#: 622376		Site/Projec	t: MWL LTMM	P				Validation I	Date: 09/23/2021		
SDG #: 553123		Laboratory	: GEL Laborato	ries, LL	C			Validator: Linda Thal			
Matrix: Soil		# of Sampl	es: 5	CVR	present	:: Yes					
ARCOC(s) present: Yes		Sample Co	ntainer Integrity	: OK							
Analysis Type: ☐Organic ☐Metals ☐Ge	enchem	⊠Rad									
			D 4- J	A1	NT - 4	D4- J					
G11 . G . 1 TD			Requested Analysis	_	es Noi	Reported					
Client Sample ID	nple ID Lab Sample ID			3			Coi	nments			
None											
			Hold Time	/Proco	rvatio	n Outliers					
Client Sample ID	Lab Sample	e ID	Analysis	Pre		Collection Date	Preparation Date	Analysis Date	Analysis<2 X HT	Analysis≥2 X HT	
None											
Comments: Collected 08/16/2021	<u> </u>										
Validated by:	al										

Sandia Radiochemistry Worksheet

ARCOC #(s): 622376	SDG #: 553123	Matrix: Soil						
Laboratory Sample IDs: 553123 – see below								
Method/Batch#s: ASTM D 2216 Modified (Dry Weight)/GL-RAD-A-002 (Tritium)/2164149/2170052 Samples -001 through -005								

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER		
none											
				Tracer/Ca	rrier Rec	overy Outl	iers				

	Tracer/Carrier Recovery Outliers												
Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R					
NA													

Comments: HTs OK. Note: No precision criteria apply to sample results < the MDA including where one result is > the MDA and the other <.

Dry Weight: DUP -001

Tritium: DUP and MS on -004; parent sample/DUP/MS each used 306g of sample

SMO 2012-ARCOC (4-2012)

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

553123

nternal Lab																Page 1 of 1
Batch No. #	NIA				,	SMQ Use	a.					1/1	1		AR/COC	622376
Project Name		MWL LTMN	ЛР	Date Sample	s Shipped		2021		SMO A	uthorization:	7	4	<u>/</u>	I I Mana	<u>-</u>	0223/0
Project/Task				Carrier/Wayl			511	7	•	ontact Phone		150		∐ Waste	Characterization	
Project/Task				Lab Contact:		Zac Worsh	THE PARTY OF THE P		01,700		<i>y</i>	5-844-3132			sed by COC No.	
Service Orde		CF01-21		Lab Destinat		GEL		***************************************	Send R	eport to SMC		J-0-1-1-0 102	····	L Relea	✓ 4° Celsius	
		***************************************	***************************************	Contract No.		1983530			00	Stephanie I		05-284-255	3	Rill to: Sandi	- National Laboratori	ies (Accounts Payable
Tech Area:		***************************************							L			00 20 , 20 2		P.O. Box 580		es (Accounts Payable
Building:		Room:		Operation	al Site:									ł	NM 87185-0154	
				·	Depth	Date	Time	Sample	C	ontainer	Preserv-	Collection	Sample		ameter & Method	Lab
Sample No.	Fraction	Sam	ple Location D	etail	(ft)	Colle	ected	Matrix	Туре	Volume	ative	Method	Type	·	Requested	Sample II
115665	001	MWL TS-2	2NW		NA	8/16/21	332	SOIL	Р	2x1 L	None	G	SA	TRITIUM (EPA		(00)
115666	001	MWL TS-2	?SW		NA	8/16/21	1326	SOIL	Р	2x1 L	None	G	SA	TRITIUM (EPA	906)	502
115667	001	MWL TS-2	?SE		NA	8/16/21	1319	SOIL	Р	2x1 L	None	G	SA	TRITIUM (EPA	906)	003
115668	001	MWL TS-2	NE	THE CONTRACTOR OF THE CONTRACT	NA	8/16/21	1313	SOIL	Р	2x1 L	None	G	SA	TRITIUM (EPA	906)	004
115669	001	MWL TS-2	SE	***************************************	NA	8/16/21	1319	SOIL	Р	2x1 L	None	G	DU	TRITIUM (EPA	906)	005
			·			***************************************	·									

									4.44 (Trib 1) have a respective							
			***************************************				***************************************		······································							
Last Chain:				~**************************************												
Validation F		☐ Yes ✓ Yes		· · · · · · · · · · · · · · · · · · ·	Sample			SMO	Use	Special Ins	tructions	-	ements:			Conditions on
Background	~~~~~~~				Date Ent					EDD	***************************************	✓ Yes	***************************************			Receipt
Confirmato		Yes Yes			Entered I					Turnaround Negotiated		7-Day		15-Day*	<u> </u>	
Sample		ame	8ignatu	re- \	_Init_		y/Organizati	ion/Phone	الم∩ا	Sample Dis		Peturn	to Client	T71	N	
	Robert Zi		The top of	11		SNL/08888/	505-845-04	85/505-23		Return San		∧etum	to Chem	니	Disposal by Lab	
, , , , , , , , ,	Caitlin La		While	スープ		SNL/00641/				Comments:	ipies by.					
WIGHINGIS		1						10,000								
	***************************************							**************************************		mary management of the control of th						
Relinquished I	by Z	for the	Khidel	Org. 888	₿ Date	8/16/2	7/ Time / 2	3421	Relinaui	shed by		737 M. 	Org.			Lab Use Time
Received by	The state	hel I		Org.061			Time/		Receive				Org.		Date	Time
Relinquished t	by 3	K.E.		Org.0061	Date	3/18/2				shed by			Org.	····	Date	Time
Received by		1771	77	Org.	Date	8/19 2			Receive		***************************************		Org.	***************************************	Date	Time
*Prior confirm	nation w	ith SMÓ rea	uired for 7 and	15 day TAT	-						************		<u> </u>		7atc	Tille

Contract Verification Form (CVR)

Project Leader MITCHELL

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 622376

Analytical Lab GEL

SDG No. 553123

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622376 1 of 5

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Χ		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622376 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 622376 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 622376 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. An	alysis Problems/Comments/Resolutions
------------------------	--------------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 09-22-2021 14:31:00

Closed by: Wendy Palencia Date: 09-22-2021 14:31:00

ARCOC No. 622376 5 of 5

Mixed Waste Landfill Biota Monitoring

August 2021 Sampling Event

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: September 28, 2021

To: File

Linda Thal From:

Inorganic Data Review and Validation - SNL Subject:

> Site: MWL LTMMP ARCOC: 622413 SDG: 553683 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with approved procedures using methods EPA 6010D (ICP-AES) and EPA 7471B (Hg-CVAA). Data were reported for all required analytes. Problems were identified with the data package that resulted in the qualification of data.

ICP-AES:

- 1. Co was detected at negative values with absolute values > the MDL but ≤ the PQL in the MB and a CCB bracketing the samples. The associated result for sample 553683001 was a detect <5X the absolute values of the blanks and will be qualified J-,B4,B5.
- 2. Pb was detected at < the POL in the ICB, CCBs and MB. The associated result for sample -001 was a detect > the PQL but < 5X all the blank values and will be **qualified J+,B,B3**.
- 3. Se was detected at \leq the PQL in the MB. The associated result for sample -001 was a detect \leq the PQL and will be **qualified 2.78U,B**; non-detect at the PQL.
- 4. The replicate RPDs were >35 % for Ba and V and the parent sample results were >5X the PQL. The associated sample results were detects and will be qualified J,RP2.
- 5. The absolute difference between the parent sample result and the replicate was > the PQL and either the parent sample results or replicate sample results were <5X the PQL for Cr, Co, Cu, Ni and Zn. The associated sample results were detects and will be qualified J,RP2.

Data are acceptable and reported OC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

ICP-MS Instrument Tune

Instrument tuning was not a method requirement.

Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

Reporting Limit Verification

All LLCCV recoveries met QC acceptance criteria.

Blanks

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Co was detected at negative values with an absolute value > the MDL but \le the PQL in the MB and a CCB bracketing the samples. The associated results for samples -003 and -005 were detects >5X the absolute values of the blank and will not be qualified.

Pb was detected at \leq the PQL in the ICB, CCBs and MB. The associated results for samples -003 and -005 were detects > the PQL and > 5X all the blank values and will not be qualified.

Zn and Ni were detected in the MB at \leq the PQL. The associated sample results were detects > the PQL and > 5X the MB values and will not be qualified.

Se was detected at \leq the PQL in the MB. The associated results for samples -003 and -005 were non-detect and will not be qualified.

ICP -MS Internal Standards

Internal standards were not a method requirement.

Matrix Spike (MS)

The MS met all QC acceptance criteria.

Laboratory Replicate

The replicate met all QC acceptance criteria except as noted above in the Summary section.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

All detection limits were properly reported. The samples were not diluted.

ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Mg, Al and Fe were < those in the ICS A and AB solutions.

ICP Serial Dilution


The serial dilution met all QC acceptance criteria.

Other QC

A field duplicate pair was submitted with ARCOC 622413. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 09/29/2021

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: September 28, 2021

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622413 SDG: 553683 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Three samples were prepared and analyzed with approved procedures using method DOE HASL 300, 4.5.2.3/Ga-01-R (gamma spec solid - long list). Problems were identified with the data package that resulted in the qualification of data.

- 1. The Th-234 and U-238 results for sample 553683002 and the Ra-224 result for sample -004 were rejected by the laboratory due to the peaks not meeting identification criteria and will be **qualified R,Z2.**
- 2. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3**.
- 3. The sample results that were \geq the MDA but < 3X the MDA will be **qualified J.FR7.**

Holding Times and Preservation

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

Quantification

All quantification criteria were met except as noted above in the Summary section.

Calibration

The case narratives stated that the instruments used were properly calibrated.

Blanks

No target analytes were detected in the blank at concentrations > the MDA and 2-sigma TPU.

Tracer/Carrier Recovery

Tracer/Carriers were not a method requirement.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not a method requirement.

Laboratory Replicate

All replicate error ratio acceptance criteria were met.

Laboratory Control Sample (LCS)

The LCS met all QC acceptance criteria.

Detection Limits/Dilutions

The samples were not diluted. All required detection limits were met.

Other QC

A field duplicate pair was submitted on ARCOC 622413. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 09/29/2021

Sample Findings Summary

AR/COC: 622413 Page 1 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
DOE HASL 300, 4.5.2.3/Ga-			
	115747-002/MWL AHSS-01- 2021	Americium-241 (14596-10-2)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Beryllium-7 (13966-02-4)	J, FR7
	115747-002/MWL AHSS-01- 2021	Bismuth-212 (14913-49-6)	J, FR7
	115747-002/MWL AHSS-01- 2021	Cesium-137 (10045-97-3)	J, FR7
	115747-002/MWL AHSS-01- 2021	Cobalt-60 (10198-40-0)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Neptunium-237 (13994-20-2)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Radium-223 (15623-45-7)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Radium-224 (13233-32-4)	J, FR7
	115747-002/MWL AHSS-01- 2021	Sodium-22 (13966-32-0)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Thorium-227 (15623-47-9)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Thorium-231 (14932-40-2)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Thorium-234 (15065-10-8)	R, Z2
	115747-002/MWL AHSS-01- 2021	Uranium-235 (15117-96-1)	BD, FR3
	115747-002/MWL AHSS-01- 2021	Uranium-238 (7440-61-1)	R, Z2
	115748-002/MWL AHSS-02- 2021	Americium-241 (14596-10-2)	BD, FR3

AR/COC: 622413 Page 2 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	115748-002/MWL AHSS-02- 2021	Beryllium-7 (13966-02-4)	J, FR7
	115748-002/MWL AHSS-02- 2021	Cesium-137 (10045-97-3)	J, FR7
	115748-002/MWL AHSS-02- 2021	Cobalt-60 (10198-40-0)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Neptunium-237 (13994-20-2)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Radium-223 (15623-45-7)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Radium-224 (13233-32-4)	R, Z2
	115748-002/MWL AHSS-02- 2021	Sodium-22 (13966-32-0)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Thorium-227 (15623-47-9)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Thorium-231 (14932-40-2)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Thorium-234 (15065-10-8)	J, FR7
	115748-002/MWL AHSS-02- 2021	Uranium-235 (15117-96-1)	BD, FR3
	115748-002/MWL AHSS-02- 2021	Uranium-238 (7440-61-1)	J, FR7
	115749-002/MWL AHSS-02- 2021	Americium-241 (14596-10-2)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Beryllium-7 (13966-02-4)	J, FR7
	115749-002/MWL AHSS-02- 2021	Cobalt-60 (10198-40-0)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Neptunium-237 (13994-20-2)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Radium-223 (15623-45-7)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Radium-224 (13233-32-4)	J, FR7

AR/COC: 622413 Page 3 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	115749-002/MWL AHSS-02- 2021	Sodium-22 (13966-32-0)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Thorium-227 (15623-47-9)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Thorium-231 (14932-40-2)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Thorium-234 (15065-10-8)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Uranium-235 (15117-96-1)	BD, FR3
	115749-002/MWL AHSS-02- 2021	Uranium-238 (7440-61-1)	BD, FR3
SW846 3050B/6010D			
	115747-001/MWL AHSS-01- 2021	Barium (7440-39-3)	J, RP2
	115747-001/MWL AHSS-01- 2021	Chromium (7440-47-3)	J, RP2
	115747-001/MWL AHSS-01- 2021	Cobalt (7440-48-4)	J-, B4,B5,RP2
	115747-001/MWL AHSS-01- 2021	Copper (7440-50-8)	J, RP2
	115747-001/MWL AHSS-01- 2021	Lead (7439-92-1)	J+, B,B3
	115747-001/MWL AHSS-01- 2021	Nickel (7440-02-0)	J, RP2
	115747-001/MWL AHSS-01- 2021	Selenium (7782-49-2)	2.78U, B
	115747-001/MWL AHSS-01- 2021	Vanadium (7440-62-2)	J, RP2
	115747-001/MWL AHSS-01- 2021	Zinc (7440-66-6)	J, RP2
	115748-001/MWL AHSS-02- 2021	Barium (7440-39-3)	J, RP2
	115748-001/MWL AHSS-02- 2021	Chromium (7440-47-3)	J, RP2

AR/COC: 622413 Page 4 of 4

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	115748-001/MWL AHSS-02- 2021	Cobalt (7440-48-4)	J, RP2
	115748-001/MWL AHSS-02- 2021	Copper (7440-50-8)	J, RP2
	115748-001/MWL AHSS-02- 2021	Nickel (7440-02-0)	J, RP2
	115748-001/MWL AHSS-02- 2021	Vanadium (7440-62-2)	J, RP2
	115748-001/MWL AHSS-02- 2021	Zinc (7440-66-6)	J, RP2
	115749-001/MWL AHSS-02- 2021	Barium (7440-39-3)	J, RP2
	115749-001/MWL AHSS-02- 2021	Chromium (7440-47-3)	J, RP2
	115749-001/MWL AHSS-02- 2021	Cobalt (7440-48-4)	J, RP2
	115749-001/MWL AHSS-02- 2021	Copper (7440-50-8)	J, RP2
	115749-001/MWL AHSS-02- 2021	Nickel (7440-02-0)	J, RP2
	115749-001/MWL AHSS-02- 2021	Vanadium (7440-62-2)	J, RP2
	115749-001/MWL AHSS-02- 2021	Zinc (7440-66-6)	J, RP2

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 622413													
ARCOC#: 022413		Site/Project	: MWL LTMMP		Validation Date: 09/28/2021								
SDG #: 553683		Laboratory:	GEL Laboratories,	LLC			Validator: L	inda Thal					
Matrix: Soil		# of Sample	es: 6	CVR prese	nt: Yes								
ARCOC(s) present: Yes		Sample Cor	ntainer Integrity: O	K									
Analysis Type: ☐ Organic	☐ Genche	em	⊠ Rad										
			Requested	Analyses No	ot Reported								
Client Sample ID	Lab Samp	le ID	Analysis	11110135051		Со	mments						
None													
			Hold Time	e/Preservation	on Outliers	1							
Client Sample ID	Lab Sample	ID	Hold Time Analysis	e/Preservation Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT				
Client Sample ID None	Lab Sample	ID											
	Lab Sample	ID											
	Lab Sample	ID											
	Lab Sample	ID											
	Lab Sample	ID											
	Lab Sample	ID											
None	Lab Sample	ID											
	Lab Sample	ID											
None		ID											

Sandia Inorganic Metals Worksheet

ARCOC #	#(s): 62241	3						:	SDG #(s):	553683				Matrix: S	Soil	
Laborator	y Sample I	Ds: 55	3683001	, -003, -0	005											
Method/B	atch #s: 30	50B/6010D : 2170404/2170405 7471B : 2173710/2173711														
CPMS Mass	Cal: 🔲 1	Pass														
Analyte (outliers)			Cali	bration			MB mg/kg *ug/L	5X Blank mg/kg	LCS %R	MS %R	Lab Rep RPD	Serial Dil. %D	ICS AB %R	ICS A ±MDL ug/L	LLCCV %R	
	Int. ug/L	\mathbb{R}^2	ICV	CCV	ICB ug/L	CCB ug/L	ug/L	*ug/L			KI D	/ 0D	/0K	(x50)		
Со	✓	✓	✓	✓	√	-1.57J	-1.80*	9.0*	✓	✓	**0.72	✓	NA	NA	✓	
Pb	✓	✓	✓	✓	5.92J	8.63J	0.603J	3.02 43.2*	✓	✓	✓	✓	NA	NA	✓	
Ni	✓	✓	✓	✓	✓	✓	0.187J	0.935	✓	✓	**1.4	✓	NA	NA	✓	
Se	✓	✓	✓		✓	✓	0.635J	3.18	✓	✓	✓	✓	NA	NA	✓	
Zn	✓	✓	✓	✓	✓	✓	0.395J	1.98	✓	✓	**3.14	✓	NA	NA	✓	
Ba	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	51.9	✓	NA	NA	✓	
Cr	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	**1.34	✓	NA	NA	✓	
Cu	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	**5.8	✓	NA	NA	✓	
V	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	90.7	✓	NA	NA	✓	
						ı										

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	Sample ID	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
NA				NA							

 $Comments:\ HTs\ OK.\ Matrix\ QC\ on\ -001.\ *ICB,\ CCB\ and\ negative\ MB\ detects\ compared\ to\ sample\ raw\ data.$

Ca, Mg, Al and Fe < ICS

^{**} Parent and/or replicate result < 5X the RL, difference between parent and replicate >PQL, data qualified.

Sandia Radiochemistry Worksheet

ARCOC #(s): 622413	SDG #: 553683	Matrix: Soil							
Laboratory Sample IDs: 553683 – see below	Laboratory Sample IDs: 553683 – see below								
Method/Batch #s: DOE HASL 300, 4.5.2.3/Ga-01-R (gammaspec)/2166592/2166599 Sar	mples -002, -004, -006								
Method/Batch #s:									
Method/Batch #s:									

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS %R	MS %R	MSD %R	MS MS REI) 1	Lab Rep. RER	MS/MSD RPD			
none														
				Tracer/Car	rier Recov	ery Outliers	5							
Sample ID	Tracer/Ca	rrier %F	₹	Sample ID		Tracer/	Tracer/Carrier %R Sample ID				D	Tracer/Carrier %R		

			Tracer/Carrier Recover	ry Outliers				
Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R
NA								

<u>Comments:</u> HTs OK. Note: No precision criteria applies to sample results < the MDA including where one result is > the MDA and the other <.

GS: DUP on -002

The following results were rejected by the lab due to the peak not meeting identification criteria: -002 Th-234 and U-238; -004 Ra-224

CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

553 683

∠nternal Lab													<u> </u>		- F	Page 1 c	of 2
ਹੈ. ∰Batch No. 🖊	V/4					SMO Use	, /					10/			AR/COC	62	2413
Project Name	e: [†]	MWL LTM	MP	Date Sample	s Shipped:	8/24	1002	1	SMO A	uthorization	-0/h	2.00		Was	te Characterization		
Project/Task	Manager:	Mike Mitch	iell	Carrier/Wayb	ill No.	33	5 3 5	16	SMO C	ontact Phone	e:			RMA			
roject/Task	Number:	195122.10	.11.08	Lab Contact:		Zac Worsha	m/843-300	-4224		Wendy I	Palencia/505	5-844-3132		Rele	ased by COC No.		
Service Orde	r:	CF01-21		Lab Destinati	on:	GEL			Send R	eport to SMC		***************************************				[J] A	4º Celsius
				Contract No.:		1983530				Stephanie	Montaño/50	05-284-2553		Bill to: San	dia National Laboratorie		
Tech Area:									<u> </u>		······································	······································		7	300, MS-0154	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Building:		Room:		Operationa	al Site:										e, NM 87185-0154		
		***************************************		<u> </u>	Depth	Date/	Time	Sample	Co	ontainer	Preserv-	Collection	Sample	<u> </u>	rameter & Method		Lab
Sample No.	Fraction	Sar	mple Location D	etail	(ft)	Colle	cted	Matrix	Туре	Volume	ative	Method	Type		Requested	i	Sample ID
115747√	<i>,</i> 001	MWL AH	SS-01-2021		NA	8/19/21	10:16	SOIL	P	250 ml	None	G	SA	METALS, RC Cu, Ni, V, Zn	RA (SW846-6020/7470)+i	Зе, Со,	001
115747	002	MWL AH	SS-01-2021		NA	8/19/21	10:16	SOIL	Р	250 ml	None	G	SA	GAMMA SPE			002
115748	<i>)</i> 001	MWL AH	SS-02-2021		NA	8/19/21	10:24	SOIL	Р	250 ml	None	G	SA	METALS, RC Cu, Ni, V, Zn	RA (SW846-6020/7470)+E	3e, Со,	003
115748	Ø02	MWL AH	SS-02-2021		NA	8/19/21	10:24	SOIL	Р	250 ml	None	G	SA	GAMMA SPE			004
115749	<i>9</i> Ó1	MWL AH	SS-02-2021		NA	8/19/21	10:24	SOIL	Р	250 ml	None	G	DU	Cu, Ni, V, Zn	RA (SW846-6020/7470)+E	3e, Co,	005
115749	002	MWL AH	SS-02-2021		NA	8/19/21	10:24	SOIL	Р	250 ml	None	G	DU	GAMMA SPE	C (EPA 901)		<u> </u>
			····				·····							 			
							***************************************		w								
Last Chain		☐ Yes			Sample	Tracking		SMO	Hea	Special Inc	tructions/0	C Requirem	onte:	L			itions on
Validation	·	✓ Yes			Date Ent			Ollio	oge	EDD	di dellons/G	✓ Yes	ienis.				
Backgroun		Yes			Entered					Turnaroun	d Timo	7-Day*		15-Dav*	✓ 30-Day	r\c	eceipt
Confirmato	~~~~	Yes			QC inits.					Negotiated				13-Day			
Sample		ame	Signatu		Init.		//Organizati	ion/Phone	/Cell	Sample Dis		Return	to Client	1.7	Disposal by Lab		
• •	Robert Zi	ock	The obsert	772		SNL/08888/				Return Sar			to Onent		Disposal by Cab		
Members	Caitlin La	Chance	10 1000			SNL/00641/						RA Metals a	nd Be. Co	. Cu. Ni. V	Zn. Use		
Members			- Marie								etermine Th						

T.	***************************************															l al	o Use
Relinquished	by /3 //	In li	2/3/100	Grg. 888	P Date	8-19-2	/Time //	0:45	Relinqui	shed by			Org.		Date	Time	
Received by	Calle	byle (Org <i>@C/\</i>		8/19/24		5 285 0	Receive				Org.		Date	Time	
Relinquished	бу г	5/19	- Der	Org <i>@06</i>	8 Date	8/24/2	7 Time /	000	Relinqui	shed by			Org.		Date	Time	
Received by		15		Org.	Date	8 25 2	🕽 Time 🍞	145	Receive	d by			Org.		Date	Time	
*Prior confir	nation w	ith SMO re	guired for 7 and	15 day TAT	Ī			-									

SMO-2019-CVR (4-2019) SMO-05-03

Contract Verification Form (CVR)

Project Leader MITCHELL

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

ARCOC No. 622413

Analytical Lab GEL

SDG No. 553683

In the tables below, mark any information that is missing or incorrect and give an explanation.

1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622413

SMO-2019-CVR (4-2019)

Line	Item			If no, explain
No.	NO.		No	II IIO, Explain
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	N/A		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples		X	RPD between sample 115747-001 and replicate outside acceptance range for barium, chromium, cobalt, copper, nickel, vanadium and zinc (QC1204902841)

ARCOC No. 622413 2 of 5

SMO-2019-CVR (4-2019)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	N/A		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	Lead, nickel, selenium and zinc detected in method blank (QC1204902839)
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	N/A		
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Instrument run logs provided	N/A		

ARCOC No. 622413 3 of 5

SMO-2019-CVR (4-2019)

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622413 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

6.0 Problem Resolution

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 09-28-2021 08:43:00

Closed by: Wendy Palencia Date: 09-28-2021 08:43:00

ARCOC No. 622413 5 of 5

ANNEX C

Mixed Waste Landfill Soil-Vapor Monitoring Forms and Reports

April 2021-March 2022

Field Forms

Sample Summary Sheet

Data Validation Reports

Contract Verification Forms

Certificates of Analysis

Field Sampling Forms

Mixed Waste Landfill

Long-Term Monitoring and Maintenance

Soil-Vapor Monitoring

Form Title	Corresponding Procedure
Soil Vapor Sampling Form	FOP 08-22
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Section of this Annex.

Field Sampling Forms May 2021 Soil-Vapor Monitoring

Soil Vapor Sampling Log Form

Location	· Date	Time	Soil Vapor San Caulster #	PID (ppm)	Flow Rate (wFTH)	Initial Canister Vacuum (PSI	Ending Canister Vacuum (PSI)	Comments
MWL-FB1	5/6/21	1222	34000184	NA	NA	-25	-6	agu
MWL-SV01-42.5	5/6/21	1245		0.0	8	NA	NA	
	1	1,		1	1	1		
	1	1247	34001308	NA	NA	-26	-6	
MWL-FB2	5/6/21	1220	10883	NA	NA	-25	-6	upu
MWL-SV02-41.5	5/6/21	1237	T.	0.0	8	NA	NA	
	1	1					1	
		1237	4	4	4	4	+	
	-4	1238	10375	NA	NA	-25	-6	

Field Notes:

Continuous PID Readings During Purge.

Background PID Readings:

SV01- b.0

SV02- 0-0

DB NMED 3PIH Schipling

Soil Vapor Sampling Log Form

		i	Soil Vapor Sar	npling L	og Form			
Location	Date	Time	Canister#	PID (ppm)	Flow Rate (weth)	Initial Canister Vacuum	Ending Canister Vacuum (PSI	Comments
MWL-FB3	5/6/21	0955	3400012	NA	NA	-25	-6	OPN
MWL-SV03-50	5/6/21	1000	1	6.0	8	NA	NA	
	1	7		1	1	1	1	
		1001	4	1	4	7	1	
		1003	34000493	NA	NA	-25	-6	SA
	1	1003	10635	NA	NA	-25	-6	DU
MWL-SV03-100	5/6/21	1006	1	0.0	10	NA	NA	
	1	4		1	1	1	1	
		1007	1	7	4	4	7	
	4	1008	34000888	NA	NA	-25	-6	
MWL-SV03-200	5/6/21	1013	1	6.0	12	NA	NA	
	1	d		1	1	1	1	
		1014	1	d	40	1	7	
	7	1016	09623	NA	NA	-26	-6	
MWL-SV03-300	5/6/21	1020	1	6.0	12	NA	NA	
	1	Į.	L. L.	1		1	1	
		1022	٥		9	V.	1	
		1025	7959	NA	NA	-26	-6	
MWL-SV03-400	5/6/21	1033	4	0,0	15	NA	NA	
	1	1		1	1	-1	1	
		1035	1	1	1	1	1	
		1109	11300	NA	NA	-26	-6	SA
	1	1109	34062118	NA	NA	-26	-6	DU

Field Notes:

Continuous PID Readings During Purge.

Background PID Readings:

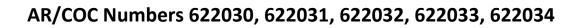
SV03- D.O

CALL PUTS

OBNIMED Split Sample & Du@ 2000

Soil Vapor Sampling Log Form

	T	1	Soil Vapor Sa	impling I	og Form		-	
Location	Date	Time	Canister#	PID (ppm)	Flow Rate (aprile)	Initial Canister Vacuum	Ending Canister Vacuum	Comments
MWL-FB4	5/6/21	0841	11060	NA	NA	-24	-4	LPN
MWL-SV04-50	5/6/21	0848	ı	0.0	8	NA	NA	
		1		1		-1		
	1	0849	11151	NA	NA	-25	-6	
		0850	11191	IVA	IVA	-47	6	
MWL-SV04-100	5/6/21	0909	1	0.0	8	NA	NA	
	1		1					
		0910	4	1	7	1	Ţ	
	4	0912	10716	NA	NA	-25	-6	
MWL-SV04-200	5/6/21	0915		0.0	12	NA	NA	
		+		1		1		
		0916	4	1	7	1	1	
	7	6921	11994	NA	NA	-25	-6	
MWL-SV04-300	5/6/21	6930	1	0.0	8	NA	NA	
		1			1		1	
		0932	7	1	1		*	
	H	0934	11159	NA	NA	-25	-6	
MWL-SV04-400	5/6/21	0937		0.0	15	NA	NA	
		1,					1	
		6939	7	ı l	11-4	L	7	
	41	0940	12089	NA	NA	-26	-6	
Field Notes: Continuous PID Background PID SV04-	Reading	s During js:	Purge.			el port s		
OB-WINED SPIN	Parts) Somple	all Du	45					


Soil Vapor Sampling Log Form Initial Ending Flow PID Canister Location Canister Date Time Canister# Rate Comments (ppm) Vасции Vacuum (mm#) (PSI) (PSI) MWL-FB5 1134 5/6/21 34000564 NA 25 NA -6 UPN MWL-SV05-50 5/6/21 1136 NA 0.0 NA 1137 34000346 NA 208 -26 NA MWL-SV05-100 5/6/21 1141 8 NA NA 6.0 1141 1209 09530 -26 NA NA -6 1146 MWL-SV05-200 5/6/21 NA NA 0.0 10 48 1149 12103 NA NA 426 -6 MWL-SV05-300 | 5/6/21 1156 NA NA 0.0 10 1158 1159 NA NA -26 MWL-SV05-400 | 5/6/21 1202 NA NA O 0.0 1204 1206 7841 NA NA -26 -6 Field Notes: Continuous PID Readings During Purge. Background PID Readings: SV05- D. O OBNITED Split Sampling & Du & 400 Pt

Summary Sheet For May 2021 Soil-Vapor Samples

Sample Summary for Mixed Waste Landfill Soil-Vapor Monitoring May 2021

			SUMMA		Sample		Associated Field Blank	1
Well ID	Sample Date	Sample ID / Port	Number	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Comments
Mixed Waste Landfill Soil Vapor Monitoring: Project Task Number 195122.10.11.08 / Service Order Number CF 01-21								
MWI-SV01 6-May-21	MWL-SV01-42.5	34001308	622030	114903	Environmental	622030 / 004902		
	MWL-FB1	34000184		114902	Field QC	n/a	Ultra Pure N2	
MWL-SV02	MWL-SV02 6-May-21	MWL-SV02-41.5	10375	622031	114905	Environmental	622031 / 114904	
WWL-3V02	0-iviay-2 i	MWL-FB2	10883		114904	Field QC	n/a	Ultra Pure N2
		MWL-SV03-50	34000493		114907	Environmental	622032 / 114906	
		MWL-SV03-50	10635		114908	Duplicate		
		MWL-SV03-100	34000888	622032	114909	Environmental		
MWL-SV03	6-May-21	MWL-SV03-200	09623		114910	Environmental		
WWL-3V03	0-iviay-2 i	MWL-SV03-300	7959		114911	Environmental		
		MWL-SV03-400	11300		114912	Environmental		
		MWL-SV03-400	34002118		114913	Duplicate		
		MWL-FB3	34000212		114906	Field QC	n/a	Ultra Pure N2
		MWL-SV04-50	11151	- 622033	114915	Environmental	622033 / 114914	
		MWL-SV04-100	10716		114916	Environmental		
MWL-SV04	6-May-21	MWL-SV04-200	11994		114917	Environmental		
WWL-3V04	0-iviay-2 i	MWL-SV04-300	11159		114918	Environmental		
		MWL-SV04-400	12089		114919	Environmental		
		MWL-FB4	11060		114914	Field QC	n/a	Ultra Pure N2
		MWL-SV05-50	34000346		114921	Environmental		
		MWL-SV05-100	09530		114922	Environmental		
MWL-SV05 6-May-21	MWL-SV05-200	12103	622034	114923	Environmental	622034 / 114920		
	0-ividy-21	MWL-SV05-300	8195	022034	114924	Environmental		
		MWL-SV05-400	7841		114925	Environmental		
		MWL-FB5	34000504		114920	Field QC	n/a	Ultra Pure N2

Data Validation For Environmental Samples Mixed Waste Landfill Soil-Vapor Monitoring May 2021

PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

Memorandum

Date: June 18, 2021

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622030, 622031, 622032, 622033 and 622034

SDG: 140-23051

Laboratory: Eurofins TestAmerica, Knoxville

Project/Task: 195122.10.11.08 Analysis: VOCs by method TO-15

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

Summary

Twenty-four samples were prepared and analyzed with accepted procedures using method EPA TO-15 (Determination of VOCs in Air collected in specially prepared canisters and analyzed by GC-MS). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Carbon disulfide and chlorobenzene were detected at ≤ the PQL in the MB associated with samples 140-23051-2, -6 through -9 and -19. All associated sample results for carbon disulfide and the chlorobenzene result for samples -7 and -19 were detects ≤ the PQL and will be **qualified U,B**; non-detect at their respective PQLs.
- 2. Carbon disulfide and chlorobenzene were detected at ≤ the PQL in the MB associated with samples -4, -10, -12 through -15. All associated sample results *except* the result for carbon disulfide for sample -14 and the chlorobenzene results for samples -4, -12, -13 and -14 were detects ≤ the PQL and will be **qualified U,B**; non-detect at their respective PQLs.
- 3. Carbon disulfide was detected at ≤ the PQL in the MB associated with samples -16 through -18, -20, -21, -23 and -24. All associated sample results *except* for the result for carbon disulfide in sample -21 were detects ≤ the PQL and will be **qualified U,B**; non-detect at their respective PQLs.
- 4. Carbon disulfide was detected at ≤ the PQL in FB1, sample -1 associated with sample -2. The associated sample result was a detect ≤ the PQL and will be qualified **0.01U,B2**; non-detect at the PQL.

- 5. Acetone, benzene, 2-butanone and carbon disulfide were detected at ≤ the PQL in FB2, sample -3, associated with sample -4. The associated sample results were detects ≤ the PQL and will be **qualified U,B2**; non-detect at their respective PQLs.
- 6. Acetone, 2-butanone, carbon disulfide and chlorobenzene were detected at ≤ the PQL in FB4, sample -5, associated with samples -6 through -10. The associated acetone and 2-butanone results for samples -6 and -10, all associated carbon disulfide sample results and the associated chlorobenzene results for samples -7 and -10 were detects ≤ the PQL and will be **qualified U,B2**; non-detect at their respective PQLs.
- 7. Acetone, benzene, carbon disulfide and chlorobenzene were detected at ≤ the PQL in FB3, sample -11, associated with samples -12 through -18. All associated sample results for benzene, all associated sample results for carbon disulfide *except* the result for sample -14 and the associated chlorobenzene results for samples -15 through -17 were detects ≤ the PQL and will be **qualified** U,B2; non-detect at their respective PQLs.
- 8. No duplicate precision was available for samples -1, -3, -5 and -11. The associated sample results that were detects will be **qualified J,RP1**. The associated sample results that were non-detect will be qualified **UJ,RP1**.

Data are acceptable except as noted above and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

Holding Times

The samples were analyzed within the prescribed holding time.

Instrument Tune

All instrument tune requirements were met.

Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

For the CCV associated with samples -1, -3, -5 and -11, the %Ds were >30% and positive for 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -2, -6 through -9 and -19, the %Ds were >30% and positive for bromomethane; 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -2, -6 through -9 and -19, the %Ds were >30% but \leq 45% with negative bias for 4-methyl-2-pentanone and vinyl acetate. The associated sample results were non-detect and since no other calibration infraction occurred will not be qualified.

For the CCV associated with samples -4, -10, -12 through -15, the %Ds were >30% and positive for 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -4, -10, -12 through -15, the %Ds were >30% but ≤45% with negative bias for 4-methyl-2-pentanone and vinyl acetate. The associated sample results were non-detect and since no other calibration infraction occurred will not be qualified.

For the CCV associated with samples -16 through -18, -20, -21, -23 and -24, the %Ds were >30% and positive for bromomethane; 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the CCV associated with samples -16 through -18, -20, -21, -23 and -24, the %D was >30% but ≤45% with negative bias for 4-methyl-2-pentanone. The associated sample results were non-detect and since no other calibration infraction occurred will not be qualified.

For the CCV associated with sample -22, the %Ds were >30% and positive for bromoform; bromomethane; 1,2-dichloro-1,1,2,2-tetrafluoroethane; hexachlorobutadiene and vinyl chloride. The associated sample results were non-detect and will not be qualified.

For the CCV associated with sample -22, the %D was >30% but ≤45% with negative bias for 4-methyl-2-pentanone and vinyl acetate. The associated sample results were non-detect and since no other calibration infraction occurred will not be qualified.

Blanks

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

Chlorobenzene was detected at \leq the PQL in the MB associated with samples -2, -6 through -9 and -19. The associated results for samples -2, -6, -8 and -9 were non-detect and will not be qualified.

Carbon disulfide and chlorobenzene were detected at \leq the PQL in the MB associated with samples -4, -10, -12 through -15. The carbon disulfide result for sample -14 was a detect > the PQL and >5X the MB value and will not be qualified. The associated chlorobenzene results for samples -4, -12 through -14 were non-detect and will not be qualified.

Carbon disulfide was detected at \leq the PQL in the MB associated with samples -16 through -18, -20, -21, -23 and -24. The carbon disulfide result for sample -21 was a detect > the PQL and >5X the MB value and will not be qualified.

Tetrachloroethene was detected at \leq the PQL in FB1, sample -1, associated with sample -2. The associated sample result for tetrachloroethene was a detect > the PQL and >5X the FB value and will not be qualified.

Tetrachloroethene was detected at \leq the PQL in FB2, sample -3, associated with sample -4. The associated sample result was a detect \geq the PQL and \geq 5X the FB value and will not be qualified.

Acetone, 2-butanone and chlorobenzene were detected at \leq the PQL in FB4, sample -5, associated with samples -6 through -10. The chlorobenzene result for sample -6, the acetone and 2-butanone results for sample -7 and the acetone, 2-butanone and chlorobenzene results for samples -8 and -9 were non-detect and will not be qualified.

Acetone, carbon disulfide and chlorobenzene were detected at ≤ the PQL in FB3, sample -11, associated with samples -12 through -18. All associated sample results for acetone and the chlorobenzene results for

samples -12 through -14 and -18 were non-detect and will not be qualified. The carbon disulfide result for sample -14 was a detect > the PQL and >5X the FB value and will not be qualified.

Carbon disulfide, chlorobenzene and trichlorofluoromethane were detected at ≤ the PQL and methylene chloride was detected at > the PQL in FB5, sample -19, associated with samples -20 through -24. It should be noted that the FB results for carbon disulfide and chlorobenzene were qualified non-detect due to MB contamination and will not be applied to the associated field sample results. The associated sample results for methylene chloride were non-detect and will not be qualified. The associated sample results for trichlorofluoromethane were detects > the PQL and >5X the FB value and will not be qualified.

Surrogates

All surrogate acceptance criteria were met.

Internal Standards

All internal standards met QC acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not performed.

Laboratory Control Sample (LCS)

The LCS for all batches met QC acceptance criteria except as noted above in the Summary section and as follows. For the LCS associated with samples -1, -3, -5 and -11, the %Rs were > 130% for 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene. Up to two LCS recovery infractions are allowed since 50 LCS analytes were reported. Therefore, the associated sample results will not be qualified.

For the LCS associated with samples -2, -6 through -9 and -19, the %Rs were > 130% for 1,2-dichloro-1,1,2,2-tetrafluoroethane; bromomethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the LCS associated with samples -4, -10, -12 through -15, the %Rs were > 130% for 1,2-dichloro-1,1,2,2-tetrafluoroethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the LCS associated with samples -16 through -18, -20, -21, -23 and -24, the %Rs were > 130% for 1,2-dichloro-1,1,2,2-tetrafluoroethane; bromomethane and hexachlorobutadiene. The associated sample results were non-detect and will not be qualified.

For the LCS associated with sample -22, the %Rs were > 130% for 1,2-dichloro-1,1,2,2-tetrafluoroethane; bromoform; bromomethane; hexachlorobutadiene and vinyl chloride. The associated sample results were non-detect and will not be qualified.

Laboratory Replicate

Laboratory replicates met QC acceptance criteria except as noted above in the Summary section and as follows. The parent and replicate sample results for carbon disulfide and cis-1,2-dichloroethene in sample -9 were flagged by the lab for exceeding the RPD limit of 25%. Both results were <5X the PQL and the

difference between the sample and replicate results was < the PQL; therefore, no sample data will be qualified.

Detection Limits/Dilutions

All detection limits were properly reported and correctly adjusted for summa canister dilutions. The following canister dilutions were performed for all target analytes.

```
Sample -1 (1.64X); -2 (1.56X); -3 (1.57X); -4 (1.57X): -5 (1.49X); -6 (1.45X); -7 (1.49X); -8 (1.5X); -9 (1.56X); -10 (1.53X); -11 (1.62X); -12 (1.59X); -13 (1.65X); -14 (1.49X); -15 (1.46X); -16 (1.46X); -17 (1.64X); -18 (1.64X); -19 (1.53X); -20 (1.45X); -21 (1.48X); -22 (1.5X); -23 (1.56X) and -24 (1.48X).
```

Tentatively Identified Compounds (TICs)

TIC reports were not required.

Other QC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria. Sample results < the PQL with missing ions or poor ratios were qualified J by the laboratory and were not further qualified during data validation.

FBs were submitted with each ARCOC and were associated with the samples on the same ARCOC. Two field duplicate pairs were submitted with ARCOCs 622032. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 06/25/2021

Sample Findings Summary

AR/COC: 622030, 622031, 622032, 622033, 622034

Page 1 of 10

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15_LL_PF			
	114902-001 / MWL-FB1	1,1,1-TRICHLOROETHANE (71-55-6)	UJ, RP1
	114902-001 / MWL-FB1	1,1,2,2-TETRACHLOROETHANE (79- 34-5)	UJ, RP1
	114902-001 / MWL-FB1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE (76-13-1)	UJ, RP1
	114902-001 / MWL-FB1	1,1,2-TRICHLOROETHANE (79-00-5)	UJ, RP1
	114902-001 / MWL-FB1	1,1-DICHLOROETHANE (75-34-3)	UJ, RP1
	114902-001 / MWL-FB1	1,1-DICHLOROETHENE (75-35-4)	UJ, RP1
	114902-001 / MWL-FB1	1,2,4-TRICHLOROBENZENE (120-82- 1)	UJ, RP1
	114902-001 / MWL-FB1	1,2,4-TRIMETHYLBENZENE (95-63-6)	UJ, RP1
	114902-001 / MWL-FB1	1,2-DIBROMOETHANE (EDB) (106- 93-4)	UJ, RP1
	114902-001 / MWL-FB1	1,2-DICHLORO-1,1,2,2- TETRAFLUOROETHANE (76-14-2)	UJ, RP1
	114902-001 / MWL-FB1	1,2-DICHLOROBENZENE (95-50-1)	UJ, RP1
	114902-001 / MWL-FB1	1,2-DICHLOROETHANE (107-06-2)	UJ, RP1
	114902-001 / MWL-FB1	1,2-DICHLOROPROPANE (78-87-5)	UJ, RP1
	114902-001 / MWL-FB1	1,3,5-TRIMETHYLBENZENE (108-67-8)	UJ, RP1
	114902-001 / MWL-FB1	1,3-DICHLOROBENZENE (541-73-1)	UJ, RP1
	114902-001 / MWL-FB1	1,4-DICHLOROBENZENE (106-46-7)	UJ, RP1
	114902-001 / MWL-FB1	2-BUTANONE (MEK) (78-93-3)	UJ, RP1
	114902-001 / MWL-FB1	2-HEXANONE (591-78-6)	UJ, RP1
	114902-001 / MWL-FB1	4-ETHYLTOLUENE (622-96-8)	UJ, RP1
	114902-001 / MWL-FB1	4-METHYL-2-PENTANONE (MIBK) (108-10-1)	UJ, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114902-001 / MWL-FB1	ACETONE (67-64-1)	UJ, RP1
	114902-001 / MWL-FB1	BENZENE (71-43-2)	UJ, RP1
	114902-001 / MWL-FB1	BENZYL CHLORIDE (100-44-7)	UJ, RP1
	114902-001 / MWL-FB1	BROMODICHLOROMETHANE (75-27-4)	UJ, RP1
	114902-001 / MWL-FB1	BROMOFORM (75-25-2)	UJ, RP1
	114902-001 / MWL-FB1	BROMOMETHANE (74-83-9)	UJ, RP1
	114902-001 / MWL-FB1	CARBON DISULFIDE (75-15-0)	J, RP1
	114902-001 / MWL-FB1	CARBON TETRACHLORIDE (56-23-5)	UJ, RP1
	114902-001 / MWL-FB1	CHLOROBENZENE (108-90-7)	UJ, RP1
	114902-001 / MWL-FB1	CHLOROETHANE (75-00-3)	UJ, RP1
	114902-001 / MWL-FB1	CHLOROFORM (67-66-3)	UJ, RP1
	114902-001 / MWL-FB1	CHLOROMETHANE (74-87-3)	UJ, RP1
	114902-001 / MWL-FB1	CIS-1,2-DICHLOROETHENE (156-59-2)	UJ, RP1
	114902-001 / MWL-FB1	CIS-1,3-DICHLOROPROPENE (10061-01-5)	UJ, RP1
	114902-001 / MWL-FB1	DIBROMOCHLOROMETHANE (124-48-1)	UJ, RP1
	114902-001 / MWL-FB1	DICHLORODIFLUOROMETHANE (75-71-8)	UJ, RP1
	114902-001 / MWL-FB1	ETHYLBENZENE (100-41-4)	UJ, RP1
	114902-001 / MWL-FB1	HEXACHLOROBUTADIENE (87-68-3)	UJ, RP1
	114902-001 / MWL-FB1	M,P-XYLENE (179601-23-1)	UJ, RP1
	114902-001 / MWL-FB1	METHYLENE CHLORIDE (75-09-2)	UJ, RP1
	114902-001 / MWL-FB1	O-XYLENE (95-47-6)	UJ, RP1
	114902-001 / MWL-FB1	STYRENE (100-42-5)	UJ, RP1
	114902-001 / MWL-FB1	TETRACHLOROETHENE (127-18-4)	J, RP1
	114902-001 / MWL-FB1	TOLUENE (108-88-3)	UJ, RP1
	114902-001 / MWL-FB1	TRANS-1,2-DICHLOROETHENE (156-60-5)	UJ, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114902-001 / MWL-FB1	TRANS-1,3-DICHLOROPROPENE (10061-02-6)	UJ, RP1
	114902-001 / MWL-FB1	TRICHLOROETHENE (79-01-6)	UJ, RP1
	114902-001 / MWL-FB1	TRICHLOROFLUOROMETHANE (75-69-4)	UJ, RP1
	114902-001 / MWL-FB1	VINYL ACETATE (108-05-4)	UJ, RP1
	114902-001 / MWL-FB1	VINYL CHLORIDE (75-01-4)	UJ, RP1
	114903-001 / MWL-SV01-42.5	CARBON DISULFIDE (75-15-0)	0.01U, B,B2
	114904-001 / MWL-FB2	1,1,1-TRICHLOROETHANE (71-55-6)	UJ, RP1
	114904-001 / MWL-FB2	1,1,2,2-TETRACHLOROETHANE (79- 34-5)	UJ, RP1
	114904-001 / MWL-FB2	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE (76-13-1)	UJ, RP1
	114904-001 / MWL-FB2	1,1,2-TRICHLOROETHANE (79-00-5)	UJ, RP1
	114904-001 / MWL-FB2	1,1-DICHLOROETHANE (75-34-3)	UJ, RP1
	114904-001 / MWL-FB2	1,1-DICHLOROETHENE (75-35-4)	UJ, RP1
	114904-001 / MWL-FB2	1,2,4-TRICHLOROBENZENE (120-82- 1)	UJ, RP1
	114904-001 / MWL-FB2	1,2,4-TRIMETHYLBENZENE (95-63-6)	UJ, RP1
	114904-001 / MWL-FB2	1,2-DIBROMOETHANE (EDB) (106- 93-4)	UJ, RP1
	114904-001 / MWL-FB2	1,2-DICHLORO-1,1,2,2- TETRAFLUOROETHANE (76-14-2)	UJ, RP1
	114904-001 / MWL-FB2	1,2-DICHLOROBENZENE (95-50-1)	UJ, RP1
	114904-001 / MWL-FB2	1,2-DICHLOROETHANE (107-06-2)	UJ, RP1
	114904-001 / MWL-FB2	1,2-DICHLOROPROPANE (78-87-5)	UJ, RP1
	114904-001 / MWL-FB2	1,3,5-TRIMETHYLBENZENE (108-67- 8)	UJ, RP1
	114904-001 / MWL-FB2	1,3-DICHLOROBENZENE (541-73-1)	UJ, RP1
	114904-001 / MWL-FB2	1,4-DICHLOROBENZENE (106-46-7)	UJ, RP1
	114904-001 / MWL-FB2	2-BUTANONE (MEK) (78-93-3)	J, RP1
	114904-001 / MWL-FB2	2-HEXANONE (591-78-6)	UJ, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114904-001 / MWL-FB2	4-ETHYLTOLUENE (622-96-8)	UJ, RP1
	114904-001 / MWL-FB2	4-METHYL-2-PENTANONE (MIBK) (108-10-1)	UJ, RP1
	114904-001 / MWL-FB2	ACETONE (67-64-1)	J, RP1
	114904-001 / MWL-FB2	BENZENE (71-43-2)	J, RP1
	114904-001 / MWL-FB2	BENZYL CHLORIDE (100-44-7)	UJ, RP1
	114904-001 / MWL-FB2	BROMODICHLOROMETHANE (75-27-4)	UJ, RP1
	114904-001 / MWL-FB2	BROMOFORM (75-25-2)	UJ, RP1
	114904-001 / MWL-FB2	BROMOMETHANE (74-83-9)	UJ, RP1
	114904-001 / MWL-FB2	CARBON DISULFIDE (75-15-0)	J, RP1
	114904-001 / MWL-FB2	CARBON TETRACHLORIDE (56-23-5)	UJ, RP1
	114904-001 / MWL-FB2	CHLOROBENZENE (108-90-7)	UJ, RP1
	114904-001 / MWL-FB2	CHLOROETHANE (75-00-3)	UJ, RP1
	114904-001 / MWL-FB2	CHLOROFORM (67-66-3)	UJ, RP1
	114904-001 / MWL-FB2	CHLOROMETHANE (74-87-3)	UJ, RP1
	114904-001 / MWL-FB2	CIS-1,2-DICHLOROETHENE (156-59-2)	UJ, RP1
	114904-001 / MWL-FB2	CIS-1,3-DICHLOROPROPENE (10061-01-5)	UJ, RP1
	114904-001 / MWL-FB2	DIBROMOCHLOROMETHANE (124-48-1)	UJ, RP1
	114904-001 / MWL-FB2	DICHLORODIFLUOROMETHANE (75-71-8)	UJ, RP1
	114904-001 / MWL-FB2	ETHYLBENZENE (100-41-4)	UJ, RP1
	114904-001 / MWL-FB2	HEXACHLOROBUTADIENE (87-68-3)	UJ, RP1
	114904-001 / MWL-FB2	M,P-XYLENE (179601-23-1)	UJ, RP1
	114904-001 / MWL-FB2	METHYLENE CHLORIDE (75-09-2)	UJ, RP1
	114904-001 / MWL-FB2	O-XYLENE (95-47-6)	UJ, RP1
	114904-001 / MWL-FB2	STYRENE (100-42-5)	UJ, RP1
	114904-001 / MWL-FB2	TETRACHLOROETHENE (127-18-4)	J, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114904-001 / MWL-FB2	TOLUENE (108-88-3)	UJ, RP1
	114904-001 / MWL-FB2	TRANS-1,2-DICHLOROETHENE (156-60-5)	UJ, RP1
	114904-001 / MWL-FB2	TRANS-1,3-DICHLOROPROPENE (10061-02-6)	UJ, RP1
	114904-001 / MWL-FB2	TRICHLOROETHENE (79-01-6)	UJ, RP1
	114904-001 / MWL-FB2	TRICHLOROFLUOROMETHANE (75-69-4)	UJ, RP1
	114904-001 / MWL-FB2	VINYL ACETATE (108-05-4)	UJ, RP1
	114904-001 / MWL-FB2	VINYL CHLORIDE (75-01-4)	UJ, RP1
	114905-001 / MWL-SV02-41.5	2-BUTANONE (MEK) (78-93-3)	0.016U, B2
	114905-001 / MWL-SV02-41.5	ACETONE (67-64-1)	0.079U, B2
	114905-001 / MWL-SV02-41.5	BENZENE (71-43-2)	0.0031U, B2
	114905-001 / MWL-SV02-41.5	CARBON DISULFIDE (75-15-0)	0.0079U, B,B2
	114906-001 / MWL-FB3	1,1,1-TRICHLOROETHANE (71-55-6)	UJ, RP1
	114906-001 / MWL-FB3	1,1,2,2-TETRACHLOROETHANE (79- 34-5)	UJ, RP1
	114906-001 / MWL-FB3	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE (76-13-1)	UJ, RP1
	114906-001 / MWL-FB3	1,1,2-TRICHLOROETHANE (79-00-5)	UJ, RP1
	114906-001 / MWL-FB3	1,1-DICHLOROETHANE (75-34-3)	UJ, RP1
	114906-001 / MWL-FB3	1,1-DICHLOROETHENE (75-35-4)	UJ, RP1
	114906-001 / MWL-FB3	1,2,4-TRICHLOROBENZENE (120-82- 1)	UJ, RP1
	114906-001 / MWL-FB3	1,2,4-TRIMETHYLBENZENE (95-63-6)	UJ, RP1
	114906-001 / MWL-FB3	1,2-DIBROMOETHANE (EDB) (106- 93-4)	UJ, RP1
	114906-001 / MWL-FB3	1,2-DICHLORO-1,1,2,2- TETRAFLUOROETHANE (76-14-2)	UJ, RP1
	114906-001 / MWL-FB3	1,2-DICHLOROBENZENE (95-50-1)	UJ, RP1
	114906-001 / MWL-FB3	1,2-DICHLOROETHANE (107-06-2)	UJ, RP1
	114906-001 / MWL-FB3	1,2-DICHLOROPROPANE (78-87-5)	UJ, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114906-001 / MWL-FB3	1,3,5-TRIMETHYLBENZENE (108-67- 8)	UJ, RP1
	114906-001 / MWL-FB3	1,3-DICHLOROBENZENE (541-73-1)	UJ, RP1
	114906-001 / MWL-FB3	1,4-DICHLOROBENZENE (106-46-7)	UJ, RP1
	114906-001 / MWL-FB3	2-BUTANONE (MEK) (78-93-3)	UJ, RP1
	114906-001 / MWL-FB3	2-HEXANONE (591-78-6)	UJ, RP1
	114906-001 / MWL-FB3	4-ETHYLTOLUENE (622-96-8)	UJ, RP1
	114906-001 / MWL-FB3	4-METHYL-2-PENTANONE (MIBK) (108-10-1)	UJ, RP1
	114906-001 / MWL-FB3	ACETONE (67-64-1)	J, RP1
	114906-001 / MWL-FB3	BENZENE (71-43-2)	J, RP1
	114906-001 / MWL-FB3	BENZYL CHLORIDE (100-44-7)	UJ, RP1
	114906-001 / MWL-FB3	BROMODICHLOROMETHANE (75-27-4)	UJ, RP1
	114906-001 / MWL-FB3	BROMOFORM (75-25-2)	UJ, RP1
	114906-001 / MWL-FB3	BROMOMETHANE (74-83-9)	UJ, RP1
	114906-001 / MWL-FB3	CARBON DISULFIDE (75-15-0)	J, RP1
	114906-001 / MWL-FB3	CARBON TETRACHLORIDE (56-23-5)	UJ, RP1
	114906-001 / MWL-FB3	CHLOROBENZENE (108-90-7)	J, RP1
	114906-001 / MWL-FB3	CHLOROETHANE (75-00-3)	UJ, RP1
	114906-001 / MWL-FB3	CHLOROFORM (67-66-3)	UJ, RP1
	114906-001 / MWL-FB3	CHLOROMETHANE (74-87-3)	UJ, RP1
	114906-001 / MWL-FB3	CIS-1,2-DICHLOROETHENE (156-59-2)	UJ, RP1
	114906-001 / MWL-FB3	CIS-1,3-DICHLOROPROPENE (10061-01-5)	UJ, RP1
	114906-001 / MWL-FB3	DIBROMOCHLOROMETHANE (124-48-1)	UJ, RP1
	114906-001 / MWL-FB3	DICHLORODIFLUOROMETHANE (75-71-8)	UJ, RP1
	114906-001 / MWL-FB3	ETHYLBENZENE (100-41-4)	UJ, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114906-001 / MWL-FB3	HEXACHLOROBUTADIENE (87-68-3)	UJ, RP1
	114906-001 / MWL-FB3	M,P-XYLENE (179601-23-1)	UJ, RP1
	114906-001 / MWL-FB3	METHYLENE CHLORIDE (75-09-2)	UJ, RP1
	114906-001 / MWL-FB3	O-XYLENE (95-47-6)	UJ, RP1
	114906-001 / MWL-FB3	STYRENE (100-42-5)	UJ, RP1
	114906-001 / MWL-FB3	TETRACHLOROETHENE (127-18-4)	UJ, RP1
	114906-001 / MWL-FB3	TOLUENE (108-88-3)	UJ, RP1
	114906-001 / MWL-FB3	TRANS-1,2-DICHLOROETHENE (156-60-5)	UJ, RP1
	114906-001 / MWL-FB3	TRANS-1,3-DICHLOROPROPENE (10061-02-6)	UJ, RP1
	114906-001 / MWL-FB3	TRICHLOROETHENE (79-01-6)	UJ, RP1
	114906-001 / MWL-FB3	TRICHLOROFLUOROMETHANE (75-69-4)	UJ, RP1
	114906-001 / MWL-FB3	VINYL ACETATE (108-05-4)	UJ, RP1
	114906-001 / MWL-FB3	VINYL CHLORIDE (75-01-4)	UJ, RP1
	114907-001 / MWL-SV03-50	BENZENE (71-43-2)	0.00091U, B2
	114907-001 / MWL-SV03-50	CARBON DISULFIDE (75-15-0)	0.0023U, B,B2
	114908-001 / MWL-SV03-50	BENZENE (71-43-2)	0.00066U, B2
	114908-001 / MWL-SV03-50	CARBON DISULFIDE (75-15-0)	0.0017U, B,B2
	114909-001 / MWL-SV03-100	BENZENE (71-43-2)	0.0012U, B2
	114910-001 / MWL-SV03-200	BENZENE (71-43-2)	0.0012U, B2
	114910-001 / MWL-SV03-200	CARBON DISULFIDE (75-15-0)	0.0029U, B,B2
	114910-001 / MWL-SV03-200	CHLOROBENZENE (108-90-7)	0.0012U, B,B2
	114911-001 / MWL-SV03-300	BENZENE (71-43-2)	0.0017U, B2
	114911-001 / MWL-SV03-300	CARBON DISULFIDE (75-15-0)	0.0042U, B,B2
	114911-001 / MWL-SV03-300	CHLOROBENZENE (108-90-7)	0.0017U, B2
	114912-001 / MWL-SV03-400	BENZENE (71-43-2)	0.0022U, B2
	114912-001 / MWL-SV03-400	CARBON DISULFIDE (75-15-0)	0.0055U, B,B2
	114912-001 / MWL-SV03-400	CHLOROBENZENE (108-90-7)	0.0022U, B2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114913-001 / MWL-SV03-400	BENZENE (71-43-2)	0.0022U, B2
	114913-001 / MWL-SV03-400	CARBON DISULFIDE (75-15-0)	0.0055U, B,B2
	114914-001 / MWL-FB4	1,1,1-TRICHLOROETHANE (71-55-6)	UJ, RP1
	114914-001 / MWL-FB4	1,1,2,2-TETRACHLOROETHANE (79- 34-5)	UJ, RP1
	114914-001 / MWL-FB4	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE (76-13-1)	UJ, RP1
	114914-001 / MWL-FB4	1,1,2-TRICHLOROETHANE (79-00-5)	UJ, RP1
	114914-001 / MWL-FB4	1,1-DICHLOROETHANE (75-34-3)	UJ, RP1
	114914-001 / MWL-FB4	1,1-DICHLOROETHENE (75-35-4)	UJ, RP1
	114914-001 / MWL-FB4	1,2,4-TRICHLOROBENZENE (120-82- 1)	UJ, RP1
	114914-001 / MWL-FB4	1,2,4-TRIMETHYLBENZENE (95-63-6)	UJ, RP1
	114914-001 / MWL-FB4	1,2-DIBROMOETHANE (EDB) (106- 93-4)	UJ, RP1
	114914-001 / MWL-FB4	1,2-DICHLORO-1,1,2,2- TETRAFLUOROETHANE (76-14-2)	UJ, RP1
	114914-001 / MWL-FB4	1,2-DICHLOROBENZENE (95-50-1)	UJ, RP1
	114914-001 / MWL-FB4	1,2-DICHLOROETHANE (107-06-2)	UJ, RP1
	114914-001 / MWL-FB4	1,2-DICHLOROPROPANE (78-87-5)	UJ, RP1
	114914-001 / MWL-FB4	1,3,5-TRIMETHYLBENZENE (108-67-8)	UJ, RP1
	114914-001 / MWL-FB4	1,3-DICHLOROBENZENE (541-73-1)	UJ, RP1
	114914-001 / MWL-FB4	1,4-DICHLOROBENZENE (106-46-7)	UJ, RP1
	114914-001 / MWL-FB4	2-BUTANONE (MEK) (78-93-3)	J, RP1
	114914-001 / MWL-FB4	2-HEXANONE (591-78-6)	UJ, RP1
	114914-001 / MWL-FB4	4-ETHYLTOLUENE (622-96-8)	UJ, RP1
	114914-001 / MWL-FB4	4-METHYL-2-PENTANONE (MIBK) (108-10-1)	UJ, RP1
	114914-001 / MWL-FB4	ACETONE (67-64-1)	J, RP1
	114914-001 / MWL-FB4	BENZENE (71-43-2)	UJ, RP1

A	C	A	0 115
Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114914-001 / MWL-FB4	BENZYL CHLORIDE (100-44-7)	UJ, RP1
	114914-001 / MWL-FB4	BROMODICHLOROMETHANE (75-27-4)	UJ, RP1
	114914-001 / MWL-FB4	BROMOFORM (75-25-2)	UJ, RP1
	114914-001 / MWL-FB4	BROMOMETHANE (74-83-9)	UJ, RP1
	114914-001 / MWL-FB4	CARBON DISULFIDE (75-15-0)	J, RP1
	114914-001 / MWL-FB4	CARBON TETRACHLORIDE (56-23-5)	UJ, RP1
	114914-001 / MWL-FB4	CHLOROBENZENE (108-90-7)	J, RP1
	114914-001 / MWL-FB4	CHLOROETHANE (75-00-3)	UJ, RP1
	114914-001 / MWL-FB4	CHLOROFORM (67-66-3)	UJ, RP1
	114914-001 / MWL-FB4	CHLOROMETHANE (74-87-3)	UJ, RP1
	114914-001 / MWL-FB4	CIS-1,2-DICHLOROETHENE (156-59-2)	UJ, RP1
	114914-001 / MWL-FB4	CIS-1,3-DICHLOROPROPENE (10061-01-5)	UJ, RP1
	114914-001 / MWL-FB4	DIBROMOCHLOROMETHANE (124-48-1)	UJ, RP1
	114914-001 / MWL-FB4	DICHLORODIFLUOROMETHANE (75-71-8)	UJ, RP1
	114914-001 / MWL-FB4	ETHYLBENZENE (100-41-4)	UJ, RP1
	114914-001 / MWL-FB4	HEXACHLOROBUTADIENE (87-68-3)	UJ, RP1
	114914-001 / MWL-FB4	M,P-XYLENE (179601-23-1)	UJ, RP1
	114914-001 / MWL-FB4	METHYLENE CHLORIDE (75-09-2)	UJ, RP1
	114914-001 / MWL-FB4	O-XYLENE (95-47-6)	UJ, RP1
	114914-001 / MWL-FB4	STYRENE (100-42-5)	UJ, RP1
	114914-001 / MWL-FB4	TETRACHLOROETHENE (127-18-4)	UJ, RP1
	114914-001 / MWL-FB4	TOLUENE (108-88-3)	UJ, RP1
	114914-001 / MWL-FB4	TRANS-1,2-DICHLOROETHENE (156-60-5)	UJ, RP1
	114914-001 / MWL-FB4	TRANS-1,3-DICHLOROPROPENE (10061-02-6)	UJ, RP1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114914-001 / MWL-FB4	TRICHLOROETHENE (79-01-6)	UJ, RP1
	114914-001 / MWL-FB4	TRICHLOROFLUOROMETHANE (75-69-4)	UJ, RP1
	114914-001 / MWL-FB4	VINYL ACETATE (108-05-4)	UJ, RP1
	114914-001 / MWL-FB4	VINYL CHLORIDE (75-01-4)	UJ, RP1
	114915-001 / MWL-SV04-50	2-BUTANONE (MEK) (78-93-3)	0.0029U, B2
	114915-001 / MWL-SV04-50	ACETONE (67-64-1)	0.015U, B2
	114915-001 / MWL-SV04-50	CARBON DISULFIDE (75-15-0)	0.0015U, B,B2
	114916-001 / MWL-SV04-100	CARBON DISULFIDE (75-15-0)	0.0025U, B,B2
	114916-001 / MWL-SV04-100	CHLOROBENZENE (108-90-7)	0.00099U, B,B2
	114917-001 / MWL-SV04-200	CARBON DISULFIDE (75-15-0)	0.0038U, B,B2
	114918-001 / MWL-SV04-300	CARBON DISULFIDE (75-15-0)	0.0039U, B,B2
	114919-001 / MWL-SV04-400	2-BUTANONE (MEK) (78-93-3)	0.0031U, B2
	114919-001 / MWL-SV04-400	ACETONE (67-64-1)	0.015U, B2
	114919-001 / MWL-SV04-400	CARBON DISULFIDE (75-15-0)	0.0015U, B,B2
	114919-001 / MWL-SV04-400	CHLOROBENZENE (108-90-7)	0.00061U, B,B2
	114920-001 / MWL-FB5	CARBON DISULFIDE (75-15-0)	0.002U, B
	114920-001 / MWL-FB5	CHLOROBENZENE (108-90-7)	0.00008U, B
	114921-001 / MWL-SV05-50	CARBON DISULFIDE (75-15-0)	0.0016U, B
	114924-001 / MWL-SV05-300	CARBON DISULFIDE (75-15-0)	0.0031U, B
	114925-001 / MWL-SV05-400	CARBON DISULFIDE (75-15-0)	0.003U, B

All other analyses met QC acceptance criteria; no further data should be qualified.

Sandia Data Validation Summary Worksheet

ARCOC#: 622030, 622031, 622032, 622033 and 622034	Site/Project: MWL	LTMMP				Validation E	Validation Date: 06/18/2021				
SDG #: 140-23051	Laboratory: Eurofin	ns TestAmeric		Validator: M	Iary Donivan						
Matrix: Air	# of Samples: 24	CVI	CVR present: Yes								
ARCOC(s) present: Yes	Sample Container l	Integrity: OK									
Analysis Type: ☑ Organic ☐ Metals ☐ Geno	hem R	m 🔲 Rad									
	Req	uested Analy	yses Not	Reported							
Client Sample ID Lab Sam		Analysis		-	Cor	nments					
None											
	Hol	d Time/Pres	ervation	Outliers							
Client Sample ID Lab Samp	le ID Analy	rsis P	res.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT			
None											
C + C H + 1 05/0/2021	<u> </u>	l									
Comments: Collected: 05/06/2021											
No custody seals.											
Validated by:											
Mary A. Donivas	<u>~</u>	2									

Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622030, 622031, 622032, 622033 and 622034	SDG: 140-23051	Matrix: Air
Laboratory Sample IDs: 140-23051-1 through -24		
Method/Batch #s: TO-15 /49778 (-1, -3, -5, -11); 49841 (-2, -6 through -9, -9DU, -19); 49913 (-4, -10, -12 through -15, -15DU); 49973 (-10DL, -13DL -16 through -18, -20, -21, -23, -23DU, -24); 50024 (-22, -22DU)	Tuning (pass/fail):pass	TICs Required? (yes/no):no

		Calil	oration										
Analyte (outliers)	Int.	RF/ Slope	RSD/ r ²	(ICV)/ CCV %D	МВ	5X (10X) MB	LCS %R	Lab. REP RPD	FB1 -1	5X (10X)	FB2 -3	5X (10X)	
Instrument MS ICAL 02/22/21 Batch 49778 (samples -1 -3, -5,													
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	✓	✓	+56	✓	NA	156	NA	✓	NA	✓	NA	
Hexachlorobutadiene	NA	✓	✓	+37	✓	NA	137	NA	✓	NA	✓	NA	
Acetone	NA	✓	✓	✓	✓	NA	✓	NA	✓	NA	0.0011J	(0.011)	
Benzene	NA	✓	✓	✓	✓	NA	✓	NA	✓	NA	0.0000087J	0.000044	
2-Butanone	NA	✓	✓	✓	✓	NA	✓	NA	✓	NA	0.00016J	(0.0016)	
Carbon disulfide	NA	✓	✓	✓	✓	NA	✓	NA	0.000035J	0.00018	0.000017J	0.000085	
Tetrachloroethene	NA	✓	✓	✓	✓	NA	✓	NA	0.000021J	0.00011	0.0000075J	0.000038	
									FB4 -5	5X (10X)	FB3 -11	5X (10X)	
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	✓	√	+56	✓	NA	156	NA	✓	NA	✓	NA	
Hexachlorobutadiene	NA	✓	✓	+37	✓	NA	137	NA	✓	NA	✓	NA	
Acetone	NA	✓	✓	✓	✓	NA	✓	NA	0.0018J	(0.018)	0.00058J	(0.0058)	
Benzene	NA	✓	✓	✓	✓	NA	✓	NA	✓	NA	0.0000099J	0.000050	
2-Butanone	NA	✓	✓	✓	✓	NA	✓	NA	0.00019J	(0.0019)	✓	NA	
Carbon disulfide	NA	✓	✓	✓	✓	NA	✓	NA	0.000018J	0.00009	0.000018	0.00009	
Chlorobenzene	NA	✓	✓	✓	✓	NA	✓	NA	0.000010J	0.00005	0.0000087J	0.000044	

		Cali	bration									
Analyte (outliers)	Int.	RF/ Slope	RSD/ r ²	(ICV)/CC V %D	МВ	5X (10X) MB	LCS %R	Lab. REP RPD	FB5 -19	5X (10X)		
Batch 49841 (samples -2, -6 th	hrough -9, -9D	U, -19)										
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	✓	✓	+55	✓	NA	155	✓	✓	NA		
Bromomethane	NA	✓	✓	+43	✓	NA	143	✓	✓	NA		
Vinyl acetate	NA	✓	✓	-35	✓	NA	✓	✓	✓	NA		
4-Methyl-2-pentanone	NA	✓	✓	-36	✓	NA	✓	✓	✓	NA		
Hexachlorobutadiene	NA	✓	✓	+38	✓	NA	138	✓	✓	NA		
Carbon disulfide	NA	✓	✓	✓	0.0000146J	0.00007	✓	✓	0.000023J	0.00012		
Chlorobenzene	NA	✓	✓	✓	.00000899J	0.00004	✓	✓	0.0000077J	0.000039		
Methylene chloride	NA	✓	✓	✓	✓	NA	✓	✓	0.00059	(0.0059)		
Trichlorofluoromethane	NA	✓	✓	✓	✓	NA	✓	✓	0.000021J	0.00011		
Batch 49913 (samples -4, -10,	 12 through -	15, -15D	U)									
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	√	✓	+62	✓	NA	162	✓				
Vinyl acetate	NA	✓	✓	-34	✓	NA	✓	✓				
4-Methyl-2-pentanone	NA	✓	✓	-34	✓	NA	✓	✓				
Hexachlorobutadiene	NA	✓	✓	+39	✓	NA	139	✓				
Carbon disulfide	NA	✓	✓	✓	.0000128J	.000064	✓	✓				
Chlorobenzene	NA	✓	✓	✓	.0000086J	.000043	✓	✓				
Batch 49973 (samples -10DL,	 , -13DL -16 th	rough -1	8, -20, -2	<u> </u> 21, -23, -23DU	J, -24)							
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	✓	✓	+70	✓	NA	170	✓				
Bromomethane	NA	✓	✓	+36	✓	NA	136	✓				
4-Methyl-2-pentanone	NA	✓	✓	-32	✓	NA	✓	✓				
Hexachlorobutadiene	NA	✓	✓	+48	✓	NA	148	✓				
Carbon disulfide	NA	✓	✓	✓	0.0000144J	.000072	✓	✓				
Batch 50024 (samples -22, -22	 2DU)											
1,2-Dichloro-1,1,2,2- tetrafluoroethane	NA	✓	✓	+81	✓	NA	181	✓				
Bromoform	NA	✓	✓	+35	✓	NA	134	✓				
Bromomethane	NA	✓	✓	+61	✓	NA	161	✓				
4-Methyl-2-pentanone	NA	✓	✓	-38	✓	NA	✓	✓				
Hexachlorobutadiene	NA	✓	✓	+67	✓	NA	167	✓				
Vinyl acetate			NA	✓	✓							
Vinyl chloride	NA	✓	✓	+34	✓	NA	134	✓				

	Surrogate Recovery Outliers														
Sample ID	1,2-DCA-d4 %R	To	oluene-d8 %R	BFB %R	R Sa		D 1,2-I	OCA-d4 %R	Toluene-d8 %R		BFB %R				
None															
	IS Outliers														
	СВМ		DFB	BZ C		l-d5									
Sample ID	Area	RT	Area	RT	Area	RT									
None															

Comments: HTs OK. LCS limits MWL 50-130% ICAL MS 02/22/2021; All Avg,

Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by Eurofins TestAmerica Knoxville. Canisters < RL for all target compounds.

140-23051 Chain of Custody

Internal Lab	1.													F	Page 1 of	f 1
Batch No. /	VA				SMO Ųse						100	7		AR/COC		2030
Project Name	9 :	MWL LTMMP	Date Samp	es Shipped				SMO A	uthorization	21	9/1				624	2030
Project/Task	Manager:	Timmie Jackson	Carrier/Way		320		7		ontact Phone	7	120		_	Waste Characterization		
Project/Task	Number:	195122.10.11.08	Lab Contac		Jamie Mcki		91-3006				5-844-3132			RMA		
Service Orde	er:	CF01-21	Lab Destina	tion:	TAKX	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0000	Send R	eport to SMC).	3-044-3132			Released by COC No.	☑ 4	10 0 - 1 - 1
			Contract No	ı.:	1636780				•		05-284-255	3	Bill to: 4	Pondia National Laborator		l ^o Celsius
Tech Area:									оторнато	IVIOITATIO/ S	00-204-200			Sandia National Laboratorie ox 5800, MS-0154	s (Accour	nts Payable)
Building:		Room:	Operation	al Site:									1			
			1-7-	Depth	Date	/Time	Sample		ontainer	Preserv-	Collection	C1-		erque, NM 87185-0154		
Sample No.	Fraction	Sample Location	n Detail	(ft)		ected	Matrix	Type	Volume	ative	Method	Sample Type		Parameter & Method		Lab
114902	001	MWL-FB1 3	4000184	NA									1,000,000	Requested		Sample ID
			4000164	INA	5/6/21	12:22	UPN	S	6 L	None	G	FB	VOC (TO	J-15)		
114903	001	MWL-SV01-42.5 34	001308	42.5	5/6/21	12:47	SG	s	6 L	None	G	SA	VOC (TO	D-15)		
													1			
		- 10		-			+						ļ			
		Received a	dubier	+ T	Paxer											
		Fedex G. 1	V- C.	4	seal											
		1 . T / / / / /	34 C	1001 >	Jean								-			
	-	+-K#4993	J V /.	156-1												
1		KLN 5/11/2)/													
		11/		15/1/21	1											
		28cg1	J.C/V-	Tloke	r, 1091	100										
			,		′ ′				-							
													+			
Last Chain																
Last Chain		Yes		Sample	Tracking		SMO	Use	Special Ins	tructions/	QC Require	ements:			Condit	tions on
Validation		☑ Yes	*****	Date Ent	ered:				EDD		✓ Yes					ceipt
Backgroun		☐ Yes		Entered	by:				Turnaroun	d Time	☐ 7-Day*		15-Day	/* ☑ 30-Day		o.pt
Confirmate		☐ Yes		QC inits.					Negotiated	TAT				co Bay		
Sample			ature	Init.	Compar	ny/Organiza	tion/Phone	/Cell	Sample Dis		Return	to Client		☑ Disposal by Lab		
Team	William G	Bibson Wille	will	WY	SNL/08888/	505-284-33	307/505-23	9-7367	Return San	·		10 0 110111		Disposar by Lab		
Members	Robert Ly			AL	SNL/08888/	505-844-40	13/505-25	0-7090			and ambient	pressure	informa	tion provided on		
	Zachary 1			12	SNL/08888/	505-845-86	36/505-25	9-5765	attached for	ms.				men provided off		
	Denisha S	Sanchez	Sund	B	SNL/08888/	505-845-78	329/505-20	8-1375	1							
			0						1						Lah	Use
Relinquished	by 3	793-79	Org. 388	8 Date	5/6/21	Time	1455	Relinqui	shed by			Org.		Date	Time	030
Received by	DR1	19 lan	Org. Ob C	3 Date		Time j		Receive				Org.		Date	Time	
Relinquished	бу	79 km	Org.061			Z/Time C	830	Relinqui	shed by			Org.		Date	Time	
Received by	16		Org. E7	A Date	5/41/2	/ Time		Receive				Org.		Date	Time	
Prior confin	mation wi	th SMO required for 7 ar	nd 15 day TAT	•												

Internal Lab											4		<u>_</u>	Page 1 of 1
Batch No. Project Name:	AMAU I TIME			SMO Use					- 1	1/2//			AR/COC	622031
	MWL LTMMP Timmie Jackson	Date Samples			10/		SMO A	uthorization:	46	7/1			Waste Characterization	
Project/Task Numb		Carrier/Waybi	ill No.	320		+	SMO C	ontact Phone			SMO	F	RMA	
Service Order:	er: <u>195122.10.11.08</u> CF01-21	Lab Contact:		Jamie Mckinn	ey/865-29	91-3006		Wendy P	alencia/50	5-844-3132		│ □ F	Released by COC No.	
Service Order.	CF01-21	Lab Destination	on:	TAKX			Send R	eport to SMC):			7	•	✓ 4° Celsius
T		Contract No.:		1636780				Stephanie I	Montaño/5	05-284-2553	3	Bill to: S	Sandia National Laboratorie	
Tech Area:													x 5800, MS-0154	- (
Building:	Room:	Operational	Site:									1	erque, NM 87185-0154	
	.		Depth	Date/Ti	ime	Sample	C	ontainer	Preserv-	Collection	Sample		Parameter & Method	1.46
Sample No. Frac	ion Sample Location	n Detail	(ft)	Collect	ted	Matrix	Туре	Volume	ative	Method	Туре		Requested	Lab Sample II
114904 001	MWL-FB2	10883	NA	5/6/21	12:20	UPN	S	6 L	None	G	FB	VOC (TO		Cample II
114905 001	MWL-SV02-41.5 1	0375	41.5		12:38	SG	S					VOC (TO	15)	
			11.0	0/0/21	12.50	36	3	6 L	None	G	SA	100 (10	-10)	
		1.	. [-]			+								
	Received @	ambien	t, 3 b	Xes										
	Fodex G, No	Custody	seal											
	1-K#4442	3457	336	7							*****			
	K11.c/11/21		,	,										
	TIM OTIVAL	- , A	Wir	11/2		-								
	2 an	J 940	100	11/21										
Last Chain:	☐ Yes	5	Sample	Tracking		SMO	Use	Special Ins	tructions/	OC Require	monte			O a series
Validation Req'o			Date Ente	ered:				EDD		☑ Yes	michts.			Conditions on
Background:	☐ Yes	E	Entered b	y:				Turnaround	d Time	☐ 7-Day*		15-Day	* 🗹 30-Day	Receipt
Confirmatory:	☐ Yes		QC inits.:					Negotiated	TAT			10 Day	L 30-Day	
Sample		nature	Init.	Company/0	Organizat	tion/Phone		Sample Dis		Return	to Client		☑ Disposal by Lab	
1 00111	n Gibson Willen		WX	SNL/08888/50	5-284-33	07/505-23	9-7367	Return Sam			Olloni		Disposal by Lab	
MCIIIDCI SI	t Lynch		22	SNL/08888/50	5-844-40	13/505-25	0-7090			and ambient	pressure	informat	ion provided on	
Zacha	ry Tenorio		21	SNL/08888/50	5-845-863	36/505-25	9-5765	attached for	ms.		procourc	mormat	ion provided on	
Denis	na Sanchez	Sound		SNL/08888/50										
		0												1-01-11-
Relinquished by 3	10/1	Org. 8888	Date	5/6/21	Time /	455	Relinquis	shed by			Org.		Date	Lab Use
Received by	3h An the m	@ Org.06/8	Date 4			-	Received				Org.		Date	Time
Relinquished by	ahg for gi	W Org 26/8	Date.		Time		Relinquis				Org.		Date	Time
Received by	1~ ·	Org. ETA	Date	mil I I I I	Time /		Received				Org.		Date	Time
	with SMO required for 7 ar							·· j			Old.		Date	Time

Internal Lab														F	Page 1 of 1
Batch No. /	Vit				SMO Use	,					101	1		AR/COC	622032
Project Name	э:	MWL LTMMP	Date Sample	es Shipped	5/ +1	2021		SMO A	uthorization	210	166	-	ПП	Waste Characterization	
Project/Task	0	Timmie Jackson	Carrier/Way	bill No.	320	189	7	ѕмо с	ontact Phone		-		4 —	RMA	
Project/Task	Number:	195122.10.11.08	Lab Contact		Jamie Mckir	ney/865-29	91-3006	1	Wendy Pa	alencia/505	5-844-3132			Released by COC No.	
Service Orde	er:	CF01-21	Lab Destina	tion:	TAKX			Send R	eport to SMC				1 '''		✓ 4° Celsius
			Contract No	.:	1636780			1			05-284-2553	3	Bill to: S	Sandia National Laboratorie	
Tech Area:								1					7	ox 5800, MS-0154	o (ricecumo rayabie),
Building:		Room:	Operation	al Site:									1	erque, NM 87185-0154	
				Depth	Date/	Time	Sample	C	ontainer	Preserv-	Collection	Sample		Parameter & Method	Lab
Sample No.	Fraction	Sample Location	on Detail	(ft)	Colle	ected	Matrix		Volume	ative	Method	Туре		Requested	Sample ID
114906	001	MWL-FB3	34000212	NA	5/6/21	09:55	UPN	S	6 L	None	G	FB	VOC (TC	D-15)	
114907	001	MWL-SV03-50	34000493	50	5/6/21	10:03	SG	S	6 L	None	G	SA	VOC (TC)-15)	
114908	001	MWL-SV03-50	10635	50	5/6/21	10:03	SG	S	6 L	None	G	DU	VOC (TC)-15)	
114909	001	MWL-SV03-100	34000888	100	5/6/21	10:08	SG	S	6 L	None	G	SA	VOC (TC) -15)	
114910	001	MWL-SV03-200	09623	200	5/6/21	10:16	SG	S	6 L	None	G	SA	VOC (TC)-15)	
114911	001	MWL-SV03-300	7959	300	5/6/21	10:25	SG	S	6 L	None	G	SA	VOC (TC	D-15)	
114912	001	MWL-SV03-400	11300	400	5/6/21	11:09	SG	S	6 L	None	G	SA	VOC (TC	O-15)	
114913	001	MWL-SV03-400	34002118	400	5/6/21	11:09	SG	S	6 L	None	G	DU	VOC (TC	D-15)	
Last Chain	 :	Yes		Sample	Tracking		SMO	Use	Special Inc	tructions!	OC Dei				
Validation		✓ Yes		Date Ent			SIVIO	Ose	Special Ins	tructions	V Yes	ements:			Conditions on
Backgroun		Yes		Entered											Receipt
Confirmate		Yes		QC inits.					Turnaroun				15-Day	/*	
Sample			ınature	Init.		y/Organizat	ion/Dhone	/Call	Negotiated		<u> </u>				
Team	William G	ibson ////	Bull		SNL/08888/				Sample Dis Return San		Return	to Client		✓ Disposal by Lab	
Members	Robert Ly	77700	0.7		SNL/08888/						and ambient	22222112	info	ation provided on	
wembers	Zachary 1			1	SNL/08888/				attached for		and ambient	pressure	intorma	ation provided on	
	Denisha S		Pus		SNL/08888/										
			Come	100	0112/00000/	303-043-70	29/303-20	10-13/3							
Relinquished	by 3	20	Org. 588	Date	3/6/21	Time /	455	Relinqui	shed by			Org.		Date	Lab Use
Received by		19. Cm	Org Of			Time / 4		Receive				Org.		Date	Time Time
Relinquished	by A	690 Em	Org. 06(& Date			830					Org.		Date	Time
Received by	16	- lin	Org. E7		5/112	Time		Receive				Org.		Date	Time
→Prior confir	mation wi	th SMO required for 7 a	and 15 day TAT												711110

Internal Lab														Page 1 of 1
Batch No. A	1A				SMO Ușe						101		AR/COC	622033
Project Name		MWL LTMMP	Date Sample	s Shipped		t/21		SMO A	uthorization:	610	yola	~	☐ Waste Characterization	
Project/Task	Manager:	Timmie Jackson	Carrier/Wayl	oill No	38		17	SMO C	ontact Phone	2			RMA	ļ
Project/Task	Number:	195122.10.11.08	Lab Contact:		Jamie Mckir	ney/865-29	91-3006		Wendy Pa	alencia/505	5-844-3132		Released by COC No.	ĺ
Service Order	r:	CF01-21	Lab Destinat	ion:	TAKX			Send Re	eport to SMO):			1 - '	☑ 4° Celsius
			Contract No.		1636780]	Stephanie I	Montaño/50	05-284-2553		Bill to: Sandia National Laborato	
Tech Area:													P.O. Box 5800, MS-0154	(iccounts t ajasio),
Building:		Room:	Operationa	al Site:									Albuquerque, NM 87185-0154	
			1.	Depth	Date/	Time	Sample	Co	ontainer	Presery-	Collection	Sample		d Lab
Sample No.	Fraction	Sample Location	Detail	(ft)	Colle		Matrix	Туре	Volume	ative	Method	Type	Requested	Sample ID
114914	001	MWL-FB4	11060	NA	5/6/21	08:41	UPN	s	6 L	None	G	FB	VOC (TO-15)	
114915	001	MWL-SV04-50	11151	50	5/6/21	08:56	SG	S	6 L	None	G	SA	VOC (TO-15)	
114916	001	MWL-SV04-100	10716	100	5/6/21	09:12	SG	S	6L	None	G	SA	VOC (TO-15)	
114917	001	MWL-SV04-200	11994	200	5/6/21	09:21	SG	S	6 L	None	G	SA	VOC (TO-15)	
114918	001	MWL-SV04-300	11159	300	5/6/21	09:34	SG	S	6 L	None	G	SA	VOC (TO-15)	
114919	001	MWL-SV04-400	12089	400	5/6/21	09:40	SG	S	6 L	None	G	SA	VOC (TO-15)	
Last Chain		☐ Yes		Sample	Tracking		SMC	Use	Special Ins	tructions	QC Require	ements:	1	Conditions on
Validation	Req'd:	☑ Yes		Date Ent	tered:				EDD		Yes			Receipt
Backgroun	ıd:	☐ Yes		Entered	by:				Turnaroun	d Time	☐ 7-Day*		15-Day* ☑ 30-Day	
Confirmato	ory:	Yes		QC inits		W. W			Negotiated		П			
Sample	N	lame Sigr	nature	Init. "	Compan	y/Organiza	tion/Phone	e/Cell	Sample Dis		Return	to Client	☑ Disposal by Lab	
Team	William C		Buch	202A	SNL/08888/				Return Sar	•			Diopocal by Lab	
Members	Robert L		25/	12	SNL/08888/						and ambient	pressure	e information provided on	
wembers	Zachary			21	SNL/08888/				attached for			, p. 5550a10	om adon provided on	
		Sanchez	Soul		SNL/08888/									
														Lab Use
Relinquished	by 3		Org. 3 88	8 Date	5/6/21	Time	1455	Relinqui	shed by			Org.	. Date	Time
Received by	-62	19. Pm	Org COG	👸 Date	5/2/21	Time /	455	Receive	d by			Org.		Time
Relinquished	by 0	9. Hen	Org@b1	🖇 Date	517121	Time 💍	830	Relinqui	shed by			Org.		Time
Received by	The	h	Org. <i>E</i> 7		5/11/21	Time /	1/45	Receive	d by			Org.		Time
*Prior confir	mation w	ith SMO required for 7 ar	nd 15 day TAT		-									

Internal Lab	1.4										4			<u>P</u>	age 1 of 1
Batch No.	VIA				SMO Use	1					12		AF	RICOC	622034
Project Name		MWL LTMMP	Date Samples	Shipped	517	121		SMO A	uthorization:	WN	19 4	-	☐ Waste Charac	terization	
Project/Task	Manager:	Timmie Jackson	Carrier/Waybi	ill No.	320	89	7	sмо с	ontact Phone				RMA		
Project/Task	Number:	195122.10.11.08	Lab Contact:		Jamie Mckin	ney/865-29	91-3006		Wendy Pa	alencia/50	5-844-3132		Released by C	OC No	
Service Orde	r:	CF01-21	Lab Destination	on:	TAKX			Send R	eport to SMC						✓ 4° Celsius
(1)			Contract No.:		1636780				Stephanie I	Montaño/5	05-284-2553	3	Bill to: Sandia Nationa	I I aboratorio	
Tech Area:	-										20 120 12000		P.O. Box 5800, MS-01		s (Accounts Fayable)
Building:		Room:	Operational	l Site:											
			To por acional	Depth	Date/	Time	Sample	C	ontainer	Preserv-	Collection	Camaria	Albuquerque, NM 871		
Sample No.	Fraction	Sample Location	Detail	(ft)	Colle		Matrix	Туре	Volume	ative	Method	Sample Type	1		Lab
				```		***************************************	IIIGUIX		Volume	duve	Wethou	туре	Reque	esteu	Sample II
114920	001	MWL-FB5 340	000504	NA_	5/6/21	11:34	UPN	S	6 L	None	G	FB	VOC (TO-15)		
114921	001	MWL-SV05-50 340	000346	50	5/6/21	12:08	SG	s	6 L	None	G	SA	VOC (TO-15)		
							36		O L	None	9	SA			
114922	001	MWL-SV05-100 09	530	100	5/6/21	12:09	SG	S	6 L	None	G	SA	VOC (TO-15)		
114923	001	MWL-SV05-200 12	103	200	5/6/21	11:49	SG	S	6 L	None	G	SA	VOC (TO-15)		
1							36	3	l or	None	G	SA	<del>                                     </del>		
114924	001	MWL-SV05-300 819	95	300	5/6/21	11:59	SG	S	6 L	None	G	SA	VOC (TO-15)		
114925	001	MWL-SV05-400 78	341	400	5/6/21	12:06	00	S	0.1	Name		C 4	VOC (TO-15)		
111020		1000 400 70	,	400	3/0/21	12.00	SG	3	6 L	None	G	SA			
1													<u></u>		
1															-
							_								
Last Chain		☐ Yes													
					Tracking		SMC	) Use	1	tructions	QC Require	ements:			Conditions on
Validation		☑ Yes		Date Ent					EDD		☑ Yes				Receipt
Backgroun		☐ Yes		Entered I	by:				Turnaroun	d Time	☐ 7-Day*		15-Day* ☑ 3	0-Day	
Confirmate	ory:	Yes		QC inits.					Negotiated	TAT					
Sample			ature	Init.	Compan	y/Organiza	tion/Phone	e/Cell	Sample Dis	sposal	☐ Return	to Client	✓ Dispos	al by Lab	
Team	William G	Bibson Wille	NAUH)	WM	SNL/08888/	505-284-33	307/505-23	39-7367	Return San	nples By:					
Members	Robert Ly	nch Colff	act	72	SNL/08888/	505-844-40	13/505-25	50-7090	Comments:	Elevation	and ambient	pressure	information provided	on	
Wichibers	Zachary	Tenorio 2		3	SNL/08888/	505-845-86	36/505-25	9-5765	attached for			,	, , , , , , , , , , , , , , , , , , ,		
	Denisha	Sanchez	Soul		SNL/08888/				1						
			O						1						Lab Use
Relinquished	by a	127	Org. 888	8 Date	5/6/21	Time	1455	Relinqui	shed by			Org.	Date		Time
Received by	120	1. 4. 19	Org. 2 (4	Date		Time /		Receive				Org.	Date		Time
Relinguished	by C	L. den	Org Ibi 8	7			No. of the last of	Relinqui				Org.	Date		
Received by	16	Lon		A Date		Time	1145	Receive				Org.	Date		Time Time
		ith SMO required for 7 an	d 15 day TAT	, ,	SI WO	/	, 10	1. 1000110	- ~ ;			Oig.	Date		TITLE

# Contract Verification Review Forms Mixed Waste Landfill Soil-Vapor Monitoring May 2021

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this annex.

AR/COC Number	Sample Type
622030	Environmental & Quality Control
622031	Environmental & Quality Control
622032	Environmental & Quality Control
622033	Environmental & Quality Control
622034	Environmental & Quality Control

SMO-2019-CVR (4-2019) SMO-05-03

# **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622030, 622031, 622032, 622033 & 622034

Analytical Lab TAKX

**SDG No.** 140-23051-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	Item		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

SMO-2019-CVR (4-2019)

Line	Item	Com	olete?	If no, explain
No.	itein	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

# 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	Several analytes failed recovery limits for LCS (batch 140-49778, 140-49841, 140-49913, 140-49973 and 140-50024)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		

SMO-2019-CVR (4-2019)

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Х		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	Х		Carbon disulfide and chlorobenzene detected in method blank (batch 140-49841 and 140-49913).  Carbon disulfide detected in method blank (140-49973).
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Carbon disulfide and tetrachloroethene detected in MWL-FB1. Acetone, benzene, 2-butanone, carbon disulfide and tetrachloroethene detected in MWL-FB2. Acetone, benzene, carbon disulfide and chlorobenzene detected in MWL-FB3. Acetone, 2-butanone, carbon disulfide and chlorobenzene detected in MWL-FB4. Carbon disulfide, chlorobenzene, methylene chloride and trichlorofluoromethane detected in MWL-FB5.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Χ		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		Several CCV analytes outside acceptance limits for batch 140-49778, 140-49841, 140-49913 batch 140-50024
	d) Internal standard performance data provided	Χ		

SMO-2019-CVR (4-2019)

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

#### 5.0 Data Anomaly Report

Line No.	ltem		No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data			
5.2	Problems or outliers noted			
5.3	Verification or reanalysis requested from lab			

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No.	Analysis	Problems/Comments/Resolutions
114918-001	TO-15	2 sets of results reported on COA

Were deficiencies unresolved? ⊙ Yes ○ No

Based on the review, this data package is complete. ○ Yes ○ No

If no, provide nonconformance report or correction request number 19819 and date correction request was submitted: 06-11-2021

Reviewed by: Wendy Palencia Date: 06-11-2021 09:39:00

Were resolutions adequate and data package complete? ⊙ Yes ⊃ No

Closed by: Wendy Palencia Date: 06-17-2021 07:15:00

# **Certificates of Analysis**

Mixed Waste Landfill

May 2021 Soil-Vapor Samples

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

**Client Sample ID: 114902-001 / MWL-FB1** 

Lab Sample ID: 140-23051-1 Date Collected: 05/06/21 12:22 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		0.0021	0.00058	ppm v/v		-	05/14/21 22:01	1.6
Benzene	ND		0.000082	0.0000082	ppm v/v			05/14/21 22:01	1.6
Benzyl chloride	ND		0.00016	0.000039	ppm v/v			05/14/21 22:01	1.6
Bromodichloromethane	ND		0.000082	0.000018	ppm v/v			05/14/21 22:01	1.6
Bromoform	ND		0.000082	0.0000092	ppm v/v			05/14/21 22:01	1.6
Bromomethane	ND		0.000082	0.000023	ppm v/v			05/14/21 22:01	1.6
2-Butanone (MEK)	ND		0.00041	0.000075	ppm v/v			05/14/21 22:01	1.6
Carbon disulfide	0.000035	J	0.00021	0.000011	ppm v/v			05/14/21 22:01	1.6
Carbon tetrachloride	ND		0.000082	0.0000072	ppm v/v			05/14/21 22:01	1.6
Chlorobenzene	ND		0.000082	0.0000062	ppm v/v			05/14/21 22:01	1.6
Chloroethane	ND		0.000082	0.000030				05/14/21 22:01	1.6
Chloroform	ND		0.000082	0.0000072				05/14/21 22:01	1.6
Chloromethane	ND		0.00021	0.000068				05/14/21 22:01	1.6
Dibromochloromethane	ND		0.000082	0.0000072				05/14/21 22:01	1.64
1,2-Dibromoethane (EDB)	ND		0.000082	0.0000072				05/14/21 22:01	1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.000082	0.000012				05/14/21 22:01	1.6
1,2-Dichlorobenzene	ND		0.000082	0.000032				05/14/21 22:01	1.6
1,3-Dichlorobenzene	ND		0.000082	0.000016				05/14/21 22:01	1.6
1,4-Dichlorobenzene	ND		0.000082	0.000016				05/14/21 22:01	1.6
Dichlorodifluoromethane	ND		0.000082	0.000014				05/14/21 22:01	1.6
1.1-Dichloroethane	ND		0.000082	0.0000072	•			05/14/21 22:01	1.6
1,2-Dichloroethane	ND		0.000082	0.000010				05/14/21 22:01	1.6
1,1-Dichloroethene	ND		0.000082	0.0000082				05/14/21 22:01	1.6
cis-1,2-Dichloroethene	ND		0.000082	0.000010				05/14/21 22:01	1.6
trans-1,2-Dichloroethene	ND		0.000082	0.0000072				05/14/21 22:01	1.6
1,2-Dichloropropane	ND		0.000082	0.000010				05/14/21 22:01	1.6
cis-1,3-Dichloropropene	ND		0.000082	0.000016				05/14/21 22:01	1.6
trans-1,3-Dichloropropene	ND		0.000082	0.0000092				05/14/21 22:01	1.6
Ethylbenzene	ND		0.000082	0.000013	•			05/14/21 22:01	1.6
4-Ethyltoluene	ND		0.00016	0.000022				05/14/21 22:01	1.6
Hexachlorobutadiene	ND		0.00041	0.000033	. <b></b>			05/14/21 22:01	1.6
2-Hexanone	ND		0.00021	0.000016	•			05/14/21 22:01	1.6
4-Methyl-2-pentanone (MIBK)	ND		0.00021	0.000055				05/14/21 22:01	1.6
Methylene Chloride	ND		0.00041	0.00040				05/14/21 22:01	1.6
Styrene	ND		0.000082	0.000025	• •			05/14/21 22:01	1.6
1,1,2,2-Tetrachloroethane	ND		0.000082	0.000014				05/14/21 22:01	1.6
Tetrachloroethene	0.000021		0.000082	0.0000072				05/14/21 22:01	1.6
Toluene	0.000021 ND	•	0.00012	0.0000072				05/14/21 22:01	1.6
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000082	0.0000082				05/14/21 22:01	1.6
1,2,4-Trichlorobenzene	ND		0.00041	0.000066				05/14/21 22:01	1.6
1,1,1-Trichloroethane	ND		0.000082	0.000038				05/14/21 22:01	1.6
1,1,2-Trichloroethane	ND		0.000082	0.0000072				05/14/21 22:01	1.6
Trichloroethene	ND		0.000082	0.0000072				05/14/21 22:01	1.6
Trichlorofluoromethane	ND		0.000041	0.000013				05/14/21 22:01	1.6
1,2,4-Trimethylbenzene	ND		0.000082	0.000011				05/14/21 22:01	1.6
			0.000082	0.000021					
1,3,5-Trimethylbenzene	ND ND		0.000062	0.000023				05/14/21 22:01 05/14/21 22:01	1.6
Vinyl acetate Vinyl chloride	ND ND		0.00041	0.000029	• •			05/14/21 22:01	1.64 1.64

Job ID: 140-23051-1

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114902-001 / MWL-FB1

Lab Sample ID: 140-23051-1 Date Collected: 05/06/21 12:22 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.000082	0.000030	ppm v/v			05/14/21 22:01	1.64
o-Xylene	ND		0.000082	0.000015	ppm v/v			05/14/21 22:01	1.64
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		60 - 140					05/14/21 22:01	1.64

Client Sample ID: 114903-001 / MWL-SV01-42.5 Lab Sample ID: 140-23051-2

Date Collected: 05/06/21 12:47 Date Received: 05/11/21 11:45

1,1,2,2-Tetrachloroethane

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.10	0.030	ppm v/v			05/18/21 16:20	1.56
Benzene	ND		0.0042	0.00042	ppm v/v			05/18/21 16:20	1.56
Benzyl chloride	ND		0.0083	0.0020	ppm v/v			05/18/21 16:20	1.56
Bromodichloromethane	ND		0.0042	0.00094	ppm v/v			05/18/21 16:20	1.56
Bromoform	ND		0.0042	0.00047	ppm v/v			05/18/21 16:20	1.56
Bromomethane	ND	*+	0.0042	0.0011	ppm v/v			05/18/21 16:20	1.56
2-Butanone (MEK)	ND		0.021	0.0038	ppm v/v			05/18/21 16:20	1.56
Carbon disulfide	0.0012	JB	0.010	0.00057	ppm v/v			05/18/21 16:20	1.56
Carbon tetrachloride	ND		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
Chlorobenzene	ND		0.0042	0.00031	ppm v/v			05/18/21 16:20	1.56
Chloroethane	ND		0.0042	0.0015	ppm v/v			05/18/21 16:20	1.56
Chloroform	0.010		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
Chloromethane	ND		0.010	0.0034	ppm v/v			05/18/21 16:20	1.56
Dibromochloromethane	ND		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
1,2-Dibromoethane (EDB)	ND		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0042	0.00062	ppm v/v			05/18/21 16:20	1.56
1,2-Dichlorobenzene	ND		0.0042	0.0016	ppm v/v			05/18/21 16:20	1.56
1,3-Dichlorobenzene	ND		0.0042	0.00083	ppm v/v			05/18/21 16:20	1.56
1,4-Dichlorobenzene	ND		0.0042	0.00083	ppm v/v			05/18/21 16:20	1.56
Dichlorodifluoromethane	0.067		0.0042	0.00073	ppm v/v			05/18/21 16:20	1.56
1,1-Dichloroethane	0.0015	J	0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
1,2-Dichloroethane	ND		0.0042	0.00052	ppm v/v			05/18/21 16:20	1.56
1,1-Dichloroethene	0.0045		0.0042	0.00042	ppm v/v			05/18/21 16:20	1.56
cis-1,2-Dichloroethene	0.00083	J	0.0042	0.00052	ppm v/v			05/18/21 16:20	1.56
trans-1,2-Dichloroethene	ND		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
1,2-Dichloropropane	ND		0.0042	0.00052	ppm v/v			05/18/21 16:20	1.56
cis-1,3-Dichloropropene	ND		0.0042	0.00083	ppm v/v			05/18/21 16:20	1.56
trans-1,3-Dichloropropene	ND		0.0042	0.00047	ppm v/v			05/18/21 16:20	1.56
Ethylbenzene	ND		0.0042	0.00068	ppm v/v			05/18/21 16:20	1.56
4-Ethyltoluene	ND		0.0083	0.0011	ppm v/v			05/18/21 16:20	1.56
Hexachlorobutadiene	ND		0.021	0.0017	ppm v/v			05/18/21 16:20	1.56
2-Hexanone	ND		0.010	0.00083	ppm v/v			05/18/21 16:20	1.56
4-Methyl-2-pentanone (MIBK)	ND		0.010	0.0028	ppm v/v			05/18/21 16:20	1.56
Methylene Chloride	ND		0.021	0.020	ppm v/v			05/18/21 16:20	1.56
Styrene	ND		0.0042	0.0012	ppm v/v			05/18/21 16:20	1.56

0.0042

ND

Eurofins TestAmerica, Knoxville

05/18/21 16:20

06/15/2021

1.56

Matrix: Air

Page 16 of 1775

0.00073 ppm v/v

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 114903-001 / MWL-SV01-42.5 Lab Sample ID: 140-23051-2

Date Collected: 05/06/21 12:47 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.26		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
Toluene	ND		0.0062	0.0041	ppm v/v			05/18/21 16:20	1.56
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.048		0.0042	0.00042	ppm v/v			05/18/21 16:20	1.56
1,2,4-Trichlorobenzene	ND		0.021	0.0033	ppm v/v			05/18/21 16:20	1.56
1,1,1-Trichloroethane	0.017		0.0042	0.0019	ppm v/v			05/18/21 16:20	1.56
1,1,2-Trichloroethane	ND		0.0042	0.00036	ppm v/v			05/18/21 16:20	1.56
Trichloroethene	0.057		0.0021	0.00068	ppm v/v			05/18/21 16:20	1.56
Trichlorofluoromethane	0.12		0.0042	0.00057	ppm v/v			05/18/21 16:20	1.56
1,2,4-Trimethylbenzene	ND		0.0042	0.0010	ppm v/v			05/18/21 16:20	1.56
1,3,5-Trimethylbenzene	ND		0.0042	0.0011	ppm v/v			05/18/21 16:20	1.56
Vinyl acetate	ND		0.021	0.0015	ppm v/v			05/18/21 16:20	1.56
Vinyl chloride	ND		0.0021	0.0014	ppm v/v			05/18/21 16:20	1.56
m,p-Xylene	ND		0.0042	0.0015	ppm v/v			05/18/21 16:20	1.56
o-Xylene	ND		0.0042	0.00078	ppm v/v			05/18/21 16:20	1.56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		60 - 140			-		05/18/21 16:20	1.56

**Client Sample ID: 114904-001 / MWL-FB2** 

Date Collected: 05/06/21 12:20 Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Lab Sample ID: 140-23051-3

Matrix: Air

Job ID: 140-23051-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0011	J	0.0020	0.00057	ppm v/v			05/14/21 22:55	1.57
Benzene	0.0000087	J	0.000080	0.0000080	ppm v/v			05/14/21 22:55	1.57
Benzyl chloride	ND		0.00016	0.000038	ppm v/v			05/14/21 22:55	1.57
Bromodichloromethane	ND		0.000080	0.000018	ppm v/v			05/14/21 22:55	1.57
Bromoform	ND		0.000080	0.0000090	ppm v/v			05/14/21 22:55	1.57
Bromomethane	ND		0.000080	0.000022	ppm v/v			05/14/21 22:55	1.57
2-Butanone (MEK)	0.00016	J	0.00040	0.000073	ppm v/v			05/14/21 22:55	1.57
Carbon disulfide	0.000017	J	0.00020	0.000011	ppm v/v			05/14/21 22:55	1.57
Carbon tetrachloride	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
Chlorobenzene	ND		0.000080	0.0000060	ppm v/v			05/14/21 22:55	1.57
Chloroethane	ND		0.000080	0.000029	ppm v/v			05/14/21 22:55	1.57
Chloroform	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
Chloromethane	ND		0.00020	0.000066	ppm v/v			05/14/21 22:55	1.57
Dibromochloromethane	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
1,2-Dibromoethane (EDB)	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.000080	0.000012	ppm v/v			05/14/21 22:55	1.57
1,2-Dichlorobenzene	ND		0.000080	0.000031	ppm v/v			05/14/21 22:55	1.57
1,3-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			05/14/21 22:55	1.57
1,4-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			05/14/21 22:55	1.57
Dichlorodifluoromethane	ND		0.000080	0.000014	ppm v/v			05/14/21 22:55	1.57
1,1-Dichloroethane	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
1,2-Dichloroethane	ND		0.000080	0.000010	ppm v/v			05/14/21 22:55	1.57
1,1-Dichloroethene	ND		0.000080	0.0000080	ppm v/v			05/14/21 22:55	1.57

Eurofins TestAmerica, Knoxville

Page 17 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114904-001 / MWL-FB2 Lab Sample ID: 140-23051-3

Date Collected: 05/06/21 12:20 **Matrix: Air** 

Date Received: 05/11/21 11:45 Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		0.000080	0.000010	ppm v/v			05/14/21 22:55	1.57
trans-1,2-Dichloroethene	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
1,2-Dichloropropane	ND		0.000080	0.000010	ppm v/v			05/14/21 22:55	1.57
cis-1,3-Dichloropropene	ND		0.000080	0.000016	ppm v/v			05/14/21 22:55	1.57
trans-1,3-Dichloropropene	ND		0.000080	0.0000090	ppm v/v			05/14/21 22:55	1.57
Ethylbenzene	ND		0.000080	0.000013	ppm v/v			05/14/21 22:55	1.57
4-Ethyltoluene	ND		0.00016	0.000021	ppm v/v			05/14/21 22:55	1.57
Hexachlorobutadiene	ND		0.00040	0.000032	ppm v/v			05/14/21 22:55	1.57
2-Hexanone	ND		0.00020	0.000016	ppm v/v			05/14/21 22:55	1.57
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000054	ppm v/v			05/14/21 22:55	1.57
Methylene Chloride	ND		0.00040	0.00039	ppm v/v			05/14/21 22:55	1.57
Styrene	ND		0.000080	0.000024	ppm v/v			05/14/21 22:55	1.57
1,1,2,2-Tetrachloroethane	ND		0.000080	0.000014	ppm v/v			05/14/21 22:55	1.57
Tetrachloroethene	0.0000075	J	0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
Toluene	ND		0.00012	0.000078	ppm v/v			05/14/21 22:55	1.57
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000080	0.0000080	ppm v/v			05/14/21 22:55	1.57
1,2,4-Trichlorobenzene	ND		0.00040	0.000064	ppm v/v			05/14/21 22:55	1.57
1,1,1-Trichloroethane	ND		0.000080	0.000037	ppm v/v			05/14/21 22:55	1.57
1,1,2-Trichloroethane	ND		0.000080	0.0000070	ppm v/v			05/14/21 22:55	1.57
Trichloroethene	ND		0.000040	0.000013	ppm v/v			05/14/21 22:55	1.57
Trichlorofluoromethane	ND		0.000080	0.000011	ppm v/v			05/14/21 22:55	1.57
1,2,4-Trimethylbenzene	ND		0.000080	0.000020	ppm v/v			05/14/21 22:55	1.57
1,3,5-Trimethylbenzene	ND		0.000080	0.000022	ppm v/v			05/14/21 22:55	1.57
Vinyl acetate	ND		0.00040	0.000028	ppm v/v			05/14/21 22:55	1.57
Vinyl chloride	ND		0.000040	0.000026	ppm v/v			05/14/21 22:55	1.57
m,p-Xylene	ND		0.000080	0.000029	ppm v/v			05/14/21 22:55	1.57
o-Xylene	ND		0.000080	0.000015	ppm v/v			05/14/21 22:55	1.57
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		60 - 140			-		05/14/21 22:55	1.57

Client Sample ID: 114905-001 / MWL-SV02-41.5

Lab Sample ID: 140-23051-4 Date Collected: 05/06/21 12:38 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

	Method: TO 15 L	L - Volatile Organic Com	oounds ii	n Ambient Air,	Low Con	centration	(GC/MS)
l	Analyte	Result	Qualifier	RL	MDL U	nit 🛭	D Prepare

Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
Acetone	0.029	J	0.079	0.022	ppm v/v			05/20/21 00:34	1.57
Benzene	0.00036	J	0.0031	0.00031	ppm v/v			05/20/21 00:34	1.57
Benzyl chloride	ND		0.0063	0.0015	ppm v/v			05/20/21 00:34	1.57
Bromodichloromethane	ND		0.0031	0.00071	ppm v/v			05/20/21 00:34	1.57
Bromoform	ND		0.0031	0.00035	ppm v/v			05/20/21 00:34	1.57
Bromomethane	ND		0.0031	0.00086	ppm v/v			05/20/21 00:34	1.57
2-Butanone (MEK)	0.0074	J	0.016	0.0029	ppm v/v			05/20/21 00:34	1.57
Carbon disulfide	0.0018	JB	0.0079	0.00043	ppm v/v			05/20/21 00:34	1.57
Carbon tetrachloride	ND		0.0031	0.00027	ppm v/v			05/20/21 00:34	1.57
Chlorobenzene	ND		0.0031	0.00024	ppm v/v			05/20/21 00:34	1.57
Chloroethane	ND		0.0031	0.0011	ppm v/v			05/20/21 00:34	1.57

Eurofins TestAmerica, Knoxville

Page 18 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114905-001 / MWL-SV02-41.5

Lab Sample ID: 140-23051-4 Date Collected: 05/06/21 12:38 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Chloroform	0.0021	J	0.0031	0.00027	ppm v/v			05/20/21 00:34	1.57
Chloromethane	ND		0.0079	0.0026	ppm v/v			05/20/21 00:34	1.57
Dibromochloromethane	ND		0.0031	0.00027	ppm v/v			05/20/21 00:34	1.57
1,2-Dibromoethane (EDB)	ND		0.0031	0.00027	ppm v/v			05/20/21 00:34	1.57
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.00058	J *+	0.0031	0.00047	ppm v/v			05/20/21 00:34	1.57
ane									
1,2-Dichlorobenzene	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
1,3-Dichlorobenzene	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
1,4-Dichlorobenzene	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
Dichlorodifluoromethane	0.082		0.0031		ppm v/v			05/20/21 00:34	1.57
1,1-Dichloroethane	0.0015	J	0.0031		ppm v/v			05/20/21 00:34	1.57
1,2-Dichloroethane	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
1,1-Dichloroethene	0.0067		0.0031	0.00031	ppm v/v			05/20/21 00:34	1.57
cis-1,2-Dichloroethene	0.00056	J	0.0031	0.00039	ppm v/v			05/20/21 00:34	1.57
trans-1,2-Dichloroethene	ND		0.0031	0.00027	ppm v/v			05/20/21 00:34	1.57
1,2-Dichloropropane	ND		0.0031	0.00039	ppm v/v			05/20/21 00:34	1.57
cis-1,3-Dichloropropene	ND		0.0031	0.00063	ppm v/v			05/20/21 00:34	1.57
trans-1,3-Dichloropropene	ND		0.0031	0.00035	ppm v/v			05/20/21 00:34	1.57
Ethylbenzene	ND		0.0031	0.00051	ppm v/v			05/20/21 00:34	1.57
4-Ethyltoluene	ND		0.0063	0.00082	ppm v/v			05/20/21 00:34	1.57
Hexachlorobutadiene	ND		0.016	0.0013	ppm v/v			05/20/21 00:34	1.57
2-Hexanone	ND		0.0079	0.00063	ppm v/v			05/20/21 00:34	1.57
4-Methyl-2-pentanone (MIBK)	ND		0.0079	0.0021	ppm v/v			05/20/21 00:34	1.57
Methylene Chloride	ND		0.016	0.015	ppm v/v			05/20/21 00:34	1.57
Styrene	ND		0.0031	0.00094	ppm v/v			05/20/21 00:34	1.57
1,1,2,2-Tetrachloroethane	ND		0.0031	0.00055	ppm v/v			05/20/21 00:34	1.57
Tetrachloroethene	0.048		0.0031	0.00027	ppm v/v			05/20/21 00:34	1.57
Toluene	ND		0.0047	0.0031	ppm v/v			05/20/21 00:34	1.57
1,1,2-Trichloro-1,2,2-trifluoroetha	0.035		0.0031	0.00031	ppm v/v			05/20/21 00:34	1.57
ne									
1,2,4-Trichlorobenzene	ND		0.016		ppm v/v			05/20/21 00:34	1.57
1,1,1-Trichloroethane	0.038		0.0031		ppm v/v			05/20/21 00:34	1.57
1,1,2-Trichloroethane	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
Trichloroethene	0.044		0.0016		ppm v/v			05/20/21 00:34	1.57
Trichlorofluoromethane	0.26		0.0031		ppm v/v			05/20/21 00:34	1.57
1,2,4-Trimethylbenzene	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
1,3,5-Trimethylbenzene	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
Vinyl acetate	ND		0.016		ppm v/v			05/20/21 00:34	1.57
Vinyl chloride	ND		0.0016		ppm v/v			05/20/21 00:34	1.57
m,p-Xylene	ND		0.0031		ppm v/v			05/20/21 00:34	1.57
o-Xylene	ND		0.0031	0.00059	ppm v/v			05/20/21 00:34	1.57
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		60 - 140					05/20/21 00:34	1.57

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 114914-001 / MWL-FB4

Lab Sample ID: 140-23051-5 Date Collected: 05/06/21 08:41 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		Prepared	Analyzed	Dil Fa
Acetone	0.0018	J	0.0020		ppm v/v		05/14/21 23:47	1.49
Benzene	ND		0.000080	0.0000080			05/14/21 23:47	1.49
Benzyl chloride	ND		0.00016	0.000038	ppm v/v		05/14/21 23:47	1.49
Bromodichloromethane	ND		0.000080	0.000018	ppm v/v		05/14/21 23:47	1.49
Bromoform	ND		0.000080	0.0000090	ppm v/v		05/14/21 23:47	1.49
Bromomethane	ND		0.000080	0.000022	ppm v/v		05/14/21 23:47	1.49
2-Butanone (MEK)	0.00019	J	0.00040	0.000073	ppm v/v		05/14/21 23:47	1.49
Carbon disulfide	0.000018	J	0.00020	0.000011	ppm v/v		05/14/21 23:47	1.49
Carbon tetrachloride	ND		0.000080	0.0000070	ppm v/v		05/14/21 23:47	1.49
Chlorobenzene	0.000010	J	0.000080	0.0000060	ppm v/v		05/14/21 23:47	1.49
Chloroethane	ND		0.000080	0.000029	ppm v/v		05/14/21 23:47	1.49
Chloroform	ND		0.000080	0.0000070	ppm v/v		05/14/21 23:47	1.49
Chloromethane	ND		0.00020	0.000066	ppm v/v		05/14/21 23:47	1.49
Dibromochloromethane	ND		0.000080	0.0000070	ppm v/v		05/14/21 23:47	1.49
1,2-Dibromoethane (EDB)	ND		0.000080	0.0000070	ppm v/v		05/14/21 23:47	1.49
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.000080	0.000012	ppm v/v		05/14/21 23:47	1.49
1,2-Dichlorobenzene	ND		0.000080	0.000031	ppm v/v		05/14/21 23:47	1.49
1,3-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v		05/14/21 23:47	1.49
1,4-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v		05/14/21 23:47	1.49
Dichlorodifluoromethane	ND		0.000080	0.000014	ppm v/v		05/14/21 23:47	1.49
1,1-Dichloroethane	ND		0.000080	0.0000070	ppm v/v		05/14/21 23:47	1.49
1,2-Dichloroethane	ND		0.000080	0.000010	ppm v/v		05/14/21 23:47	1.49
1,1-Dichloroethene	ND		0.000080	0.0000080	ppm v/v		05/14/21 23:47	1.49
cis-1,2-Dichloroethene	ND		0.000080	0.000010	ppm v/v		05/14/21 23:47	1.49
trans-1,2-Dichloroethene	ND		0.000080	0.0000070	ppm v/v		05/14/21 23:47	1.49
1,2-Dichloropropane	ND		0.000080	0.000010	ppm v/v		05/14/21 23:47	1.49
cis-1,3-Dichloropropene	ND		0.000080	0.000016	ppm v/v		05/14/21 23:47	1.49
trans-1,3-Dichloropropene	ND		0.000080	0.0000090	ppm v/v		05/14/21 23:47	1.49
Ethylbenzene	ND		0.000080	0.000013	ppm v/v		05/14/21 23:47	1.49
4-Ethyltoluene	ND		0.00016	0.000021	ppm v/v		05/14/21 23:47	1.49
Hexachlorobutadiene	ND		0.00040	0.000032	ppm v/v		05/14/21 23:47	1.49
2-Hexanone	ND		0.00020	0.000016	• •		05/14/21 23:47	1.49
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000054	ppm v/v		05/14/21 23:47	1.49
Methylene Chloride	ND		0.00040		ppm v/v		05/14/21 23:47	1.49
Styrene	ND		0.000080	0.000024	• •		05/14/21 23:47	1.49
1,1,2,2-Tetrachloroethane	ND		0.000080	0.000014			05/14/21 23:47	1.49
Tetrachloroethene	ND		0.000080	0.0000070			05/14/21 23:47	1.49
Toluene	ND		0.00012	0.000078			05/14/21 23:47	1.49
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000080	0.0000080			05/14/21 23:47	1.49
1,2,4-Trichlorobenzene	ND		0.00040	0.000064			05/14/21 23:47	1.49
1,1,1-Trichloroethane	ND		0.000080	0.000037			05/14/21 23:47	1.49
1,1,2-Trichloroethane	ND		0.000080	0.0000070			05/14/21 23:47	1.49
Trichloroethene	ND		0.000040	0.000013			05/14/21 23:47	1.49
Trichlorofluoromethane	ND		0.000080	0.000011			05/14/21 23:47	1.49
1,2,4-Trimethylbenzene	ND		0.000080	0.000020			05/14/21 23:47	1.49
1,3,5-Trimethylbenzene	ND		0.000080	0.000022			05/14/21 23:47	1.49
Vinyl acetate	ND		0.00040	0.000028			05/14/21 23:47	1.49
Vinyl chloride	ND		0.00040	0.000026			05/14/21 23:47	1.49

Job ID: 140-23051-1

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114914-001 / MWL-FB4

Lab Sample ID: 140-23051-5

Date Collected: 05/06/21 08:41 **Matrix: Air** Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result (	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND ND		0.000080	0.000029	ppm v/v			05/14/21 23:47	1.49
o-Xylene	ND		0.000080	0.000015	ppm v/v			05/14/21 23:47	1.49
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140					05/14/21 23:47	1.49

Client Sample ID: 114915-001 / MWL-SV04-50 Lab Sample ID: 140-23051-6

Date Collected: 05/06/21 08:56 Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

1	<del>_</del>				
	Made at TO 45 LL	Valadila Ossasia	On the second section	Annalatanes Atm	 (COMBO)

Analyte	Result	Qualifier	RL		Unit D Prepared	Analyzed	Dil Fac
Acetone	0.0044	J	0.015	0.0041	ppm v/v	05/18/21 17:53	1.45
Benzene	0.00024	J	0.00058	0.000058	ppm v/v	05/18/21 17:53	1.45
Benzyl chloride	ND		0.0012	0.00028	ppm v/v	05/18/21 17:53	1.45
Bromodichloromethane	ND		0.00058	0.00013	ppm v/v	05/18/21 17:53	1.45
Bromoform	ND		0.00058	0.000065	ppm v/v	05/18/21 17:53	1.45
Bromomethane	ND	*+	0.00058	0.00016	ppm v/v	05/18/21 17:53	1.45
2-Butanone (MEK)	0.00068	J	0.0029	0.00053	ppm v/v	05/18/21 17:53	1.45
Carbon disulfide	0.00015	JB	0.0015	0.000080	ppm v/v	05/18/21 17:53	1.45
Carbon tetrachloride	0.00015	J	0.00058	0.000051	ppm v/v	05/18/21 17:53	1.45
Chlorobenzene	ND		0.00058	0.000044	ppm v/v	05/18/21 17:53	1.45
Chloroethane	ND		0.00058	0.00021	ppm v/v	05/18/21 17:53	1.45
Chloroform	0.0014		0.00058	0.000051	ppm v/v	05/18/21 17:53	1.45
Chloromethane	ND		0.0015	0.00048	ppm v/v	05/18/21 17:53	1.45
Dibromochloromethane	ND		0.00058	0.000051	ppm v/v	05/18/21 17:53	1.45
1,2-Dibromoethane (EDB)	ND		0.00058	0.000051	ppm v/v	05/18/21 17:53	1.45
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.00058	0.000087	ppm v/v	05/18/21 17:53	1.45
1,2-Dichlorobenzene	ND		0.00058	0.00022	ppm v/v	05/18/21 17:53	1.45
1,3-Dichlorobenzene	ND		0.00058	0.00012	ppm v/v	05/18/21 17:53	1.45
1,4-Dichlorobenzene	ND		0.00058	0.00012	ppm v/v	05/18/21 17:53	1.45
Dichlorodifluoromethane	0.015		0.00058	0.00010	ppm v/v	05/18/21 17:53	1.45
1,1-Dichloroethane	0.00097		0.00058	0.000051	ppm v/v	05/18/21 17:53	1.45
1,2-Dichloroethane	ND		0.00058	0.000073	ppm v/v	05/18/21 17:53	1.45
1,1-Dichloroethene	0.0046		0.00058	0.000058	ppm v/v	05/18/21 17:53	1.45
cis-1,2-Dichloroethene	0.00041	J	0.00058	0.000073	ppm v/v	05/18/21 17:53	1.45
trans-1,2-Dichloroethene	ND		0.00058	0.000051	ppm v/v	05/18/21 17:53	1.45
1,2-Dichloropropane	ND		0.00058	0.000073	ppm v/v	05/18/21 17:53	1.45
cis-1,3-Dichloropropene	ND		0.00058	0.00012	ppm v/v	05/18/21 17:53	1.45
trans-1,3-Dichloropropene	ND		0.00058	0.000065	ppm v/v	05/18/21 17:53	1.45
Ethylbenzene	ND		0.00058	0.000094	ppm v/v	05/18/21 17:53	1.45
4-Ethyltoluene	ND		0.0012	0.00015	ppm v/v	05/18/21 17:53	1.45
Hexachlorobutadiene	ND		0.0029	0.00023	ppm v/v	05/18/21 17:53	1.45
2-Hexanone	ND		0.0015	0.00012	ppm v/v	05/18/21 17:53	1.45
4-Methyl-2-pentanone (MIBK)	ND		0.0015	0.00039	ppm v/v	05/18/21 17:53	1.45
Methylene Chloride	ND		0.0029	0.0028	ppm v/v	05/18/21 17:53	1.45
Styrene	ND		0.00058	0.00017	ppm v/v	05/18/21 17:53	1.45
1,1,2,2-Tetrachloroethane	ND		0.00058	0.00010	ppm v/v	05/18/21 17:53	1.45

Eurofins TestAmerica, Knoxville

Page 21 of 1775

Matrix: Air

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Lab Sample ID: 140-23051-6 Client Sample ID: 114915-001 / MWL-SV04-50

Date Collected: 05/06/21 08:56 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.055		0.00058	0.000051	ppm v/v			05/18/21 17:53	1.45
Toluene	ND		0.00087	0.00057	ppm v/v			05/18/21 17:53	1.45
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.043		0.00058	0.000058	ppm v/v			05/18/21 17:53	1.45
1,2,4-Trichlorobenzene	ND		0.0029	0.00046	ppm v/v			05/18/21 17:53	1.45
1,1,1-Trichloroethane	0.0050		0.00058	0.00027	ppm v/v			05/18/21 17:53	1.45
1,1,2-Trichloroethane	ND		0.00058	0.000051	ppm v/v			05/18/21 17:53	1.45
Trichloroethene	0.045		0.00029	0.000094	ppm v/v			05/18/21 17:53	1.45
Trichlorofluoromethane	0.023		0.00058	0.000080	ppm v/v			05/18/21 17:53	1.45
1,2,4-Trimethylbenzene	ND		0.00058	0.00015	ppm v/v			05/18/21 17:53	1.45
1,3,5-Trimethylbenzene	ND		0.00058	0.00016	ppm v/v			05/18/21 17:53	1.45
Vinyl acetate	ND		0.0029	0.00020	ppm v/v			05/18/21 17:53	1.45
Vinyl chloride	ND		0.00029	0.00019	ppm v/v			05/18/21 17:53	1.45
m,p-Xylene	ND		0.00058	0.00021	ppm v/v			05/18/21 17:53	1.45
o-Xylene	ND		0.00058	0.00011	ppm v/v			05/18/21 17:53	1.45
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		60 - 140			-		05/18/21 17:53	1.45

Client Sample ID: 114916-001 / MWL-SV04-100

Lab Sample ID: 140-23051-7 Date Collected: 05/06/21 09:12 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.025	0.0071	ppm v/v			05/18/21 18:41	1.49
Benzene	0.00029	J	0.00099	0.000099	ppm v/v			05/18/21 18:41	1.49
Benzyl chloride	ND		0.0020	0.00047	ppm v/v			05/18/21 18:41	1.49
Bromodichloromethane	ND		0.00099	0.00022	ppm v/v			05/18/21 18:41	1.49
Bromoform	ND		0.00099	0.00011	ppm v/v			05/18/21 18:41	1.49
Bromomethane	ND	*+	0.00099	0.00027	ppm v/v			05/18/21 18:41	1.49
2-Butanone (MEK)	ND		0.0050	0.00091	ppm v/v			05/18/21 18:41	1.49
Carbon disulfide	0.00024	JB	0.0025	0.00014	ppm v/v			05/18/21 18:41	1.49
Carbon tetrachloride	0.00026	J	0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
Chlorobenzene	0.00012	JB	0.00099	0.000075	ppm v/v			05/18/21 18:41	1.49
Chloroethane	ND		0.00099	0.00036	ppm v/v			05/18/21 18:41	1.49
Chloroform	0.0017		0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
Chloromethane	ND		0.0025	0.00082	ppm v/v			05/18/21 18:41	1.49
Dibromochloromethane	ND		0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
1,2-Dibromoethane (EDB)	ND		0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.00099	0.00015	ppm v/v			05/18/21 18:41	1.49
1,2-Dichlorobenzene	ND		0.00099	0.00038	ppm v/v			05/18/21 18:41	1.49
1,3-Dichlorobenzene	ND		0.00099	0.00020	ppm v/v			05/18/21 18:41	1.49
1,4-Dichlorobenzene	ND		0.00099	0.00020	ppm v/v			05/18/21 18:41	1.49
Dichlorodifluoromethane	0.028		0.00099	0.00017	ppm v/v			05/18/21 18:41	1.49
1,1-Dichloroethane	0.0021		0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
1,2-Dichloroethane	ND		0.00099	0.00012	ppm v/v			05/18/21 18:41	1.49
1,1-Dichloroethene	0.011		0.00099	0.000099	ppm v/v			05/18/21 18:41	1.49

Eurofins TestAmerica, Knoxville

Page 22 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114916-001 / MWL-SV04-100 Lab Sample ID: 140-23051-7

Date Collected: 05/06/21 09:12 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0011		0.00099	0.00012	ppm v/v	:		05/18/21 18:41	1.49
trans-1,2-Dichloroethene	ND		0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
1,2-Dichloropropane	ND		0.00099	0.00012	ppm v/v			05/18/21 18:41	1.49
cis-1,3-Dichloropropene	ND		0.00099	0.00020	ppm v/v			05/18/21 18:41	1.49
trans-1,3-Dichloropropene	ND		0.00099	0.00011	ppm v/v			05/18/21 18:41	1.49
Ethylbenzene	ND		0.00099	0.00016	ppm v/v			05/18/21 18:41	1.49
4-Ethyltoluene	ND		0.0020	0.00026	ppm v/v			05/18/21 18:41	1.49
Hexachlorobutadiene	ND		0.0050	0.00040	ppm v/v			05/18/21 18:41	1.49
2-Hexanone	ND		0.0025	0.00020	ppm v/v			05/18/21 18:41	1.49
4-Methyl-2-pentanone (MIBK)	ND		0.0025	0.00067	ppm v/v			05/18/21 18:41	1.49
Methylene Chloride	ND		0.0050	0.0048	ppm v/v			05/18/21 18:41	1.49
Styrene	ND		0.00099	0.00030	ppm v/v			05/18/21 18:41	1.49
1,1,2,2-Tetrachloroethane	ND		0.00099	0.00017	ppm v/v			05/18/21 18:41	1.49
Tetrachloroethene	0.10		0.00099	0.000087	ppm v/v			05/18/21 18:41	1.49
Toluene	ND		0.0015	0.00097	ppm v/v			05/18/21 18:41	1.49
1,1,2-Trichloro-1,2,2-trifluoroetha	0.075		0.00099	0.000099	ppm v/v			05/18/21 18:41	1.49
ne									
1,2,4-Trichlorobenzene	ND		0.0050	0.00079	• •			05/18/21 18:41	1.49
1,1,1-Trichloroethane	0.0041		0.00099	0.00046	• •			05/18/21 18:41	1.49
1,1,2-Trichloroethane	ND		0.00099	0.000087	. <b></b>			05/18/21 18:41	1.49
Trichloroethene	0.10		0.00050	0.00016	• •			05/18/21 18:41	1.49
Trichlorofluoromethane	0.035		0.00099	0.00014	ppm v/v			05/18/21 18:41	1.49
1,2,4-Trimethylbenzene	ND		0.00099	0.00025	ppm v/v			05/18/21 18:41	1.49
1,3,5-Trimethylbenzene	ND		0.00099	0.00027	ppm v/v			05/18/21 18:41	1.49
Vinyl acetate	ND		0.0050	0.00035	ppm v/v			05/18/21 18:41	1.49
Vinyl chloride	ND		0.00050	0.00032	ppm v/v			05/18/21 18:41	1.49
m,p-Xylene	ND		0.00099	0.00036	ppm v/v			05/18/21 18:41	1.49
o-Xylene	ND		0.00099	0.00019	ppm v/v			05/18/21 18:41	1.49

Client Sample ID: 114917-001 / MWL-SV04-200 Lab Sample ID: 140-23051-8

89

Date Collected: 05/06/21 09:21

Matrix: Air

Date Received: 05/11/21 11:45

60 - 140

Sample Container: Summa Canister 6L

4-Bromofluorobenzene (Surr)

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) Result Qualifier **Analyte** RLMDL Unit Prepared Analyzed Dil Fac Acetone ND 0.038 0.011 ppm v/v 05/18/21 19:30 1.5 **Benzene** 0.00041 0.0015 0.00015 ppm v/v 1.5 J 05/18/21 19:30 Benzyl chloride ND 0.0030 0.00071 ppm v/v 05/18/21 19:30 1.5 Bromodichloromethane ND 0.0015 0.00034 ppm v/v 05/18/21 19:30 1.5 Bromoform ND 0.0015 0.00017 ppm v/v 05/18/21 19:30 1.5 ND 1.5 Bromomethane 0.0015 0.00041 ppm v/v 05/18/21 19:30 2-Butanone (MEK) ND 0.0075 1.5 0.0014 ppm v/v 05/18/21 19:30 Carbon disulfide 0.00031 J B 0.0038 0.00021 ppm v/v 05/18/21 19:30 1.5 Carbon tetrachloride 0.00041 0.0015 0.00013 ppm v/v 05/18/21 19:30 1.5 Chlorobenzene ND 0.0015 0.00011 ppm v/v 05/18/21 19:30 1.5

05/18/21 18:41

1.49

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114917-001 / MWL-SV04-200

Date Collected: 05/06/21 09:21 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		0.0015	0.00054	ppm v/v			05/18/21 19:30	1.5
Chloroform	0.0014	J	0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
Chloromethane	ND		0.0038	0.0012	ppm v/v			05/18/21 19:30	1.5
Dibromochloromethane	ND		0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
1,2-Dibromoethane (EDB)	ND		0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0015	0.00023	ppm v/v			05/18/21 19:30	1.5
1,2-Dichlorobenzene	ND		0.0015	0.00058	ppm v/v			05/18/21 19:30	1.5
1,3-Dichlorobenzene	ND		0.0015		ppm v/v			05/18/21 19:30	1.5
1,4-Dichlorobenzene	ND		0.0015		ppm v/v			05/18/21 19:30	1.5
Dichlorodifluoromethane	0.047		0.0015	0.00026	ppm v/v			05/18/21 19:30	1.5
1,1-Dichloroethane	0.0042		0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
1,2-Dichloroethane	ND		0.0015	0.00019	ppm v/v			05/18/21 19:30	1.5
1,1-Dichloroethene	0.023		0.0015	0.00015	ppm v/v			05/18/21 19:30	1.5
cis-1,2-Dichloroethene	0.0025		0.0015	0.00019	ppm v/v			05/18/21 19:30	1.5
trans-1,2-Dichloroethene	ND		0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
1,2-Dichloropropane	ND		0.0015	0.00019	ppm v/v			05/18/21 19:30	1.5
cis-1,3-Dichloropropene	ND		0.0015	0.00030	ppm v/v			05/18/21 19:30	1.5
trans-1,3-Dichloropropene	ND		0.0015	0.00017	ppm v/v			05/18/21 19:30	1.5
Ethylbenzene	ND		0.0015	0.00024	ppm v/v			05/18/21 19:30	1.5
4-Ethyltoluene	ND		0.0030	0.00039	ppm v/v			05/18/21 19:30	1.5
Hexachlorobutadiene	ND		0.0075	0.00060	ppm v/v			05/18/21 19:30	1.5
2-Hexanone	ND		0.0038	0.00030	ppm v/v			05/18/21 19:30	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0038	0.0010	ppm v/v			05/18/21 19:30	1.5
Methylene Chloride	ND		0.0075	0.0073	ppm v/v			05/18/21 19:30	1.5
Styrene	ND		0.0015		ppm v/v			05/18/21 19:30	1.5
1,1,2,2-Tetrachloroethane	ND		0.0015	0.00026	ppm v/v			05/18/21 19:30	1.5
Tetrachloroethene	0.11		0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
Toluene	ND		0.0023	0.0015	ppm v/v			05/18/21 19:30	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.13		0.0015	0.00015	ppm v/v			05/18/21 19:30	1.5
1,2,4-Trichlorobenzene	ND		0.0075	0.0012	ppm v/v			05/18/21 19:30	1.5
1,1,1-Trichloroethane	0.0017		0.0015	0.00069	ppm v/v			05/18/21 19:30	1.5
1,1,2-Trichloroethane	ND		0.0015	0.00013	ppm v/v			05/18/21 19:30	1.5
Trichloroethene	0.16		0.00075	0.00024	ppm v/v			05/18/21 19:30	1.5
Trichlorofluoromethane	0.038		0.0015	0.00021	ppm v/v			05/18/21 19:30	1.5
1,2,4-Trimethylbenzene	ND		0.0015	0.00038	ppm v/v			05/18/21 19:30	1.5
1,3,5-Trimethylbenzene	ND		0.0015	0.00041	ppm v/v			05/18/21 19:30	1.5
Vinyl acetate	ND		0.0075	0.00053	ppm v/v			05/18/21 19:30	1.5
Vinyl chloride	ND		0.00075	0.00049	ppm v/v			05/18/21 19:30	1.5
m,p-Xylene	ND		0.0015	0.00054	ppm v/v			05/18/21 19:30	1.5
o-Xylene	ND		0.0015	0.00028	ppm v/v			05/18/21 19:30	1.5
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140					05/18/21 19:30	1.5

Lab Sample ID: 140-23051-8

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114918-001 / MWL-SV04-300

Lab Sample ID: 140-23051-9 Date Collected: 05/06/21 09:34 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		_ <u>D</u> .	Prepared	Analyzed	Dil Fa
Acetone	ND		0.039	0.011	ppm v/v			05/19/21 07:42	1.5
Benzene	0.00040	J	0.0016	0.00016	ppm v/v			05/19/21 07:42	1.5
Benzyl chloride	ND		0.0031	0.00074	ppm v/v			05/19/21 07:42	1.5
Bromodichloromethane	ND		0.0016	0.00035	ppm v/v			05/19/21 07:42	1.5
Bromoform	ND		0.0016	0.00018	ppm v/v			05/19/21 07:42	1.5
Bromomethane	ND	*+	0.0016	0.00043	ppm v/v			05/19/21 07:42	1.5
2-Butanone (MEK)	ND		0.0078	0.0014	ppm v/v			05/19/21 07:42	1.5
Carbon disulfide	0.00038	JB	0.0039	0.00021	ppm v/v			05/19/21 07:42	1.5
Carbon tetrachloride	0.00027	J	0.0016	0.00014	ppm v/v			05/19/21 07:42	1.5
Chlorobenzene	ND		0.0016	0.00012	ppm v/v			05/19/21 07:42	1.5
Chloroethane	ND		0.0016	0.00057	ppm v/v			05/19/21 07:42	1.5
Chloroform	0.00069	J	0.0016	0.00014	ppm v/v			05/19/21 07:42	1.5
Chloromethane	ND		0.0039		ppm v/v			05/19/21 07:42	1.5
Dibromochloromethane	ND		0.0016	0.00014	ppm v/v			05/19/21 07:42	1.5
1,2-Dibromoethane (EDB)	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0016		ppm v/v			05/19/21 07:42	1.5
1,2-Dichlorobenzene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,3-Dichlorobenzene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,4-Dichlorobenzene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
Dichlorodifluoromethane	0.030		0.0016		ppm v/v			05/19/21 07:42	1.5
1,1-Dichloroethane	0.0011	1	0.0016		ppm v/v			05/19/21 07:42	1.5
1,2-Dichloroethane	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,1-Dichloroethene	0.012		0.0016		ppm v/v			05/19/21 07:42	1.5
	0.0073		0.0016		ppm v/v			05/19/21 07:42	1.5
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	0.00073 ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,2-Dichloropropane	ND ND		0.0016		ppm v/v			05/19/21 07:42	1.5
	ND ND		0.0016						
cis-1,3-Dichloropropene					ppm v/v			05/19/21 07:42	1.5
trans-1,3-Dichloropropene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
Ethylbenzene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
4-Ethyltoluene	ND		0.0031		ppm v/v			05/19/21 07:42	1.5
Hexachlorobutadiene	ND		0.0078		ppm v/v			05/19/21 07:42	1.5
2-Hexanone	ND		0.0039		ppm v/v			05/19/21 07:42	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0039		ppm v/v			05/19/21 07:42	1.5
Methylene Chloride	ND		0.0078		ppm v/v			05/19/21 07:42	1.5
Styrene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,1,2,2-Tetrachloroethane	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
Tetrachloroethene	0.11		0.0016		ppm v/v			05/19/21 07:42	1.5
Toluene	ND		0.0023	0.0015	ppm v/v			05/19/21 07:42	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.080		0.0016	0.00016	ppm v/v			05/19/21 07:42	1.5
1,2,4-Trichlorobenzene	ND		0.0078	0.0012	ppm v/v			05/19/21 07:42	1.5
1,1,1-Trichloroethane	0.00090	J	0.0016	0.00072	ppm v/v			05/19/21 07:42	1.5
1,1,2-Trichloroethane	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
Trichloroethene	0.079		0.00078		ppm v/v			05/19/21 07:42	1.5
Trichlorofluoromethane	0.017		0.0016		ppm v/v			05/19/21 07:42	1.5
1,2,4-Trimethylbenzene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
1,3,5-Trimethylbenzene	ND		0.0016		ppm v/v			05/19/21 07:42	1.5
Vinyl acetate	ND		0.0078		ppm v/v			05/19/21 07:42	1.5
Vinyl acctate Vinyl chloride	ND		0.0078		ppm v/v			05/19/21 07:42	1.5

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 114918-001 / MWL-SV04-300 Lab Sample ID: 140-23051-9

Date Collected: 05/06/21 09:34 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND ND		0.0016	0.00057	ppm v/v			05/19/21 07:42	1.56
o-Xylene	ND		0.0016	0.00029	ppm v/v			05/19/21 07:42	1.56
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		60 - 140					05/19/21 07:42	1.56

Client Sample ID: 114919-001 / MWL-SV04-400 Lab Sample ID: 140-23051-10

Date Collected: 05/06/21 09:40 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.012	J	0.015	0.0044	ppm v/v			05/20/21 01:20	1.53
Benzene	0.00053	J	0.00061	0.000061	ppm v/v			05/20/21 01:20	1.53
Benzyl chloride	ND		0.0012	0.00029	ppm v/v			05/20/21 01:20	1.53
Bromodichloromethane	ND		0.00061	0.00014	ppm v/v			05/20/21 01:20	1.53
Bromoform	ND		0.00061	0.000069	ppm v/v			05/20/21 01:20	1.53
Bromomethane	ND		0.00061	0.00017	ppm v/v			05/20/21 01:20	1.53
2-Butanone (MEK)	0.0018	J	0.0031	0.00056	ppm v/v			05/20/21 01:20	1.53
Carbon disulfide	0.00077	JB	0.0015	0.000084	ppm v/v			05/20/21 01:20	1.53
Carbon tetrachloride	0.00018	J	0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
Chlorobenzene	0.000067	JB	0.00061	0.000046	ppm v/v			05/20/21 01:20	1.53
Chloroethane	ND		0.00061	0.00022	ppm v/v			05/20/21 01:20	1.53
Chloroform	0.00055	J	0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
Chloromethane	ND		0.0015	0.00050	ppm v/v			05/20/21 01:20	1.53
Dibromochloromethane	ND		0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
1,2-Dibromoethane (EDB)	ND		0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.00061	0.000092	ppm v/v			05/20/21 01:20	1.53
1,2-Dichlorobenzene	ND		0.00061	0.00024	ppm v/v			05/20/21 01:20	1.53
1,3-Dichlorobenzene	ND		0.00061	0.00012	ppm v/v			05/20/21 01:20	1.53
1,4-Dichlorobenzene	ND		0.00061	0.00012	ppm v/v			05/20/21 01:20	1.53
Dichlorodifluoromethane	0.025		0.00061	0.00011	ppm v/v			05/20/21 01:20	1.53
1,1-Dichloroethane	0.00086		0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
1,2-Dichloroethane	ND		0.00061	0.000077	ppm v/v			05/20/21 01:20	1.53
1,1-Dichloroethene	0.0085		0.00061	0.000061	ppm v/v			05/20/21 01:20	1.53
cis-1,2-Dichloroethene	0.00061		0.00061	0.000077	ppm v/v			05/20/21 01:20	1.53
trans-1,2-Dichloroethene	ND		0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
1,2-Dichloropropane	ND		0.00061	0.000077	ppm v/v			05/20/21 01:20	1.53
cis-1,3-Dichloropropene	ND		0.00061	0.00012	ppm v/v			05/20/21 01:20	1.53
trans-1,3-Dichloropropene	ND		0.00061	0.000069	ppm v/v			05/20/21 01:20	1.53
Ethylbenzene	ND		0.00061	0.000099	ppm v/v			05/20/21 01:20	1.53
4-Ethyltoluene	ND		0.0012	0.00016	ppm v/v			05/20/21 01:20	1.53
Hexachlorobutadiene	ND		0.0031	0.00024	ppm v/v			05/20/21 01:20	1.53
2-Hexanone	ND		0.0015	0.00012	ppm v/v			05/20/21 01:20	1.53
4-Methyl-2-pentanone (MIBK)	ND		0.0015	0.00041	ppm v/v			05/20/21 01:20	1.53
Methylene Chloride	ND		0.0031	0.0030	ppm v/v			05/20/21 01:20	1.53
Styrene	ND		0.00061	0.00018	ppm v/v			05/20/21 01:20	1.53
1,1,2,2-Tetrachloroethane	ND		0.00061	0.00011	ppm v/v			05/20/21 01:20	1.53

Eurofins TestAmerica, Knoxville

06/15/2021

Job ID: 140-23051-1

Page 26 of 1775

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 114919-001 / MWL-SV04-400 Lab Sample ID: 140-23051-10

Date Collected: 05/06/21 09:40 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile	e Organic Compounds in Am	ıbient Air,	Low Concentration	on (GC/MS	3) (Continu	ıed)
Amalusta	Decult Qualifier	DI	MDI IImit	D Dra	pared A	N

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.00092	0.00060	ppm v/v			05/20/21 01:20	1.53
1,1,2-Trichloro-1,2,2-trifluoroetha	0.075		0.00061	0.000061	ppm v/v			05/20/21 01:20	1.53
ne									
1,2,4-Trichlorobenzene	ND		0.0031	0.00049	ppm v/v			05/20/21 01:20	1.53
1,1,1-Trichloroethane	0.00063		0.00061	0.00028	ppm v/v			05/20/21 01:20	1.53
1,1,2-Trichloroethane	ND		0.00061	0.000054	ppm v/v			05/20/21 01:20	1.53
Trichloroethene	0.080		0.00031	0.000099	ppm v/v			05/20/21 01:20	1.53
Trichlorofluoromethane	0.014		0.00061	0.000084	ppm v/v			05/20/21 01:20	1.53
1,2,4-Trimethylbenzene	ND		0.00061	0.00015	ppm v/v			05/20/21 01:20	1.53
1,3,5-Trimethylbenzene	ND		0.00061	0.00017	ppm v/v			05/20/21 01:20	1.53
Vinyl acetate	ND		0.0031	0.00021	ppm v/v			05/20/21 01:20	1.53
Vinyl chloride	ND		0.00031	0.00020	ppm v/v			05/20/21 01:20	1.53
m,p-Xylene	ND		0.00061	0.00022	ppm v/v			05/20/21 01:20	1.53
o-Xylene	ND		0.00061	0.00011	ppm v/v			05/20/21 01:20	1.53
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		60 - 140			-		05/20/21 01:20	1.53

#### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) - DL

	g p		.,			•	
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.11	0.0012	0.00011 ppm v/v			05/20/21 20:10	1.53
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	60 - 140		•		05/20/21 20:10	1.53

Client Sample ID: 114906-001 / MWL-FB3

Date Collected: 05/06/21 09:55 Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

**Lab Sample ID: 140-23051-11** 

Matrix: Air

Job ID: 140-23051-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.00058	J	0.0020	0.00058	ppm v/v			05/15/21 00:40	1.62
Benzene	0.0000099	J	0.000081	0.0000081	ppm v/v			05/15/21 00:40	1.62
Benzyl chloride	ND		0.00016	0.000038	ppm v/v			05/15/21 00:40	1.62
Bromodichloromethane	ND		0.000081	0.000018	ppm v/v			05/15/21 00:40	1.62
Bromoform	ND		0.000081	0.0000091	ppm v/v			05/15/21 00:40	1.62
Bromomethane	ND		0.000081	0.000022	ppm v/v			05/15/21 00:40	1.62
2-Butanone (MEK)	ND		0.00041	0.000074	ppm v/v			05/15/21 00:40	1.62
Carbon disulfide	0.000018	J	0.00020	0.000011	ppm v/v			05/15/21 00:40	1.62
Carbon tetrachloride	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
Chlorobenzene	0.0000087	J	0.000081	0.0000061	ppm v/v			05/15/21 00:40	1.62
Chloroethane	ND		0.000081	0.000029	ppm v/v			05/15/21 00:40	1.62
Chloroform	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
Chloromethane	ND		0.00020	0.000067	ppm v/v			05/15/21 00:40	1.62
Dibromochloromethane	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
1,2-Dibromoethane (EDB)	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.000081	0.000012	ppm v/v			05/15/21 00:40	1.62
1,2-Dichlorobenzene	ND		0.000081	0.000031	ppm v/v			05/15/21 00:40	1.62
1,3-Dichlorobenzene	ND		0.000081	0.000016	ppm v/v			05/15/21 00:40	1.62

Eurofins TestAmerica, Knoxville

Page 27 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114906-001 / MWL-FB3 Lab Sample ID: 140-23051-11

Date Collected: 05/06/21 09:55 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

#### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.000081	0.000016	ppm v/v			05/15/21 00:40	1.62
Dichlorodifluoromethane	ND		0.000081	0.000014	ppm v/v			05/15/21 00:40	1.62
1,1-Dichloroethane	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
1,2-Dichloroethane	ND		0.000081	0.000010	ppm v/v			05/15/21 00:40	1.62
1,1-Dichloroethene	ND		0.000081	0.0000081	ppm v/v			05/15/21 00:40	1.62
cis-1,2-Dichloroethene	ND		0.000081	0.000010	ppm v/v			05/15/21 00:40	1.62
trans-1,2-Dichloroethene	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
1,2-Dichloropropane	ND		0.000081	0.000010	ppm v/v			05/15/21 00:40	1.62
cis-1,3-Dichloropropene	ND		0.000081	0.000016	ppm v/v			05/15/21 00:40	1.62
trans-1,3-Dichloropropene	ND		0.000081	0.0000091	ppm v/v			05/15/21 00:40	1.62
Ethylbenzene	ND		0.000081	0.000013	ppm v/v			05/15/21 00:40	1.62
4-Ethyltoluene	ND		0.00016	0.000021	ppm v/v			05/15/21 00:40	1.62
Hexachlorobutadiene	ND		0.00041	0.000032	ppm v/v			05/15/21 00:40	1.62
2-Hexanone	ND		0.00020	0.000016	ppm v/v			05/15/21 00:40	1.62
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000055	ppm v/v			05/15/21 00:40	1.62
Methylene Chloride	ND		0.00041	0.00039	ppm v/v			05/15/21 00:40	1.62
Styrene	ND		0.000081	0.000024	ppm v/v			05/15/21 00:40	1.62
1,1,2,2-Tetrachloroethane	ND		0.000081	0.000014	ppm v/v			05/15/21 00:40	1.62
Tetrachloroethene	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
Toluene	ND		0.00012	0.000079	ppm v/v			05/15/21 00:40	1.62
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000081	0.0000081	ppm v/v			05/15/21 00:40	1.62
1,2,4-Trichlorobenzene	ND		0.00041	0.000065	ppm v/v			05/15/21 00:40	1.62
1,1,1-Trichloroethane	ND		0.000081	0.000037	ppm v/v			05/15/21 00:40	1.62
1,1,2-Trichloroethane	ND		0.000081	0.0000071	ppm v/v			05/15/21 00:40	1.62
Trichloroethene	ND		0.000041	0.000013	ppm v/v			05/15/21 00:40	1.62
Trichlorofluoromethane	ND		0.000081	0.000011	ppm v/v			05/15/21 00:40	1.62
1,2,4-Trimethylbenzene	ND		0.000081	0.000020	ppm v/v			05/15/21 00:40	1.62
1,3,5-Trimethylbenzene	ND		0.000081	0.000022	ppm v/v			05/15/21 00:40	1.62
Vinyl acetate	ND		0.00041	0.000028	ppm v/v			05/15/21 00:40	1.62
Vinyl chloride	ND		0.000041	0.000026	ppm v/v			05/15/21 00:40	1.62
m,p-Xylene	ND		0.000081	0.000029	ppm v/v			05/15/21 00:40	1.62
o-Xylene	ND		0.000081	0.000015	ppm v/v			05/15/21 00:40	1.62
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140			-		05/15/21 00:40	1.62

Client Sample ID: 114907-001 / MWL-SV03-50

Lab Sample ID: 140-23051-12 Date Collected: 05/06/21 10:03 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

#### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air. Low Concentration (GC/MS)

Method: 10 13 EE - Volatile Organic Compounds in Ambient All, Low Concentration (Go/M3)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Acetone	ND		0.023	0.0065	ppm v/v			05/20/21 02:08	1.59
	Benzene	0.00026	J	0.00091	0.000091	ppm v/v			05/20/21 02:08	1.59
	Benzyl chloride	ND		0.0018	0.00043	ppm v/v			05/20/21 02:08	1.59
	Bromodichloromethane	ND		0.00091	0.00020	ppm v/v			05/20/21 02:08	1.59
	Bromoform	ND		0.00091	0.00010	ppm v/v			05/20/21 02:08	1.59
	Bromomethane	ND		0.00091	0.00025	ppm v/v			05/20/21 02:08	1.59

Eurofins TestAmerica, Knoxville

06/15/2021

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114907-001 / MWL-SV03-50 Lab Sample ID: 140-23051-12

Date Collected: 05/06/21 10:03 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	ND		0.0045	0.00083				05/20/21 02:08	1.59
Carbon disulfide	0.00024	JB	0.0023	0.00012	ppm v/v			05/20/21 02:08	1.59
Carbon tetrachloride	0.00020	J	0.00091	0.000080	ppm v/v			05/20/21 02:08	1.59
Chlorobenzene	ND		0.00091	0.000068	ppm v/v			05/20/21 02:08	1.59
Chloroethane	ND		0.00091	0.00033	ppm v/v			05/20/21 02:08	1.59
Chloroform	0.0013		0.00091	0.000080	ppm v/v			05/20/21 02:08	1.59
Chloromethane	ND		0.0023	0.00075	ppm v/v			05/20/21 02:08	1.59
Dibromochloromethane	ND		0.00091	0.000080	ppm v/v			05/20/21 02:08	1.59
1,2-Dibromoethane (EDB)	ND		0.00091	0.000080	ppm v/v			05/20/21 02:08	1.59
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.00091	0.00014	ppm v/v			05/20/21 02:08	1.59
1,2-Dichlorobenzene	ND		0.00091	0.00035				05/20/21 02:08	1.59
1,3-Dichlorobenzene	ND		0.00091	0.00018				05/20/21 02:08	1.59
1,4-Dichlorobenzene	ND		0.00091	0.00018				05/20/21 02:08	1.59
Dichlorodifluoromethane	0.023		0.00091	0.00016				05/20/21 02:08	1.59
1,1-Dichloroethane	0.025		0.00091	0.000080				05/20/21 02:08	1.59
1,2-Dichloroethane	0.0023 ND		0.00091		ppm v/v			05/20/21 02:08	1.59
1.1-Dichloroethene	0.0092		0.00091	0.000011				05/20/21 02:08	1.59
cis-1,2-Dichloroethene	0.0032		0.00091		ppm v/v			05/20/21 02:08	1.59
trans-1,2-Dichloroethene	0.0014 ND		0.00091	0.000011				05/20/21 02:08	1.59
*	ND ND		0.00091		ppm v/v			05/20/21 02:08	1.59
1,2-Dichloropropane	ND ND		0.00091		• •			05/20/21 02:08	1.59
cis-1,3-Dichloropropene					ppm v/v				
trans-1,3-Dichloropropene	ND		0.00091		ppm v/v			05/20/21 02:08	1.59
Ethylbenzene	ND		0.00091		ppm v/v			05/20/21 02:08	1.59
4-Ethyltoluene	ND		0.0018		ppm v/v			05/20/21 02:08	1.59
Hexachlorobutadiene	ND		0.0045		ppm v/v			05/20/21 02:08	1.59
2-Hexanone	ND		0.0023		ppm v/v			05/20/21 02:08	1.59
4-Methyl-2-pentanone (MIBK)	ND		0.0023		ppm v/v			05/20/21 02:08	1.59
Methylene Chloride	ND		0.0045	0.0044	ppm v/v			05/20/21 02:08	1.59
Styrene	ND		0.00091	0.00027	ppm v/v			05/20/21 02:08	1.59
1,1,2,2-Tetrachloroethane	ND		0.00091	0.00016	ppm v/v			05/20/21 02:08	1.59
Tetrachloroethene	0.14		0.00091	0.000080	ppm v/v			05/20/21 02:08	1.59
Toluene	ND		0.0014	0.00089	ppm v/v			05/20/21 02:08	1.59
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.058		0.00091	0.000091	ppm v/v			05/20/21 02:08	1.59
1,2,4-Trichlorobenzene	ND		0.0045	0.00073	ppm v/v			05/20/21 02:08	1.59
1,1,1-Trichloroethane	0.0015		0.00091	0.00042	ppm v/v			05/20/21 02:08	1.59
1,1,2-Trichloroethane	ND		0.00091	0.000080	ppm v/v			05/20/21 02:08	1.59
Trichloroethene	0.10		0.00045	0.00015	ppm v/v			05/20/21 02:08	1.59
Trichlorofluoromethane	0.021		0.00091		ppm v/v			05/20/21 02:08	1.59
1,2,4-Trimethylbenzene	ND		0.00091		ppm v/v			05/20/21 02:08	1.59
1,3,5-Trimethylbenzene	ND		0.00091		ppm v/v			05/20/21 02:08	1.59
Vinyl acetate	ND		0.0045		ppm v/v			05/20/21 02:08	1.59
Vinyl chloride	ND		0.00045		ppm v/v			05/20/21 02:08	1.59
m,p-Xylene	ND		0.00091		ppm v/v			05/20/21 02:08	1.59
o-Xylene	ND		0.00091		ppm v/v			05/20/21 02:08	1.59
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114908-001 / MWL-SV03-50 Lab Sample ID: 140-23051-13

Date Collected: 05/06/21 10:03 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fa
Acetone	ND		0.017	0.0047	ppm v/v		05/20/21 02:56	1.6
Benzene	0.00025	J	0.00066	0.000066	ppm v/v		05/20/21 02:56	1.6
Benzyl chloride	ND		0.0013	0.00031	ppm v/v		05/20/21 02:56	1.6
Bromodichloromethane	ND		0.00066	0.00015	ppm v/v		05/20/21 02:56	1.6
Bromoform	ND		0.00066	0.000074	ppm v/v		05/20/21 02:56	1.6
Bromomethane	ND		0.00066	0.00018	ppm v/v		05/20/21 02:56	1.6
2-Butanone (MEK)	ND		0.0033	0.00060	ppm v/v		05/20/21 02:56	1.6
Carbon disulfide	0.00042	JB	0.0017	0.000091	ppm v/v		05/20/21 02:56	1.6
Carbon tetrachloride	0.00022	J	0.00066	0.000058	ppm v/v		05/20/21 02:56	1.6
Chlorobenzene	ND		0.00066	0.000050	ppm v/v		05/20/21 02:56	1.6
Chloroethane	ND		0.00066	0.00024	ppm v/v		05/20/21 02:56	1.6
Chloroform	0.0012		0.00066	0.000058	ppm v/v		05/20/21 02:56	1.6
Chloromethane	ND		0.0017	0.00054	ppm v/v		05/20/21 02:56	1.6
Dibromochloromethane	ND		0.00066	0.000058	ppm v/v		05/20/21 02:56	1.6
1,2-Dibromoethane (EDB)	ND		0.00066	0.000058	ppm v/v		05/20/21 02:56	1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.00066	0.000099	ppm v/v		05/20/21 02:56	1.6
1,2-Dichlorobenzene	ND		0.00066	0.00026			05/20/21 02:56	1.6
1,3-Dichlorobenzene	ND		0.00066	0.00013	ppm v/v		05/20/21 02:56	1.6
1,4-Dichlorobenzene	ND		0.00066	0.00013	ppm v/v		05/20/21 02:56	1.6
Dichlorodifluoromethane	0.022		0.00066	0.00012	ppm v/v		05/20/21 02:56	1.6
1,1-Dichloroethane	0.0024		0.00066	0.000058	ppm v/v		05/20/21 02:56	1.6
1,2-Dichloroethane	ND		0.00066	0.000083	ppm v/v		05/20/21 02:56	1.6
1,1-Dichloroethene	0.0091		0.00066	0.000066	ppm v/v		05/20/21 02:56	1.6
cis-1,2-Dichloroethene	0.0014		0.00066	0.000083	ppm v/v		05/20/21 02:56	1.6
trans-1,2-Dichloroethene	ND		0.00066	0.000058			05/20/21 02:56	1.6
1,2-Dichloropropane	ND		0.00066	0.000083			05/20/21 02:56	1.6
cis-1,3-Dichloropropene	ND		0.00066	0.00013	• •		05/20/21 02:56	1.6
trans-1,3-Dichloropropene	ND		0.00066	0.000074	ppm v/v		05/20/21 02:56	1.6
Ethylbenzene	ND		0.00066		ppm v/v		05/20/21 02:56	1.6
4-Ethyltoluene	ND		0.0013		ppm v/v		05/20/21 02:56	1.6
Hexachlorobutadiene	ND		0.0033		ppm v/v		05/20/21 02:56	1.6
2-Hexanone	ND		0.0017		ppm v/v		05/20/21 02:56	1.6
4-Methyl-2-pentanone (MIBK)	ND		0.0017		ppm v/v		05/20/21 02:56	1.6
Methylene Chloride	ND		0.0033		ppm v/v		05/20/21 02:56	1.6
Styrene	ND		0.00066		ppm v/v		05/20/21 02:56	1.6
1,1,2,2-Tetrachloroethane	ND		0.00066		ppm v/v		05/20/21 02:56	1.6
Toluene	ND		0.00099	0.00064			05/20/21 02:56	1.6
1,1,2-Trichloro-1,2,2-trifluoroetha	0.057		0.00066	0.000066			05/20/21 02:56	1.6
1,2,4-Trichlorobenzene	ND		0.0033	0.00053	ppm v/v		05/20/21 02:56	1.6
1,1,1-Trichloroethane	0.0014		0.00066	0.00031	ppm v/v		05/20/21 02:56	1.6
1,1,2-Trichloroethane	0.000090	J	0.00066	0.000058	ppm v/v		05/20/21 02:56	1.6
Trichloroethene	0.10		0.00033	0.00011	ppm v/v		05/20/21 02:56	1.6
Trichlorofluoromethane	0.020		0.00066	0.000091			05/20/21 02:56	1.6
1,2,4-Trimethylbenzene	ND		0.00066		ppm v/v		05/20/21 02:56	1.6
1,3,5-Trimethylbenzene	ND		0.00066		ppm v/v		05/20/21 02:56	1.6
Vinyl acetate	ND		0.0033		ppm v/v		05/20/21 02:56	1.6
Vinyl chloride	ND		0.00033		ppm v/v		05/20/21 02:56	1.6
m,p-Xylene	ND		0.00066		ppm v/v		05/20/21 02:56	1.6

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 114908-001 / MWL-SV03-50

Lab Sample ID: 140-23051-13 Date Collected: 05/06/21 10:03 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	ND		0.00066	0.00012	ppm v/v			05/20/21 02:56	1.65
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		60 - 140					05/20/21 02:56	1.65

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) - DL

Analyte Tetrachloroethene	Result 0.11	Qualifier	RL 0.0011	MDL 0.000096	Unit ppm v/v	<u> </u>	Prepared	Analyzed 05/21/21 07:33	<b>Dil Fac</b> 1.65
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery	Qualifier	Limits 60 - 140			,	Prepared	Analyzed 05/21/21 07:33	<b>Dil Fac</b> 1.65

Client Sample ID: 114909-001 / MWL-SV03-100

Date Collected: 05/06/21 10:08 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0085	ppm v/v			05/20/21 03:43	1.49
Benzene	0.00023	J	0.0012	0.00012	ppm v/v			05/20/21 03:43	1.49
Benzyl chloride	ND		0.0024	0.00057	ppm v/v			05/20/21 03:43	1.49
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			05/20/21 03:43	1.49
Bromoform	ND		0.0012	0.00013	ppm v/v			05/20/21 03:43	1.49
Bromomethane	ND		0.0012	0.00033	ppm v/v			05/20/21 03:43	1.49
2-Butanone (MEK)	ND		0.0060	0.0011	ppm v/v			05/20/21 03:43	1.49
Carbon disulfide	0.0034	В	0.0030	0.00016	ppm v/v			05/20/21 03:43	1.49
Carbon tetrachloride	0.00031	J	0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
Chlorobenzene	ND		0.0012	0.000089	ppm v/v			05/20/21 03:43	1.49
Chloroethane	ND		0.0012	0.00043	ppm v/v			05/20/21 03:43	1.49
Chloroform	0.0020		0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
Chloromethane	ND		0.0030	0.00098	ppm v/v			05/20/21 03:43	1.49
Dibromochloromethane	ND		0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
1,2-Dibromoethane (EDB)	ND		0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v			05/20/21 03:43	1.49
1,2-Dichlorobenzene	ND		0.0012	0.00046	ppm v/v			05/20/21 03:43	1.49
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			05/20/21 03:43	1.49
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			05/20/21 03:43	1.49
Dichlorodifluoromethane	0.041		0.0012	0.00021	ppm v/v			05/20/21 03:43	1.49
1,1-Dichloroethane	0.0043		0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			05/20/21 03:43	1.49
1,1-Dichloroethene	0.016		0.0012	0.00012	ppm v/v			05/20/21 03:43	1.49
cis-1,2-Dichloroethene	0.0026		0.0012	0.00015	ppm v/v			05/20/21 03:43	1.49
trans-1,2-Dichloroethene	ND		0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			05/20/21 03:43	1.49
cis-1,3-Dichloropropene	ND		0.0012	0.00024	ppm v/v			05/20/21 03:43	1.49
trans-1,3-Dichloropropene	ND		0.0012	0.00013	ppm v/v			05/20/21 03:43	1.49
Ethylbenzene	ND		0.0012	0.00019	ppm v/v			05/20/21 03:43	1.49
4-Ethyltoluene	ND		0.0024	0.00031	ppm v/v			05/20/21 03:43	1.49
Hexachlorobutadiene	ND		0.0060	0.00048	ppm v/v			05/20/21 03:43	1.49

Eurofins TestAmerica, Knoxville

Job ID: 140-23051-1

Lab Sample ID: 140-23051-14

Page 31 of 1775 06/15/2021

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114909-001 / MWL-SV03-100

Date Collected: 05/06/21 10:08 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		0.0030	0.00024	ppm v/v			05/20/21 03:43	1.49
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00080	ppm v/v			05/20/21 03:43	1.49
Methylene Chloride	ND		0.0060	0.0058	ppm v/v			05/20/21 03:43	1.49
Styrene	ND		0.0012	0.00036	ppm v/v			05/20/21 03:43	1.49
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v			05/20/21 03:43	1.49
Tetrachloroethene	0.21		0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
Toluene	ND		0.0018	0.0012	ppm v/v			05/20/21 03:43	1.49
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.10		0.0012	0.00012	ppm v/v			05/20/21 03:43	1.49
1,2,4-Trichlorobenzene	ND		0.0060	0.00095	ppm v/v			05/20/21 03:43	1.49
1,1,1-Trichloroethane	0.0023		0.0012	0.00055	ppm v/v			05/20/21 03:43	1.49
1,1,2-Trichloroethane	0.00013	J	0.0012	0.00010	ppm v/v			05/20/21 03:43	1.49
Trichloroethene	0.18		0.00060	0.00019	ppm v/v			05/20/21 03:43	1.49
Trichlorofluoromethane	0.037		0.0012	0.00016	ppm v/v			05/20/21 03:43	1.49
1,2,4-Trimethylbenzene	ND		0.0012	0.00030	ppm v/v			05/20/21 03:43	1.49
1,3,5-Trimethylbenzene	ND		0.0012	0.00033	ppm v/v			05/20/21 03:43	1.49
Vinyl acetate	ND		0.0060	0.00042	ppm v/v			05/20/21 03:43	1.49
Vinyl chloride	ND		0.00060	0.00039	ppm v/v			05/20/21 03:43	1.49
m,p-Xylene	ND		0.0012	0.00043	ppm v/v			05/20/21 03:43	1.49
o-Xylene	ND		0.0012	0.00022	ppm v/v			05/20/21 03:43	1.49
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		60 - 140			-		05/20/21 03:43	1.49

Client Sample ID: 114910-001 / MWL-SV03-200

Date Collected: 05/06/21 10:16
Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.029	0.0083	ppm v/v			05/20/21 05:13	1.46
Benzene	0.00026	J	0.0012	0.00012	ppm v/v			05/20/21 05:13	1.46
Benzyl chloride	ND		0.0023	0.00055	ppm v/v			05/20/21 05:13	1.46
Bromodichloromethane	ND		0.0012	0.00026	ppm v/v			05/20/21 05:13	1.46
Bromoform	ND		0.0012	0.00013	ppm v/v			05/20/21 05:13	1.46
Bromomethane	ND		0.0012	0.00032	ppm v/v			05/20/21 05:13	1.46
2-Butanone (MEK)	ND		0.0058	0.0011	ppm v/v			05/20/21 05:13	1.46
Carbon disulfide	0.00041	JB	0.0029	0.00016	ppm v/v			05/20/21 05:13	1.46
Carbon tetrachloride	0.00034	J	0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
Chlorobenzene	0.00012	JB	0.0012	0.000088	ppm v/v			05/20/21 05:13	1.46
Chloroethane	ND		0.0012	0.00042	ppm v/v			05/20/21 05:13	1.46
Chloroform	0.0020		0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
Chloromethane	ND		0.0029	0.00096	ppm v/v			05/20/21 05:13	1.46
Dibromochloromethane	ND		0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
1,2-Dibromoethane (EDB)	ND		0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v			05/20/21 05:13	1.46
1,2-Dichlorobenzene	ND		0.0012	0.00045	ppm v/v			05/20/21 05:13	1.46
1,3-Dichlorobenzene	ND		0.0012	0.00023	ppm v/v			05/20/21 05:13	1.46

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-23051-14

Lab Sample ID: 140-23051-15

Matrix: Air

Page 32 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114910-001 / MWL-SV03-200 Lab Sample ID: 140-23051-15

Date Collected: 05/06/21 10:16 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.0012	0.00023	ppm v/v			05/20/21 05:13	1.46
Dichlorodifluoromethane	0.045		0.0012	0.00020	ppm v/v			05/20/21 05:13	1.46
1,1-Dichloroethane	0.0052		0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			05/20/21 05:13	1.46
1,1-Dichloroethene	0.021		0.0012	0.00012	ppm v/v			05/20/21 05:13	1.46
cis-1,2-Dichloroethene	0.0032		0.0012	0.00015	ppm v/v			05/20/21 05:13	1.46
trans-1,2-Dichloroethene	ND		0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			05/20/21 05:13	1.46
cis-1,3-Dichloropropene	ND		0.0012	0.00023	ppm v/v			05/20/21 05:13	1.46
trans-1,3-Dichloropropene	ND		0.0012	0.00013	ppm v/v			05/20/21 05:13	1.46
Ethylbenzene	ND		0.0012	0.00019	ppm v/v			05/20/21 05:13	1.46
4-Ethyltoluene	ND		0.0023	0.00031	ppm v/v			05/20/21 05:13	1.46
Hexachlorobutadiene	ND		0.0058	0.00047	ppm v/v			05/20/21 05:13	1.46
2-Hexanone	ND		0.0029	0.00023	ppm v/v			05/20/21 05:13	1.46
4-Methyl-2-pentanone (MIBK)	ND		0.0029	0.00079	ppm v/v			05/20/21 05:13	1.46
Methylene Chloride	ND		0.0058	0.0057	ppm v/v			05/20/21 05:13	1.46
Styrene	ND		0.0012	0.00035	ppm v/v			05/20/21 05:13	1.46
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00020	ppm v/v			05/20/21 05:13	1.46
Tetrachloroethene	0.23		0.0012	0.00010	ppm v/v			05/20/21 05:13	1.46
Toluene	ND		0.0018	0.0011	ppm v/v			05/20/21 05:13	1.46
1,1,2-Trichloro-1,2,2-trifluoroetha	0.12		0.0012	0.00012	ppm v/v			05/20/21 05:13	1.46
ne									
1,2,4-Trichlorobenzene	ND		0.0058	0.00093				05/20/21 05:13	1.46
1,1,1-Trichloroethane	0.0015		0.0012	0.00054				05/20/21 05:13	1.46
1,1,2-Trichloroethane	ND		0.0012	0.00010	· · · · · · · · · · · · ·			05/20/21 05:13	1.46
Trichloroethene	0.22		0.00058	0.00019	• •			05/20/21 05:13	1.46
Trichlorofluoromethane	0.033		0.0012	0.00016				05/20/21 05:13	1.46
1,2,4-Trimethylbenzene	ND		0.0012	0.00029	ppm v/v			05/20/21 05:13	1.46
1,3,5-Trimethylbenzene	ND		0.0012	0.00032				05/20/21 05:13	1.46
Vinyl acetate	ND		0.0058	0.00041	ppm v/v			05/20/21 05:13	1.46
Vinyl chloride	ND		0.00058	0.00038				05/20/21 05:13	1.46
m,p-Xylene	ND		0.0012	0.00042				05/20/21 05:13	1.46
o-Xylene	ND		0.0012	0.00022	ppm v/v			05/20/21 05:13	1.46

Client Sample ID: 114911-001 / MWL-SV03-300 Lab Sample ID: 140-23051-16

Limits

60 - 140

Date Collected: 05/06/21 10:25

%Recovery Qualifier

90

Date Received: 05/11/21 11:45

4-Bromofluorobenzene (Surr)

Surrogate

Sample Container: Summa Canister 6L

Method: TO 15 LL - Vola	atile Organic Comp	ounds in	Ambient Aiı	r, Low Co	oncentrat	ion (G	C/MS)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.042	0.012	ppm v/v			05/20/21 21:47	1.46
Benzene	0.00025	J	0.0017	0.00017	ppm v/v			05/20/21 21:47	1.46

1.46 0.00025 J 0.00017 ppm v/v ND Benzyl chloride 0.0033 0.00079 ppm v/v 05/20/21 21:47 1.46 Bromodichloromethane ND 0.0017 0.00038 ppm v/v 05/20/21 21:47 1.46 Bromoform ND 0.0017 0.00019 ppm v/v 05/20/21 21:47 1.46

Analyzed

05/20/21 05:13

Prepared

Dil Fac

Matrix: Air

1.46

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114911-001 / MWL-SV03-300

Lab Sample ID: 140-23051-16 Date Collected: 05/06/21 10:25 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Bromomethane	ND	*+	0.0017	0.00046	ppm v/v		05/20/21 21:47	1.46
2-Butanone (MEK)	ND		0.0083	0.0015	ppm v/v		05/20/21 21:47	1.46
Carbon disulfide	0.00031	JB	0.0042	0.00023	ppm v/v		05/20/21 21:47	1.46
Carbon tetrachloride	0.00023	J	0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
Chlorobenzene	0.00019	J	0.0017	0.00013	ppm v/v		05/20/21 21:47	1.46
Chloroethane	ND		0.0017	0.00060	ppm v/v		05/20/21 21:47	1.46
Chloroform	0.0011	J	0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
Chloromethane	ND		0.0042	0.0014	ppm v/v		05/20/21 21:47	1.46
Dibromochloromethane	ND		0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
1,2-Dibromoethane (EDB)	ND		0.0017		ppm v/v		05/20/21 21:47	1.46
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0017	0.00025	ppm v/v		05/20/21 21:47	1.46
1,2-Dichlorobenzene	ND		0.0017	0.00065	ppm v/v		05/20/21 21:47	1.46
1,3-Dichlorobenzene	ND		0.0017	0.00033	ppm v/v		05/20/21 21:47	1.46
1,4-Dichlorobenzene	ND		0.0017	0.00033	ppm v/v		05/20/21 21:47	1.46
Dichlorodifluoromethane	0.032		0.0017	0.00029	ppm v/v		05/20/21 21:47	1.46
1,1-Dichloroethane	0.0020		0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
1,2-Dichloroethane	ND		0.0017	0.00021	ppm v/v		05/20/21 21:47	1.46
1,1-Dichloroethene	0.012		0.0017	0.00017	ppm v/v		05/20/21 21:47	1.46
cis-1,2-Dichloroethene	0.0015	J	0.0017	0.00021	ppm v/v		05/20/21 21:47	1.46
trans-1,2-Dichloroethene	ND		0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
1,2-Dichloropropane	ND		0.0017	0.00021	ppm v/v		05/20/21 21:47	1.46
cis-1,3-Dichloropropene	ND		0.0017	0.00033	ppm v/v		05/20/21 21:47	1.46
trans-1,3-Dichloropropene	ND		0.0017	0.00019	ppm v/v		05/20/21 21:47	1.46
Ethylbenzene	ND		0.0017	0.00027	ppm v/v		05/20/21 21:47	1.46
4-Ethyltoluene	ND		0.0033	0.00044	ppm v/v		05/20/21 21:47	1.46
Hexachlorobutadiene	ND	*+	0.0083	0.00067	ppm v/v		05/20/21 21:47	1.46
2-Hexanone	ND		0.0042	0.00033	ppm v/v		05/20/21 21:47	1.46
4-Methyl-2-pentanone (MIBK)	ND		0.0042	0.0011	ppm v/v		05/20/21 21:47	1.46
Methylene Chloride	ND		0.0083	0.0081	ppm v/v		05/20/21 21:47	1.46
Styrene	ND		0.0017	0.00050	ppm v/v		05/20/21 21:47	1.46
1,1,2,2-Tetrachloroethane	ND		0.0017	0.00029	ppm v/v		05/20/21 21:47	1.46
Tetrachloroethene	0.20		0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
Toluene	ND		0.0025		ppm v/v		05/20/21 21:47	1.46
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.077		0.0017	0.00017	ppm v/v		05/20/21 21:47	1.46
1,2,4-Trichlorobenzene	ND		0.0083	0.0013	ppm v/v		05/20/21 21:47	1.46
1,1,1-Trichloroethane	ND		0.0017	0.00077	ppm v/v		05/20/21 21:47	1.46
1,1,2-Trichloroethane	ND		0.0017	0.00015	ppm v/v		05/20/21 21:47	1.46
Trichloroethene	0.14		0.00083	0.00027	ppm v/v		05/20/21 21:47	1.46
Trichlorofluoromethane	0.012		0.0017	0.00023	ppm v/v		05/20/21 21:47	1.46
1,2,4-Trimethylbenzene	ND		0.0017	0.00042	ppm v/v		05/20/21 21:47	1.46
1,3,5-Trimethylbenzene	ND		0.0017	0.00046	ppm v/v		05/20/21 21:47	1.46
Vinyl acetate	ND		0.0083	0.00058	ppm v/v		05/20/21 21:47	1.46
Vinyl chloride	ND		0.00083	0.00054	ppm v/v		05/20/21 21:47	1.46
m,p-Xylene	ND		0.0017	0.00060	ppm v/v		05/20/21 21:47	1.46
o-Xylene	ND		0.0017	0.00031	ppm v/v		05/20/21 21:47	1.46
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 114912-001 / MWL-SV03-400

Lab Sample ID: 140-23051-17 Date Collected: 05/06/21 11:09 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fa
Acetone	ND		0.055	0.016	ppm v/v			05/20/21 22:37	1.6
Benzene	0.00031	J	0.0022	0.00022	ppm v/v			05/20/21 22:37	1.6
Benzyl chloride	ND		0.0044	0.0010	ppm v/v			05/20/21 22:37	1.6
Bromodichloromethane	ND		0.0022	0.00049	ppm v/v			05/20/21 22:37	1.6
Bromoform	ND		0.0022	0.00025	ppm v/v			05/20/21 22:37	1.6
Bromomethane	ND	*+	0.0022	0.00060	ppm v/v			05/20/21 22:37	1.6
2-Butanone (MEK)	ND		0.011	0.0020	ppm v/v			05/20/21 22:37	1.6
Carbon disulfide	0.00049	JB	0.0055	0.00030	ppm v/v			05/20/21 22:37	1.6
Carbon tetrachloride	0.00021	J	0.0022	0.00019	ppm v/v			05/20/21 22:37	1.6
Chlorobenzene	0.00026	J	0.0022	0.00016	ppm v/v			05/20/21 22:37	1.6
Chloroethane	ND		0.0022	0.00079	ppm v/v			05/20/21 22:37	1.6
Chloroform	0.0011	J	0.0022		ppm v/v			05/20/21 22:37	1.6
Chloromethane	ND		0.0055		ppm v/v			05/20/21 22:37	1.6
Dibromochloromethane	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
1,2-Dibromoethane (EDB)	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0022		ppm v/v			05/20/21 22:37	1.6
1,2-Dichlorobenzene	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
1,3-Dichlorobenzene	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
1.4-Dichlorobenzene	ND		0.0022	0.00044				05/20/21 22:37	1.6
Dichlorodifluoromethane	0.0048		0.0022		ppm v/v			05/20/21 22:37	1.6
	0.0046		0.0022	0.00038				05/20/21 22:37	1.6
1,1-Dichloroethane 1,2-Dichloroethane	0.0025 ND		0.0022		ppm v/v			05/20/21 22:37	1.6
·			0.0022						1.6
1,1-Dichloroethene	0.014				ppm v/v			05/20/21 22:37	
cis-1,2-Dichloroethene	0.0014	. J	0.0022		ppm v/v			05/20/21 22:37	1.6
trans-1,2-Dichloroethene	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
1,2-Dichloropropane	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
cis-1,3-Dichloropropene	ND		0.0022	0.00044				05/20/21 22:37	1.6
trans-1,3-Dichloropropene	ND		0.0022	0.00025				05/20/21 22:37	1.6
Ethylbenzene	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
4-Ethyltoluene	ND		0.0044		ppm v/v			05/20/21 22:37	1.6
Hexachlorobutadiene	ND	*+	0.011	0.00087				05/20/21 22:37	1.6
2-Hexanone	ND		0.0055	0.00044	ppm v/v			05/20/21 22:37	1.6
4-Methyl-2-pentanone (MIBK)	ND		0.0055	0.0015	ppm v/v			05/20/21 22:37	1.6
Methylene Chloride	ND		0.011	0.011	ppm v/v			05/20/21 22:37	1.6
Styrene	ND		0.0022	0.00066	ppm v/v			05/20/21 22:37	1.6
1,1,2,2-Tetrachloroethane	ND		0.0022	0.00038	ppm v/v			05/20/21 22:37	1.6
Tetrachloroethene	0.32		0.0022	0.00019	ppm v/v			05/20/21 22:37	1.6
Toluene	ND		0.0033	0.0021	ppm v/v			05/20/21 22:37	1.6
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.025		0.0022	0.00022	ppm v/v			05/20/21 22:37	1.6
1,2,4-Trichlorobenzene	ND		0.011	0.0017	ppm v/v			05/20/21 22:37	1.6
1,1,1-Trichloroethane	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
1,1,2-Trichloroethane	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
Trichloroethene	0.18		0.0011		ppm v/v			05/20/21 22:37	1.6
Trichlorofluoromethane	0.0073		0.0022		ppm v/v			05/20/21 22:37	1.6
1,2,4-Trimethylbenzene	0.0073 ND		0.0022		ppm v/v			05/20/21 22:37	1.0
1,3,5-Trimethylbenzene	ND		0.0022		ppm v/v			05/20/21 22:37	1.6
Vinyl acetate Vinyl chloride	ND ND		0.011 0.0011		ppm v/v ppm v/v			05/20/21 22:37 05/20/21 22:37	1.6 1.6

Eurofins TestAmerica, Knoxville

Job ID: 140-23051-1

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114912-001 / MWL-SV03-400

Date Collected: 05/06/21 11:09 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient	Air, Low Concentration (GC/MS) (Continued)
----------------------------------------------------------	--------------------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.0022	0.00079	ppm v/v			05/20/21 22:37	1.64
o-Xylene	ND		0.0022	0.00041	ppm v/v			05/20/21 22:37	1.64
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140					05/20/21 22:37	1.64

Client Sample ID: 114913-001 / MWL-SV03-400

Date Collected: 05/06/21 11:09

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit D Prepared	Analyzed	Dil Fac
Acetone	ND		0.055	0.016	ppm v/v	05/21/21 08:19	1.64
Benzene	0.00035	J	0.0022	0.00022	ppm v/v	05/21/21 08:19	1.64
Benzyl chloride	ND		0.0044	0.0010	ppm v/v	05/21/21 08:19	1.64
Bromodichloromethane	ND		0.0022	0.00049	ppm v/v	05/21/21 08:19	1.64
Bromoform	ND		0.0022	0.00025	ppm v/v	05/21/21 08:19	1.64
Bromomethane	ND	*+	0.0022	0.00060	ppm v/v	05/21/21 08:19	1.64
2-Butanone (MEK)	ND		0.011	0.0020	ppm v/v	05/21/21 08:19	1.64
Carbon disulfide	0.00037	JB	0.0055	0.00030	ppm v/v	05/21/21 08:19	1.64
Carbon tetrachloride	ND		0.0022	0.00019	ppm v/v	05/21/21 08:19	1.64
Chlorobenzene	ND		0.0022	0.00016	ppm v/v	05/21/21 08:19	1.64
Chloroethane	ND		0.0022	0.00079	ppm v/v	05/21/21 08:19	1.64
Chloroform	0.0012	J	0.0022	0.00019	ppm v/v	05/21/21 08:19	1.64
Chloromethane	ND		0.0055	0.0018	ppm v/v	05/21/21 08:19	1.64
Dibromochloromethane	ND		0.0022	0.00019	ppm v/v	05/21/21 08:19	1.64
1,2-Dibromoethane (EDB)	ND		0.0022	0.00019	ppm v/v	05/21/21 08:19	1.64
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0022	0.00033	ppm v/v	05/21/21 08:19	1.64
1,2-Dichlorobenzene	ND		0.0022	0.00085	ppm v/v	05/21/21 08:19	1.64
1,3-Dichlorobenzene	ND		0.0022	0.00044	ppm v/v	05/21/21 08:19	1.64
1,4-Dichlorobenzene	ND		0.0022	0.00044	ppm v/v	05/21/21 08:19	1.64
Dichlorodifluoromethane	0.0051		0.0022	0.00038	ppm v/v	05/21/21 08:19	1.64
1,1-Dichloroethane	0.0026		0.0022	0.00019	ppm v/v	05/21/21 08:19	1.64
1,2-Dichloroethane	ND		0.0022	0.00027	ppm v/v	05/21/21 08:19	1.64
1,1-Dichloroethene	0.014		0.0022	0.00022	ppm v/v	05/21/21 08:19	1.64
cis-1,2-Dichloroethene	0.0015	J	0.0022	0.00027	ppm v/v	05/21/21 08:19	1.64
trans-1,2-Dichloroethene	ND		0.0022	0.00019	ppm v/v	05/21/21 08:19	1.64
1,2-Dichloropropane	ND		0.0022	0.00027	ppm v/v	05/21/21 08:19	1.64
cis-1,3-Dichloropropene	ND		0.0022	0.00044	ppm v/v	05/21/21 08:19	1.64
trans-1,3-Dichloropropene	ND		0.0022	0.00025	ppm v/v	05/21/21 08:19	1.64
Ethylbenzene	ND		0.0022	0.00036	ppm v/v	05/21/21 08:19	1.64
4-Ethyltoluene	ND		0.0044	0.00057	ppm v/v	05/21/21 08:19	1.64
Hexachlorobutadiene	ND	*+	0.011	0.00087	ppm v/v	05/21/21 08:19	1.64
2-Hexanone	ND		0.0055	0.00044	ppm v/v	05/21/21 08:19	1.64
4-Methyl-2-pentanone (MIBK)	ND		0.0055	0.0015	ppm v/v	05/21/21 08:19	1.64
Methylene Chloride	ND		0.011	0.011	ppm v/v	05/21/21 08:19	1.64
Styrene	ND		0.0022	0.00066	ppm v/v	05/21/21 08:19	1.64
1,1,2,2-Tetrachloroethane	ND		0.0022	0.00038	ppm v/v	05/21/21 08:19	1.64

Eurofins TestAmerica, Knoxville

06/15/2021

Lab Sample ID: 140-23051-17

Lab Sample ID: 140-23051-18

Matrix: Air

Page 36 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114913-001 / MWL-SV03-400 Lab Sample ID: 140-23051-18

Date Collected: 05/06/21 11:09 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: 10 15 LL - Vo	iatile Organic Compounds in Amb	ient Ai	r, Low Concentration	on (	GC/NS) (Cont	.inuea)
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyze

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.32		0.0022	0.00019	ppm v/v			05/21/21 08:19	1.64
Toluene	ND		0.0033	0.0021	ppm v/v			05/21/21 08:19	1.64
1,1,2-Trichloro-1,2,2-trifluoroetha	0.025		0.0022	0.00022	ppm v/v			05/21/21 08:19	1.64
ne									
1,2,4-Trichlorobenzene	ND		0.011	0.0017	ppm v/v			05/21/21 08:19	1.64
1,1,1-Trichloroethane	ND		0.0022	0.0010	ppm v/v			05/21/21 08:19	1.64
1,1,2-Trichloroethane	ND		0.0022	0.00019	ppm v/v			05/21/21 08:19	1.64
Trichloroethene	0.18		0.0011	0.00036	ppm v/v			05/21/21 08:19	1.64
Trichlorofluoromethane	0.0075		0.0022	0.00030	ppm v/v			05/21/21 08:19	1.64
1,2,4-Trimethylbenzene	ND		0.0022	0.00055	ppm v/v			05/21/21 08:19	1.64
1,3,5-Trimethylbenzene	ND		0.0022	0.00060	ppm v/v			05/21/21 08:19	1.64
Vinyl acetate	ND		0.011	0.00077	ppm v/v			05/21/21 08:19	1.64
Vinyl chloride	ND		0.0011	0.00071	ppm v/v			05/21/21 08:19	1.64
m,p-Xylene	ND		0.0022	0.00079	ppm v/v			05/21/21 08:19	1.64
o-Xylene	ND		0.0022	0.00041	ppm v/v			05/21/21 08:19	1.64
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140			-		05/21/21 08:19	1.64

Client Sample ID: 114920-001 / MWL-FB5

Date Collected: 05/06/21 11:34 Date Received: 05/11/21 11:45

1,1-Dichloroethene

Sample Container: Summa Canister 6L

Lab Sample ID: 140-23051-19

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.0020	0.00057	ppm v/v			05/18/21 15:33	1.53
Benzene	ND		0.000080	0.0000080	ppm v/v			05/18/21 15:33	1.53
Benzyl chloride	ND		0.00016	0.000038	ppm v/v			05/18/21 15:33	1.53
Bromodichloromethane	ND		0.000080	0.000018	ppm v/v			05/18/21 15:33	1.53
Bromoform	ND		0.000080	0.0000090	ppm v/v			05/18/21 15:33	1.53
Bromomethane	ND	*+	0.000080	0.000022	ppm v/v			05/18/21 15:33	1.53
2-Butanone (MEK)	ND		0.00040	0.000073	ppm v/v			05/18/21 15:33	1.53
Carbon disulfide	0.000023	JB	0.00020	0.000011	ppm v/v			05/18/21 15:33	1.53
Carbon tetrachloride	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
Chlorobenzene	0.0000077	JB	0.000080	0.0000060	ppm v/v			05/18/21 15:33	1.53
Chloroethane	ND		0.000080	0.000029	ppm v/v			05/18/21 15:33	1.53
Chloroform	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
Chloromethane	ND		0.00020	0.000066	ppm v/v			05/18/21 15:33	1.53
Dibromochloromethane	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
1,2-Dibromoethane (EDB)	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.000080	0.000012	ppm v/v			05/18/21 15:33	1.53
1,2-Dichlorobenzene	ND		0.000080	0.000031	ppm v/v			05/18/21 15:33	1.53
1,3-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			05/18/21 15:33	1.53
1,4-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			05/18/21 15:33	1.53
Dichlorodifluoromethane	ND		0.000080	0.000014	ppm v/v			05/18/21 15:33	1.53
1,1-Dichloroethane	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
1,2-Dichloroethane	ND		0.000080	0.000010	ppm v/v			05/18/21 15:33	1.53

Eurofins TestAmerica, Knoxville

05/18/21 15:33

Page 37 of 1775

0.000080 0.0000080 ppm v/v

ND

1.53

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

**Client Sample ID: 114920-001 / MWL-FB5** 

Date Collected: 05/06/21 11:34 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND		0.000080	0.000010	ppm v/v			05/18/21 15:33	1.53
trans-1,2-Dichloroethene	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
1,2-Dichloropropane	ND		0.000080	0.000010	ppm v/v			05/18/21 15:33	1.53
cis-1,3-Dichloropropene	ND		0.000080	0.000016	ppm v/v			05/18/21 15:33	1.53
trans-1,3-Dichloropropene	ND		0.000080	0.0000090	ppm v/v			05/18/21 15:33	1.53
Ethylbenzene	ND		0.000080	0.000013	ppm v/v			05/18/21 15:33	1.53
4-Ethyltoluene	ND		0.00016	0.000021	ppm v/v			05/18/21 15:33	1.53
Hexachlorobutadiene	ND		0.00040	0.000032	ppm v/v			05/18/21 15:33	1.53
2-Hexanone	ND		0.00020	0.000016	ppm v/v			05/18/21 15:33	1.53
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000054	ppm v/v			05/18/21 15:33	1.53
Methylene Chloride	0.00059		0.00040	0.00039	ppm v/v			05/18/21 15:33	1.53
Styrene	ND		0.000080	0.000024	ppm v/v			05/18/21 15:33	1.53
1,1,2,2-Tetrachloroethane	ND		0.000080	0.000014	ppm v/v			05/18/21 15:33	1.53
Tetrachloroethene	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
Toluene	ND		0.00012	0.000078	ppm v/v			05/18/21 15:33	1.53
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000080	0.0000080	ppm v/v			05/18/21 15:33	1.53
1,2,4-Trichlorobenzene	ND		0.00040	0.000064	ppm v/v			05/18/21 15:33	1.53
1,1,1-Trichloroethane	ND		0.000080	0.000037	ppm v/v			05/18/21 15:33	1.53
1,1,2-Trichloroethane	ND		0.000080	0.0000070	ppm v/v			05/18/21 15:33	1.53
Trichloroethene	ND		0.000040	0.000013	ppm v/v			05/18/21 15:33	1.53
Trichlorofluoromethane	0.000021	J	0.000080	0.000011	ppm v/v			05/18/21 15:33	1.53
1,2,4-Trimethylbenzene	ND		0.000080	0.000020	ppm v/v			05/18/21 15:33	1.53
1,3,5-Trimethylbenzene	ND		0.000080	0.000022	ppm v/v			05/18/21 15:33	1.53
Vinyl acetate	ND		0.00040	0.000028	ppm v/v			05/18/21 15:33	1.53
Vinyl chloride	ND		0.000040	0.000026	ppm v/v			05/18/21 15:33	1.53
m,p-Xylene	ND		0.000080	0.000029				05/18/21 15:33	1.53
o-Xylene	ND		0.000080	0.000015	ppm v/v			05/18/21 15:33	1.53
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		60 - 140					05/18/21 15:33	1.53

Client Sample ID: 114921-001 / MWL-SV05-50

Lab Sample ID: 140-23051-20 Date Collected: 05/06/21 12:08 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0077 J	J	0.016	0.0046	ppm v/v			05/21/21 00:09	1.45
Benzene	0.00017 J	J	0.00064	0.000064	ppm v/v			05/21/21 00:09	1.45
Benzyl chloride	ND		0.0013	0.00031	ppm v/v			05/21/21 00:09	1.45
Bromodichloromethane	ND		0.00064	0.00015	ppm v/v			05/21/21 00:09	1.45
Bromoform	ND		0.00064	0.000073	ppm v/v			05/21/21 00:09	1.45
Bromomethane	ND *-	'+	0.00064	0.00018	ppm v/v			05/21/21 00:09	1.45
2-Butanone (MEK)	0.00086 J	J	0.0032	0.00059	ppm v/v			05/21/21 00:09	1.45
Carbon disulfide	0.00025 J	JB	0.0016	0.000089	ppm v/v			05/21/21 00:09	1.45
Carbon tetrachloride	0.00026 J	J	0.00064	0.000056	ppm v/v			05/21/21 00:09	1.45
Chlorobenzene	0.000063 J	J	0.00064	0.000048	ppm v/v			05/21/21 00:09	1.45
Chloroethane	ND		0.00064	0.00023	ppm v/v			05/21/21 00:09	1.45

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-23051-19

Page 38 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114921-001 / MWL-SV05-50

Lab Sample ID: 140-23051-20 Date Collected: 05/06/21 12:08 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	0.00099		0.00064	0.000056	ppm v/v			05/21/21 00:09	1.45
Chloromethane	ND		0.0016	0.00053	ppm v/v			05/21/21 00:09	1.45
Dibromochloromethane	ND		0.00064	0.000056	ppm v/v			05/21/21 00:09	1.45
1,2-Dibromoethane (EDB)	ND		0.00064	0.000056	ppm v/v			05/21/21 00:09	1.45
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.00017	J *+	0.00064	0.000097	ppm v/v			05/21/21 00:09	1.45
ane									
1,2-Dichlorobenzene	ND		0.00064	0.00025	ppm v/v			05/21/21 00:09	1.45
1,3-Dichlorobenzene	ND		0.00064	0.00013	ppm v/v			05/21/21 00:09	1.45
1,4-Dichlorobenzene	ND		0.00064	0.00013	ppm v/v			05/21/21 00:09	1.45
Dichlorodifluoromethane	0.042		0.00064	0.00011	ppm v/v			05/21/21 00:09	1.45
1,1-Dichloroethane	0.0012		0.00064	0.000056	ppm v/v			05/21/21 00:09	1.45
1,2-Dichloroethane	ND		0.00064	0.000081	ppm v/v			05/21/21 00:09	1.45
1,1-Dichloroethene	0.0078		0.00064	0.000064	ppm v/v			05/21/21 00:09	1.45
cis-1,2-Dichloroethene	0.00053	J	0.00064	0.000081	ppm v/v			05/21/21 00:09	1.45
trans-1,2-Dichloroethene	ND		0.00064	0.000056	ppm v/v			05/21/21 00:09	1.45
1,2-Dichloropropane	ND		0.00064	0.000081				05/21/21 00:09	1.45
cis-1,3-Dichloropropene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
trans-1,3-Dichloropropene	ND		0.00064	0.000073				05/21/21 00:09	1.45
Ethylbenzene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
4-Ethyltoluene	ND		0.0013		ppm v/v			05/21/21 00:09	1.45
Hexachlorobutadiene	ND	*+	0.0032		ppm v/v			05/21/21 00:09	1.45
2-Hexanone	ND		0.0016		ppm v/v			05/21/21 00:09	1.45
4-Methyl-2-pentanone (MIBK)	ND		0.0016		ppm v/v			05/21/21 00:09	1.45
Methylene Chloride	ND		0.0032		ppm v/v			05/21/21 00:09	1.45
Styrene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
1,1,2,2-Tetrachloroethane	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
Tetrachloroethene	0.042		0.00064	0.000056				05/21/21 00:09	1.45
Toluene	ND		0.00097		ppm v/v			05/21/21 00:09	1.45
1,1,2-Trichloro-1,2,2-trifluoroetha	0.037		0.00064	0.000064				05/21/21 00:09	1.45
ne	0.001		0.0000.	0.00000.	PP 1/1			00/21/21 00:00	
1,2,4-Trichlorobenzene	ND		0.0032	0.00052	ppm v/v			05/21/21 00:09	1.45
1,1,1-Trichloroethane	0.0088		0.00064	0.00030	ppm v/v			05/21/21 00:09	1.45
1,1,2-Trichloroethane	ND		0.00064	0.000056				05/21/21 00:09	1.45
Trichloroethene	0.048		0.00032		ppm v/v			05/21/21 00:09	1.45
Trichlorofluoromethane	0.10		0.00064	0.000089				05/21/21 00:09	1.45
1,2,4-Trimethylbenzene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
1,3,5-Trimethylbenzene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
Vinyl acetate	ND		0.0032		ppm v/v			05/21/21 00:09	1.45
Vinyl chloride	ND		0.00032		ppm v/v			05/21/21 00:09	1.45
m,p-Xylene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
o-Xylene	ND		0.00064		ppm v/v			05/21/21 00:09	1.45
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		60 - 140			-		05/21/21 00:09	1.45

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114922-001 / MWL-SV05-100 Lab Sample ID: 140-23051-21

Date Collected: 05/06/21 12:09 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL _		Unit D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.037	0.011	ppm v/v		05/21/21 00:53	1.48
Benzene	0.00031	J	0.0015	0.00015	ppm v/v		05/21/21 00:53	1.48
Benzyl chloride	ND		0.0030	0.00070	ppm v/v		05/21/21 00:53	1.48
Bromodichloromethane	ND		0.0015	0.00033	ppm v/v		05/21/21 00:53	1.48
Bromoform	ND		0.0015	0.00017	ppm v/v		05/21/21 00:53	1.48
Bromomethane	ND	*+	0.0015	0.00041	ppm v/v		05/21/21 00:53	1.48
2-Butanone (MEK)	ND		0.0074	0.0014	ppm v/v		05/21/21 00:53	1.48
Carbon disulfide	0.0043	В	0.0037	0.00020	ppm v/v		05/21/21 00:53	1.48
Carbon tetrachloride	0.00037	J	0.0015	0.00013	ppm v/v		05/21/21 00:53	1.48
Chlorobenzene	0.00015	J	0.0015	0.00011	ppm v/v		05/21/21 00:53	1.48
Chloroethane	ND		0.0015	0.00054	ppm v/v		05/21/21 00:53	1.48
Chloroform	0.0015		0.0015	0.00013	ppm v/v		05/21/21 00:53	1.48
Chloromethane	ND		0.0037	0.0012	ppm v/v		05/21/21 00:53	1.48
Dibromochloromethane	ND		0.0015	0.00013	ppm v/v		05/21/21 00:53	1.48
1,2-Dibromoethane (EDB)	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.00024	J *+	0.0015		ppm v/v		05/21/21 00:53	1.48
ane 1,2-Dichlorobenzene	ND		0.0015	0.00057	ppm v/v		05/21/21 00:53	1.48
1,3-Dichlorobenzene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
1.4-Dichlorobenzene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
,			0.0015		ppm v/v		05/21/21 00:53	1.48
Dichlorodifluoromethane	0.065		0.0015		ppm v/v		05/21/21 00:53	1.48
1,1-Dichloroethane 1,2-Dichloroethane	<b>0.0023</b> ND		0.0015		ppm v/v		05/21/21 00:53	1.46
					• •			
1,1-Dichloroethene	0.016		0.0015 0.0015		ppm v/v		05/21/21 00:53	1.48
cis-1,2-Dichloroethene	0.00096				ppm v/v		05/21/21 00:53	1.48
trans-1,2-Dichloroethene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
1,2-Dichloropropane	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
cis-1,3-Dichloropropene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
trans-1,3-Dichloropropene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
Ethylbenzene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
4-Ethyltoluene	ND		0.0030		ppm v/v		05/21/21 00:53	1.48
Hexachlorobutadiene	ND	^+	0.0074		ppm v/v		05/21/21 00:53	1.48
2-Hexanone	ND		0.0037		ppm v/v		05/21/21 00:53	1.48
4-Methyl-2-pentanone (MIBK)	ND		0.0037		ppm v/v		05/21/21 00:53	1.48
Methylene Chloride	ND		0.0074		ppm v/v		05/21/21 00:53	1.48
Styrene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
1,1,2,2-Tetrachloroethane	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
Tetrachloroethene	0.069		0.0015		ppm v/v		05/21/21 00:53	1.48
Toluene	ND		0.0022		ppm v/v		05/21/21 00:53	1.48
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.068		0.0015	0.00015	ppm v/v		05/21/21 00:53	1.48
1,2,4-Trichlorobenzene	ND		0.0074	0.0012	ppm v/v		05/21/21 00:53	1.48
1,1,1-Trichloroethane	0.0085		0.0015	0.00068	ppm v/v		05/21/21 00:53	1.48
1,1,2-Trichloroethane	ND		0.0015	0.00013	ppm v/v		05/21/21 00:53	1.48
Trichloroethene	0.087		0.00074	0.00024	ppm v/v		05/21/21 00:53	1.48
Trichlorofluoromethane	0.12		0.0015	0.00020	ppm v/v		05/21/21 00:53	1.48
1,2,4-Trimethylbenzene	ND		0.0015	0.00037	ppm v/v		05/21/21 00:53	1.48
1,3,5-Trimethylbenzene	ND		0.0015		ppm v/v		05/21/21 00:53	1.48
Vinyl acetate	ND		0.0074		ppm v/v		05/21/21 00:53	1.48

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114922-001 / MWL-SV05-100

Lab Sample ID: 140-23051-21 Date Collected: 05/06/21 12:09 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND ND	0.00074	0.00048	ppm v/v			05/21/21 00:53	1.48
m,p-Xylene	ND	0.0015	0.00054	ppm v/v			05/21/21 00:53	1.48
o-Xylene	ND	0.0015	0.00028	ppm v/v			05/21/21 00:53	1.48
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89	60 - 140					05/21/21 00:53	1.48

Client Sample ID: 114923-001 / MWL-SV05-200 Lab Sample ID: 140-23051-22

Date Collected: 05/06/21 11:49

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.038	0.011	ppm v/v			05/22/21 14:27	1.5
Benzene	0.00038	J	0.0015	0.00015	ppm v/v			05/22/21 14:27	1.5
Benzyl chloride	ND		0.0030	0.00071	ppm v/v			05/22/21 14:27	1.5
Bromodichloromethane	ND		0.0015	0.00034	ppm v/v			05/22/21 14:27	1.5
Bromoform	ND		0.0015	0.00017	ppm v/v			05/22/21 14:27	1.5
Bromomethane	ND	*+	0.0015	0.00041	ppm v/v			05/22/21 14:27	1.5
2-Butanone (MEK)	ND		0.0075	0.0014	ppm v/v			05/22/21 14:27	1.5
Carbon disulfide	0.00027	J	0.0038	0.00021	ppm v/v			05/22/21 14:27	1.5
Carbon tetrachloride	0.00067	J	0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
Chlorobenzene	0.00017	J	0.0015	0.00011	ppm v/v			05/22/21 14:27	1.5
Chloroethane	ND		0.0015	0.00054	ppm v/v			05/22/21 14:27	1.5
Chloroform	0.0015		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
Chloromethane	ND		0.0038	0.0012	ppm v/v			05/22/21 14:27	1.5
Dibromochloromethane	ND		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
1,2-Dibromoethane (EDB)	ND		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0015	0.00023	ppm v/v			05/22/21 14:27	1.5
1,2-Dichlorobenzene	ND		0.0015	0.00058	ppm v/v			05/22/21 14:27	1.5
1,3-Dichlorobenzene	ND		0.0015	0.00030	ppm v/v			05/22/21 14:27	1.5
1,4-Dichlorobenzene	ND		0.0015	0.00030	ppm v/v			05/22/21 14:27	1.5
Dichlorodifluoromethane	0.058		0.0015	0.00026	ppm v/v			05/22/21 14:27	1.5
1,1-Dichloroethane	0.0034		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
1,2-Dichloroethane	ND		0.0015	0.00019	ppm v/v			05/22/21 14:27	1.5
1,1-Dichloroethene	0.026		0.0015	0.00015	ppm v/v			05/22/21 14:27	1.5
cis-1,2-Dichloroethene	0.0018		0.0015	0.00019	ppm v/v			05/22/21 14:27	1.5
trans-1,2-Dichloroethene	ND		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
1,2-Dichloropropane	ND		0.0015	0.00019	ppm v/v			05/22/21 14:27	1.5
cis-1,3-Dichloropropene	ND		0.0015	0.00030	ppm v/v			05/22/21 14:27	1.5
trans-1,3-Dichloropropene	ND		0.0015	0.00017	ppm v/v			05/22/21 14:27	1.5
Ethylbenzene	ND		0.0015	0.00024	ppm v/v			05/22/21 14:27	1.5
4-Ethyltoluene	ND		0.0030	0.00039	ppm v/v			05/22/21 14:27	1.5
Hexachlorobutadiene	ND	*+	0.0075	0.00060	ppm v/v			05/22/21 14:27	1.5
2-Hexanone	ND		0.0038	0.00030	ppm v/v			05/22/21 14:27	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0038	0.0010	ppm v/v			05/22/21 14:27	1.5
Methylene Chloride	ND		0.0075	0.0073	ppm v/v			05/22/21 14:27	1.5
Styrene	ND		0.0015		ppm v/v			05/22/21 14:27	1.5

Eurofins TestAmerica, Knoxville

Page 41 of 1775

Matrix: Air

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Lab Sample ID: 140-23051-22 Client Sample ID: 114923-001 / MWL-SV05-200

Date Collected: 05/06/21 11:49 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.0015	0.00026	ppm v/v			05/22/21 14:27	1.5
Tetrachloroethene	0.11		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
Toluene	ND		0.0023	0.0015	ppm v/v			05/22/21 14:27	1.5
1,1,2-Trichloro-1,2,2-trifluoroetha	0.11		0.0015	0.00015	ppm v/v			05/22/21 14:27	1.5
ne									
1,2,4-Trichlorobenzene	ND		0.0075	0.0012	ppm v/v			05/22/21 14:27	1.5
1,1,1-Trichloroethane	0.0025		0.0015	0.00069	ppm v/v			05/22/21 14:27	1.5
1,1,2-Trichloroethane	ND		0.0015	0.00013	ppm v/v			05/22/21 14:27	1.5
Trichloroethene	0.16		0.00075	0.00024	ppm v/v			05/22/21 14:27	1.5
Trichlorofluoromethane	0.074		0.0015	0.00021	ppm v/v			05/22/21 14:27	1.5
1,2,4-Trimethylbenzene	ND		0.0015	0.00038	ppm v/v			05/22/21 14:27	1.5
1,3,5-Trimethylbenzene	ND		0.0015	0.00041	ppm v/v			05/22/21 14:27	1.5
Vinyl acetate	ND		0.0075	0.00053	ppm v/v			05/22/21 14:27	1.5
Vinyl chloride	ND	*+	0.00075	0.00049	ppm v/v			05/22/21 14:27	1.5
m,p-Xylene	ND		0.0015	0.00054	ppm v/v			05/22/21 14:27	1.5
o-Xylene	ND		0.0015	0.00028	ppm v/v			05/22/21 14:27	1.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87	·	60 - 140					05/22/21 14:27	1.5

Client Sample ID: 114924-001 / MWL-SV05-300

Sample Container: Summa Canister 6L

Lab Sample ID: 140-23051-23 Date Collected: 05/06/21 11:59 Matrix: Air Date Received: 05/11/21 11:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.031	0.0089	ppm v/v	:		05/21/21 02:24	1.56
Benzene	0.00032	J	0.0012	0.00012	ppm v/v			05/21/21 02:24	1.56
Benzyl chloride	ND		0.0025	0.00059	ppm v/v			05/21/21 02:24	1.56
Bromodichloromethane	ND		0.0012	0.00028	ppm v/v			05/21/21 02:24	1.56
Bromoform	ND		0.0012	0.00014	ppm v/v			05/21/21 02:24	1.56
Bromomethane	ND	*+	0.0012	0.00034	ppm v/v			05/21/21 02:24	1.56
2-Butanone (MEK)	ND		0.0062	0.0011	ppm v/v			05/21/21 02:24	1.56
Carbon disulfide	0.00027	JB	0.0031	0.00017	ppm v/v			05/21/21 02:24	1.56
Carbon tetrachloride	0.00061	J	0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
Chlorobenzene	ND		0.0012	0.000094	ppm v/v			05/21/21 02:24	1.56
Chloroethane	ND		0.0012	0.00045	ppm v/v			05/21/21 02:24	1.56
Chloroform	0.00070	J	0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
Chloromethane	ND		0.0031	0.0010	ppm v/v			05/21/21 02:24	1.56
Dibromochloromethane	ND		0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
1,2-Dibromoethane (EDB)	ND		0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00019	ppm v/v			05/21/21 02:24	1.56
1,2-Dichlorobenzene	ND		0.0012	0.00048	ppm v/v			05/21/21 02:24	1.56
1,3-Dichlorobenzene	ND		0.0012	0.00025	ppm v/v			05/21/21 02:24	1.56
1,4-Dichlorobenzene	ND		0.0012	0.00025	ppm v/v			05/21/21 02:24	1.56
Dichlorodifluoromethane	0.038		0.0012	0.00022	ppm v/v			05/21/21 02:24	1.56
1,1-Dichloroethane	0.0014		0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
1,2-Dichloroethane	ND		0.0012	0.00016	ppm v/v			05/21/21 02:24	1.56

Eurofins TestAmerica, Knoxville

Page 42 of 1775

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114924-001 / MWL-SV05-300 Lab Sample ID: 140-23051-23

Date Collected: 05/06/21 11:59 **Matrix: Air** 

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Or	ganic Compounds	in Ambient A	ir, Low Co	oncentr	ation (G	C/MS) (Cont	inued)
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyze

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	0.019		0.0012	0.00012	ppm v/v			05/21/21 02:24	1.56
cis-1,2-Dichloroethene	0.00077	J	0.0012	0.00016	ppm v/v			05/21/21 02:24	1.56
trans-1,2-Dichloroethene	ND		0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
1,2-Dichloropropane	ND		0.0012	0.00016	ppm v/v			05/21/21 02:24	1.56
cis-1,3-Dichloropropene	ND		0.0012	0.00025	ppm v/v			05/21/21 02:24	1.56
trans-1,3-Dichloropropene	ND		0.0012	0.00014	ppm v/v			05/21/21 02:24	1.56
Ethylbenzene	ND		0.0012	0.00020	ppm v/v			05/21/21 02:24	1.56
4-Ethyltoluene	ND		0.0025	0.00033	ppm v/v			05/21/21 02:24	1.56
Hexachlorobutadiene	ND	*+	0.0062	0.00050	ppm v/v			05/21/21 02:24	1.56
2-Hexanone	ND		0.0031	0.00025	ppm v/v			05/21/21 02:24	1.56
4-Methyl-2-pentanone (MIBK)	ND		0.0031	0.00084	ppm v/v			05/21/21 02:24	1.56
Methylene Chloride	ND		0.0062	0.0061	ppm v/v			05/21/21 02:24	1.56
Styrene	ND		0.0012	0.00037	ppm v/v			05/21/21 02:24	1.56
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00022	ppm v/v			05/21/21 02:24	1.56
Tetrachloroethene	0.081		0.0012	0.00011	ppm v/v			05/21/21 02:24	1.56
Toluene	ND		0.0019	0.0012	ppm v/v			05/21/21 02:24	1.56
1,1,2-Trichloro-1,2,2-trifluoroetha	0.096		0.0012	0.00012	ppm v/v			05/21/21 02:24	1.56
ne									
1,2,4-Trichlorobenzene	ND		0.0062	0.0010	ppm v/v			05/21/21 02:24	1.56
1,1,1-Trichloroethane	0.00092	J	0.0012	0.00058	• •			05/21/21 02:24	1.56
1,1,2-Trichloroethane	ND		0.0012		ppm v/v			05/21/21 02:24	1.56
Trichloroethene	0.088		0.00062	0.00020	ppm v/v			05/21/21 02:24	1.56
Trichlorofluoromethane	0.029		0.0012	0.00017	ppm v/v			05/21/21 02:24	1.56
1,2,4-Trimethylbenzene	ND		0.0012	0.00031	ppm v/v			05/21/21 02:24	1.56
1,3,5-Trimethylbenzene	ND		0.0012	0.00034	ppm v/v			05/21/21 02:24	1.56
Vinyl acetate	ND		0.0062	0.00044	ppm v/v			05/21/21 02:24	1.56
Vinyl chloride	ND		0.00062	0.00041	ppm v/v			05/21/21 02:24	1.56
m,p-Xylene	ND		0.0012	0.00045	ppm v/v			05/21/21 02:24	1.56
o-Xylene	ND		0.0012	0.00023	ppm v/v			05/21/21 02:24	1.56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		60 - 140					05/21/21 02:24	1.56

Client Sample ID: 114925-001 / MWL-SV05-400

Lab Sample ID: 140-23051-24 Date Collected: 05/06/21 12:06 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.030	0.0084	ppm v/v			05/21/21 03:56	1.48
Benzene	0.00034 J	J	0.0012	0.00012	ppm v/v			05/21/21 03:56	1.48
Benzyl chloride	ND		0.0024	0.00056	ppm v/v			05/21/21 03:56	1.48
Bromodichloromethane	ND		0.0012	0.00027	ppm v/v			05/21/21 03:56	1.48
Bromoform	ND		0.0012	0.00013	ppm v/v			05/21/21 03:56	1.48
Bromomethane	ND *	*+	0.0012	0.00033	ppm v/v			05/21/21 03:56	1.48
2-Butanone (MEK)	ND		0.0059	0.0011	ppm v/v			05/21/21 03:56	1.48
Carbon disulfide	0.00035 J	J B	0.0030	0.00016	ppm v/v			05/21/21 03:56	1.48
Carbon tetrachloride	0.00029 J	J	0.0012	0.00010	ppm v/v			05/21/21 03:56	1.48

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories Job ID: 140-23051-1

Project/Site: MWL LTMMP

Client Sample ID: 114925-001 / MWL-SV05-400

Lab Sample ID: 140-23051-24 Date Collected: 05/06/21 12:06 Matrix: Air

Date Received: 05/11/21 11:45

Sample Container: Summa Canister 61

Analyte	Result	Qualifier	RL		Unit	D Prepared	Analyzed	Dil Fac
Chlorobenzene	0.00013	J	0.0012	0.000089	ppm v/v		05/21/21 03:56	1.48
Chloroethane	ND		0.0012	0.00043	ppm v/v		05/21/21 03:56	1.48
Chloroform	0.00057	J	0.0012	0.00010	ppm v/v		05/21/21 03:56	1.48
Chloromethane	ND		0.0030	0.00098	ppm v/v		05/21/21 03:56	1.48
Dibromochloromethane	ND		0.0012	0.00010	ppm v/v		05/21/21 03:56	1.48
1,2-Dibromoethane (EDB)	ND		0.0012	0.00010	ppm v/v		05/21/21 03:56	1.48
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	*+	0.0012	0.00018	ppm v/v		05/21/21 03:56	1.48
1,2-Dichlorobenzene	ND		0.0012	0.00046	ppm v/v		05/21/21 03:56	1.48
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v		05/21/21 03:56	1.48
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v		05/21/21 03:56	1.48
Dichlorodifluoromethane	0.016		0.0012	0.00021	ppm v/v		05/21/21 03:56	1.48
1,1-Dichloroethane	0.0010	J	0.0012	0.00010	ppm v/v		05/21/21 03:56	1.48
1,2-Dichloroethane	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
1,1-Dichloroethene	0.012		0.0012		ppm v/v		05/21/21 03:56	1.48
cis-1,2-Dichloroethene	0.00051	J	0.0012		ppm v/v		05/21/21 03:56	1.48
trans-1,2-Dichloroethene	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
1,2-Dichloropropane	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
cis-1,3-Dichloropropene	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
trans-1,3-Dichloropropene	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
Ethylbenzene	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
4-Ethyltoluene	ND		0.0024		ppm v/v		05/21/21 03:56	1.48
Hexachlorobutadiene	ND	*+	0.0059		ppm v/v		05/21/21 03:56	1.48
2-Hexanone	ND		0.0030	0.00024	ppm v/v		05/21/21 03:56	1.48
4-Methyl-2-pentanone (MIBK)	ND		0.0030	0.00080	ppm v/v		05/21/21 03:56	1.48
Methylene Chloride	ND		0.0059	0.0058	ppm v/v		05/21/21 03:56	1.48
Styrene	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
1,1,2,2-Tetrachloroethane	ND		0.0012		ppm v/v		05/21/21 03:56	1.48
Tetrachloroethene	0.080		0.0012		ppm v/v		05/21/21 03:56	1.48
Toluene	ND		0.0018		ppm v/v		05/21/21 03:56	1.48
1,1,2-Trichloro-1,2,2-trifluoroetha	0.039		0.0012		ppm v/v		05/21/21 03:56	1.48
ne								
1,2,4-Trichlorobenzene	ND		0.0059	0.00095	ppm v/v		05/21/21 03:56	1.48
1,1,1-Trichloroethane	0.00082	J	0.0012	0.00055	ppm v/v		05/21/21 03:56	1.48
1,1,2-Trichloroethane	ND		0.0012	0.00010	ppm v/v		05/21/21 03:56	1.48
Trichloroethene	0.067		0.00059	0.00019	ppm v/v		05/21/21 03:56	1.48
Trichlorofluoromethane	0.020		0.0012	0.00016	ppm v/v		05/21/21 03:56	1.48
1,2,4-Trimethylbenzene	ND		0.0012	0.00030	ppm v/v		05/21/21 03:56	1.48
1,3,5-Trimethylbenzene	ND		0.0012	0.00033	ppm v/v		05/21/21 03:56	1.48
Vinyl acetate	ND		0.0059	0.00041	ppm v/v		05/21/21 03:56	1.48
Vinyl chloride	ND		0.00059	0.00038	ppm v/v		05/21/21 03:56	1.48
m,p-Xylene	ND		0.0012	0.00043	ppm v/v		05/21/21 03:56	1.48
o-Xylene	ND		0.0012	0.00022	ppm v/v		05/21/21 03:56	1.48
Surrogate	%Recovery	Qualifier	Limits			Prepared	l Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140				05/21/21 03:56	1.48

# Field Sampling Forms November 2021 Soil-Vapor Monitoring

Soil Vapor Sampling Log Form Initial Ending PID Canister Canister Location Date Time Canister# Rate Comments (ppm) Vacuum Vacuum ( cu FT Hr ) (PSI) (PSI) 11/5/21 1122 -6 MWL-SV-FB1 34000613 NA NA -25 UPN MWL-SV01-42.5 11/5/21 1135 NA NA 1.6 10 4 1136 -25 1137 09539 NA NA -6 MWL-SV-FB2 11/5/21 34000021 NA NA -24 -6 UPN 1117 MWL-SV02-41.5 11/5/21 1143 1.7 NA NA 15 1

NA

NA

Field Notes: PID 11.7 Lamp - 5N: 914942

1143

1144

11982

Continuous PID Readings During Purge.

Background PID Readings:

SV01- 1.6 SV02- 1.7

NMED OB Split Sampling SV01 & SV02

Smoke of HAZY in the por- PID Racking higher

MWL Elevation ~5300 feet above mean sea level.

-6

-25

Soil Vapor Sampling Log Form

			Soil Vapor S	ampling I	og Form	1		
Location	Date	Time	Canister #	PID (ppm)	Flow Rate ( ou FT Hr )	Initial Canister Vacuum	Ending Canister Vacuum	Comments
MWL-SV-FB3	11/5/2	1 0834	10823	NA	NA	-24	-6	UPN
MWL-SV03-50	11/5/2	1 0839	1	6.0	1.0	NA	NA	
	1	1		1	10	INA	INA	
		6840	1	1	1			
	+	0841	34000185	NA	NA	-24	-6	
MWL-SV03-100	11/5/21	0843	1	4.0	10	NA	NA	
	1	1		6.0	10	1	INA	
		0844	-		1			
	1	0845	12021	NA	NA	-24	-6	
MWL-SV03-200	11/5/21	0846	1	0.0	10	NA	NA	
	1	1		1	1	1	1	
		0848	1	12	1	1	1	
	1	0949	10512	NA	NA	-24	-6	
MWL-SV03-300	11/5/21	0850	1	0.1	lo	NA	NA	
		1		1	1	1	1	
		0852		1	4			
,	I	0855	34000700	NA	NA	-24	-6	
/WL-SV03-400	11/5/21	0903		6.1	10	NA	NA	
		7				1	1	
		0905	-	1	1	4	4	
7. 11.	4	0915	11532	NA	NA	-24	-6	

Field Notes: PID 11.7 Lamp - 5N: 914942

Continuous PID Readings During Purge.

Background PID Readings: SV03- 0.0

ports 4 + 5 Long Scriping collection Times.

NMED OB Split Sampling Port 4&5.

MWL Elevation ~5300 feet above mean sea level.

Soil Vapor Sampling Log Form Initial Ending Flow PID Canister Canister Location Date Time Canister# Rate Comments Vacuum Vacuum (ppm) ( cu FT Hr ) (PSI) (PSI) MWL-SV-FB4 NA NA -26 -6 11/5/21 11301 0934 UPN MWL-SV04-50 11/5/21 NA NA 1000 1.0 10 1 1001 -6 11566 NA NA -25 1008 MWL-SV04-100 11/5/21 NA 1009 15 NA 7 1010 34000259 NA NA -6 -25 loll MWL-SV04-200 NA NA 11/5/21 1011 1.2 15 1 1012 -25 34000206 NA NA -6 SA 1020 -25 -6 DU NA 1020 12101 NA NA NA MWL-SV04-300 11/5/21 1021 1.3 15 f 1022 1023 11612 -25 -6 NA NA NA NA MWL-SV04-400 11/5/21 15 1026 1.4 1028

Field Notes: pID - 11.7 Lane - SN: 914942

1036 11231

1030 34002083

Continuous PID Readings During Purge.

Background PID Readings:

SV04- 1.0

-25 Port 1,3

-25

NA

NA

NA

NA

Long sample collection Time.

-6

-6

SA

DU

NMED OB Split Sampling Ports 4&5

Smake I Hazy in the air PID Leading higher

MWL Elevation ~5300 feet above mean sea level.

Soil Vapor Sampling Log Form

Date					Initial	Ending	
91RG	Time	Canister#	PID (ppm)	Flow Rate ( wfth )	Canister Vacuum (PSI)	Canister Vacuum (PSI)	Comments
11/5/21	1049	12145	NA	NA	-24	-6	UPN
11/5/21	1054		1.5	15	NA	NA	
1	1		1	I	1	1	
	1055	1	h	1	1	1	
1	1056	10411	NA	NA	-24	-6	
11/5/21	1056	1	1.6	15	NA	NA	
1	4		1	1	1	1	
	1057	4	4	1	7	1	
7	1058	10472	NA	NA	-24	-6	
11/5/21	1058	1	1.6	15	NA	NA	
	1		1	1	1	1	
	1059	1	1	-	4	1	
1	1100	11028	NA	NA	-24	-6	
11/5/21	1101		1.7	15	NA	NA	
1	+		1	1	1	1	
	1102	24 14 101	9	1	1	1	
7	1103	11988 1 1998	NA	NA	-25	-6	
11/5/21	1106	T	1.8	15	NA	NA	
	+			-1-	-		
	8011	4	1	7	7	7	
7	1108	12022	NA	NA	-25	-6	
	11/5/21	11/5/21 1054 1055 1056 11/5/21 1056 1057 1058 11/5/21 1058 11/5/21 1106 11/5/21 1106 1108	11/5/21 1054 1055 1056 10411  11/5/21 1056 1057 1058 10472  11/5/21 1058 1006 11028  11/5/21 1106 11028	11/5/21 1054   1.5  1055   10411   NA  11/5/21 1056   1.6  1057   1058   1.6  1059   1000   11028   NA  11/5/21 1101   1.7  1102   1103   1.998   1.998   NA  11/5/21 1106   1.8  1108   1.8	11/5/21 1054	11/5/21 1049 12145 NA NA -24  11/5/21 1054	11/5/21 1054   12145   NA NA -24 -6  11/5/21 1054   1.5 15 NA NA  1055 10411   NA NA -24 -6  11/5/21 1056   1.6 15 NA NA  1057   1058   1.6 15 NA NA  11/5/21 1058   1.6 15 NA NA  11/5/21 1058   1.6 15 NA NA  11/5/21 1058   1.7 15 NA NA  11/5/21 1101   1.7 15 NA NA  11/5/21 1101   1.7 15 NA NA  11/5/21 1101   1.7 15 NA NA  11/5/21 1106   1.8 15 NA NA  11/5/21 1106   1.8 15 NA NA

Field Notes: PID 11.7 Lamp - SN: 914942

Continuous PID Readings During Purge.

Background PID Readings:

SV05-1.5

NMED OB Split Sampling Ports 4 & 5 w/DU

Smoke + Hazy in the air PID acading high.

MWL Elevation ~5300 feet above mean sea level.

# Summary Sheet For November 2021 Soil-Vapor Samples

# Sample Summary for Mixed Waste Landfill Soil-Vapor Monitoring November 2021

			SUMMA		Sample		Associated Field Blank	
Well ID	Sample Date	Sample ID / Port	Number	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Comments
Mixed Waste	Landfill Soil V	/apor Monitoring: Project	Task Number	195122.10.	11.08 / Servi	ice Order Numb	er CF 01-21	
MWL-SV01	5-Nov-21	MWL-SV-01-42.5	09539	622647	116193	Environmental	622647 / 116192	
WWL-3VUI	3-1100-21	MWL-SV-FB 1	34000613	022047	116192	Field QC	n/a	Ultra Pure N2
MWL-SV02	5-Nov-21	MWL-SV02-41.5	11982	622648	116195	Environmental	622648 / 116194	
WWL-3V02	3-1100-21	MWL-SV-FB 2	34000021	022040	116194	Field QC	n/a	Ultra Pure N2
		MWL-SV03-50	34000185		116197	Environmental		
		MWL-SV03-100	12021		116198	Environmental		
MWL-SV03	5-Nov-21	MWL-SV03-200	10512	622649	116199	Environmental	622649 / 116196	
WWL-3V03	3-1100-21	MWL-SV03-300	34000700	022049	116200	Environmental		
		MWL-SV03-400	11532		116201	Environmental		
		MWL-SV-FB 3	10823		116196	Field QC	n/a	Ultra Pure N2
		MWL-SV04-50	11566		116203	Environmental	_	
		MWL-SV04-100	34000259		116204	Environmental		
		MWL-SV04-200	34000206		116205	Environmental		
MWL-SV04	5-Nov-21	MWL-SV04-200	12101	622645	116206	Duplicate	622645 / 116202	
WWL-3V04	3-1100-21	MWL-SV04-300	11612	022043	116207	Environmental		
		MWL-SV04-400	11231		116208	Environmental		
		MWL-SV04-400	34002083		116209	Duplicate		
		MWL-SV-FB 4	11301		116202	Field QC	n/a	Ultra Pure N2
		MWL-SV05-50	10411		116211	Environmental		
		MWL-SV05-100	10472		116212	Environmental		
MWL-SV05	5-Nov-21	MWL-SV05-200	11028	622646	116213	Environmental	622646 / 116210	
WW 3 V U S	J-140V-Z1	MWL-SV05-300	11998	022040	116214	Environmental		
		MWL-SV05-400	12022		116215	Environmental		
		MWL-SV-FB 5	12145		116210	Field QC	n/a	Ultra Pure N2

# Data Validation Reports For Environmental Samples Mixed Waste Landfill Soil-Vapor Monitoring November 2021







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

### Memorandum

Date: December 3, 2021

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622645, 622646, 622647, 622648 and 622649

SDG: 140-25404

Laboratory: Eurofins TestAmerica, Knoxville

Project/Task: 195122.10.11.08 Analysis: VOCs by method TO-15

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

### **Summary**

Twenty-four samples were prepared and analyzed with accepted procedures using method EPA TO-15 (Determination of VOCs in Air collected in specially prepared canisters and analyzed by GC-MS). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Chlorobenzene, benzene, carbon disulfide and 1,2-dibromoethane were detected at ≤ the PQL in the MB associated with samples 140-25404-1 through -5, -9, -15, -17 and -19. The chlorobenzene results for samples -2, -3, -9, -15, -17 and -19; the benzene results for samples -1, -2, -4, -5, -9, -15, -17 and -19; the carbon disulfide results for -1, -2, -3, -4, -9, -15, -17 and -19 and the 1,2-dibromoethane results for samples -9 and -15 were detects ≤ the PQL and will be **qualified U,B**; non-detect at their associated PQLs.
- 2. Chlorobenzene and benzene were detected at ≤ the PQL in the MB associated with samples -6 through -8, -10 through -14, -16, -18 and -20 through -24. The chlorobenzene results for samples -7, -8, -10, -11, -13, -16, -21, -22 and -23 and the benzene results for samples -6, -8, -10, -11, -12, -13, -14, -18, -20, -21, -22, -23 and -24 were detects ≤ the PQL and will be **qualified U,B**; non-detect at their associated PQLs.
- 3. Acetone was detected at ≤ the PQL in FB 3, sample -19 associated with samples -20 through -24. The acetone results for samples -20, -21 and -24 were detects ≤ the PQL and will be **qualified** U,B2; non-detect at their associated PQLs.

- 4. Acetone and 2-butanone were detected at ≤ the PQL in FB 4, sample -1 associated with samples -2 through -8. The acetone and 2-butanone results for samples -6 and -7 were detects ≤ the PQL and will be **qualified U,B2**; non-detect at their associated PQL.
- 5. The tetrachloroethene result for sample -16 and the 1,1,2-trichloro-1,2,2-trifluoroethane result for sample -20 were flagged in the raw data as being > the instrument calibration range. The associated results were not re-analyzed at a dilution and, therefore, will be **qualified J,FR1**.

Data are acceptable except as noted above and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

### **Holding Times**

The samples were analyzed within the prescribed holding time.

### **Instrument Tune**

All instrument tune requirements were met.

### **Calibration**

The initial calibration and continuing calibration data met QC acceptance criteria except as follows.

For the initial calibration associated with samples -1 through -5, -9, -15, -17 and -19, the intercept was > the MDL and positive for 1,3,5-trimethylbenzene. The associated sample results were non-detect and will not be qualified.

For the initial calibration associated with samples -6 through -8, -10 through -14, -16, -18 and -20 through -24, the intercept was > the MDL and positive for bromoform. The associated sample results were non-detect and will not be qualified.

### **Blanks**

No target analytes were detected in the blanks except as noted above in the Summary section and as follows.

Chlorobenzene, benzene, carbon disulfide, 1,3,5-trimethylbenzene and 1,2-dibromoethane were detected at  $\leq$  the PQL in the MB associated with samples -1 through -5, -9, -15, -17 and -19. All associated sample results, *except* the chlorobenzene results for samples -2, -3, -9, -15, -17 and -19; the benzene results for samples -1, -2, -4, -5, -9, -15, -17 and -19; the carbon disulfide results for -1, -2, -3, -4, -9, -15, -17 and -19 and the 1,2-dibromoethane results for samples -9 and -15 were non-detect and will not be qualified.

Chlorobenzene, benzene and 1,3-dichlorobenzene were detected at ≤ the PQL in the MB associated with samples -6 through -8, -10 through -14, -16, -18 and -20 through -24. All associated sample results, *except* the chlorobenzene results for samples -7, -8, -10, -11, -13, -16, -21, -22 and -23 and the benzene results for samples -6, -8, -10, -11, -12, -13, -14, -18, -20, -21, -22, -23 and -24 were either non-detect or detects > the PQL and >5X the MB values and will not be qualified.

Acetone, carbon disulfide; benzene; chlorobenzene and 1,2-dibromethane were detected at ≤ the PQL in FB 1, sample -15 associated with sample -16. The carbon disulfide; benzene; chlorobenzene and 1,2-dibromethane results for FB 1 were qualified non-detect due to MB contamination and will not be applied

to the associated field sample result. The acetone result for sample -16 was non-detect and will not be qualified.

Acetone, carbon disulfide; benzene and chlorobenzene were detected at  $\leq$  the PQL in FB 2, sample -17 associated with sample -18. The carbon disulfide; benzene and chlorobenzene results for FB 2 were qualified non-detect due to MB contamination and will not be applied to the associated field sample result. The acetone result for sample -18 was a detect > the PQL and >10X the FB value and will not be qualified.

Acetone, carbon disulfide; benzene, chloromethane and chlorobenzene detected at  $\leq$  the PQL in FB 3, sample -19 associated with samples -20 through -24. The carbon disulfide; benzene and chlorobenzene results for FB 3 were qualified non-detect due to MB contamination and will not be applied to the associated field sample results. All remaining associated sample results, *except* the acetone results for samples -20, -21 and -24, were either non-detect or detects > the PQL and >5X/10X the FB values and will not be qualified.

Acetone, benzene, 2-butanone, carbon disulfide, tetrachloroethene and 1,1,2-trichlorethane were detected at  $\leq$  the PQL in FB 4, sample -1 associated with samples -2 through -8. The carbon disulfide and benzene results for FB 4 were qualified non-detect due to MB contamination and will not be applied to the associated field sample results. All remaining associated sample results, *except* the acetone and 2-butanone results for samples -6 and -7, were either non-detect or detects  $\geq$  the PQL and  $\geq$ 5X/10X the FB values and will not be qualified.

Carbon disulfide; benzene; chlorobenzene and 1,2-dibromethane were detected at ≤ the PQL in FB 5, sample -9 associated with samples -10 through 14. All detected results for FB 5 were qualified non-detect due to MB contamination and will not be applied to the associated field sample results.

### **Surrogates**

All surrogate acceptance criteria were met.

### **Internal Standards**

All internal standards met QC acceptance criteria.

### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

An MS/MSD was not performed.

### **Laboratory Control Sample (LCS)**

The LCS/LCSD for all batches met QC acceptance criteria for accuracy and precision.

### **Laboratory Replicate**

The laboratory replicates met QC acceptance criteria.

### **Detection Limits/Dilutions**

All detection limits were properly reported and correctly adjusted for summa canister dilutions. The following canister dilutions were performed for all target analytes.

Sample -1 (1.54X); -2 (1.55X); -3 (1.53X); -4 (1.58X): -5 (1.58X); -6 (1.56X); -7 (1.64X); -8 (1.65X); -9 (1.62X); -10 (1.61X); -11 (1.56X); -12 (1.58X); -13 (1.56X); -14 (1.58X); -15 (1.53X); -16 (1.56); -17 (1.58X); -18 (1.53X); -19 (1.71X); -20 (1.61X); -21 (1.52X); -22 (1.58X); -23 (1.57X) and -24 (1.51X).

Samples -10 thru -12; -14, -18, -20, -21 and -23 were also further diluted and re-analyzed for one or more of the following compounds due to sample results > instrument calibration range for the initial analysis. Trichlorofluoromethane; 1,1,2-trichloro-1,2,2-trifluoroethane; trichloroethene; tetrachloroethene and/or dichlorodifluoromethane.

MDLs, PQLs and sample results were further adjusted for sample volume used during analysis.

### Tentatively Identified Compounds (TICs)

TIC reports were not required.

### Other OC

Mass spectra acceptability were verified during data validation and met QC acceptance criteria. Sample results < the PQL with missing ions or poor ratios were **qualified J** by the laboratory and were not further qualified during data validation.

Five FBs were submitted, one for each ARCOC.

Two field duplicate pairs were submitted with ARCOC 622645. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 12/06/2021



## Sample Findings Summary



AR/COC: 622645, 622646, 622647, 622648, 622649

Page 1 of 3

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
TO15_LL_PF			
	116192-001/MWL-SV-FB 1	1,2-DIBROMOETHANE (EDB) (106- 93-4)	0.00008U, B
	116192-001/MWL-SV-FB 1	BENZENE (71-43-2)	0.00008U, B
	116192-001/MWL-SV-FB 1	CARBON DISULFIDE (75-15-0)	0.0002U, B
	116192-001/MWL-SV-FB 1	CHLOROBENZENE (108-90-7)	0.00008U, B
	116193-001/MWL-SV-01-42.5	CHLOROBENZENE (108-90-7)	0.0016U, B
	116193-001/MWL-SV-01-42.5	TETRACHLOROETHENE (127-18-4)	J, FR1
	116194-001/MWL-SV-FB 2	BENZENE (71-43-2)	0.00008U, B
	116194-001/MWL-SV-FB 2	CARBON DISULFIDE (75-15-0)	0.0002U, B
	116194-001/MWL-SV-FB 2	CHLOROBENZENE (108-90-7)	0.00008U, B
	116195-001/MWL-SV02-41.5	BENZENE (71-43-2)	0.00031U, B
	116196-001/MWL-SV-FB 3	BENZENE (71-43-2)	0.000086U, B
	116196-001/MWL-SV-FB 3	CARBON DISULFIDE (75-15-0)	0.00021U, B
	116196-001/MWL-SV-FB 3	CHLOROBENZENE (108-90-7)	0.000086U, B
	116197-001/MWL-SV03-50	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE (76-13-1)	J, FR1
	116197-001/MWL-SV03-50	ACETONE (67-64-1)	0.0081U, B2
	116197-001/MWL-SV03-50	BENZENE (71-43-2)	0.00032U, B
	116198-001/MWL-SV03-100	ACETONE (67-64-1)	0.015U, B2
	116198-001/MWL-SV03-100	BENZENE (71-43-2)	0.00061U, B
	116198-001/MWL-SV03-100	CHLOROBENZENE (108-90-7)	0.00061U, B
	116199-001/MWL-SV03-200	BENZENE (71-43-2)	0.0032U, B
	116199-001/MWL-SV03-200	CHLOROBENZENE (108-90-7)	0.0032U, B
	116200-001/MWL-SV03-300	BENZENE (71-43-2)	0.001U, B
	116200-001/MWL-SV03-300	CHLOROBENZENE (108-90-7)	0.001U, B

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	116201-001/MWL-SV03-400	ACETONE (67-64-1)	0.019U, B2
	116201-001/MWL-SV03-400	BENZENE (71-43-2)	0.00076U, B
	116202-001/MWL-SV-FB 4	BENZENE (71-43-2)	0.00008U, B
	116202-001/MWL-SV-FB 4	CARBON DISULFIDE (75-15-0)	0.0002U, B
	116203-001/MWL-SV04-50	BENZENE (71-43-2)	0.00089U, B
	116203-001/MWL-SV04-50	CARBON DISULFIDE (75-15-0)	0.0022U, B
	116203-001/MWL-SV04-50	CHLOROBENZENE (108-90-7)	0.00089U, B
	116204-001/MWL-SV04-100	CARBON DISULFIDE (75-15-0)	0.0031U, B
	116204-001/MWL-SV04-100	CHLOROBENZENE (108-90-7)	0.0012U, B
	116205-001/MWL-SV04-200	BENZENE (71-43-2)	0.0021U, B
	116205-001/MWL-SV04-200	CARBON DISULFIDE (75-15-0)	0.0053U, B
	116206-001/MWL-SV04-200	BENZENE (71-43-2)	0.0013U, B
	116207-001/MWL-SV04-300	2-BUTANONE (MEK) (78-93-3)	0.0039U, B2
	116207-001/MWL-SV04-300	ACETONE (67-64-1)	0.02U, B2
	116207-001/MWL-SV04-300	BENZENE (71-43-2)	0.00078U, B
	116208-001/MWL-SV04-400	2-BUTANONE (MEK) (78-93-3)	0.0033U, B2
	116208-001/MWL-SV04-400	ACETONE (67-64-1)	0.016U, B2
	116208-001/MWL-SV04-400	CHLOROBENZENE (108-90-7)	0.00066U, B
	116209-001/MWL-SV04-400	BENZENE (71-43-2)	0.00066U, B
	116209-001/MWL-SV04-400	CHLOROBENZENE (108-90-7)	0.00066U, B
	116210-001/MWL-SV-FB 5	1,2-DIBROMOETHANE (EDB) (106- 93-4)	0.000081U, B
	116210-001/MWL-SV-FB 5	BENZENE (71-43-2)	0.000081U, B
	116210-001/MWL-SV-FB 5	CARBON DISULFIDE (75-15-0)	0.0002U, B
	116210-001/MWL-SV-FB 5	CHLOROBENZENE (108-90-7)	0.000081U, B
	116211-001/MWL-SV05-50	BENZENE (71-43-2)	0.00026U, B
	116211-001/MWL-SV05-50	CHLOROBENZENE (108-90-7)	0.00026U, B
	116212-001/MWL-SV05-100	BENZENE (71-43-2)	0.00031U, B
	116212-001/MWL-SV05-100	CHLOROBENZENE (108-90-7)	0.00031U, B

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	116213-001/MWL-SV05-200	BENZENE (71-43-2)	0.00063U, B
	116214-001/MWL-SV05-300	BENZENE (71-43-2)	0.00078U, B
	116214-001/MWL-SV05-300	CHLOROBENZENE (108-90-7)	0.00078U, B
	116215-001/MWL-SV05-400	BENZENE (71-43-2)	0.00051U, B

All other analyses met QC acceptance criteria; no further data should be qualified.

## Sandia Data Validation Summary Worksheet

ARCOC#: 622645, 622646, 6226 and 622649	Site/Project	t: MWL LTMMP	) 	Validation Date: 12/03/2021									
SDG #: 140-25404		Laboratory	: Eurofins TestAr	merica, Knox	Validator: L	inda Thal							
Matrix: Air		# of Sample	es: 24	CVR present: Yes									
ARCOC(s) present: Yes		Sample Co	Sample Container Integrity: OK										
Analysis Type:  ⊠Organic □Metals □G	enchem	□Rad											
			·	Analyses Not	Reported								
Client Sample ID	Lab Samp	le ID	Analysis			Con	nments						
None													
			Hold Time	/Preservation	n Outliers								
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT				
None													
Comments: Collected 11/05/2021													
Validated by:	ial												

## Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622645, 622646, 622647, 622648 and 622649	SDG: 140-25404	Matrix: Air						
Laboratory Sample IDs: 140-25404 -1 through -24								
Method/Batch #s: <b>TO-15</b> /55945 (samples -1 thru -5; -9, -15, -17, -19); 56035(sample -6 thru -8; -10 thru -14; -16, -18, -20 thru -24); 56038 (DLs samples -10 thru -12; -14, -18, -20, -21, -23)	Tuning (pass/fail): pass	TICs Required?	(yes/no): no					

		Calibration													
Analyte (outliers)		Int.	RF/ Slope	RSD/ r ²	(ICV)/ CCV %D	MB ppm v/v	5X (10X) MB	LCS/ LCSD %R	Lab. REP RPD	FB 1 -15	FB 2 -17	FB 3 -19	FB 4 -1	FB 5	
55945 -1 through -5															
Acetone		NA	✓	✓	✓	✓	NA	✓	✓	0.00071 J	0.00074 J	0.0011 J	0.0016 J	✓	
Benzene		NA	✓	✓	✓	0.00000 941J	0.0000 47	✓	✓	0.00002 JB	0.000016 JB	0.000014 JB	0.000014 JB	0.000014 JB	
2-Butanone		NA	✓	<b>✓</b>	✓	✓	NA	✓	✓	✓	✓	✓	0.00017 J	<b>✓</b>	
Carbon disulfide		NA	✓	<b>✓</b>	✓	0.0000 110J	0.0000 55	✓	✓	0.000044 JB	0.000044 JB	0.000049 JB	0.000066 JB	0.000091 JB	
Tetrachloroethene		NA	✓	✓	✓	<b>✓</b>	NA	✓	✓	✓	✓	✓	0.0000082 J	<b>✓</b>	
1,1,2-Trichloroethane		NA	✓	✓	✓	✓	NA	✓	✓	✓	✓	✓	0.0000078 J	✓	
Chlorobenzene		NA	✓	<b>✓</b>	✓	0.0000 131J	0.0000 66	✓	✓	0.000016 JB	0.000014 JB	0.000015 JB	<b>✓</b>	0.000015 JB	
1,2-Dibromoethane		NA	<b>√</b>	<b>✓</b>	✓	0.0000 110J	0.0000 55	✓	✓	0.000008 7JB	✓	✓	<b>✓</b>	0.0000074 JB	
Chloromethane		NA	✓	✓	✓	<b>✓</b>	NA	✓	✓	✓	✓	0.0001J	<b>✓</b>	<b>✓</b>	
1,3,5-Trimethylbenzene		+0.046	✓	✓	✓	0.0000 484J	0.000 242	✓	✓	✓	✓	<b>✓</b>	<b>✓</b>	<b>✓</b>	
56035 -6 thru -8; -1	0 thru -14; -16,	-18, -20 thr	ru -24 (M	R)											
Benzene		NA	✓	✓	✓	0.00000 828J	0.0000 41	✓	✓						
Chlorobenzene		NA	✓	✓	✓	0.0000 130J	0.0000 65	✓	✓						
1,3-Dichlorobenzene		NA	<b>√</b>	<b>✓</b>	✓	0.0000 164J	0.0000 82	<b>√</b>	✓						
Bromoform		+0.041	✓	✓	✓	<b>√</b>	NA	✓	✓						
56038 DLs samples -10 thru -12; -14, -18, -20, -21, -23 (MR)															
Surrogate Recovery Outliers															
Sample ID	BFB %R														
None															
		•		•						•		•	•		

	IS Outliers													
	CBM		DFBZ	Ch	l-d5									
Sample ID	Area	RT	Area	RT	Area	RT								
None														

Comments: HTs OK. 24-hour tune check. ICAL/ICV/CCV 30%. LCS limits - lab limits . RPD 25%

MB detects compared to on-column results. FB detects compared to final results.

55945: MB, LCS/LCSD and -5DUP ICAL MS 10/25/2021 Linear: 1,3,5-Trimethylbenzene Quadratic forced: 1,2,4-Trichlorobenzene.

56035: MB, LCS/LCSD and -24DUP ICAL MR 10/07/2021 Linear: Bromoform; Benzyl chloride Quadratic forced: Carbon tetrachloride.

56038: MB, LCS/LCSD and -23DUP ICAL MR 10/07/2021 Linear: Bromoform; Benzyl chloride Quadratic forced: Carbon tetrachloride.

Samples -10 thru -12; -14, -18, -20, -21, -23 diluted for one or more of the following compounds: Trichlorofluoromethane;112TCTFE; TCE; PCE; Dichlorodifluoromethane. -016 result for PCE "E" qualified and not rerun in dilution. -20 result for 112TCTFE "E" qualified and not rerun in dilution. (Both results only slightly above highest ICAL standard.)

Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by Eurofins TestAmerica Knoxville.

**CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CU!** 



NO (USTODY SEALS NECETAED TWO DIENL 2 PODART LED X # AHA J 3AZZ 1200 W C

Batch No		Internal Lab		r8 canz) (	JEHWS/1	GAVGE.											1	Page 1 o	of 1
Project/Task Manager														101			AR/COC	62	2645
RAM		'	•				es Shipped							992		☐ Wast	te Characterization		
Project   Proj		1	_	Timmie Jackson Carrier/V		Carrier/Way	bill No.	3309	223	P(0	SMO C	ontact Phone	. Cy			7			
Send Report to SMO:   Send Report to SMO:   Stephanie Montation 505-284-2533   Building:   Room:   Operational Site:   None   Collected   Matrix   Type   Volume   ative   Method   Type   Parameter & Method   Sample   Tacking   Sample   No.   Send Report to SMO:   Stephanie Montation 505-284-2553   Building:   No.   Sample Location Detail   (ft)   Collected   Matrix   Type   Volume   Ative   None   Collection   Sample   Parameter & Method   Sample   Tacking   No.   No.		1					t:	Jamie Mckin	ney/865-29	91-3006		Wendy Pa	alencia/505	5-844-3132		1	ased by COC No.		
Tech Area:   Building:   Room:   Operational Site:   Stephanie Montanor505-284-2553   Stephanie M		Service Order	r:	CF01-22		Lab Destina	ition:	on: TAKX				eport to SMO	);				,	☑ ,	4º Celsius
Room:   Operational Site:   Depth   Container   Preserv.   Collection   Sample   Container   Preserv.   Collection   Sample   Container   Type   Volume attive   Sample   Requested   Sample   Requested   Sample   Requested   Sample   Container   Type   Volume attive   Sample   Container   Type   Volume attive   Sample   Container   Type   Volume attive   Sample   Requested   Sample   Container   Type   Volume attive   Sample   Container   Type   Volume   Type   Container   Type   Container				Contr			ntract No.: 1636780					Stephanie I	Montaño/50	05-284-2553	3	Bill to: Sandi	ia National Laboratorie		
Room:   Depth   Date/Time   Sample   No.   Fraction   Sample   Location   Detail   Detail   Preserve   Collection   Preserve   Collection   No.   Matrix   Type   Volume   Sample   Room:   Sample   Room:   Room:   Room:   Room:   No.   No.		Tech Area:														1		(	anto i ajabioj
Sample No.   Fraction   Sample   Location Detail   Contented   Sample   Container   Preserve   Collection   Collecti		Building:		Room: Op		Operation	al Site:												
116202   001   MWL-SV-FB 4   11301   NA   11/5/21   0.9 34   UPN   S   6 L   None   G   FB   VOC (TO-15)     116203   001   MWL-SV04-50   11566   50   11/5/21   10.08   SG   S   6 L   None   G   SA   VOC (TO-15)     116204   001   MWL-SV04-100   34000259   100   11/5/21   10:11   SG   S   6 L   None   G   SA   VOC (TO-15)     116205   001   MWL-SV04-200   34000206   200   11/5/21   10:20   SG   S   6 L   None   G   SA   VOC (TO-15)     116206   001   MWL-SV04-200   12101   200   11/5/21   10:20   SG   S   6 L   None   G   SA   VOC (TO-15)     116206   001   MWL-SV04-300   11612   300   11/5/21   10:20   SG   S   6 L   None   G   SA   VOC (TO-15)     116208   001   MWL-SV04-400   11231   400   11/5/21   10:30   SG   S   6 L   None   G   SA   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   SA   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   SA   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   SA   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   SA   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6 L   None   G   DU   VOC (TO-15)   001   001   001   001   001   001   001   001		Sample No.	Fraction	Sa	ample Locatio	n Detail		1								e Parameter & Method			
116203   001   MWL-SV04-50   11566   50   11/5/21   10:08   S6   S   6L   None   G   SA   V0C (T0-15)	1	116202	001	MWI-SV	/_FR 4	11301	NA									VOC (TO 15)	Requested		Sample IL
116204   001   MVIL-SV04-100   34000259   100   11/5/21   10:11   1   56   S   6 L   None   G   SA   Voc (10-15)     116205   001   MVIL-SV04-200   34000206   200   11/5/21   10:20   56   S   6 L   None   G   SA   Voc (10-15)     116206   001   MVIL-SV04-200   12101   200   11/5/21   10:20   56   S   6 L   None   G   SA   Voc (10-15)     116207   001   MVIL-SV04-300   11612   300   11/5/21   10:23   56   S   6 L   None   G   SA   Voc (10-15)     116208   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   SA   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   SA   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001   MVIL-SV04-400   34002083   400   11/5/21   10:30   56   S   6 L   None   G   DU   Voc (10-15)     116209   001								11/5/21	09:34	UPN	5	6 L	None	G	FB	VOC (10-15)			
116205   001   MWL-SV04-200   34000206   200   11/5/21   10:20   S6   S   6 L   None   G   SA   Voc (10:15)	7	116203	001	MWL-SV	/04-50 ´	1566	50	11/5/21	10:08	SG	S	6 L	None	G	SA	VOC (TO-15)			
116207   001   MWL-SV04-300   11612   300   11/5/21   10:23   SG   S   6L   None   G   SA   VOC (T0-15)     116208   001   MWL-SV04-400   11231   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   SA   SG   SC   SG   SG   SG   SG   SG   SG	Ra	116204	001	MWL-SV	/04-100 3	4000259	100	11/5/21	10:11	SG	S	6 L	None	G	SA	VOC (TO-15)			
116207   001   MWL-SV04-300   11612   300   11/5/21   10:23   SG   S   6L   None   G   SA   VOC (T0-15)     116208   001   MWL-SV04-400   11231   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   SA   SG   SC   SG   SG   SG   SG   SG   SG	ge 1	116205	001	MWL-SV	/04-200	34000206	200	11/5/21	10:20	SG	S	6 L	None	G	SA	VOC (TO-15)			
116207   001   MWL-SV04-300   11612   300   11/5/21   10:23   SG   S   6L   None   G   SA   VOC (T0-15)     116208   001   MWL-SV04-400   11231   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   DU   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   6L   None   G   SA   VOC (T0-15)     116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   SA   SG   SC   SG   SG   SG   SG   SG   SG	925	116206	001	MWL-SV	/04-200	12101	200	11/5/21	10:20	SG	S	6 L	None	G	DU	VOC (TO-15)			
116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   G L   None   G   DU   VOC (TO-15)	<u>수</u>	116207	001	MWL-SV	′04-300	11612	300	11/5/21	10:23	SG	S	6 L	None	G	SA	VOC (TO-15)			
116209   001   MWL-SV04-400   34002083   400   11/5/21   10:30   SG   S   G L   None   G   DU   VOC (TO-15)	931	116208	001	MWL-SV	′04-400	11231	400	11/5/21	10:30	SG	S	6 L	None	G	SA	VOC (TO-15)			
Validation Req'd:  Yes	4	116209	001	MWL-SV	04-400	34002083	400	11/5/21	10:30	SG	S	6 L	None	G	DU	VOC (TO-15)			
Validation Req'd:  Yes																			
Validation Req'd:  Yes																			
Validation Req'd:							Sample	Tracking		SMC	Use Special Instructions/QC Requirements:							Cond	itions on
Received by   Pes   Entered by:   Turnaround Time   7-Day*   15-Day*   30-Day   30		Validation	Req'd:	☑ Yes			Date Ent	ered:			1		-						
Name   Signature   Init.   Company/Organization/Phone/Cell   Sample Disposal   Return to Client   Disposal by Lab   Di		Backgroun	d:	□ Yes												15-Day*	☑ 30 Day	110	ccipi
Name   Signature   Init.   Company/Organization/Phone/Cell   Sample Disposal   Return to Client   Disposal by Lab   Milliam Gibson   William		Confirmato	ry:	□ Yes			QC inits.	:								10 Buy	30-Day		
Team   William Gibson   William Gibson		Sample	Ν	lame Signat		nature	Init. Company/Organization/Pho		tion/Phone	e/Cell					N	Disposal by Lab			
Members   Robert Lynch   Zachary Tenorio   Zachary Tenorio   Zachary Tenorio   Denisha Sanchez   Denisha Sanchez   SNL/08888/505-845-8636/505-259-5765   SNL/08888/505-845-7829/505-208-1375   SNL/08888/505-845-7829/505-208-1375   Lab Use   Relinquished by   Org.   Date   Time   Received by   Org.   Date   Time   Relinquished by   Org.   Date   Time   Org.   Org.   Date   Time   Relinquished by   Org.   Date   Time   Org.   Org.   Org.   Date   Time   Org.   Org.   Org.   Org.   Date   Time   Org.   O		Team	William G	Sibson	Wille	DSNA	2028	SNL/08888/5	05-284-33	07/505-23	9-7367	<del></del>	<u>.                                      </u>				Disposal by Lab		
Zachary Tenorio   March   SNL/08888/505-845-8636/505-259-5765   attached forms.   Lab Use		Members	Robert Ly	nch	Full 3	nch	The	SNL/08888/5	05-844-40	13/505-25	0-7090						provided on		
Relinquished by Org. Org. Org. Date Time  Received by Org. Org. Org. Org. Date  Relinquished by Org. Date  Relinquished by Org. Date  Relinquished by Org. Date  Time  Org. Org. Date  Time			Zachary ⁻	Γenorio	3	2	20	SNL/08888/5	05-845-86	36/505-25	9-5765	attached for	ms.			mornidadii provided on			
Received by Received by Org. Date Time  Received by Org. Org. Date  Received by Org. Org. Date  Received by Org. Org. Date  Received by Org. Date  Received by Org. Date  Time  Org. Org. Date  Time  Org. Org. Date  Time		Denisha		Sanchez Dunk Suu		Sund		SNL/08888/5	05-845-78	29/505-20	8-1375	1							
Received by Received by Org. Date Time  Received by Org. Org. Date  Received by Org. Org. Date  Received by Org. Org. Date  Received by Org. Date  Received by Org. Date  Time  Org. Org. Date  Time  Org. Org. Date  Time				, , ,		0												t of	hllen
Received by Org. Org. Org. Org. Org. Org. Org. Org.	11/	Relinquished by 100 Org. 088							Time (	010	Relinquis	shed by			Ora.		Date		0.030
Relinquished by Collection Org. Org. Org. Org. Date 1/8/1/ Time 1055 Relinquished by Org. Date Time  Received by Received by Org. Date Time  Org. CA-KNI Date 1/15/1/ Time 1055 Received by Org. Date Time	23/		1/10	1990	dry				Time /										
No Received by Prophilippe Org. Pate 1715-21 Time W: 00 Received by Org. Date Time	20			i stat	Casay						Relinquis	shed by							
	2								Time \	0:00	Received	d by			Org.		Date	Time	

Internal Lab

Batch No.	1//					SMO Use	/					1 1	1		AR/COC	Page 1 o	
Project Name		MWL LTMMP		Date Sample	es Shipped	11/8	1202	-1	SMO A	uthorization	10/	9/1		I		62	2646
Project/Task				Carrier/Way	bill No.	33090			SMO	Contact Phone	- MA	[-0]			e Characterization		
Project/Task		195122.10.11.08		Lab Contact		Jamie Mckir	ney/865-2	91-3006				5-844-3132		□ RMA			
Service Orde	er:	CF01-22		Lab Destinat	tion:	TAKX			Send F	Report to SMC	n.	3-644-3132		☐ Relea	ased by COC No.		
				Contract No.	:	1636780			1			05-284-2550				<u> </u>	4º Celsi
Tech Area:									1	Otephanie	WORLAND/5	05-284-255.	3	Bill to: Sandi	a National Laboratori	es (Accou	ınts Payab
Building:		Room:		Operationa	al Site:									P.O. Box 580			
_	1				Depth	Date/	Time	Sample		ontainer	15			Albuquerque	e, NM 87185-0154		
Sample No.	Fraction	Sample Lo	cation D	etail	(ft)	Colle		Matrix	Type		Preserv- ative	Collection		Pai	rameter & Method		Lab
116210	001	MWL-SV-FB 5	1214					- IIIdilix		Volume	ative	Method	Туре		Requested		Sample
			1214	)	NA	11/5/21	10:49	UPN	S	6 L	None	G	FB	VOC (TO-15)			
116211	001	MWL-SV05-50	1041	1	50	11/5/21	10:56	SG	s	6 L	None	0	0.4	VOC (TO-15)			
116212	001	MWL-SV05-100	1047	)	400			1 00		+ 01	None	G	SA	V 00 (10-13)			
			1047		100	11/5/21	10:58	SG	S	6 L	None	G	SA	VOC (TO-15)			
116213	001	MWL-SV05-200	11028	3	200	11/5/21	11:00	SG	S	6 L	NI			VOC (TO-15)			
116214	001	MWL-SV05-300	1400	3/11/5/8				- 00		0 L	None	G	SA	VOC (10-15)			
		WW L-3 V 03-300	11986	311998	300	11/5/21	11:03	SG	S	6 L	None	G	SA	VOC (TO-15)			
116215	001	MWL-SV05-400	12022	2	400	11/5/21	11:08	SG	S					VOC (TO 45)			
							11.00	36	3	6 L	None	G	SA	VOC (TO-15)			
																- 1	
ast Chain	:	□ Yes			Sample 1	Franking		2110									
/alidation		☑ Yes			Date Ente	_		SMO	Use	Special Inst	tructions/		ments:			Condit	tions on
Backgroun	<del></del>	□ Yes								EDD		☑ Yes					ceipt
Confirmato		□ Yes			Entered b	y:				Turnaround	Time	☐ 7-Day*		15-Day*	☑ 30-Day	, , ,	Joipt
Sample		ame	Cianat		QC inits.:					Negotiated	TAT						
	William G		Signatur		Init.	Company	//Organizat	ion/Phone/	Cell	Sample Dis	posal	☐ Return t	to Client	V	Disposal by Lab		
	Robert Ly	77-7	Must	Aul !		SNL/08888/5				Return Sam	ples By:				Disposar by Lab		
			gno		SNL/08888/505-844-4013/505-250-7090 Comments: Elevation and ambient pressure information provided as								rovided on				
F	Zachary T				21	SNL/08888/5	05-845-863	36/505-259	-5765	attached forn	ns.	· ·		······································	TOVIGCO OIT		
-	Denisha S	anchez	She c	sur)		SNL/08888/5	05-845-782	29/505-208	-1375								
						<u> </u>											
elinquished b	5 1	Bush		008888		11/8/21	Time / 6	210 F	Relinquis	shed by			0			Lab	Use
	3/1	, when		org. 06(8			Time /	210	Received				Org.		Date	Time	
elinquished b	-	whole Chic		org. 00018	Date	N/8/21	Time 6		Relinquis				Org.		Date	Time	
Received by	Runa	Varna 1		) rg & TAKAN	Date	1412.91	Time \0		Received				Org.		Date	Time	
Prior confirm	าation wit	h SMO required for	7 and 15	day TAT			\ V	UV I		~ j			Org.		Date	Time	

Internal Lab																Dona 4 -	
Batch No. A	111					SMO Ușe	,					1 1	1		AR/COC	Page 1 o	2647
Project Name		MWL LTN		Date Samp	les Shipped	1: 1// 9	3/202	L	SMO A	uthorization:	12/6	6 4		□ Wast		02	2047
Project/Task		Timmie Ja	ckson	Carrier/Way	ybill No.	330	923			ontact Phone	- Vy	· A			e Characterization		
Project/Task		195122.10	0.11.08	Lab Contac	t:	Jamie Mckir	ney/865-29	1-3006				5-844-3132		RMA			
Service Order	r:	CF01-22		Lab Destina	ition:	TAKX			Send R	eport to SMC		J-044-313Z		Relea	ised by COC No.		
				Contract No	).:	1636780				•		05-284-255				<u> </u>	4º Celsi
Tech Area:										Otoprianic	Wioritano/S	JJ-204-255.		Bill to: Sandi	a National Laboratori	es (Accou	ınts Payab
Building:		Room:		Operation	al Site:									P.O. Box 580			
1	ĺ				Depth	Date	Time	Sample	<u> </u>	ontainer	Dunnan	0 " "	-		, NM 87185-0154		
Sample No.	Fraction	Sa	mple Location	n Detail	(ft)	Colle		Matrix	Туре	Volume	Preserv-	Collection		Pai	rameter & Method		Lab
116192	001	MWL-SV	/ ED 1	24000042				- III GETTA		Volume	auve	Method	Туре		Requested		Sample
	001	WWL-3V	-FD I	34000613	NA	11/5/21	11:22	UPN	S	6 L	None	G	FB	VOC (TO-15)			
116193	001	MWL-SV	-01-42.5	09539	42.5	11/5/21	11:37	SG	s	6 L	None	G	0.4	VOC (TO-15)			
								55		01	None	G	SA	7 0 0 (10 10)			
					<del> </del>												
																J	
					-												
Last Chain:		☐ Yes			Sample	Tracking		SMO	Heo	Special Inc							
Validation I	Req'd:	☑ Yes			Date Ent			ONIO	USE	Special Ins	tructions/		ments:			Condit	tions on
Background	d:	□ Yes			Entered I							☑ Yes				Red	ceipt
Confirmato	ry:	☐ Yes			QC inits.					Turnaround		☐ 7-Day*		15-Day*	☑ 30-Day		
Sample	Na	ıme	Sign	nature	Init.	Company	//Organizati	on/Dhana	(O-II	Negotiated							
Team	William G	bson -	Willer	Nech		SNL/08888/5	05 294 220	OT/PHONE/		Sample Dis		☐ Return	to Client	<b>V</b>	Disposal by Lab		
	Robert Lyr		213	and I	1	SNL/08888/5	05-204-330	2/505-239	9-7367	Return Sam							
	Zachary T	enorio	2		2	SNL/08888/5	05-044-40	3/505-250	0-7090	Comments: attached form	⊨levation a	nd ambient	pressure in	nformation p	rovided on		
-	Denisha S		Deist		<b>(A)</b>	SNI /00000/3	05-045-863	0/505-259	9-5/65	allached for	ns.						
			ansu	Sucs	7	SNL/08888/5	05-845-782	9/505-208	3-1375								
Relinquished b	y Toy	150	st.	Org. 088	EC Data	11/0/2	Time	1								Lab	Use
Received by	-W	BJ	10	Org. 10/8	Date	11/8/21	Time /		Relinquis				Org.		Date	Time	
Relinquished b	y Colle	See Long	Man	Org. OCC		11/8/20	Time /		Received				Org.		Date	Time	
Received by	Rail	Kan an		Org. K. A. K.W			Time 10		Relinquis				Org.		Date	Time	
*Drian confi	otion with	CMO roo	using d fau 7 au	nd 15 day TAT	► Date	11/2/41	Time \0	JUL F	Received	by			Org.		Date	Time	

Internal Lab

Batch No.	NIA					SMO Use										Page 1 of	if 1
Project Nam	e:	MWL LTMMP		Date Sampl	loo Chinne		-10-2	1	_			11			AR/COC	622	2648
Project/Task		Timmie Jackso		Carrier/Way			923	(		uthorization		19 1		□ Waste	Characterization		
Project/Task		195122.10.11.		Lab Contact					SMO C	ontact Phone		1		□ RMA			
Service Orde		CF01-22		Lab Destina			inney/865-2	91-3006		Wendy P	alencia/50	5-844-3132		☐ Releas	ed by COC No.		
						TAKX			Send R	eport to SMC				1	,	<b>☑</b> 4	4º Celsi
Tech Area:				Contract No		1636780				Stephanie	Montaño/5	05-284-2553	3	Bill to: Sandia	National Laboratori	es (Accou	inte Pavah
Building:		Room:								P.O. Box 5800	). MS-0154	C5 (7100001	ilis Fayab				
_ unung.	T	IXOOIII.		Operation											NM 87185-0154		
Sample No.	Fraction	Sampl	e Location D	)ntall	Depth		/Time	Sample	С	ontainer	Preserv-	Collection	Sample		meter & Method		1.1
		Sampi	e Location L	Detail	(ft)	Coll	ected	Matrix	Туре	Volume	ative	Method	Туре	1 416	Requested		Lab
116194	001	MWL-SV-FB	2 3	4000021	NA	11/5/21	11:17	UPN	S	6 L	None	G	FB	VOC (TO-15)	ricquesteu		Sample
116195	001	MWL-SV02-4	41.5 11	1982	41.5	11/5/21	11:44	SG	S								
					1	1110121	11.77	36	3	6 L	None	G	SA	VOC (TO-15)			
					-					ļ							
	-				ļ												
								-									
								-									
								1									
								-									
Last Chain	1:	☑ Yes			0 1												
Validation		☑ Yes			Sample T			SMO	Use	Special Inst			ments:			Conditi	ions on
Backgroun		□ Yes			Date Ente					EDD		☑ Yes					ceipt
Confirmate		☐ Yes			Entered b					Turnaround		□ 7-Day*		15-Day*	☑ 30-Day		
Sample		me	Signatu	Iro	Init.		10 : .			Negotiated							
•	William Gi		11/4	8111			y/Organizat			Sample Dis		☐ Return t	o Client	Ø	isposal by Lab		
	Robert Lyr	1.0	off	100		SNL/08888/				Return Sam							
MCIIIDGI 3	Zachary T		ou gn			SNL/08888/				Comments: I	Elevation a	nd ambient p	ressure ir	nformation pro	vided on		
	Denisha S		114		SNL/08888/505-845-8636/505-259-					attached forn	ns.			•			
	Definisha 0	anchez	ush _	aus	<b>B</b>	SNL/08888/	505-845-782	29/505-208	3-1375								
Relinquished	by Fort	1/201	e	Org.0888	∇ Date	101-										Lab l	llse
Received by		& form		Org. 06(8		1,0			Relinquis				Org.	D:	ate	Time	930
Relinguished I	2150	abolt Cla		Org. 6067		11/8/21	Time /	4.4	Received				Org.	Da	ate	Time	
Received by	N.	Wann	A	Org. E-TA-KI		11-15-21	Time /		Relinquis	ned by			Org.	Da	ate	Time	
	1 2	SMO require		OIG. E. WENT	P Date	1101221	lime in	*104\ 1=	Received	land.			Org.			111116	

Internal Lab	1/0															Page 1	of 1
Batch No.	NIST	1000		4 · · · · · · · · · · · · · · · · · · ·		SMO Use						100	1		AR/COC		22649
Project Name Project/Task		MWL LTMMP		Date Sampl				1	SMO A	uthorization:	10 hi	9.00	^	□ Was	te Characterization	02	.2049
Project/Task		Timmie Jackson		Carrier/Way	bill No.	33	1923			Contact Phone	2:	-		□ RMA			
Service Orde		195122.10.11.08		Lab Contact		Jamie Mcki	nney/865-29	91-3006	1			5-844-3132					
Service Orde	er:	CF01-22		Lab Destina	tion:	TAKX			Send F	Report to SMC		0 011 0102	LI Kele	eased by COC No.	_		
				Contract No	:	1636780			1	Stephanie	Montaño/5	05-284-255	3	2014- 0		V	4° Celsii
Tech Area:												03-204-233	<del></del>	Bill to: Sand	lia National Laboratori	es (Acco	unts Payab
Building:		Room:		Operation	al Site:									1	800, MS-0154		
					Depth	Date	Time	Sample		ontainer	Preserv-	lo-11 11	T		e, NM 87185-0154		
Sample No.	Fraction	Sample I	₋ocation D	etail	(ft)	Colle	ected	Matrix	Туре		ative	1		Pa	rameter & Method	i	Lab
116196	001	MWL-SV-FB 3	108	222	NIA	44/5/04				Volume	alive	Method	Туре		Requested		Sample
				123	NA NA	11/5/21	08:34	UPN	S	6L	None	G	FB	VOC (TO-15)			
116197	001	MWL-SV03-50	340	000185	50	11/5/21	08:41	SG	s	6 L	Nierra			VOC (TO-15)			
116198	001	MWL-SV03-10	0 120	104	400			00		0 L	None	G	SA	VOO (10-13)			
7.0100	1001	WWL-3 V03-10	0 120	121	100	11/5/21	08:45	SG	S	6 L	None	G	SA	VOC (TO-15)			
116198	001	MWL-SV03-20	0 105	512	200	11/5/21	08:49	SG	S	6 L	N.			VOC (TO-15)			
116200	001	MWL-SV03-30	0 046	00700				- 00		O L	None	G	SA	VOC (10-15)			
	001	WWL-3703-30	0 340	00700	300	11/5/21	08:55	SG	S	6 L	None	G	SA	VOC (TO-15)			
116201	001	MWL-SV03-40	0 115	32	400	11/5/21	09:15	SG	S					1100 (70			
						1170721	00.10	36	_	6 L	None	G	SA	VOC (TO-15)			
Last Chain:	:	□ Yes			Somple "	Fan alviu -											
Validation I	Rea'd:	☑ Yes			Sample T			SMO	Use	Special Inst	tructions/	QC Require	ments:			Condi	itions on
Background		□ Yes			Date Ente					EDD		☑ Yes					ceipt
Confirmato		□ Yes			Entered b	y:				Turnaround	l Time	☐ 7-Day*		15-Day*	☑ 30-Day	110	ocipi
Sample		ime	Ciamatu		QC inits.:					Negotiated	TAT						
	William Gi		Signatu	e 8	Init.	Compan	//Organizati	on/Phone/	Cell	Sample Dis	posal	☐ Return	to Client	V	Disposal by Lab		
Members			heard	1 stake	24/2	SNL/08888/5	05-284-330	7/505-239	9-7367	Return Sam	ples By:				Diopodal by Lab		
wembers	Zachary T	onorio 2	15n	3		SNL/08888/5				Comments: I	Elevation a	nd ambient	pressure in	nformation r	provided on		
1 "	Denisha S	( 0141/0808/303-643-8038/305-						attached forn	ns.				a via da dil				
	Denisna S	arichez	ush S	au		SNL/08888/5	05-845-782	9/505-208	3-1375								
Relinquished b	180	141 1	12														
Received by	y	1771		)rg 2888		11/8/21	Time /£	7/0 F	Relinquis	shed by			Org.		Data		Use
	and the	14h		org. 0618		1/8/71	Time / O		Received				Org.		Date	Time	
Relinquished b	y ugo	agost Ma		Org. 00 61		11/8/21	Time /		Relinquis				Org.		Date	Time	
Received by	Mahrel	men	/ (	org. KTA-Ku	Date	1-15.31	Time 10:		Received				Org.		Date	Time	
FIIOI CONTIRM	iation wit	h SMO required f	or 7 and 15	day TAT									Olg.		Date	Time	

# Contract Verification Review Forms Mixed Waste Landfill Soil-Vapor Monitoring November 2021

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this annex.

AR/COC Number	Sample Type
622645	Environmental & Quality Control
622646	Environmental & Quality Control
622647	Environmental & Quality Control
622648	Environmental & Quality Control
622649	Environmental & Quality Control

SMO-2019-CVR (4-2019) SMO-05-03

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622645, 622646, 622647, 622648 & 622649

Analytical Lab TAKX

**SDG No.** 140-25404-1

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	plete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	N/A		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Χ		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	N/A		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

SMO-2019-CVR (4-2019)

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	II IIO, expiaili
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	N/A		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

# 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	N/A		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		Sample replicates analyzed with each batch

SMO-2019-CVR (4-2019)

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	N/A		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Х		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		Benzene, carbon disulfide, chlorobenzene, EDB and 1,3,5-trimethylbenzene detected in method blank (batch 55945). Benzene, chlorobenzene and 1,3-dichlorobenzene detected in method blank (batch 56035).
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Acetone, benzene, 2-butanone, carbon disulfide, tetrachloroethene and 1,1,2-trichloroethane detected in MWL-SV-FB 4. Benzene, carbon disulfide, chlorobenzene and EDB detected in MWL-SV-FB 5. Acetone, benzene, carbon disulfide, chlorobenzene and EDB detected in MWL-SV-FB 1. Acetone, benzene, carbon disulfide and chlorobenzene detected in MWL-SV-FB 2. Acetone, benzene, carbon disulfide, chlorobenzene and chloromethane detected in MWL-SV-FB 3.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	N/A		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Χ		
	b) Initial calibration provided	Χ		
	c) Continuing calibration provided	Χ		
	d) Internal standard performance data provided	Χ		

SMO-2019-CVR (4-2019)

Line No.	Item	Yes	No	Comments
	e) Instrument run logs provided	Х		
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) lon abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) ICP interference check sample data provided	N/A		
	d) ICP serial dilution provided	N/A		

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
	e) Instrument run logs provided	N/A		
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	N/A		

#### 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ○ No

Based on the review, this data package is complete. ⊙ Yes C No

Reviewed by: Wendy Palencia Date: 12-02-2021 07:00:00

Closed by: Wendy Palencia Date: 12-02-2021 07:00:00

# **Certificates of Analysis**

Mixed Waste Landfill

November 2021 Soil-Vapor Samples

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116202-001/MWL-SV-FB 4 Lab Sample ID: 140-25404-1

Date Collected: 11/05/21 09:34 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		_ <u>D</u> .	Prepared	Analyzed	Dil Fa
Acetone	0.0016		0.0020		ppm v/v			11/17/21 14:57	1.5
Benzene	0.000014	JB	0.000080	0.0000080				11/17/21 14:57	1.5
Benzyl chloride	ND		0.00016	0.000038				11/17/21 14:57	1.5
Bromodichloromethane	ND		0.000080	0.000018				11/17/21 14:57	1.5
Bromoform	ND		0.000080	0.0000090	ppm v/v			11/17/21 14:57	1.5
Bromomethane	ND		0.000080	0.000022	ppm v/v			11/17/21 14:57	1.5
2-Butanone (MEK)	0.00017	J	0.00040	0.000073	ppm v/v			11/17/21 14:57	1.5
Carbon disulfide	0.000066	JB	0.00020	0.000011	ppm v/v			11/17/21 14:57	1.5
Carbon tetrachloride	ND		0.000080	0.0000070	ppm v/v			11/17/21 14:57	1.5
Chlorobenzene	ND		0.000080	0.0000060	ppm v/v			11/17/21 14:57	1.5
Chloroethane	ND		0.000080	0.000029	ppm v/v			11/17/21 14:57	1.5
Chloroform	ND		0.000080	0.0000070	ppm v/v			11/17/21 14:57	1.5
Chloromethane	ND		0.00020	0.000066	ppm v/v			11/17/21 14:57	1.5
Dibromochloromethane	ND		0.000080	0.0000070	ppm v/v			11/17/21 14:57	1.5
1,2-Dibromoethane (EDB)	ND		0.000080	0.0000070	ppm v/v			11/17/21 14:57	1.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000080	0.000012	ppm v/v			11/17/21 14:57	1.5
1,2-Dichlorobenzene	ND		0.000080	0.000031	ppm v/v			11/17/21 14:57	1.5
1,3-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			11/17/21 14:57	1.5
1,4-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			11/17/21 14:57	1.5
Dichlorodifluoromethane	ND		0.000080	0.000014	ppm v/v			11/17/21 14:57	1.5
1,1-Dichloroethane	ND		0.000080	0.0000070	ppm v/v			11/17/21 14:57	1.5
1,2-Dichloroethane	ND		0.000080	0.000010	ppm v/v			11/17/21 14:57	1.5
1,1-Dichloroethene	ND		0.000080	0.0000080	ppm v/v			11/17/21 14:57	1.5
cis-1,2-Dichloroethene	ND		0.000080	0.000010	ppm v/v			11/17/21 14:57	1.5
trans-1,2-Dichloroethene	ND		0.000080	0.0000070				11/17/21 14:57	1.5
1,2-Dichloropropane	ND		0.000080	0.000010				11/17/21 14:57	1.5
cis-1,3-Dichloropropene	ND		0.000080	0.000016	ppm v/v			11/17/21 14:57	1.5
trans-1,3-Dichloropropene	ND		0.000080	0.0000090	ppm v/v			11/17/21 14:57	1.5
Ethylbenzene	ND		0.000080	0.000013				11/17/21 14:57	1.5
4-Ethyltoluene	ND		0.00016	0.000021	ppm v/v			11/17/21 14:57	1.5
Hexachlorobutadiene	ND		0.00040	0.000032	ppm v/v			11/17/21 14:57	1.5
2-Hexanone	ND		0.00020	0.000016	ppm v/v			11/17/21 14:57	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000054	ppm v/v			11/17/21 14:57	1.5
Methylene Chloride	ND		0.00040	0.00039	ppm v/v			11/17/21 14:57	1.5
Styrene	ND		0.000080	0.000024	ppm v/v			11/17/21 14:57	1.5
1,1,2,2-Tetrachloroethane	ND		0.000080	0.000014				11/17/21 14:57	1.5
Tetrachloroethene	0.0000082		0.000080	0.0000070				11/17/21 14:57	1.5
Toluene	ND	_	0.00012	0.000078				11/17/21 14:57	1.5
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000080	0.0000080				11/17/21 14:57	1.5
1,2,4-Trichlorobenzene	ND		0.00040	0.000064				11/17/21 14:57	1.5
1,1,1-Trichloroethane	ND		0.000080	0.000037				11/17/21 14:57	1.5
1,1,2-Trichloroethane	0.0000078	J	0.000080	0.0000070				11/17/21 14:57	1.5
Trichloroethene	ND		0.000040	0.000013				11/17/21 14:57	1.5
Trichlorofluoromethane	ND		0.000080	0.000011				11/17/21 14:57	1.5
1,2,4-Trimethylbenzene	ND		0.000080	0.000020				11/17/21 14:57	1.5
1,3,5-Trimethylbenzene	ND		0.000080	0.000022				11/17/21 14:57	1.5
Vinyl acetate	ND		0.00040	0.000028				11/17/21 14:57	1.5
Vinyl additional Vinyl chloride	ND		0.00040	0.000026				11/17/21 14:57	1.5

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116202-001/MWL-SV-FB 4

Date Collected: 11/05/21 09:34 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in A	Ambient Air, Low Concentration (GC/MS) (Continued)
----------------------------------------------------	----------------------------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.000080	0.000029	ppm v/v			11/17/21 14:57	1.54
o-Xylene	ND		0.000080	0.000015	ppm v/v			11/17/21 14:57	1.54
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		60 - 140					11/17/21 14:57	1.54

Client Sample ID: 116203-001/MWL-SV04-50

Lab Sample ID: 140-25404-2 Date Collected: 11/05/21 10:08 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.022	0.0063	ppm v/v			11/17/21 19:15	1.55
Benzene	0.00029	JB	0.00089	0.000089	ppm v/v			11/17/21 19:15	1.55
Benzyl chloride	ND		0.0018	0.00042	ppm v/v			11/17/21 19:15	1.55
Bromodichloromethane	ND		0.00089	0.00020	ppm v/v			11/17/21 19:15	1.55
Bromoform	ND		0.00089	0.00010	ppm v/v			11/17/21 19:15	1.55
Bromomethane	ND		0.00089	0.00024	ppm v/v			11/17/21 19:15	1.55
2-Butanone (MEK)	ND		0.0044	0.00081	ppm v/v			11/17/21 19:15	1.55
Carbon disulfide	0.00059	JB	0.0022	0.00012	ppm v/v			11/17/21 19:15	1.55
Carbon tetrachloride	0.00022	J	0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
Chlorobenzene	0.00015	JB	0.00089	0.000066	ppm v/v			11/17/21 19:15	1.55
Chloroethane	ND		0.00089	0.00032	ppm v/v			11/17/21 19:15	1.55
Chloroform	0.0017		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
Chloromethane	ND		0.0022	0.00073	ppm v/v			11/17/21 19:15	1.55
Dibromochloromethane	ND		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
1,2-Dibromoethane (EDB)	ND		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00089	0.00013	ppm v/v			11/17/21 19:15	1.55
1,2-Dichlorobenzene	ND		0.00089	0.00034	ppm v/v			11/17/21 19:15	1.55
1,3-Dichlorobenzene	ND		0.00089	0.00018	ppm v/v			11/17/21 19:15	1.55
1,4-Dichlorobenzene	ND		0.00089	0.00018	ppm v/v			11/17/21 19:15	1.55
Dichlorodifluoromethane	0.017		0.00089	0.00016	ppm v/v			11/17/21 19:15	1.55
1,1-Dichloroethane	0.0011		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
1,2-Dichloroethane	ND		0.00089	0.00011	ppm v/v			11/17/21 19:15	1.55
1,1-Dichloroethene	0.0042		0.00089	0.000089	ppm v/v			11/17/21 19:15	1.55
cis-1,2-Dichloroethene	0.00035	J	0.00089	0.00011	ppm v/v			11/17/21 19:15	1.55
trans-1,2-Dichloroethene	ND		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
1,2-Dichloropropane	ND		0.00089	0.00011	ppm v/v			11/17/21 19:15	1.55
cis-1,3-Dichloropropene	ND		0.00089	0.00018	ppm v/v			11/17/21 19:15	1.55
trans-1,3-Dichloropropene	ND		0.00089	0.00010	ppm v/v			11/17/21 19:15	1.55
Ethylbenzene	ND		0.00089	0.00014	ppm v/v			11/17/21 19:15	1.55
4-Ethyltoluene	ND		0.0018	0.00023	ppm v/v			11/17/21 19:15	1.55
Hexachlorobutadiene	ND		0.0044	0.00035	ppm v/v			11/17/21 19:15	1.55
2-Hexanone	ND		0.0022	0.00018	ppm v/v			11/17/21 19:15	1.55
4-Methyl-2-pentanone (MIBK)	ND		0.0022	0.00060	ppm v/v			11/17/21 19:15	1.55
Methylene Chloride	ND		0.0044	0.0043	ppm v/v			11/17/21 19:15	1.55
Styrene	ND		0.00089	0.00027	ppm v/v			11/17/21 19:15	1.55
1,1,2,2-Tetrachloroethane	ND		0.00089	0.00016	ppm v/v			11/17/21 19:15	1.55

Eurofins TestAmerica, Knoxville

11/23/2021

Lab Sample ID: 140-25404-1

Page 15 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116203-001/MWL-SV04-50 Lab Sample ID: 140-25404-2

Date Collected: 11/05/21 10:08 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.053		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
Toluene	ND		0.0013	0.00086	ppm v/v			11/17/21 19:15	1.55
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.042		0.00089	0.000089	ppm v/v			11/17/21 19:15	1.55
1,2,4-Trichlorobenzene	ND		0.0044	0.00071	ppm v/v			11/17/21 19:15	1.55
1,1,1-Trichloroethane	0.0065		0.00089	0.00041	ppm v/v			11/17/21 19:15	1.55
1,1,2-Trichloroethane	ND		0.00089	0.000078	ppm v/v			11/17/21 19:15	1.55
Trichloroethene	0.041		0.00044	0.00014	ppm v/v			11/17/21 19:15	1.55
Trichlorofluoromethane	0.026		0.00089	0.00012	ppm v/v			11/17/21 19:15	1.55
1,2,4-Trimethylbenzene	ND		0.00089	0.00022	ppm v/v			11/17/21 19:15	1.55
1,3,5-Trimethylbenzene	ND		0.00089	0.00024	ppm v/v			11/17/21 19:15	1.55
Vinyl acetate	ND		0.0044	0.00031	ppm v/v			11/17/21 19:15	1.55
Vinyl chloride	ND		0.00044	0.00029	ppm v/v			11/17/21 19:15	1.55
m,p-Xylene	ND		0.00089	0.00032	ppm v/v			11/17/21 19:15	1.55
o-Xylene	ND		0.00089	0.00017	ppm v/v			11/17/21 19:15	1.55
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		60 - 140			-		11/17/21 19:15	1.55

Client Sample ID: 116204-001/MWL-SV04-100

Lab Sample ID: 140-25404-3 Date Collected: 11/05/21 10:11 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Met	hod:	TO	15	5 L	L -	Vo	lat	ile (	Organi	c (	Compoun	ds ir	ı Am	bien	tΑ	ir,	Low (	Concentr	ation	(GC/MS	5)
-----	------	----	----	-----	-----	----	-----	-------	--------	-----	---------	-------	------	------	----	-----	-------	----------	-------	--------	----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.031	0.0087	ppm v/v			11/17/21 19:59	1.53
Benzene	ND		0.0012	0.00012	ppm v/v			11/17/21 19:59	1.53
Benzyl chloride	ND		0.0024	0.00058	ppm v/v			11/17/21 19:59	1.53
Bromodichloromethane	ND		0.0012	0.00028	ppm v/v			11/17/21 19:59	1.53
Bromoform	ND		0.0012	0.00014	ppm v/v			11/17/21 19:59	1.53
Bromomethane	ND		0.0012	0.00034	ppm v/v			11/17/21 19:59	1.53
2-Butanone (MEK)	ND		0.0061	0.0011	ppm v/v			11/17/21 19:59	1.53
Carbon disulfide	0.00025	JB	0.0031	0.00017	ppm v/v			11/17/21 19:59	1.53
Carbon tetrachloride	0.00030	J	0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
Chlorobenzene	0.00017	JB	0.0012	0.000092	ppm v/v			11/17/21 19:59	1.53
Chloroethane	ND		0.0012	0.00044	ppm v/v			11/17/21 19:59	1.53
Chloroform	0.0021		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
Chloromethane	ND		0.0031	0.0010	ppm v/v			11/17/21 19:59	1.53
Dibromochloromethane	ND		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
1,2-Dibromoethane (EDB)	ND		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0012	0.00018	ppm v/v			11/17/21 19:59	1.53
1,2-Dichlorobenzene	ND		0.0012	0.00047	ppm v/v			11/17/21 19:59	1.53
1,3-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/17/21 19:59	1.53
1,4-Dichlorobenzene	ND		0.0012	0.00024	ppm v/v			11/17/21 19:59	1.53
Dichlorodifluoromethane	0.032		0.0012	0.00021	ppm v/v			11/17/21 19:59	1.53
1,1-Dichloroethane	0.0029		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
1,2-Dichloroethane	ND		0.0012	0.00015	ppm v/v			11/17/21 19:59	1.53
1,1-Dichloroethene	0.012		0.0012	0.00012	ppm v/v			11/17/21 19:59	1.53

Eurofins TestAmerica, Knoxville

Page 16 of 1931

Client: Sandia National Laboratories

Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116204-001/MWL-SV04-100 Lab Sample ID: 140-25404-3

Date Collected: 11/05/21 10:11 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.0013		0.0012	0.00015	ppm v/v			11/17/21 19:59	1.53
trans-1,2-Dichloroethene	ND		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
1,2-Dichloropropane	ND		0.0012	0.00015	ppm v/v			11/17/21 19:59	1.53
cis-1,3-Dichloropropene	ND		0.0012	0.00024	ppm v/v			11/17/21 19:59	1.53
trans-1,3-Dichloropropene	ND		0.0012	0.00014	ppm v/v			11/17/21 19:59	1.53
Ethylbenzene	ND		0.0012	0.00020	ppm v/v			11/17/21 19:59	1.53
4-Ethyltoluene	ND		0.0024	0.00032	ppm v/v			11/17/21 19:59	1.53
Hexachlorobutadiene	ND		0.0061	0.00049	ppm v/v			11/17/21 19:59	1.53
2-Hexanone	ND		0.0031	0.00024	ppm v/v			11/17/21 19:59	1.53
4-Methyl-2-pentanone (MIBK)	ND		0.0031	0.00083	ppm v/v			11/17/21 19:59	1.53
Methylene Chloride	ND		0.0061	0.0060	ppm v/v			11/17/21 19:59	1.53
Styrene	ND		0.0012	0.00037	ppm v/v			11/17/21 19:59	1.53
1,1,2,2-Tetrachloroethane	ND		0.0012	0.00021	ppm v/v			11/17/21 19:59	1.53
Tetrachloroethene	0.10		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
Toluene	ND		0.0018	0.0012	ppm v/v			11/17/21 19:59	1.53
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.076		0.0012	0.00012	ppm v/v			11/17/21 19:59	1.53
1,2,4-Trichlorobenzene	ND		0.0061	0.00098	ppm v/v			11/17/21 19:59	1.53
1,1,1-Trichloroethane	0.0053		0.0012	0.00057	ppm v/v			11/17/21 19:59	1.53
1,1,2-Trichloroethane	ND		0.0012	0.00011	ppm v/v			11/17/21 19:59	1.53
Trichloroethene	0.096		0.00061	0.00020	ppm v/v			11/17/21 19:59	1.53
Trichlorofluoromethane	0.041		0.0012	0.00017	ppm v/v			11/17/21 19:59	1.53
1,2,4-Trimethylbenzene	ND		0.0012	0.00031	ppm v/v			11/17/21 19:59	1.53
1,3,5-Trimethylbenzene	ND		0.0012	0.00034	ppm v/v			11/17/21 19:59	1.53
Vinyl acetate	ND		0.0061	0.00043	ppm v/v			11/17/21 19:59	1.53
Vinyl chloride	ND		0.00061	0.00040	ppm v/v			11/17/21 19:59	1.53
m,p-Xylene	ND		0.0012	0.00044	ppm v/v			11/17/21 19:59	1.53
o-Xylene	ND		0.0012	0.00023	ppm v/v			11/17/21 19:59	1.53
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		60 - 140			-		11/17/21 19:59	1.53

Client Sample ID: 116205-001/MWL-SV04-200

Date Collected: 11/05/21 10:20 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 140-25404-4

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.053	0.015	ppm v/v			11/17/21 20:45	1.58
Benzene	0.00044	JB	0.0021	0.00021	ppm v/v			11/17/21 20:45	1.58
Benzyl chloride	ND		0.0042	0.0010	ppm v/v			11/17/21 20:45	1.58
Bromodichloromethane	ND		0.0021	0.00047	ppm v/v			11/17/21 20:45	1.58
Bromoform	ND		0.0021	0.00024	ppm v/v			11/17/21 20:45	1.58
Bromomethane	ND		0.0021	0.00058	ppm v/v			11/17/21 20:45	1.58
2-Butanone (MEK)	ND		0.011	0.0019	ppm v/v			11/17/21 20:45	1.58
Carbon disulfide	0.00049	JB	0.0053	0.00029	ppm v/v			11/17/21 20:45	1.58
Carbon tetrachloride	0.00031	J	0.0021	0.00018	ppm v/v			11/17/21 20:45	1.58
Chlorobenzene	ND		0.0021	0.00016	ppm v/v			11/17/21 20:45	1.58

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116205-001/MWL-SV04-200 Lab Sample ID: 140-25404-4

Date Collected: 11/05/21 10:20 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	D Prepared	Analyzed	Dil Fac
Chloroethane	ND		0.0021	0.00076	ppm v/v		11/17/21 20:45	1.58
Chloroform	0.0013	J	0.0021		ppm v/v		11/17/21 20:45	1.58
Chloromethane	ND		0.0053		ppm v/v		11/17/21 20:45	1.58
Dibromochloromethane	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,2-Dibromoethane (EDB)	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,2-Dichlorobenzene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,3-Dichlorobenzene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,4-Dichlorobenzene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
Dichlorodifluoromethane	0.041		0.0021		ppm v/v		11/17/21 20:45	1.58
1,1-Dichloroethane	0.0040		0.0021	0.00018	ppm v/v		11/17/21 20:45	1.58
1,2-Dichloroethane	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,1-Dichloroethene	0.020		0.0021	0.00021	ppm v/v		11/17/21 20:45	1.58
cis-1,2-Dichloroethene	0.0019	J	0.0021		ppm v/v		11/17/21 20:45	1.58
trans-1,2-Dichloroethene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
1,2-Dichloropropane	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
cis-1,3-Dichloropropene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
trans-1,3-Dichloropropene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
Ethylbenzene	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
4-Ethyltoluene	ND		0.0042		ppm v/v		11/17/21 20:45	1.58
Hexachlorobutadiene	ND		0.011		ppm v/v		11/17/21 20:45	1.58
2-Hexanone	ND		0.0053	0.00042	ppm v/v		11/17/21 20:45	1.58
4-Methyl-2-pentanone (MIBK)	ND		0.0053	0.0014	ppm v/v		11/17/21 20:45	1.58
Methylene Chloride	ND		0.011		ppm v/v		11/17/21 20:45	1.58
Styrene	ND		0.0021	0.00063	ppm v/v		11/17/21 20:45	1.58
1,1,2,2-Tetrachloroethane	ND		0.0021		ppm v/v		11/17/21 20:45	1.58
Tetrachloroethene	0.10		0.0021	0.00018	ppm v/v		11/17/21 20:45	1.58
Toluene	ND		0.0032		ppm v/v		11/17/21 20:45	1.58
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.10		0.0021	0.00021	ppm v/v		11/17/21 20:45	1.58
1,2,4-Trichlorobenzene	ND		0.011	0.0017	ppm v/v		11/17/21 20:45	1.58
1,1,1-Trichloroethane	0.0015	J	0.0021	0.00097	ppm v/v		11/17/21 20:45	1.58
1,1,2-Trichloroethane	ND		0.0021	0.00018	ppm v/v		11/17/21 20:45	1.58
Trichloroethene	0.13		0.0011	0.00034	ppm v/v		11/17/21 20:45	1.58
Trichlorofluoromethane	0.035		0.0021	0.00029	ppm v/v		11/17/21 20:45	1.58
1,2,4-Trimethylbenzene	ND		0.0021	0.00053	ppm v/v		11/17/21 20:45	1.58
1,3,5-Trimethylbenzene	ND		0.0021	0.00058	ppm v/v		11/17/21 20:45	1.58
Vinyl acetate	ND		0.011	0.00074	ppm v/v		11/17/21 20:45	1.58
Vinyl chloride	ND		0.0011	0.00068	ppm v/v		11/17/21 20:45	1.58
m,p-Xylene	ND		0.0021	0.00076	ppm v/v		11/17/21 20:45	1.58
o-Xylene	ND		0.0021	0.00040	ppm v/v		11/17/21 20:45	1.58
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		60 - 140				11/17/21 20:45	1.58

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116206-001/MWL-SV04-200 Lab Sample ID: 140-25404-5

Date Collected: 11/05/21 10:20 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

0.032 0.0013 0.0025 0.0013 0.0013	0.0090 0.00013	ppm v/v		11/17/21 21:30	
0.0025 0.0013 0.0013	0.00013				1.58
0.0013 0.0013		ppm v/v		11/17/21 21:30	1.58
0.0013	0.00060	ppm v/v		11/17/21 21:30	1.58
	0.00028	ppm v/v		11/17/21 21:30	1.58
0 0013	0.00014	ppm v/v		11/17/21 21:30	1.58
0.0013	0.00035	ppm v/v		11/17/21 21:30	1.58
0.0063	0.0012	ppm v/v		11/17/21 21:30	1.58
0.0032	0.00017	ppm v/v		11/17/21 21:30	1.58
0.0013	0.00011	ppm v/v		11/17/21 21:30	1.58
0.0013	0.000095	ppm v/v		11/17/21 21:30	1.58
0.0013	0.00046	ppm v/v		11/17/21 21:30	1.58
0.0013	0.00011	ppm v/v		11/17/21 21:30	1.58
0.0032	0.0010	ppm v/v		11/17/21 21:30	1.58
0.0013		ppm v/v		11/17/21 21:30	1.58
0.0013	0.00011	ppm v/v		11/17/21 21:30	1.58
0.0013	0.00019	· · · · · · · · · · · · · · · · · · ·		11/17/21 21:30	1.5
0.0013	0.00049			11/17/21 21:30	1.5
0.0013	0.00025	• •		11/17/21 21:30	1.58
0.0013	0.00025			11/17/21 21:30	1.5
0.0013	0.00022			11/17/21 21:30	1.58
0.0013	0.00011			11/17/21 21:30	1.58
0.0013	0.00016			11/17/21 21:30	1.5
0.0013	0.00013			11/17/21 21:30	1.5
0.0013	0.00016			11/17/21 21:30	1.5
0.0013	0.00011			11/17/21 21:30	1.58
0.0013	0.00016			11/17/21 21:30	1.5
0.0013	0.00016			11/17/21 21:30	1.58
0.0013	0.00014	• • • • • • • • • • • • •		11/17/21 21:30	1.5
0.0013	0.00014			11/17/21 21:30	1.58
0.0015	0.00021	• •		11/17/21 21:30	1.58
0.0023	0.00051			11/17/21 21:30	1.58
0.0032	0.00031			11/17/21 21:30	1.58
0.0032	0.00025			11/17/21 21:30	1.5
0.0032		ppm v/v		11/17/21 21:30	1.5
0.0003	0.0002	• •			1.5
0.0013				11/17/21 21:30	
	0.00022			11/17/21 21:30	1.5
0.0013	0.00011			11/17/21 21:30	1.5
0.0019 0.0013	0.0012	ppm v/v ppm v/v		11/17/21 21:30 11/17/21 21:30	1.58 1.58
0.0002	0.0040			44/47/04 04-00	
0.0063		ppm v/v		11/17/21 21:30	1.5
0.0013	0.00058			11/17/21 21:30	1.5
0.0013	0.00011			11/17/21 21:30	1.5
0.00063				11/17/21 21:30	1.5
					1.5
					1.5
					1.58
					1.58 1.58
	0.0013 0.0013 0.0013 0.0063 0.00063	0.0013     0.00017       0.0013     0.00032       0.0013     0.00035       0.0063     0.00044	0.0013 0.00017 ppm v/v 0.0013 0.00032 ppm v/v 0.0013 0.00035 ppm v/v 0.0063 0.00044 ppm v/v	0.0013	0.0013     0.00017 ppm v/v     11/17/21 21:30       0.0013     0.00032 ppm v/v     11/17/21 21:30       0.0013     0.00035 ppm v/v     11/17/21 21:30       0.0063     0.00044 ppm v/v     11/17/21 21:30

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116206-001/MWL-SV04-200 Lab Sample ID: 140-25404-5

Date Collected: 11/05/21 10:20 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.0013	0.00046	ppm v/v			11/17/21 21:30	1.58
o-Xylene	ND		0.0013	0.00024	ppm v/v			11/17/21 21:30	1.58
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		60 - 140					11/17/21 21:30	1.58

Client Sample ID: 116207-001/MWL-SV04-300 Lab Sample ID: 140-25404-6

Date Collected: 11/05/21 10:23 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Mothod: TO 15 LL	Volatile Organic	Compounds in /	Ambiant Air I	low Concentration	(CC/MS)

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0069	J	0.020	0.0056	ppm v/v			11/18/21 14:56	1.56
Benzene	0.00030	JB	0.00078	0.000078	ppm v/v			11/18/21 14:56	1.56
Benzyl chloride	ND		0.0016	0.00037	ppm v/v			11/18/21 14:56	1.56
Bromodichloromethane	ND		0.00078	0.00018	ppm v/v			11/18/21 14:56	1.56
Bromoform	ND		0.00078	0.000088	ppm v/v			11/18/21 14:56	1.56
Bromomethane	ND		0.00078	0.00021	ppm v/v			11/18/21 14:56	1.56
2-Butanone (MEK)	0.0011	J	0.0039	0.00071	ppm v/v			11/18/21 14:56	1.56
Carbon disulfide	0.00019	J	0.0020	0.00011	ppm v/v			11/18/21 14:56	1.56
Carbon tetrachloride	0.00035	J	0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
Chlorobenzene	ND		0.00078	0.000059	ppm v/v			11/18/21 14:56	1.56
Chloroethane	ND		0.00078	0.00028	ppm v/v			11/18/21 14:56	1.56
Chloroform	0.00066	J	0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
Chloromethane	ND		0.0020	0.00064	ppm v/v			11/18/21 14:56	1.56
Dibromochloromethane	ND		0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
1,2-Dibromoethane (EDB)	0.00010	J	0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00078	0.00012	ppm v/v			11/18/21 14:56	1.56
1,2-Dichlorobenzene	ND		0.00078	0.00030	ppm v/v			11/18/21 14:56	1.56
1,3-Dichlorobenzene	ND		0.00078	0.00016	ppm v/v			11/18/21 14:56	1.56
1,4-Dichlorobenzene	ND		0.00078	0.00016	ppm v/v			11/18/21 14:56	1.56
Dichlorodifluoromethane	0.022		0.00078	0.00014	ppm v/v			11/18/21 14:56	1.56
1,1-Dichloroethane	0.0011		0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
1,2-Dichloroethane	ND		0.00078	0.000098	ppm v/v			11/18/21 14:56	1.56
1,1-Dichloroethene	0.012		0.00078	0.000078	ppm v/v			11/18/21 14:56	1.56
cis-1,2-Dichloroethene	0.00074	J	0.00078	0.000098	ppm v/v			11/18/21 14:56	1.56
trans-1,2-Dichloroethene	ND		0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
1,2-Dichloropropane	ND		0.00078	0.000098	ppm v/v			11/18/21 14:56	1.56
cis-1,3-Dichloropropene	ND		0.00078	0.00016	ppm v/v			11/18/21 14:56	1.56
trans-1,3-Dichloropropene	ND		0.00078	0.000088	ppm v/v			11/18/21 14:56	1.56
Ethylbenzene	ND		0.00078	0.00013	ppm v/v			11/18/21 14:56	1.56
4-Ethyltoluene	ND		0.0016	0.00020	ppm v/v			11/18/21 14:56	1.56
Hexachlorobutadiene	ND		0.0039	0.00031	ppm v/v			11/18/21 14:56	1.56
2-Hexanone	ND		0.0020	0.00016	ppm v/v			11/18/21 14:56	1.56
4-Methyl-2-pentanone (MIBK)	ND		0.0020	0.00053	ppm v/v			11/18/21 14:56	1.56
Methylene Chloride	ND		0.0039	0.0038	ppm v/v			11/18/21 14:56	1.56
Styrene	ND		0.00078		ppm v/v			11/18/21 14:56	1.56
1,1,2,2-Tetrachloroethane	ND		0.00078		ppm v/v			11/18/21 14:56	1.56

Eurofins TestAmerica, Knoxville

Page 20 of 1931

Job ID: 140-25404-1

Matrix: Air

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116207-001/MWL-SV04-300 Lab Sample ID: 140-25404-6

Date Collected: 11/05/21 10:23 **Matrix: Air** 

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.11	0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
Toluene	ND	0.0012	0.00076	ppm v/v			11/18/21 14:56	1.56
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.075	0.00078	0.000078	ppm v/v			11/18/21 14:56	1.56
1,2,4-Trichlorobenzene	ND	0.0039	0.00062	ppm v/v			11/18/21 14:56	1.56
1,1,1-Trichloroethane	0.00093	0.00078	0.00036	ppm v/v			11/18/21 14:56	1.56
1,1,2-Trichloroethane	ND	0.00078	0.000068	ppm v/v			11/18/21 14:56	1.56
Trichloroethene	0.084	0.00039	0.00013	ppm v/v			11/18/21 14:56	1.56
Trichlorofluoromethane	0.015	0.00078	0.00011	ppm v/v			11/18/21 14:56	1.56
1,2,4-Trimethylbenzene	ND	0.00078	0.00020	ppm v/v			11/18/21 14:56	1.56
1,3,5-Trimethylbenzene	ND	0.00078	0.00021	ppm v/v			11/18/21 14:56	1.56
Vinyl acetate	ND	0.0039	0.00027	ppm v/v			11/18/21 14:56	1.56
Vinyl chloride	ND	0.00039	0.00025	ppm v/v			11/18/21 14:56	1.56
m,p-Xylene	ND	0.00078	0.00028	ppm v/v			11/18/21 14:56	1.56

Client Sample ID: 116208-001/MWL-SV04-400

ND

%Recovery Qualifier

87

Lab Sample ID: 140-25404-7 Date Collected: 11/05/21 10:30 Matrix: Air

Limits

60 - 140

0.00078 0.00015 ppm v/v

Date Received: 11/15/21 10:00

4-Bromofluorobenzene (Surr)

o-Xylene

Surrogate

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0072	J	0.016	0.0047	ppm v/v			11/18/21 15:38	1.64
Benzene	0.00069	В	0.00066	0.000066	ppm v/v			11/18/21 15:38	1.64
Benzyl chloride	ND		0.0013	0.00031	ppm v/v			11/18/21 15:38	1.64
Bromodichloromethane	ND		0.00066	0.00015	ppm v/v			11/18/21 15:38	1.64
Bromoform	ND		0.00066	0.000074	ppm v/v			11/18/21 15:38	1.64
Bromomethane	ND		0.00066	0.00018	ppm v/v			11/18/21 15:38	1.64
2-Butanone (MEK)	0.00098	J	0.0033	0.00060	ppm v/v			11/18/21 15:38	1.64
Carbon disulfide	0.0010	J	0.0016	0.000090	ppm v/v			11/18/21 15:38	1.64
Carbon tetrachloride	0.00019	J	0.00066	0.000057	ppm v/v			11/18/21 15:38	1.64
Chlorobenzene	0.00011	JB	0.00066	0.000049	ppm v/v			11/18/21 15:38	1.64
Chloroethane	ND		0.00066	0.00024	ppm v/v			11/18/21 15:38	1.64
Chloroform	0.00050	J	0.00066	0.000057	ppm v/v			11/18/21 15:38	1.64
Chloromethane	ND		0.0016	0.00054	ppm v/v			11/18/21 15:38	1.64
Dibromochloromethane	ND		0.00066	0.000057	ppm v/v			11/18/21 15:38	1.64
1,2-Dibromoethane (EDB)	0.000074	J	0.00066	0.000057	ppm v/v			11/18/21 15:38	1.64
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00066	0.000098	ppm v/v			11/18/21 15:38	1.64
1,2-Dichlorobenzene	ND		0.00066	0.00025	ppm v/v			11/18/21 15:38	1.64
1,3-Dichlorobenzene	ND		0.00066	0.00013	ppm v/v			11/18/21 15:38	1.64
1,4-Dichlorobenzene	ND		0.00066	0.00013	ppm v/v			11/18/21 15:38	1.64
Dichlorodifluoromethane	0.020		0.00066	0.00011	ppm v/v			11/18/21 15:38	1.64
1,1-Dichloroethane	0.00062	J	0.00066	0.000057	ppm v/v			11/18/21 15:38	1.64
1,2-Dichloroethane	ND		0.00066	0.000082	ppm v/v			11/18/21 15:38	1.64
1,1-Dichloroethene	0.0067		0.00066	0.000066	ppm v/v			11/18/21 15:38	1.64

Eurofins TestAmerica, Knoxville

11/18/21 14:56

Analyzed

11/18/21 14:56

Prepared

1.56

1.56

Dil Fac

Page 21 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116208-001/MWL-SV04-400 Lab Sample ID: 140-25404-7

Date Collected: 11/05/21 10:30 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	0.00045	J	0.00066	0.000082	ppm v/v		11/18/21 15:38	1.64
trans-1,2-Dichloroethene	ND		0.00066	0.000057	ppm v/v		11/18/21 15:38	1.64
1,2-Dichloropropane	ND		0.00066	0.000082	ppm v/v		11/18/21 15:38	1.64
cis-1,3-Dichloropropene	ND		0.00066	0.00013	ppm v/v		11/18/21 15:38	1.64
trans-1,3-Dichloropropene	ND		0.00066	0.000074	ppm v/v		11/18/21 15:38	1.64
Ethylbenzene	ND		0.00066	0.00011	ppm v/v		11/18/21 15:38	1.64
4-Ethyltoluene	ND		0.0013	0.00017	ppm v/v		11/18/21 15:38	1.64
Hexachlorobutadiene	ND		0.0033	0.00026	ppm v/v		11/18/21 15:38	1.64
2-Hexanone	ND		0.0016	0.00013	ppm v/v		11/18/21 15:38	1.64
4-Methyl-2-pentanone (MIBK)	ND		0.0016	0.00044	ppm v/v		11/18/21 15:38	1.64
Methylene Chloride	ND		0.0033	0.0032	ppm v/v		11/18/21 15:38	1.64
Styrene	ND		0.00066	0.00020	ppm v/v		11/18/21 15:38	1.64
1,1,2,2-Tetrachloroethane	ND		0.00066	0.00011	ppm v/v		11/18/21 15:38	1.64
Tetrachloroethene	0.094		0.00066	0.000057	ppm v/v		11/18/21 15:38	1.64
Toluene	ND		0.00098	0.00064	ppm v/v		11/18/21 15:38	1.64
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.067		0.00066	0.000066	ppm v/v		11/18/21 15:38	1.64
1,2,4-Trichlorobenzene	ND		0.0033	0.00052	ppm v/v		11/18/21 15:38	1.64
1,1,1-Trichloroethane	0.00055	J	0.00066	0.00030	ppm v/v		11/18/21 15:38	1.64
1,1,2-Trichloroethane	0.000073	J	0.00066	0.000057	ppm v/v		11/18/21 15:38	1.64
Trichloroethene	0.053		0.00033	0.00011	ppm v/v		11/18/21 15:38	1.64
Trichlorofluoromethane	0.012		0.00066	0.000090	ppm v/v		11/18/21 15:38	1.64
1,2,4-Trimethylbenzene	ND		0.00066	0.00016	ppm v/v		11/18/21 15:38	1.64
1,3,5-Trimethylbenzene	ND		0.00066	0.00018	ppm v/v		11/18/21 15:38	1.64
Vinyl acetate	ND		0.0033	0.00023	ppm v/v		11/18/21 15:38	1.64
Vinyl chloride	ND		0.00033	0.00021	ppm v/v		11/18/21 15:38	1.64
m,p-Xylene	ND		0.00066	0.00024	ppm v/v		11/18/21 15:38	1.64
o-Xylene	ND		0.00066	0.00012	ppm v/v		11/18/21 15:38	1.64
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140				11/18/21 15:38	1.64

Client Sample ID: 116209-001/MWL-SV04-400 Lab S

Date Collected: 11/05/21 10:30 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 140-25404-8

Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.017	0.0047	ppm v/v			11/18/21 16:21	1.65
Benzene	0.00061	JB	0.00066	0.000066	ppm v/v			11/18/21 16:21	1.65
Benzyl chloride	ND		0.0013	0.00031	ppm v/v			11/18/21 16:21	1.65
Bromodichloromethane	ND		0.00066	0.00015	ppm v/v			11/18/21 16:21	1.65
Bromoform	ND		0.00066	0.000074	ppm v/v			11/18/21 16:21	1.65
Bromomethane	ND		0.00066	0.00018	ppm v/v			11/18/21 16:21	1.65
2-Butanone (MEK)	ND		0.0033	0.00060	ppm v/v			11/18/21 16:21	1.65
Carbon disulfide	0.00079	J	0.0017	0.000091	ppm v/v			11/18/21 16:21	1.65
Carbon tetrachloride	0.00019	J	0.00066	0.000058	ppm v/v			11/18/21 16:21	1.65
Chlorobenzene	0.00015	JB	0.00066	0.000050	ppm v/v			11/18/21 16:21	1.65

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116209-001/MWL-SV04-400

Lab Sample ID: 140-25404-8 Date Collected: 11/05/21 10:30 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
Chloroform	0.00041	J	0.00066	0.000058	ppm v/v			11/18/21 16:21	1.65
Chloromethane	ND		0.0017	0.00054	ppm v/v			11/18/21 16:21	1.65
Dibromochloromethane	ND		0.00066	0.000058	ppm v/v			11/18/21 16:21	1.65
1,2-Dibromoethane (EDB)	ND		0.00066	0.000058	ppm v/v			11/18/21 16:21	1.65
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00066	0.000099	• •			11/18/21 16:21	1.65
1,2-Dichlorobenzene	ND		0.00066	0.00026	ppm v/v			11/18/21 16:21	1.65
1,3-Dichlorobenzene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
1,4-Dichlorobenzene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
Dichlorodifluoromethane	0.020		0.00066	0.00012				11/18/21 16:21	1.65
1,1-Dichloroethane	0.00055	J	0.00066	0.000058				11/18/21 16:21	1.65
1,2-Dichloroethane	ND		0.00066	0.000083				11/18/21 16:21	1.65
1,1-Dichloroethene	0.0059		0.00066	0.000066				11/18/21 16:21	1.65
cis-1,2-Dichloroethene	0.00037	J	0.00066	0.000083				11/18/21 16:21	1.65
trans-1,2-Dichloroethene	ND		0.00066	0.000058				11/18/21 16:21	1.65
1,2-Dichloropropane	ND		0.00066	0.000083				11/18/21 16:21	1.65
cis-1,3-Dichloropropene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
trans-1,3-Dichloropropene	ND		0.00066	0.000074				11/18/21 16:21	1.65
Ethylbenzene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
4-Ethyltoluene	ND		0.0013		ppm v/v			11/18/21 16:21	1.65
Hexachlorobutadiene	ND		0.0033		ppm v/v			11/18/21 16:21	1.65
2-Hexanone	ND		0.0017		ppm v/v			11/18/21 16:21	1.65
4-Methyl-2-pentanone (MIBK)	ND		0.0017		ppm v/v			11/18/21 16:21	1.65
Methylene Chloride	ND		0.0033		ppm v/v			11/18/21 16:21	1.65
Styrene	ND		0.00066	0.00020	ppm v/v			11/18/21 16:21	1.65
1,1,2,2-Tetrachloroethane	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
Tetrachloroethene	0.097		0.00066	0.000058				11/18/21 16:21	1.65
Toluene	ND		0.00099		ppm v/v			11/18/21 16:21	1.65
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.066		0.00066	0.000066	ppm v/v			11/18/21 16:21	1.65
1,2,4-Trichlorobenzene	ND		0.0033		ppm v/v			11/18/21 16:21	1.65
1,1,1-Trichloroethane	0.00042	J	0.00066	0.00031	ppm v/v			11/18/21 16:21	1.65
1,1,2-Trichloroethane	ND		0.00066	0.000058				11/18/21 16:21	1.65
Trichloroethene	0.051		0.00033	0.00011	ppm v/v			11/18/21 16:21	1.65
Trichlorofluoromethane	0.011		0.00066	0.000091	ppm v/v			11/18/21 16:21	1.65
1,2,4-Trimethylbenzene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
1,3,5-Trimethylbenzene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
Vinyl acetate	ND		0.0033		ppm v/v			11/18/21 16:21	1.65
Vinyl chloride	ND		0.00033		ppm v/v			11/18/21 16:21	1.65
m,p-Xylene	ND		0.00066		ppm v/v			11/18/21 16:21	1.65
o-Xylene	ND		0.00066	0.00012	ppm v/v			11/18/21 16:21	1.65
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140					11/18/21 16:21	1.65

Job ID: 140-25404-1

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116210-001/MWL-SV-FB 5 Lab Sample ID: 140-25404-9

Date Collected: 11/05/21 10:49 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		Prepared	Analyzed	Dil Fa
Acetone	ND		0.0020	0.00058	ppm v/v		11/17/21 15:50	1.6
Benzene	0.000014	JB	0.000081	0.0000081	ppm v/v		11/17/21 15:50	1.6
Benzyl chloride	ND		0.00016	0.000038	ppm v/v		11/17/21 15:50	1.6
Bromodichloromethane	ND		0.000081	0.000018	ppm v/v		11/17/21 15:50	1.6
Bromoform	ND		0.000081	0.0000091	ppm v/v		11/17/21 15:50	1.6
Bromomethane	ND		0.000081	0.000022	ppm v/v		11/17/21 15:50	1.6
2-Butanone (MEK)	ND		0.00041	0.000074	ppm v/v		11/17/21 15:50	1.6
Carbon disulfide	0.000091	JB	0.00020	0.000011	ppm v/v		11/17/21 15:50	1.6
Carbon tetrachloride	ND		0.000081	0.0000071	ppm v/v		11/17/21 15:50	1.6
Chlorobenzene	0.000015	JB	0.000081	0.0000061	ppm v/v		11/17/21 15:50	1.6
Chloroethane	ND		0.000081	0.000029	ppm v/v		11/17/21 15:50	1.6
Chloroform	ND		0.000081	0.0000071	ppm v/v		11/17/21 15:50	1.6
Chloromethane	ND		0.00020	0.000067	ppm v/v		11/17/21 15:50	1.6
Dibromochloromethane	ND		0.000081	0.0000071	ppm v/v		11/17/21 15:50	1.6
1,2-Dibromoethane (EDB)	0.0000074	JB	0.000081	0.0000071	ppm v/v		11/17/21 15:50	1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000081	0.000012	ppm v/v		11/17/21 15:50	1.6
1,2-Dichlorobenzene	ND		0.000081	0.000031	• •		11/17/21 15:50	1.6
1,3-Dichlorobenzene	ND		0.000081	0.000016	• •		11/17/21 15:50	1.6
1,4-Dichlorobenzene	ND		0.000081	0.000016			11/17/21 15:50	1.6
Dichlorodifluoromethane	ND		0.000081	0.000014	• •		11/17/21 15:50	1.6
1,1-Dichloroethane	ND		0.000081	0.0000071	• •		11/17/21 15:50	1.6
1,2-Dichloroethane	ND		0.000081	0.000010			11/17/21 15:50	1.6
1,1-Dichloroethene	ND		0.000081	0.0000081	• •		11/17/21 15:50	1.6
cis-1,2-Dichloroethene	ND		0.000081	0.000010	• •		11/17/21 15:50	1.6
trans-1,2-Dichloroethene	ND		0.000081	0.0000071			11/17/21 15:50	1.6
1,2-Dichloropropane	ND		0.000081	0.000010	• •		11/17/21 15:50	1.6
cis-1,3-Dichloropropene	ND		0.000081	0.000016	• •		11/17/21 15:50	1.6
trans-1,3-Dichloropropene	ND		0.000081	0.0000091			11/17/21 15:50	1.6
Ethylbenzene	ND		0.000081	0.000013	• •		11/17/21 15:50	1.6
4-Ethyltoluene	ND		0.00016	0.000010	• •		11/17/21 15:50	1.6
Hexachlorobutadiene	ND		0.00041	0.000032	. <b></b>		11/17/21 15:50	1.6
2-Hexanone	ND		0.00041	0.000032	• •		11/17/21 15:50	1.6
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000016	• •		11/17/21 15:50	1.6
Methylene Chloride	ND		0.00020		ppm v/v		11/17/21 15:50	1.6
Styrene	ND		0.000041	0.00039	• •		11/17/21 15:50	1.6
1,1,2,2-Tetrachloroethane	ND		0.000081	0.000024			11/17/21 15:50	1.6
Tetrachloroethene	ND		0.000081	0.000014			11/17/21 15:50	1.6
Toluene	ND		0.00001	0.0000071			11/17/21 15:50	
	ND ND		0.00012	0.000079			11/17/21 15:50	1.6: 1.6:
1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,4-Trichlorobenzene			0.00041				11/17/21 15:50	1.6
, ,	ND			0.000065				
1,1,1-Trichloroethane	ND		0.000081	0.000037			11/17/21 15:50	1.6
1,1,2-Trichloroethane	ND		0.000081	0.0000071			11/17/21 15:50	1.6
Tricklandings	ND		0.000041	0.000013			11/17/21 15:50	1.6
Trichlorofluoromethane	ND		0.000081	0.000011	• •		11/17/21 15:50	1.6
1,2,4-Trimethylbenzene	ND		0.000081	0.000020			11/17/21 15:50	1.6
1,3,5-Trimethylbenzene	ND		0.000081	0.000022			11/17/21 15:50	1.6
Vinyl acetate	ND ND		0.00041 0.000041	0.000028 0.000026			11/17/21 15:50 11/17/21 15:50	1.6: 1.6:

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116210-001/MWL-SV-FB 5

Lab Sample ID: 140-25404-9 Date Collected: 11/05/21 10:49

Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.000081	0.000029	ppm v/v			11/17/21 15:50	1.62
o-Xylene	ND		0.000081	0.000015	ppm v/v			11/17/21 15:50	1.62
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		60 - 140					11/17/21 15:50	1.62

Client Sample ID: 116211-001/MWL-SV05-50

Lab Sample ID: 140-25404-10 Matrix: Air

Date Collected: 11/05/21 10:56 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit D Prepared	Analyzed	Dil Fac
Acetone	ND		0.0064	0.0018	ppm v/v	11/18/21 17:06	1.61
Benzene	0.00017	JB	0.00026	0.000026	ppm v/v	11/18/21 17:06	1.61
Benzyl chloride	ND		0.00052	0.00012	ppm v/v	11/18/21 17:06	1.61
Bromodichloromethane	ND		0.00026	0.000058	ppm v/v	11/18/21 17:06	1.61
Bromoform	ND		0.00026	0.000029	ppm v/v	11/18/21 17:06	1.61
Bromomethane	ND		0.00026	0.000071	ppm v/v	11/18/21 17:06	1.61
2-Butanone (MEK)	ND		0.0013	0.00024	ppm v/v	11/18/21 17:06	1.61
Carbon disulfide	0.000095	J	0.00064	0.000035	ppm v/v	11/18/21 17:06	1.61
Carbon tetrachloride	0.00031		0.00026	0.000023	ppm v/v	11/18/21 17:06	1.61
Chlorobenzene	0.000047	JB	0.00026	0.000019	ppm v/v	11/18/21 17:06	1.61
Chloroethane	ND		0.00026	0.000093	ppm v/v	11/18/21 17:06	1.61
Chloroform	0.0010		0.00026	0.000023	ppm v/v	11/18/21 17:06	1.61
Chloromethane	ND		0.00064	0.00021	ppm v/v	11/18/21 17:06	1.61
Dibromochloromethane	ND		0.00026	0.000023	ppm v/v	11/18/21 17:06	1.61
1,2-Dibromoethane (EDB)	0.000046	J	0.00026	0.000023	ppm v/v	11/18/21 17:06	1.61
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	0.000086	J	0.00026	0.000039	ppm v/v	11/18/21 17:06	1.61
1,2-Dichlorobenzene	ND		0.00026	0.00010	ppm v/v	11/18/21 17:06	1.61
1,3-Dichlorobenzene	ND		0.00026	0.000052	ppm v/v	11/18/21 17:06	1.61
1,4-Dichlorobenzene	ND		0.00026	0.000052	ppm v/v	11/18/21 17:06	1.61
Dichlorodifluoromethane	0.034		0.00026	0.000045	ppm v/v	11/18/21 17:06	1.61
1,1-Dichloroethane	0.0012		0.00026	0.000023	ppm v/v	11/18/21 17:06	1.61
1,2-Dichloroethane	ND		0.00026	0.000032	ppm v/v	11/18/21 17:06	1.61
1,1-Dichloroethene	0.0068		0.00026	0.000026	ppm v/v	11/18/21 17:06	1.61
cis-1,2-Dichloroethene	0.00053		0.00026	0.000032	ppm v/v	11/18/21 17:06	1.61
trans-1,2-Dichloroethene	ND		0.00026	0.000023	ppm v/v	11/18/21 17:06	1.61
1,2-Dichloropropane	ND		0.00026	0.000032	ppm v/v	11/18/21 17:06	1.61
cis-1,3-Dichloropropene	ND		0.00026	0.000052	ppm v/v	11/18/21 17:06	1.61
trans-1,3-Dichloropropene	ND		0.00026	0.000029	ppm v/v	11/18/21 17:06	1.61
Ethylbenzene	ND		0.00026	0.000042	ppm v/v	11/18/21 17:06	1.61
4-Ethyltoluene	ND		0.00052	0.000068	ppm v/v	11/18/21 17:06	1.61
Hexachlorobutadiene	ND		0.0013	0.00010	ppm v/v	11/18/21 17:06	1.61
2-Hexanone	ND		0.00064	0.000052	ppm v/v	11/18/21 17:06	1.61
4-Methyl-2-pentanone (MIBK)	ND		0.00064	0.00017	ppm v/v	11/18/21 17:06	1.61
Methylene Chloride	ND		0.0013	0.0013	ppm v/v	11/18/21 17:06	1.61
Styrene	ND		0.00026	0.000077	ppm v/v	11/18/21 17:06	1.61

Eurofins TestAmerica, Knoxville

Page 25 of 1931

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116211-001/MWL-SV05-50

Date Collected: 11/05/21 10:56 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.00026	0.000045	ppm v/v			11/18/21 17:06	1.61
Tetrachloroethene	0.042		0.00026	0.000023	ppm v/v			11/18/21 17:06	1.61
Toluene	ND		0.00039	0.00025	ppm v/v			11/18/21 17:06	1.61
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.034		0.00026	0.000026	ppm v/v			11/18/21 17:06	1.61
1,2,4-Trichlorobenzene	ND		0.0013	0.00021	ppm v/v			11/18/21 17:06	1.61
1,1,1-Trichloroethane	0.0090		0.00026	0.00012	ppm v/v			11/18/21 17:06	1.61
1,1,2-Trichloroethane	0.000026	J	0.00026	0.000023	ppm v/v			11/18/21 17:06	1.61
Trichloroethene	0.047		0.00013	0.000042	ppm v/v			11/18/21 17:06	1.61
1,2,4-Trimethylbenzene	ND		0.00026	0.000064	ppm v/v			11/18/21 17:06	1.61
1,3,5-Trimethylbenzene	ND		0.00026	0.000071	ppm v/v			11/18/21 17:06	1.61
Vinyl acetate	ND		0.0013	0.000090	ppm v/v			11/18/21 17:06	1.61
Vinyl chloride	ND		0.00013	0.000084	ppm v/v			11/18/21 17:06	1.61
m,p-Xylene	0.000094	J	0.00026	0.000093	ppm v/v			11/18/21 17:06	1.61
o-Xylene	ND		0.00026	0.000048	ppm v/v			11/18/21 17:06	1.61
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		60 - 140			-		11/18/21 17:06	1.61

Method: TO 15 LL	- Volatile Organic Com	pounds in Ambient Air,	Low Concentration	(GC/MS) - DL
------------------	------------------------	------------------------	-------------------	--------------

Analyte	Result Qua	alifier RL	MDL Uni	it D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	0.11	0.0013	0.00018 ppn	n v/v		11/19/21 12:05	1.61
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87	60 - 140				11/19/21 12:05	1.61

Client Sample ID: 116212-001/MWL-SV05-100

Date Collected: 11/05/21 10:58 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 140-25404-11

Matrix: Air

Job ID: 140-25404-1

Lab Sample ID: 140-25404-10

Method: TO 15 LL - Volatile Or	ganic Compounds in Ambient Air	. Low Concentration (	(GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.0078	0.0022	ppm v/v			11/18/21 17:50	1.56
Benzene	0.00024	JB	0.00031	0.000031	ppm v/v			11/18/21 17:50	1.56
Benzyl chloride	ND		0.00062	0.00015	ppm v/v			11/18/21 17:50	1.56
Bromodichloromethane	ND		0.00031	0.000070	ppm v/v			11/18/21 17:50	1.56
Bromoform	ND		0.00031	0.000035	ppm v/v			11/18/21 17:50	1.56
Bromomethane	ND		0.00031	0.000086	ppm v/v			11/18/21 17:50	1.56
2-Butanone (MEK)	0.00030	J	0.0016	0.00028	ppm v/v			11/18/21 17:50	1.56
Carbon disulfide	0.00013	J	0.00078	0.000043	ppm v/v			11/18/21 17:50	1.56
Carbon tetrachloride	0.00057		0.00031	0.000027	ppm v/v			11/18/21 17:50	1.56
Chlorobenzene	0.000066	JB	0.00031	0.000023	ppm v/v			11/18/21 17:50	1.56
Chloroethane	ND		0.00031	0.00011	ppm v/v			11/18/21 17:50	1.56
Chloroform	0.0017		0.00031	0.000027	ppm v/v			11/18/21 17:50	1.56
Chloromethane	ND		0.00078	0.00026	ppm v/v			11/18/21 17:50	1.56
Dibromochloromethane	ND		0.00031	0.000027	ppm v/v			11/18/21 17:50	1.56
1,2-Dibromoethane (EDB)	0.000031	J	0.00031	0.000027	ppm v/v			11/18/21 17:50	1.56
1,2-Dichloro-1,1,2,2-tetrafluoroeth ane	0.00015	J	0.00031	0.000047	ppm v/v			11/18/21 17:50	1.56

Eurofins TestAmerica, Knoxville

Page 26 of 1931

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116212-001/MWL-SV05-100

Lab Sample ID: 140-25404-11 Date Collected: 11/05/21 10:58 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result Q	Qualifier RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND ND	0.00031	0.00012	ppm v/v		11/18/21 17:50	1.56
1,3-Dichlorobenzene	ND	0.00031	0.000062	ppm v/v		11/18/21 17:50	1.56
1,4-Dichlorobenzene	ND	0.00031	0.000062	ppm v/v		11/18/21 17:50	1.56
Dichlorodifluoromethane	0.057	0.00031	0.000055	ppm v/v		11/18/21 17:50	1.56
1,1-Dichloroethane	0.0026	0.00031	0.000027	ppm v/v		11/18/21 17:50	1.56
1,2-Dichloroethane	ND	0.00031	0.000039	ppm v/v		11/18/21 17:50	1.56
1,1-Dichloroethene	0.016	0.00031	0.000031	ppm v/v		11/18/21 17:50	1.56
cis-1,2-Dichloroethene	0.0013	0.00031	0.000039	ppm v/v		11/18/21 17:50	1.56
trans-1,2-Dichloroethene	ND	0.00031	0.000027	ppm v/v		11/18/21 17:50	1.56
1,2-Dichloropropane	ND	0.00031	0.000039	ppm v/v		11/18/21 17:50	1.56
cis-1,3-Dichloropropene	ND	0.00031	0.000062	ppm v/v		11/18/21 17:50	1.56
trans-1,3-Dichloropropene	ND	0.00031	0.000035	ppm v/v		11/18/21 17:50	1.56
Ethylbenzene	ND	0.00031	0.000051	ppm v/v		11/18/21 17:50	1.56
4-Ethyltoluene	ND	0.00062	0.000082	ppm v/v		11/18/21 17:50	1.56
Hexachlorobutadiene	ND	0.0016	0.00012	ppm v/v		11/18/21 17:50	1.56
2-Hexanone	ND	0.00078	0.000062	ppm v/v		11/18/21 17:50	1.56
4-Methyl-2-pentanone (MIBK)	ND	0.00078	0.00021	ppm v/v		11/18/21 17:50	1.56
Methylene Chloride	ND	0.0016	0.0015	ppm v/v		11/18/21 17:50	1.56
Styrene	ND	0.00031	0.000094	ppm v/v		11/18/21 17:50	1.56
1,1,2,2-Tetrachloroethane	ND	0.00031	0.000055	ppm v/v		11/18/21 17:50	1.56
Toluene	ND	0.00047	0.00030	ppm v/v		11/18/21 17:50	1.56
1,2,4-Trichlorobenzene	ND	0.0016	0.00025	ppm v/v		11/18/21 17:50	1.56
1,1,1-Trichloroethane	0.010	0.00031	0.00014	ppm v/v		11/18/21 17:50	1.56
1,1,2-Trichloroethane	ND	0.00031	0.000027	ppm v/v		11/18/21 17:50	1.56
1,2,4-Trimethylbenzene	ND	0.00031	0.000078	ppm v/v		11/18/21 17:50	1.56
1,3,5-Trimethylbenzene	ND	0.00031	0.000086	ppm v/v		11/18/21 17:50	1.56
Vinyl acetate	ND	0.0016	0.00011	ppm v/v		11/18/21 17:50	1.56
Vinyl chloride	ND	0.00016	0.00010	ppm v/v		11/18/21 17:50	1.56
m,p-Xylene	ND	0.00031	0.00011	ppm v/v		11/18/21 17:50	1.56
o-Xylene	ND	0.00031	0.000059	ppm v/v		11/18/21 17:50	1.56
Surrogate	%Recovery Q	Qualifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90	60 - 140				11/18/21 17:50	1.56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.070		0.0012	0.00011	ppm v/v			11/19/21 12:47	1.56
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.071		0.0012	0.00012	ppm v/v			11/19/21 12:47	1.56
Trichloroethene	0.096		0.00062	0.00020	ppm v/v			11/19/21 12:47	1.56
Trichlorofluoromethane	0.15		0.0012	0.00017	ppm v/v			11/19/21 12:47	1.56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		60 - 140			-		11/19/21 12:47	1.56

Job ID: 140-25404-1

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116213-001/MWL-SV05-200 Lab Sample ID: 140-25404-12

Date Collected: 11/05/21 11:00 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.016		ppm v/v			11/18/21 18:33	1.58
Benzene	0.00037	JB	0.00063	0.000063	ppm v/v			11/18/21 18:33	1.58
Benzyl chloride	ND		0.0013	0.00030	ppm v/v			11/18/21 18:33	1.58
Bromodichloromethane	ND		0.00063	0.00014	ppm v/v			11/18/21 18:33	1.58
Bromoform	ND		0.00063	0.000071	ppm v/v			11/18/21 18:33	1.58
Bromomethane	ND		0.00063	0.00017	ppm v/v			11/18/21 18:33	1.58
2-Butanone (MEK)	ND		0.0032	0.00058	ppm v/v			11/18/21 18:33	1.58
Carbon disulfide	0.00015	J	0.0016	0.000087	ppm v/v			11/18/21 18:33	1.58
Carbon tetrachloride	0.00088		0.00063	0.000055	ppm v/v			11/18/21 18:33	1.58
Chlorobenzene	ND		0.00063	0.000047	ppm v/v			11/18/21 18:33	1.58
Chloroethane	ND		0.00063	0.00023	ppm v/v			11/18/21 18:33	1.58
Chloroform	0.0019		0.00063	0.000055	ppm v/v			11/18/21 18:33	1.58
Chloromethane	ND		0.0016	0.00052	ppm v/v			11/18/21 18:33	1.58
Dibromochloromethane	ND		0.00063	0.000055	ppm v/v			11/18/21 18:33	1.58
1,2-Dibromoethane (EDB)	0.000065	J	0.00063	0.000055	ppm v/v			11/18/21 18:33	1.58
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00063	0.000095	ppm v/v			11/18/21 18:33	1.58
1,2-Dichlorobenzene	ND		0.00063	0.00024	ppm v/v			11/18/21 18:33	1.58
1,3-Dichlorobenzene	ND		0.00063	0.00013	ppm v/v			11/18/21 18:33	1.58
1,4-Dichlorobenzene	ND		0.00063	0.00013	ppm v/v			11/18/21 18:33	1.58
Dichlorodifluoromethane	0.056		0.00063	0.00011	ppm v/v			11/18/21 18:33	1.58
1,1-Dichloroethane	0.0041		0.00063	0.000055	ppm v/v			11/18/21 18:33	1.58
1,2-Dichloroethane	ND		0.00063	0.000079	ppm v/v			11/18/21 18:33	1.58
1,1-Dichloroethene	0.031		0.00063	0.000063	ppm v/v			11/18/21 18:33	1.58
cis-1,2-Dichloroethene	0.0022		0.00063	0.000079				11/18/21 18:33	1.58
trans-1,2-Dichloroethene	ND		0.00063	0.000055				11/18/21 18:33	1.58
1,2-Dichloropropane	ND		0.00063	0.000079				11/18/21 18:33	1.58
cis-1,3-Dichloropropene	ND		0.00063		ppm v/v			11/18/21 18:33	1.58
trans-1,3-Dichloropropene	ND		0.00063	0.000071	. <b></b>			11/18/21 18:33	1.58
Ethylbenzene	ND		0.00063		ppm v/v			11/18/21 18:33	1.58
4-Ethyltoluene	ND		0.0013		ppm v/v			11/18/21 18:33	1.58
Hexachlorobutadiene	ND		0.0032		ppm v/v			11/18/21 18:33	1.58
2-Hexanone	ND		0.0016		ppm v/v			11/18/21 18:33	1.58
4-Methyl-2-pentanone (MIBK)	ND		0.0016		ppm v/v			11/18/21 18:33	1.58
Methylene Chloride	ND		0.0032		ppm v/v			11/18/21 18:33	1.58
Styrene	ND		0.00063	0.00019	• •			11/18/21 18:33	1.58
1,1,2,2-Tetrachloroethane	ND		0.00063		ppm v/v			11/18/21 18:33	1.58
Toluene	ND		0.00095		ppm v/v			11/18/21 18:33	1.58
1,2,4-Trichlorobenzene	ND		0.0032		ppm v/v			11/18/21 18:33	1.58
1,1,1-Trichloroethane	0.0035		0.00063		ppm v/v			11/18/21 18:33	1.58
1,1,2-Trichloroethane	ND		0.00063	0.000055				11/18/21 18:33	1.58
Trichlorofluoromethane	0.083		0.00063	0.000087				11/18/21 18:33	1.58
1,2,4-Trimethylbenzene	0.063 ND		0.00063		ppm v/v			11/18/21 18:33	1.58
1,3,5-Trimethylbenzene	ND		0.00063		ppm v/v			11/18/21 18:33	1.58
Vinyl acetate	ND		0.0003		ppm v/v			11/18/21 18:33	1.58
Vinyl chloride	ND		0.0032		ppm v/v			11/18/21 18:33	1.58
			0.00032		ppm v/v			11/18/21 18:33	1.58
m,p-Xylene o-Xylene	ND ND		0.00063	0.00023				11/18/21 18:33	1.58

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116213-001/MWL-SV05-200 Lab Sample ID: 140-25404-12

Date Collected: 11/05/21 11:00 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87	60 - 140		11/18/21 18:33	1.58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.11		0.0025	0.00022	ppm v/v			11/19/21 13:31	1.58
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.12		0.0025	0.00025	ppm v/v			11/19/21 13:31	1.58
Trichloroethene	0.16		0.0013	0.00041	ppm v/v			11/19/21 13:31	1.58
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorohenzene (Surr)	82		60 140					11/10/21 13:31	1 58

Client Sample ID: 116214-001/MWL-SV05-300 Lab Sample ID: 140-25404-13

Date Collected: 11/05/21 11:03

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Acetone	0.0058	J	0.020	0.0056	ppm v/v	_	11/18/21 19:16	1.56
Benzene	0.00036	JB	0.00078	0.000078	ppm v/v		11/18/21 19:16	1.56
Benzyl chloride	ND		0.0016	0.00037	ppm v/v		11/18/21 19:16	1.56
Bromodichloromethane	ND		0.00078	0.00018	ppm v/v		11/18/21 19:16	1.56
Bromoform	ND		0.00078	0.000088	ppm v/v		11/18/21 19:16	1.56
Bromomethane	ND		0.00078	0.00021	ppm v/v		11/18/21 19:16	1.56
2-Butanone (MEK)	0.00071	J	0.0039	0.00071	ppm v/v		11/18/21 19:16	1.56
Carbon disulfide	0.00016	J	0.0020	0.00011	ppm v/v		11/18/21 19:16	1.56
Carbon tetrachloride	0.00090		0.00078	0.000068	ppm v/v		11/18/21 19:16	1.56
Chlorobenzene	0.00013	JB	0.00078	0.000059	ppm v/v		11/18/21 19:16	1.56
Chloroethane	ND		0.00078	0.00028	ppm v/v		11/18/21 19:16	1.56
Chloroform	0.0011		0.00078	0.000068	ppm v/v		11/18/21 19:16	1.56
Chloromethane	ND		0.0020	0.00064	ppm v/v		11/18/21 19:16	1.56
Dibromochloromethane	ND		0.00078	0.000068	ppm v/v		11/18/21 19:16	1.56
1,2-Dibromoethane (EDB)	0.000070	J	0.00078	0.000068	ppm v/v		11/18/21 19:16	1.56
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00078	0.00012	ppm v/v		11/18/21 19:16	1.56
1,2-Dichlorobenzene	ND		0.00078	0.00030	ppm v/v		11/18/21 19:16	1.56
1,3-Dichlorobenzene	ND		0.00078	0.00016	ppm v/v		11/18/21 19:16	1.56
1,4-Dichlorobenzene	ND		0.00078	0.00016	ppm v/v		11/18/21 19:16	1.56
Dichlorodifluoromethane	0.037		0.00078	0.00014	ppm v/v		11/18/21 19:16	1.56
1,1-Dichloroethane	0.0020		0.00078	0.000068	ppm v/v		11/18/21 19:16	1.56
1,2-Dichloroethane	ND		0.00078	0.000098	ppm v/v		11/18/21 19:16	1.56
1,1-Dichloroethene	0.024		0.00078	0.000078	ppm v/v		11/18/21 19:16	1.56
cis-1,2-Dichloroethene	0.0011		0.00078	0.000098	ppm v/v		11/18/21 19:16	1.56
trans-1,2-Dichloroethene	ND		0.00078	0.000068	ppm v/v		11/18/21 19:16	1.56
1,2-Dichloropropane	ND		0.00078	0.000098	ppm v/v		11/18/21 19:16	1.56
cis-1,3-Dichloropropene	ND		0.00078	0.00016	ppm v/v		11/18/21 19:16	1.56
trans-1,3-Dichloropropene	ND		0.00078	0.000088	ppm v/v		11/18/21 19:16	1.56
Ethylbenzene	ND		0.00078	0.00013	ppm v/v		11/18/21 19:16	1.56
4-Ethyltoluene	ND		0.0016	0.00020	ppm v/v		11/18/21 19:16	1.56
Hexachlorobutadiene	ND		0.0039	0.00031	ppm v/v		11/18/21 19:16	1.56

Eurofins TestAmerica, Knoxville

11/23/2021

Job ID: 140-25404-1

Matrix: Air

Page 29 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116214-001/MWL-SV05-300

Date Collected: 11/05/21 11:03 **Matrix: Air** 

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	Ď	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		0.0020	0.00016	ppm v/v			11/18/21 19:16	1.56
4-Methyl-2-pentanone (MIBK)	ND		0.0020	0.00053	ppm v/v			11/18/21 19:16	1.56
Methylene Chloride	ND		0.0039	0.0038	ppm v/v			11/18/21 19:16	1.56
Styrene	ND		0.00078	0.00023	ppm v/v			11/18/21 19:16	1.56
1,1,2,2-Tetrachloroethane	ND		0.00078	0.00014	ppm v/v			11/18/21 19:16	1.56
Tetrachloroethene	0.11		0.00078	0.000068	ppm v/v			11/18/21 19:16	1.56
Toluene	ND		0.0012	0.00076	ppm v/v			11/18/21 19:16	1.56
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.12		0.00078	0.000078	ppm v/v			11/18/21 19:16	1.56
1,2,4-Trichlorobenzene	ND		0.0039	0.00062	ppm v/v			11/18/21 19:16	1.56
1,1,1-Trichloroethane	0.0016		0.00078	0.00036	ppm v/v			11/18/21 19:16	1.56
1,1,2-Trichloroethane	ND		0.00078	0.000068	ppm v/v			11/18/21 19:16	1.56
Trichloroethene	0.13		0.00039	0.00013	ppm v/v			11/18/21 19:16	1.56
Trichlorofluoromethane	0.035		0.00078	0.00011	ppm v/v			11/18/21 19:16	1.56
1,2,4-Trimethylbenzene	ND		0.00078	0.00020	ppm v/v			11/18/21 19:16	1.56
1,3,5-Trimethylbenzene	ND		0.00078	0.00021	ppm v/v			11/18/21 19:16	1.56
Vinyl acetate	ND		0.0039	0.00027	ppm v/v			11/18/21 19:16	1.56
Vinyl chloride	ND		0.00039	0.00025	ppm v/v			11/18/21 19:16	1.56
m,p-Xylene	ND		0.00078	0.00028	ppm v/v			11/18/21 19:16	1.56
o-Xylene	ND		0.00078	0.00015	ppm v/v			11/18/21 19:16	1.56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140			-		11/18/21 19:16	1.56

Client Sample ID: 116215-001/MWL-SV05-400

Lab Sample ID: 140-25404-14 Date Collected: 11/05/21 11:08 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

#### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0051	J	0.013	0.0036	ppm v/v			11/18/21 20:00	1.58
Benzene	0.00038	JB	0.00051	0.000051	ppm v/v			11/18/21 20:00	1.58
Benzyl chloride	ND		0.0010	0.00024	ppm v/v			11/18/21 20:00	1.58
Bromodichloromethane	ND		0.00051	0.00011	ppm v/v			11/18/21 20:00	1.58
Bromoform	ND		0.00051	0.000057	ppm v/v			11/18/21 20:00	1.58
Bromomethane	ND		0.00051	0.00014	ppm v/v			11/18/21 20:00	1.58
2-Butanone (MEK)	0.00048	J	0.0025	0.00046	ppm v/v			11/18/21 20:00	1.58
Carbon disulfide	0.00015	J	0.0013	0.000070	ppm v/v			11/18/21 20:00	1.58
Carbon tetrachloride	0.00059		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
Chlorobenzene	ND		0.00051	0.000038	ppm v/v			11/18/21 20:00	1.58
Chloroethane	ND		0.00051	0.00018	ppm v/v			11/18/21 20:00	1.58
Chloroform	0.00067		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
Chloromethane	ND		0.0013	0.00042	ppm v/v			11/18/21 20:00	1.58
Dibromochloromethane	ND		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
1,2-Dibromoethane (EDB)	ND		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00051	0.000076	ppm v/v			11/18/21 20:00	1.58
1,2-Dichlorobenzene	ND		0.00051	0.00020	ppm v/v			11/18/21 20:00	1.58
1,3-Dichlorobenzene	ND		0.00051	0.00010	ppm v/v			11/18/21 20:00	1.58

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-25404-13

Page 30 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116215-001/MWL-SV05-400 Lab Sample ID: 140-25404-14

Date Collected: 11/05/21 11:08 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.00051	0.00010	ppm v/v			11/18/21 20:00	1.58
Dichlorodifluoromethane	0.024		0.00051	0.000088	ppm v/v			11/18/21 20:00	1.58
1,1-Dichloroethane	0.0017		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
1,2-Dichloroethane	ND		0.00051	0.000063	ppm v/v			11/18/21 20:00	1.58
1,1-Dichloroethene	0.018		0.00051	0.000051	ppm v/v			11/18/21 20:00	1.58
cis-1,2-Dichloroethene	0.00069		0.00051	0.000063	ppm v/v			11/18/21 20:00	1.58
trans-1,2-Dichloroethene	ND		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
1,2-Dichloropropane	ND		0.00051	0.000063	ppm v/v			11/18/21 20:00	1.58
cis-1,3-Dichloropropene	ND		0.00051	0.00010	ppm v/v			11/18/21 20:00	1.58
trans-1,3-Dichloropropene	ND		0.00051	0.000057	ppm v/v			11/18/21 20:00	1.58
Ethylbenzene	ND		0.00051	0.000082	ppm v/v			11/18/21 20:00	1.58
4-Ethyltoluene	ND		0.0010	0.00013	ppm v/v			11/18/21 20:00	1.58
Hexachlorobutadiene	ND		0.0025	0.00020	ppm v/v			11/18/21 20:00	1.58
2-Hexanone	ND		0.0013	0.00010	ppm v/v			11/18/21 20:00	1.58
4-Methyl-2-pentanone (MIBK)	ND		0.0013	0.00034	ppm v/v			11/18/21 20:00	1.58
Methylene Chloride	ND		0.0025	0.0025	ppm v/v			11/18/21 20:00	1.58
Styrene	ND		0.00051	0.00015	ppm v/v			11/18/21 20:00	1.58
1,1,2,2-Tetrachloroethane	ND		0.00051	0.000088	ppm v/v			11/18/21 20:00	1.58
Toluene	ND		0.00076	0.00049	ppm v/v			11/18/21 20:00	1.58
1,1,2-Trichloro-1,2,2-trifluoroetha	0.054		0.00051	0.000051	ppm v/v			11/18/21 20:00	1.58
ne									
1,2,4-Trichlorobenzene	ND		0.0025	0.00040	ppm v/v			11/18/21 20:00	1.58
1,1,1-Trichloroethane	0.0017		0.00051	0.00023	ppm v/v			11/18/21 20:00	1.58
1,1,2-Trichloroethane	ND		0.00051	0.000044	ppm v/v			11/18/21 20:00	1.58
Trichloroethene	0.088		0.00025	0.000082				11/18/21 20:00	1.58
Trichlorofluoromethane	0.038		0.00051	0.000070	ppm v/v			11/18/21 20:00	1.58
1,2,4-Trimethylbenzene	ND		0.00051	0.00013	ppm v/v			11/18/21 20:00	1.58
1,3,5-Trimethylbenzene	ND		0.00051	0.00014	ppm v/v			11/18/21 20:00	1.58
Vinyl acetate	ND		0.0025	0.00018	ppm v/v			11/18/21 20:00	1.58
Vinyl chloride	ND		0.00025	0.00016	ppm v/v			11/18/21 20:00	1.58
m,p-Xylene	ND		0.00051	0.00018	ppm v/v			11/18/21 20:00	1.58
o-Xylene	ND		0.00051	0.000095	ppm v/v			11/18/21 20:00	1.58
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140					11/18/21 20:00	1.58
Method: TO 15 LL - Volatile O	_	•		•		•	•	Anglerad	Di Ec-
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.089		0.0013	0.00011	ppm v/v			11/19/21 14:13	1.58
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		60 - 140					11/19/21 14:13	1.58

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116192-001/MWL-SV-FB 1

Lab Sample ID: 140-25404-15 Date Collected: 11/05/21 11:22 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.00071	J	0.0020	0.00057	ppm v/v			11/17/21 16:43	1.53
Benzene	0.000020	JB	0.000080	0.0000080	ppm v/v			11/17/21 16:43	1.53
Benzyl chloride	ND		0.00016	0.000038	ppm v/v			11/17/21 16:43	1.53
Bromodichloromethane	ND		0.000080	0.000018	ppm v/v			11/17/21 16:43	1.53
Bromoform	ND		0.000080	0.0000090	ppm v/v			11/17/21 16:43	1.53
Bromomethane	ND		0.000080	0.000022	ppm v/v			11/17/21 16:43	1.53
2-Butanone (MEK)	ND		0.00040	0.000073	ppm v/v			11/17/21 16:43	1.53
Carbon disulfide	0.000044	JB	0.00020	0.000011	ppm v/v			11/17/21 16:43	1.53
Carbon tetrachloride	ND		0.000080	0.0000070	ppm v/v			11/17/21 16:43	1.53
Chlorobenzene	0.000016	JB	0.000080	0.0000060	ppm v/v			11/17/21 16:43	1.53
Chloroethane	ND		0.000080	0.000029	ppm v/v			11/17/21 16:43	1.53
Chloroform	ND		0.000080	0.0000070	ppm v/v			11/17/21 16:43	1.53
Chloromethane	ND		0.00020	0.000066	ppm v/v			11/17/21 16:43	1.53
Dibromochloromethane	ND		0.000080	0.0000070	ppm v/v			11/17/21 16:43	1.53
1,2-Dibromoethane (EDB)	0.0000087	JB	0.000080	0.0000070	ppm v/v			11/17/21 16:43	1.53
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000080	0.000012	ppm v/v			11/17/21 16:43	1.53
1,2-Dichlorobenzene	ND		0.000080	0.000031				11/17/21 16:43	1.53
1,3-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			11/17/21 16:43	1.53
1,4-Dichlorobenzene	ND		0.000080	0.000016				11/17/21 16:43	1.53
Dichlorodifluoromethane	ND		0.000080	0.000014				11/17/21 16:43	1.53
1,1-Dichloroethane	ND		0.000080	0.0000070				11/17/21 16:43	1.53
1,2-Dichloroethane	ND		0.000080	0.000010				11/17/21 16:43	1.53
1,1-Dichloroethene	ND		0.000080	0.0000080				11/17/21 16:43	1.53
cis-1,2-Dichloroethene	ND		0.000080	0.000010				11/17/21 16:43	1.53
trans-1,2-Dichloroethene	ND		0.000080	0.0000070				11/17/21 16:43	1.53
1,2-Dichloropropane	ND		0.000080	0.000010				11/17/21 16:43	1.53
cis-1,3-Dichloropropene	ND		0.000080	0.000016				11/17/21 16:43	1.53
trans-1,3-Dichloropropene	ND		0.000080	0.0000090				11/17/21 16:43	1.53
Ethylbenzene	ND		0.000080	0.000013				11/17/21 16:43	1.53
4-Ethyltoluene	ND		0.00016	0.000021				11/17/21 16:43	1.53
Hexachlorobutadiene	ND		0.00040	0.000032				11/17/21 16:43	1.53
2-Hexanone	ND		0.00020	0.000016				11/17/21 16:43	1.53
4-Methyl-2-pentanone (MIBK)	ND		0.00020	0.000054				11/17/21 16:43	1.53
Methylene Chloride	ND		0.00040		ppm v/v			11/17/21 16:43	1.53
Styrene	ND		0.000080	0.000024				11/17/21 16:43	1.53
1,1,2,2-Tetrachloroethane	ND		0.000080	0.000014				11/17/21 16:43	1.53
Tetrachloroethene	ND		0.000080	0.0000070				11/17/21 16:43	1.53
Toluene	ND		0.00012	0.000078				11/17/21 16:43	1.53
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000080	0.0000080				11/17/21 16:43	1.53
1,2,4-Trichlorobenzene	ND		0.00040	0.000064				11/17/21 16:43	1.53
1,1,1-Trichloroethane	ND		0.000080	0.000037				11/17/21 16:43	1.53
1,1,2-Trichloroethane	ND		0.000080	0.0000070				11/17/21 16:43	1.53
Trichloroethene	ND		0.000040	0.000013				11/17/21 16:43	1.53
Trichlorofluoromethane	ND		0.000040	0.000011				11/17/21 16:43	1.53
1,2,4-Trimethylbenzene	ND		0.000080	0.000011				11/17/21 16:43	1.53
1,3,5-Trimethylbenzene	ND		0.000080	0.000020				11/17/21 16:43	1.53
Vinyl acetate	ND ND		0.00040	0.000022				11/17/21 16:43	1.53
Vinyl chloride	ND ND		0.00040	0.000028				11/17/21 16:43	1.53

Job ID: 140-25404-1

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116192-001/MWL-SV-FB 1

Date Collected: 11/05/21 11:22 **Matrix: Air** 

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) (Continued)

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.000080	0.000029	ppm v/v			11/17/21 16:43	1.53
o-Xylene	ND		0.000080	0.000015	ppm v/v			11/17/21 16:43	1.53
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		60 - 140					11/17/21 16:43	1.53

Client Sample ID: 116193-001/MWL-SV-01-42.5

Lab Sample ID: 140-25404-16 Date Collected: 11/05/21 11:37 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.039	0.011	ppm v/v			11/18/21 20:42	1.56
Benzene	ND		0.0016	0.00016	ppm v/v			11/18/21 20:42	1.56
Benzyl chloride	ND		0.0031	0.00074	ppm v/v			11/18/21 20:42	1.56
Bromodichloromethane	0.00057	J	0.0016	0.00035	ppm v/v			11/18/21 20:42	1.56
Bromoform	ND		0.0016	0.00018	ppm v/v			11/18/21 20:42	1.56
Bromomethane	ND		0.0016	0.00043	ppm v/v			11/18/21 20:42	1.56
2-Butanone (MEK)	0.0024	J	0.0078	0.0014	ppm v/v			11/18/21 20:42	1.56
Carbon disulfide	0.00030	J	0.0039	0.00021	ppm v/v			11/18/21 20:42	1.56
Carbon tetrachloride	0.00024	J	0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
Chlorobenzene	0.00025	JB	0.0016	0.00012	ppm v/v			11/18/21 20:42	1.56
Chloroethane	ND		0.0016	0.00057	ppm v/v			11/18/21 20:42	1.56
Chloroform	0.012		0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
Chloromethane	ND		0.0039	0.0013	ppm v/v			11/18/21 20:42	1.56
Dibromochloromethane	ND		0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
1,2-Dibromoethane (EDB)	0.00016	J	0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0016	0.00023	ppm v/v			11/18/21 20:42	1.56
1,2-Dichlorobenzene	ND		0.0016	0.00060	ppm v/v			11/18/21 20:42	1.56
1,3-Dichlorobenzene	ND		0.0016	0.00031	ppm v/v			11/18/21 20:42	1.56
1,4-Dichlorobenzene	ND		0.0016	0.00031	ppm v/v			11/18/21 20:42	1.56
Dichlorodifluoromethane	0.057		0.0016	0.00027	ppm v/v			11/18/21 20:42	1.56
1,1-Dichloroethane	0.0014	J	0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
1,2-Dichloroethane	ND		0.0016	0.00020	ppm v/v			11/18/21 20:42	1.56
1,1-Dichloroethene	0.0046		0.0016	0.00016	ppm v/v			11/18/21 20:42	1.56
cis-1,2-Dichloroethene	0.0012	J	0.0016	0.00020	ppm v/v			11/18/21 20:42	1.56
trans-1,2-Dichloroethene	ND		0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
1,2-Dichloropropane	ND		0.0016	0.00020	ppm v/v			11/18/21 20:42	1.56
cis-1,3-Dichloropropene	ND		0.0016	0.00031	ppm v/v			11/18/21 20:42	1.56
trans-1,3-Dichloropropene	ND		0.0016	0.00018	ppm v/v			11/18/21 20:42	1.56
Ethylbenzene	ND		0.0016	0.00025	ppm v/v			11/18/21 20:42	1.56
4-Ethyltoluene	ND		0.0031	0.00041	ppm v/v			11/18/21 20:42	1.56
Hexachlorobutadiene	ND		0.0078	0.00062	ppm v/v			11/18/21 20:42	1.56
2-Hexanone	ND		0.0039	0.00031	ppm v/v			11/18/21 20:42	1.56
4-Methyl-2-pentanone (MIBK)	ND		0.0039	0.0011	ppm v/v			11/18/21 20:42	1.56
Methylene Chloride	ND		0.0078	0.0076	ppm v/v			11/18/21 20:42	1.56
Styrene	ND		0.0016	0.00047	ppm v/v			11/18/21 20:42	1.56
1,1,2,2-Tetrachloroethane	ND		0.0016	0.00027				11/18/21 20:42	1.56

Eurofins TestAmerica, Knoxville

11/23/2021

Lab Sample ID: 140-25404-15

Page 33 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116193-001/MWL-SV-01-42.5

Date Collected: 11/05/21 11:37 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.31		0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
Toluene	ND		0.0023	0.0015	ppm v/v			11/18/21 20:42	1.56
1,1,2-Trichloro-1,2,2-trifluoroetha ne	0.049		0.0016	0.00016	ppm v/v			11/18/21 20:42	1.56
1,2,4-Trichlorobenzene	ND		0.0078	0.0012	ppm v/v			11/18/21 20:42	1.56
1,1,1-Trichloroethane	0.021		0.0016	0.00072	ppm v/v			11/18/21 20:42	1.56
1,1,2-Trichloroethane	0.00033	J	0.0016	0.00014	ppm v/v			11/18/21 20:42	1.56
Trichloroethene	0.063		0.00078	0.00025	ppm v/v			11/18/21 20:42	1.56
Trichlorofluoromethane	0.12		0.0016	0.00021	ppm v/v			11/18/21 20:42	1.56
1,2,4-Trimethylbenzene	ND		0.0016	0.00039	ppm v/v			11/18/21 20:42	1.56
1,3,5-Trimethylbenzene	ND		0.0016	0.00043	ppm v/v			11/18/21 20:42	1.56
Vinyl acetate	ND		0.0078	0.00055	ppm v/v			11/18/21 20:42	1.56
Vinyl chloride	ND		0.00078	0.00051	ppm v/v			11/18/21 20:42	1.56
m,p-Xylene	ND		0.0016	0.00057	ppm v/v			11/18/21 20:42	1.56
o-Xylene	ND		0.0016	0.00029	ppm v/v			11/18/21 20:42	1.56
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		60 - 140			-		11/18/21 20:42	1.56

Client Sample ID: 116194-001/MWL-SV-FB 2

Lab Sample ID: 140-25404-17 Date Collected: 11/05/21 11:17 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Met	hod:	TO	15	5 L	L -	Vo	lati	le (	Organi	c (	Compound	ds ir	<b>Am</b>	bient	ŀΑ	ir,	Low (	Concentrat	ion	(GC/MS	S)
-----	------	----	----	-----	-----	----	------	------	--------	-----	----------	-------	-----------	-------	----	-----	-------	------------	-----	--------	----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.00074	J	0.0020	0.00057	ppm v/v			11/17/21 17:36	1.58
Benzene	0.000016	JB	0.000080	0.0000080	ppm v/v			11/17/21 17:36	1.58
Benzyl chloride	ND		0.00016	0.000038	ppm v/v			11/17/21 17:36	1.58
Bromodichloromethane	ND		0.000080	0.000018	ppm v/v			11/17/21 17:36	1.58
Bromoform	ND		0.000080	0.0000090	ppm v/v			11/17/21 17:36	1.58
Bromomethane	ND		0.000080	0.000022	ppm v/v			11/17/21 17:36	1.58
2-Butanone (MEK)	ND		0.00040	0.000073	ppm v/v			11/17/21 17:36	1.58
Carbon disulfide	0.000044	JB	0.00020	0.000011	ppm v/v			11/17/21 17:36	1.58
Carbon tetrachloride	ND		0.000080	0.0000070	ppm v/v			11/17/21 17:36	1.58
Chlorobenzene	0.000014	JB	0.000080	0.0000060	ppm v/v			11/17/21 17:36	1.58
Chloroethane	ND		0.000080	0.000029	ppm v/v			11/17/21 17:36	1.58
Chloroform	ND		0.000080	0.0000070	ppm v/v			11/17/21 17:36	1.58
Chloromethane	ND		0.00020	0.000066	ppm v/v			11/17/21 17:36	1.58
Dibromochloromethane	ND		0.000080	0.0000070	ppm v/v			11/17/21 17:36	1.58
1,2-Dibromoethane (EDB)	ND		0.000080	0.0000070	ppm v/v			11/17/21 17:36	1.58
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000080	0.000012	ppm v/v			11/17/21 17:36	1.58
1,2-Dichlorobenzene	ND		0.000080	0.000031	ppm v/v			11/17/21 17:36	1.58
1,3-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			11/17/21 17:36	1.58
1,4-Dichlorobenzene	ND		0.000080	0.000016	ppm v/v			11/17/21 17:36	1.58
Dichlorodifluoromethane	ND		0.000080	0.000014	ppm v/v			11/17/21 17:36	1.58
1,1-Dichloroethane	ND		0.000080	0.0000070	ppm v/v			11/17/21 17:36	1.58
1,2-Dichloroethane	ND		0.000080	0.000010	ppm v/v			11/17/21 17:36	1.58
1,1-Dichloroethene	ND		0.000080	0.0000080	ppm v/v			11/17/21 17:36	1.58

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-25404-16

Page 34 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116194-001/MWL-SV-FB 2 Lab Sample ID: 140-25404-17

Date Collected: 11/05/21 11:17 **Matrix: Air** 

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND	0.000080	0.000010	ppm v/v		11/17/21 17:36	1.58
trans-1,2-Dichloroethene	ND	0.000080	0.0000070	ppm v/v		11/17/21 17:36	1.58
1,2-Dichloropropane	ND	0.000080	0.000010	ppm v/v		11/17/21 17:36	1.58
cis-1,3-Dichloropropene	ND	0.000080	0.000016	ppm v/v		11/17/21 17:36	1.58
trans-1,3-Dichloropropene	ND	0.000080	0.0000090	ppm v/v		11/17/21 17:36	1.58
Ethylbenzene	ND	0.000080	0.000013	ppm v/v		11/17/21 17:36	1.58
4-Ethyltoluene	ND	0.00016	0.000021	ppm v/v		11/17/21 17:36	1.58
Hexachlorobutadiene	ND	0.00040	0.000032	ppm v/v		11/17/21 17:36	1.58
2-Hexanone	ND	0.00020	0.000016	ppm v/v		11/17/21 17:36	1.58
4-Methyl-2-pentanone (MIBK)	ND	0.00020	0.000054	ppm v/v		11/17/21 17:36	1.58
Methylene Chloride	ND	0.00040	0.00039	ppm v/v		11/17/21 17:36	1.58
Styrene	ND	0.000080	0.000024	ppm v/v		11/17/21 17:36	1.58
1,1,2,2-Tetrachloroethane	ND	0.000080	0.000014	ppm v/v		11/17/21 17:36	1.58
Tetrachloroethene	ND	0.000080	0.0000070	ppm v/v		11/17/21 17:36	1.58
Toluene	ND	0.00012	0.000078	ppm v/v		11/17/21 17:36	1.58
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.000080	0.0000080	ppm v/v		11/17/21 17:36	1.58
1,2,4-Trichlorobenzene	ND	0.00040	0.000064	ppm v/v		11/17/21 17:36	1.58
1,1,1-Trichloroethane	ND	0.000080	0.000037	ppm v/v		11/17/21 17:36	1.58
1,1,2-Trichloroethane	ND	0.000080	0.0000070	ppm v/v		11/17/21 17:36	1.58
Trichloroethene	ND	0.000040	0.000013	ppm v/v		11/17/21 17:36	1.58
Trichlorofluoromethane	ND	0.000080	0.000011	ppm v/v		11/17/21 17:36	1.58
1,2,4-Trimethylbenzene	ND	0.000080	0.000020	ppm v/v		11/17/21 17:36	1.58
1,3,5-Trimethylbenzene	ND	0.000080	0.000022	ppm v/v		11/17/21 17:36	1.58
Vinyl acetate	ND	0.00040	0.000028	ppm v/v		11/17/21 17:36	1.58
Vinyl chloride	ND	0.000040	0.000026	ppm v/v		11/17/21 17:36	1.58
m,p-Xylene	ND	0.000080	0.000029	ppm v/v		11/17/21 17:36	1.58
o-Xylene	ND	0.000080	0.000015	ppm v/v		11/17/21 17:36	1.58

Client Sample ID: 116195-001/MWL-SV02-41.5

%Recovery Qualifier

96

Lab Sample ID: 140-25404-18 Date Collected: 11/05/21 11:44 Matrix: Air

Limits

60 - 140

Date Received: 11/15/21 10:00

4-Bromofluorobenzene (Surr)

Surrogate

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0081		0.0077	0.0022	ppm v/v			11/18/21 21:25	1.53
Benzene	0.00013	JB	0.00031	0.000031	ppm v/v			11/18/21 21:25	1.53
Benzyl chloride	ND		0.00061	0.00015	ppm v/v			11/18/21 21:25	1.53
Bromodichloromethane	ND		0.00031	0.000069	ppm v/v			11/18/21 21:25	1.53
Bromoform	ND		0.00031	0.000034	ppm v/v			11/18/21 21:25	1.53
Bromomethane	ND		0.00031	0.000084	ppm v/v			11/18/21 21:25	1.53
2-Butanone (MEK)	0.0074		0.0015	0.00028	ppm v/v			11/18/21 21:25	1.53
Carbon disulfide	0.00013	J	0.00077	0.000042	ppm v/v			11/18/21 21:25	1.53
Carbon tetrachloride	0.00028	J	0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
Chlorobenzene	ND		0.00031	0.000023	ppm v/v			11/18/21 21:25	1.53
Chloroethane	ND		0.00031	0.00011	ppm v/v			11/18/21 21:25	1.53

Eurofins TestAmerica, Knoxville

11/23/2021

Prepared

Dil Fac

1.58

Analyzed

11/17/21 17:36

Page 35 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116195-001/MWL-SV02-41.5

Lab Sample ID: 140-25404-18 Date Collected: 11/05/21 11:44 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Chloroform	0.0021		0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
Chloromethane	ND		0.00077	0.00025	ppm v/v			11/18/21 21:25	1.53
Dibromochloromethane	ND		0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
1,2-Dibromoethane (EDB)	0.000039	J	0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
1,2-Dichloro-1,1,2,2-tetrafluoroeth	0.00026	J	0.00031	0.000046	ppm v/v			11/18/21 21:25	1.53
ane									
1,2-Dichlorobenzene	ND		0.00031		ppm v/v			11/18/21 21:25	1.53
1,3-Dichlorobenzene	ND		0.00031	0.000061	ppm v/v			11/18/21 21:25	1.53
1,4-Dichlorobenzene	ND		0.00031	0.000061	ppm v/v			11/18/21 21:25	1.53
1,1-Dichloroethane	0.0014		0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
1,2-Dichloroethane	ND		0.00031	0.000038	ppm v/v			11/18/21 21:25	1.53
1,1-Dichloroethene	0.0070		0.00031	0.000031	ppm v/v			11/18/21 21:25	1.53
cis-1,2-Dichloroethene	0.00057		0.00031	0.000038	ppm v/v			11/18/21 21:25	1.53
trans-1,2-Dichloroethene	ND		0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
1,2-Dichloropropane	ND		0.00031	0.000038	ppm v/v			11/18/21 21:25	1.53
cis-1,3-Dichloropropene	ND		0.00031	0.000061	ppm v/v			11/18/21 21:25	1.53
trans-1,3-Dichloropropene	ND		0.00031	0.000034	ppm v/v			11/18/21 21:25	1.53
Ethylbenzene	ND		0.00031	0.000050	ppm v/v			11/18/21 21:25	1.53
4-Ethyltoluene	ND		0.00061	0.000080	ppm v/v			11/18/21 21:25	1.53
Hexachlorobutadiene	ND		0.0015	0.00012	ppm v/v			11/18/21 21:25	1.53
2-Hexanone	0.00056	J	0.00077	0.000061	ppm v/v			11/18/21 21:25	1.53
4-Methyl-2-pentanone (MIBK)	ND		0.00077	0.00021	ppm v/v			11/18/21 21:25	1.53
Methylene Chloride	ND		0.0015	0.0015	ppm v/v			11/18/21 21:25	1.53
Styrene	ND		0.00031	0.000092	. <del></del>			11/18/21 21:25	1.53
1,1,2,2-Tetrachloroethane	ND		0.00031	0.000054				11/18/21 21:25	1.53
Tetrachloroethene	0.061		0.00031	0.000027				11/18/21 21:25	1.53
Toluene	ND		0.00046		ppm v/v			11/18/21 21:25	1.53
1,1,2-Trichloro-1,2,2-trifluoroetha	0.035		0.00031	0.000031				11/18/21 21:25	1.53
ne	0.000								
1,2,4-Trichlorobenzene	ND		0.0015	0.00024	ppm v/v			11/18/21 21:25	1.53
1,1,1-Trichloroethane	0.045		0.00031	0.00014	ppm v/v			11/18/21 21:25	1.53
1,1,2-Trichloroethane	ND		0.00031	0.000027	ppm v/v			11/18/21 21:25	1.53
Trichloroethene	0.050		0.00015	0.000050	ppm v/v			11/18/21 21:25	1.53
1,2,4-Trimethylbenzene	ND		0.00031	0.000077	ppm v/v			11/18/21 21:25	1.53
1,3,5-Trimethylbenzene	ND		0.00031	0.000084	ppm v/v			11/18/21 21:25	1.53
Vinyl acetate	ND		0.0015		ppm v/v			11/18/21 21:25	1.53
Vinyl chloride	ND		0.00015	0.000099				11/18/21 21:25	1.53
m,p-Xylene	ND		0.00031		ppm v/v			11/18/21 21:25	1.53
o-Xylene	ND		0.00031	0.000057				11/18/21 21:25	1.53
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		60 - 140			=		11/18/21 21:25	1.53

Method: TO 15 LL - Volatile	<b>Organic Com</b>	pounds in	<b>Ambient Ai</b>	r, Low Co	oncentrat	ion (G	C/MS) - DL		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.059		0.0031	0.00054	ppm v/v			11/19/21 14:56	1.53
Trichlorofluoromethane	0.22		0.0031	0.00042	ppm v/v			11/19/21 14:56	1.53
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		60 - 140			·		11/19/21 14:56	1.53

Eurofins TestAmerica, Knoxville

Page 36 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116196-001/MWL-SV-FB 3 Lab Sample ID: 140-25404-19

Date Collected: 11/05/21 08:34 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		Unit	_ <u>D</u> .	Prepared	Analyzed	Dil Fac
Acetone	0.0011	J	0.0021		ppm v/v			11/17/21 18:29	1.7
Benzene	0.000014	JB	0.000086	0.0000086	ppm v/v			11/17/21 18:29	1.7
Benzyl chloride	ND		0.00017	0.000041				11/17/21 18:29	1.7
Bromodichloromethane	ND		0.000086	0.000019				11/17/21 18:29	1.7
Bromoform	ND		0.000086	0.0000096	ppm v/v			11/17/21 18:29	1.7
Bromomethane	ND		0.000086	0.000024	ppm v/v			11/17/21 18:29	1.7
2-Butanone (MEK)	ND		0.00043	0.000078	ppm v/v			11/17/21 18:29	1.7
Carbon disulfide	0.000049	JB	0.00021	0.000012	ppm v/v			11/17/21 18:29	1.7
Carbon tetrachloride	ND		0.000086	0.0000075	ppm v/v			11/17/21 18:29	1.7
Chlorobenzene	0.000015	JB	0.000086	0.0000064	ppm v/v			11/17/21 18:29	1.7
Chloroethane	ND		0.000086	0.000031	ppm v/v			11/17/21 18:29	1.7
Chloroform	ND		0.000086	0.0000075	ppm v/v			11/17/21 18:29	1.7
Chloromethane	0.00010	J	0.00021	0.000071	ppm v/v			11/17/21 18:29	1.7
Dibromochloromethane	ND		0.000086	0.0000075				11/17/21 18:29	1.7
1,2-Dibromoethane (EDB)	ND		0.000086	0.0000075	ppm v/v			11/17/21 18:29	1.7
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.000086	0.000013	ppm v/v			11/17/21 18:29	1.7
1,2-Dichlorobenzene	ND		0.000086	0.000033				11/17/21 18:29	1.7
1,3-Dichlorobenzene	ND		0.000086	0.000017	ppm v/v			11/17/21 18:29	1.7
1,4-Dichlorobenzene	ND		0.000086	0.000017				11/17/21 18:29	1.7
Dichlorodifluoromethane	ND		0.000086	0.000015				11/17/21 18:29	1.7
1,1-Dichloroethane	ND		0.000086	0.0000075				11/17/21 18:29	1.7
1,2-Dichloroethane	ND		0.000086	0.000011				11/17/21 18:29	1.7
1,1-Dichloroethene	ND		0.000086	0.0000086				11/17/21 18:29	1.7
cis-1,2-Dichloroethene	ND		0.000086	0.000011	• •			11/17/21 18:29	1.7
trans-1,2-Dichloroethene	ND		0.000086	0.0000075				11/17/21 18:29	1.7
1,2-Dichloropropane	ND		0.000086	0.000011				11/17/21 18:29	1.7
cis-1,3-Dichloropropene	ND		0.000086	0.000017				11/17/21 18:29	1.7
trans-1,3-Dichloropropene	ND		0.000086	0.0000096				11/17/21 18:29	1.7
Ethylbenzene	ND		0.000086	0.000014				11/17/21 18:29	1.7
4-Ethyltoluene	ND		0.00017	0.000022	• •			11/17/21 18:29	1.7
Hexachlorobutadiene	ND		0.00043	0.000034				11/17/21 18:29	1.7
2-Hexanone	ND		0.00021	0.000017				11/17/21 18:29	1.7
4-Methyl-2-pentanone (MIBK)	ND		0.00021	0.000058				11/17/21 18:29	1.7
Methylene Chloride	ND		0.00043		ppm v/v			11/17/21 18:29	1.7
Styrene	ND		0.000086	0.000026	• •			11/17/21 18:29	1.7
1,1,2,2-Tetrachloroethane	ND		0.000086	0.000015				11/17/21 18:29	1.7
Tetrachloroethene	ND		0.000086	0.0000075				11/17/21 18:29	1.7
Toluene	ND		0.00013	0.000083				11/17/21 18:29	1.7
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.000086	0.0000086				11/17/21 18:29	1.7
1,2,4-Trichlorobenzene	ND		0.00043	0.000068				11/17/21 18:29	1.7
1,1,1-Trichloroethane	ND		0.000045	0.000040				11/17/21 18:29	1.7
1,1,2-Trichloroethane	ND		0.000086	0.000075				11/17/21 18:29	1.7
Trichloroethene	ND		0.000043	0.000014				11/17/21 18:29	1.7
Trichlorofluoromethane	ND		0.000045	0.000014				11/17/21 18:29	1.7
1,2,4-Trimethylbenzene	ND		0.000086	0.000012				11/17/21 18:29	1.7
1,3,5-Trimethylbenzene	ND		0.000086	0.000021				11/17/21 18:29	1.7
Vinyl acetate	ND		0.00043	0.000024				11/17/21 18:29	1.7 1.7
Vinyl chloride	ND		0.00043	0.000030				11/17/21 18:29	1.7 1.7

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116196-001/MWL-SV-FB 3

Date Collected: 11/05/21 08:34

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 140-25404-19

Lab Sample ID: 140-25404-20

Matrix: Air

Job ID: 140-25404-1

Matrix: Air

Method: TO 15 LL - Volatile	Organic Compo	ounds in	<b>Ambient Ai</b>	ir, Low Co	oncentrat	ion (G	C/MS) (Cor	ntinued)	
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND ND		0.000086	0.000031	ppm v/v			11/17/21 18:29	1.71
o-Xylene	ND		0.000086	0.000016	ppm v/v			11/17/21 18:29	1.71
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		60 - 140			•		11/17/21 18:29	1.71

Client Sample ID: 116197-001/MWL-SV03-50

Date Collected: 11/05/21 08:41

Date Received: 11/1	5/21 10:00		
Sample Container:	Summa Canister 6L		

Analyte		Qualifier	RL		Unit	D Prepared	Analyzed	Dil Fac
Acetone	0.0026	J	0.0081	0.0023	ppm v/v		11/18/21 22:09	1.61
Benzene	0.00019	JB	0.00032	0.000032	ppm v/v		11/18/21 22:09	1.61
Benzyl chloride	ND		0.00064	0.00015	ppm v/v		11/18/21 22:09	1.61
Bromodichloromethane	ND		0.00032	0.000072	ppm v/v		11/18/21 22:09	1.61
Bromoform	ND		0.00032	0.000036	ppm v/v		11/18/21 22:09	1.61
Bromomethane	ND		0.00032	0.000089	ppm v/v		11/18/21 22:09	1.61
2-Butanone (MEK)	0.00042	J	0.0016	0.00029	ppm v/v		11/18/21 22:09	1.61
Carbon disulfide	0.000081	J	0.00081	0.000044	ppm v/v		11/18/21 22:09	1.61
Carbon tetrachloride	0.00024	J	0.00032	0.000028	ppm v/v		11/18/21 22:09	1.61
Chlorobenzene	ND		0.00032	0.000024	ppm v/v		11/18/21 22:09	1.61
Chloroethane	ND		0.00032	0.00012	ppm v/v		11/18/21 22:09	1.61
Chloroform	0.0013		0.00032	0.000028	ppm v/v		11/18/21 22:09	1.61
Chloromethane	ND		0.00081	0.00027	ppm v/v		11/18/21 22:09	1.61
Dibromochloromethane	ND		0.00032	0.000028	ppm v/v		11/18/21 22:09	1.61
1,2-Dibromoethane (EDB)	0.000041	J	0.00032	0.000028	ppm v/v		11/18/21 22:09	1.61
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00032	0.000048	ppm v/v		11/18/21 22:09	1.61
1,2-Dichlorobenzene	ND		0.00032	0.00012	ppm v/v		11/18/21 22:09	1.61
1,3-Dichlorobenzene	ND		0.00032	0.000064	ppm v/v		11/18/21 22:09	1.61
1,4-Dichlorobenzene	ND		0.00032	0.000064	ppm v/v		11/18/21 22:09	1.61
Dichlorodifluoromethane	0.020		0.00032	0.000056	ppm v/v		11/18/21 22:09	1.61
1,1-Dichloroethane	0.0024		0.00032	0.000028	ppm v/v		11/18/21 22:09	1.61
1,2-Dichloroethane	ND		0.00032	0.000040	ppm v/v		11/18/21 22:09	1.61
1,1-Dichloroethene	0.0090		0.00032	0.000032	ppm v/v		11/18/21 22:09	1.61
cis-1,2-Dichloroethene	0.0016		0.00032	0.000040	ppm v/v		11/18/21 22:09	1.61
trans-1,2-Dichloroethene	ND		0.00032	0.000028	ppm v/v		11/18/21 22:09	1.61
1,2-Dichloropropane	ND		0.00032	0.000040	ppm v/v		11/18/21 22:09	1.61
cis-1,3-Dichloropropene	ND		0.00032	0.000064	ppm v/v		11/18/21 22:09	1.61
trans-1,3-Dichloropropene	ND		0.00032	0.000036	ppm v/v		11/18/21 22:09	1.61
Ethylbenzene	ND		0.00032	0.000052	ppm v/v		11/18/21 22:09	1.61
4-Ethyltoluene	ND		0.00064	0.000085	ppm v/v		11/18/21 22:09	1.61
Hexachlorobutadiene	ND		0.0016	0.00013	ppm v/v		11/18/21 22:09	1.61
2-Hexanone	0.00019	J	0.00081	0.000064	ppm v/v		11/18/21 22:09	1.61
4-Methyl-2-pentanone (MIBK)	ND		0.00081	0.00022	ppm v/v		11/18/21 22:09	1.61
Methylene Chloride	ND		0.0016	0.0016	ppm v/v		11/18/21 22:09	1.61
Styrene	ND		0.00032	0.000097			11/18/21 22:09	1.61
1,1,2,2-Tetrachloroethane	ND		0.00032	0.000056	ppm v/v		11/18/21 22:09	1.61

Eurofins TestAmerica, Knoxville

11/23/2021

Page 38 of 1931

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116197-001/MWL-SV03-50

Date Collected: 11/05/21 08:41 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Method: TO 15 LL -	Volatile Organic Cor	npounds in Ambient Air.	, Low Concentration	(GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.00048	0.00031	ppm v/v			11/18/21 22:09	1.61
1,1,2-Trichloro-1,2,2-trifluoroetha	0.065		0.00032	0.000032	ppm v/v			11/18/21 22:09	1.61
ne									
1,2,4-Trichlorobenzene	ND		0.0016	0.00026	ppm v/v			11/18/21 22:09	1.61
1,1,1-Trichloroethane	0.0019		0.00032	0.00015	ppm v/v			11/18/21 22:09	1.61
1,1,2-Trichloroethane	0.000094	J	0.00032	0.000028	ppm v/v			11/18/21 22:09	1.61
Trichlorofluoromethane	0.023		0.00032	0.000044	ppm v/v			11/18/21 22:09	1.61
1,2,4-Trimethylbenzene	ND		0.00032	0.000081	ppm v/v			11/18/21 22:09	1.61
1,3,5-Trimethylbenzene	ND		0.00032	0.000089	ppm v/v			11/18/21 22:09	1.61
Vinyl acetate	0.00027	J	0.0016	0.00011	ppm v/v			11/18/21 22:09	1.61
Vinyl chloride	ND		0.00016	0.00010	ppm v/v			11/18/21 22:09	1.61
m,p-Xylene	ND		0.00032	0.00012	ppm v/v			11/18/21 22:09	1.61
o-Xylene	ND		0.00032	0.000060	ppm v/v			11/18/21 22:09	1.61
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140			-		11/18/21 22:09	1.61

				, -			- /			
Analyte	Result (	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Tetrachloroethene	0.10		0.0021	0.00019	ppm v/v			11/19/21 15:39	1.61	
Trichloroethene	0.090		0.0011	0.00035	ppm v/v			11/19/21 15:39	1.61	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	86		60 - 140			-		11/19/21 15:39	1.61	

Client Sample ID: 116198-001/MWL-SV03-100

Date Collected: 11/05/21 08:45 Date Received: 11/15/21 10:00

1,2-Dichlorobenzene

1,3-Dichlorobenzene

Sample Container: Summa Canister 6L

Lab Sample ID: 140-25404-21

Matrix: Air

Job ID: 140-25404-1

Lab Sample ID: 140-25404-20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0049	J	0.015	0.0043	ppm v/v			11/18/21 22:52	1.52
Benzene	0.00017	JB	0.00061	0.000061	ppm v/v			11/18/21 22:52	1.52
Benzyl chloride	ND		0.0012	0.00029	ppm v/v			11/18/21 22:52	1.52
Bromodichloromethane	ND		0.00061	0.00014	ppm v/v			11/18/21 22:52	1.52
Bromoform	ND		0.00061	0.000068	ppm v/v			11/18/21 22:52	1.52
Bromomethane	ND		0.00061	0.00017	ppm v/v			11/18/21 22:52	1.52
2-Butanone (MEK)	0.00064	J	0.0030	0.00055	ppm v/v			11/18/21 22:52	1.52
Carbon disulfide	ND		0.0015	0.000084	ppm v/v			11/18/21 22:52	1.52
Carbon tetrachloride	0.00029	J	0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
Chlorobenzene	0.00011	JB	0.00061	0.000046	ppm v/v			11/18/21 22:52	1.52
Chloroethane	ND		0.00061	0.00022	ppm v/v			11/18/21 22:52	1.52
Chloroform	0.0019		0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
Chloromethane	ND		0.0015	0.00050	ppm v/v			11/18/21 22:52	1.52
Dibromochloromethane	ND		0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
1,2-Dibromoethane (EDB)	ND		0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00061	0.000091	ppm v/v			11/18/21 22:52	1.52

0.00061

0.00061

ND

ND

Eurofins TestAmerica, Knoxville

11/18/21 22:52

11/18/21 22:52

1.52

1.52

Page 39 of 1931 11/23/2021

0.00024 ppm v/v

0.00012 ppm v/v

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116198-001/MWL-SV03-100 Lab Sample ID: 140-25404-21

Date Collected: 11/05/21 08:45 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.00061	0.00012	ppm v/v			11/18/21 22:52	1.52
Dichlorodifluoromethane	0.028		0.00061	0.00011	ppm v/v			11/18/21 22:52	1.52
1,1-Dichloroethane	0.0038		0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
1,2-Dichloroethane	ND		0.00061	0.000076	ppm v/v			11/18/21 22:52	1.52
1,1-Dichloroethene	0.013		0.00061	0.000061	ppm v/v			11/18/21 22:52	1.52
cis-1,2-Dichloroethene	0.0025		0.00061	0.000076	ppm v/v			11/18/21 22:52	1.52
trans-1,2-Dichloroethene	ND		0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
1,2-Dichloropropane	ND		0.00061	0.000076	ppm v/v			11/18/21 22:52	1.52
cis-1,3-Dichloropropene	ND		0.00061	0.00012	ppm v/v			11/18/21 22:52	1.52
trans-1,3-Dichloropropene	ND		0.00061	0.000068	ppm v/v			11/18/21 22:52	1.52
Ethylbenzene	ND		0.00061	0.000099	ppm v/v			11/18/21 22:52	1.52
4-Ethyltoluene	ND		0.0012	0.00016	ppm v/v			11/18/21 22:52	1.52
Hexachlorobutadiene	ND		0.0030	0.00024	ppm v/v			11/18/21 22:52	1.52
2-Hexanone	ND		0.0015	0.00012				11/18/21 22:52	1.52
4-Methyl-2-pentanone (MIBK)	ND		0.0015	0.00041	ppm v/v			11/18/21 22:52	1.52
Methylene Chloride	ND		0.0030	0.0030	ppm v/v			11/18/21 22:52	1.52
Styrene	ND		0.00061	0.00018				11/18/21 22:52	1.52
1,1,2,2-Tetrachloroethane	ND		0.00061	0.00011	ppm v/v			11/18/21 22:52	1.52
Toluene	ND		0.00091	0.00059	ppm v/v			11/18/21 22:52	1.52
1,1,2-Trichloro-1,2,2-trifluoroetha	0.087		0.00061	0.000061	ppm v/v			11/18/21 22:52	1.52
ne									
1,2,4-Trichlorobenzene	ND		0.0030	0.00049				11/18/21 22:52	1.52
1,1,1-Trichloroethane	0.0023		0.00061	0.00028				11/18/21 22:52	1.52
1,1,2-Trichloroethane	0.00010	J	0.00061	0.000053	ppm v/v			11/18/21 22:52	1.52
Trichlorofluoromethane	0.030		0.00061	0.000084	ppm v/v			11/18/21 22:52	1.52
1,2,4-Trimethylbenzene	ND		0.00061	0.00015	ppm v/v			11/18/21 22:52	1.52
1,3,5-Trimethylbenzene	ND		0.00061	0.00017	ppm v/v			11/18/21 22:52	1.52
Vinyl acetate	ND		0.0030	0.00021	ppm v/v			11/18/21 22:52	1.52
Vinyl chloride	ND		0.00030	0.00020	ppm v/v			11/18/21 22:52	1.52
m,p-Xylene	ND		0.00061	0.00022	ppm v/v			11/18/21 22:52	1.52
o-Xylene	ND		0.00061	0.00011	ppm v/v			11/18/21 22:52	1.52
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		60 - 140					11/18/21 22:52	1.52
Method: TO 15 LL - Volatile O	rganic Com	pounds in	Ambient Ai	r, Low Co	oncentrati	on (G	C/MS) - DL		
Analyte		Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.14		0.0030	0.00027	ppm v/v	. —		11/19/21 16:22	1.52
Trichloroethene	0.13		0.0015	0.00049	ppm v/v			11/19/21 16:22	1.52

Method: 10 15 LL - Volatile	Organic Compo	ounas in	Ambient Ail	r, Low Co	oncentrat	ion (G	(C/MS) - DL	ı.	
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	0.14		0.0030	0.00027	ppm v/v			11/19/21 16:22	1.52
Trichloroethene	0.13		0.0015	0.00049	ppm v/v			11/19/21 16:22	1.52
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		60 - 140			•		11/19/21 16:22	1.52

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116199-001/MWL-SV03-200

Lab Sample ID: 140-25404-22 Date Collected: 11/05/21 08:49 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit E	D Prepared	Analyzed	Dil Fa
Acetone	ND		0.079	0.023	ppm v/v	_	11/18/21 23:35	1.58
Benzene	0.00046	JB	0.0032	0.00032	ppm v/v		11/18/21 23:35	1.58
Benzyl chloride	ND		0.0063	0.0015	ppm v/v		11/18/21 23:35	1.58
Bromodichloromethane	ND		0.0032	0.00071	ppm v/v		11/18/21 23:35	1.5
Bromoform	ND		0.0032	0.00036	ppm v/v		11/18/21 23:35	1.58
Bromomethane	ND		0.0032	0.00087	ppm v/v		11/18/21 23:35	1.58
2-Butanone (MEK)	ND		0.016	0.0029	ppm v/v		11/18/21 23:35	1.58
Carbon disulfide	ND		0.0079	0.00043	• •		11/18/21 23:35	1.58
Carbon tetrachloride	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
Chlorobenzene	0.00072	JB	0.0032	0.00024	ppm v/v		11/18/21 23:35	1.5
Chloroethane	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
Chloroform	0.0019	J	0.0032		ppm v/v		11/18/21 23:35	1.58
Chloromethane	ND		0.0079		ppm v/v		11/18/21 23:35	1.58
Dibromochloromethane	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
1,2-Dibromoethane (EDB)	0.00036	J	0.0032		ppm v/v		11/18/21 23:35	1.58
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
1,2-Dichlorobenzene	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
1,3-Dichlorobenzene	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
1,4-Dichlorobenzene	ND		0.0032	0.00063			11/18/21 23:35	1.5
Dichlorodifluoromethane	0.029		0.0032	0.00055	• •		11/18/21 23:35	1.58
1,1-Dichloroethane	0.0047		0.0032		ppm v/v		11/18/21 23:35	1.58
1,2-Dichloroethane	ND		0.0032	0.00040			11/18/21 23:35	1.5
1,1-Dichloroethene	0.016		0.0032		ppm v/v		11/18/21 23:35	1.5
cis-1,2-Dichloroethene	0.0034		0.0032		ppm v/v		11/18/21 23:35	1.58
trans-1,2-Dichloroethene	ND		0.0032	0.00028			11/18/21 23:35	1.5
1,2-Dichloropropane	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
cis-1,3-Dichloropropene	ND		0.0032		ppm v/v		11/18/21 23:35	1.58
trans-1,3-Dichloropropene	ND		0.0032		ppm v/v		11/18/21 23:35	1.5
Ethylbenzene	ND		0.0032		ppm v/v		11/18/21 23:35	1.5
4-Ethyltoluene	ND		0.0063		ppm v/v		11/18/21 23:35	1.5
Hexachlorobutadiene	ND		0.016		ppm v/v		11/18/21 23:35	1.5
2-Hexanone	ND		0.0079		ppm v/v		11/18/21 23:35	1.5
4-Methyl-2-pentanone (MIBK)	ND		0.0079		ppm v/v		11/18/21 23:35	1.5
Methylene Chloride	ND		0.016		ppm v/v		11/18/21 23:35	1.5
Styrene	ND		0.0032		ppm v/v		11/18/21 23:35	1.5
1,1,2,2-Tetrachloroethane	ND		0.0032		ppm v/v		11/18/21 23:35	1.5
Tetrachloroethene	0.17		0.0032		ppm v/v		11/18/21 23:35	1.5
Toluene	ND		0.0047		ppm v/v		11/18/21 23:35	1.58
1,1,2-Trichloro-1,2,2-trifluoroetha	0.089		0.0032		ppm v/v		11/18/21 23:35	1.5
1,2,4-Trichlorobenzene	ND		0.016	0.0025	ppm v/v		11/18/21 23:35	1.58
1,1,1-Trichloroethane	0.0016	J	0.0032		ppm v/v		11/18/21 23:35	1.58
1,1,2-Trichloroethane	ND	-	0.0032		ppm v/v		11/18/21 23:35	1.58
Trichloroethene	0.16		0.0016		ppm v/v		11/18/21 23:35	1.5
Trichlorofluoromethane	0.024		0.0032		ppm v/v		11/18/21 23:35	1.58
1,2,4-Trimethylbenzene	ND		0.0032		ppm v/v		11/18/21 23:35	1.5
1,3,5-Trimethylbenzene	ND		0.0032		ppm v/v		11/18/21 23:35	1.5
Vinyl acetate	ND		0.016		ppm v/v		11/18/21 23:35	1.58
Vinyl chloride	ND		0.0016		ppm v/v		11/18/21 23:35	1.5

Eurofins TestAmerica, Knoxville

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116199-001/MWL-SV03-200

Lab Sample ID: 140-25404-22

Date Collected: 11/05/21 08:49 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

. Matrix: Air

Lab Sample ID: 140-25404-23

Job ID: 140-25404-1

Matrix: Air

Method: TO 15 LL - Volatile C	Organic Comp	ounds in	<b>Ambient Ai</b>	r, Low Co	oncentrat	ion (G	C/MS) (Cor	ntinued)	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.0032	0.0011	ppm v/v			11/18/21 23:35	1.58
o-Xylene	ND		0.0032	0.00059	ppm v/v			11/18/21 23:35	1.58
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		60 - 140					11/18/21 23:35	1.58

Client Sample ID: 116200-001/MWL-SV03-300

Date Collected: 11/05/21 08:55 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit D	Prepared	Analyzed	Dil Fac
Acetone	ND		0.026	0.0075	ppm v/v		11/19/21 00:17	1.57
Benzene	0.00030	JB	0.0010	0.00010	ppm v/v		11/19/21 00:17	1.57
Benzyl chloride	ND		0.0021	0.00050	ppm v/v		11/19/21 00:17	1.57
Bromodichloromethane	ND		0.0010	0.00024	ppm v/v		11/19/21 00:17	1.57
Bromoform	ND		0.0010	0.00012	ppm v/v		11/19/21 00:17	1.57
Bromomethane	ND		0.0010	0.00029	ppm v/v		11/19/21 00:17	1.57
2-Butanone (MEK)	ND		0.0052	0.00096	ppm v/v		11/19/21 00:17	1.57
Carbon disulfide	0.00020	J	0.0026	0.00014	ppm v/v		11/19/21 00:17	1.57
Carbon tetrachloride	0.00036	J	0.0010	0.000092	ppm v/v		11/19/21 00:17	1.57
Chlorobenzene	0.00023	JB	0.0010	0.000079	ppm v/v		11/19/21 00:17	1.57
Chloroethane	ND		0.0010	0.00038	ppm v/v		11/19/21 00:17	1.57
Chloroform	0.0013		0.0010	0.000092	ppm v/v		11/19/21 00:17	1.57
Chloromethane	ND		0.0026	0.00086	ppm v/v		11/19/21 00:17	1.57
Dibromochloromethane	ND		0.0010	0.000092	ppm v/v		11/19/21 00:17	1.57
1,2-Dibromoethane (EDB)	0.000095	J	0.0010	0.000092	ppm v/v		11/19/21 00:17	1.57
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.0010	0.00016	ppm v/v		11/19/21 00:17	1.57
1,2-Dichlorobenzene	ND		0.0010	0.00041	ppm v/v		11/19/21 00:17	1.57
1,3-Dichlorobenzene	ND		0.0010	0.00021	ppm v/v		11/19/21 00:17	1.57
1,4-Dichlorobenzene	ND		0.0010	0.00021	ppm v/v		11/19/21 00:17	1.57
Dichlorodifluoromethane	0.030		0.0010	0.00018	ppm v/v		11/19/21 00:17	1.57
1,1-Dichloroethane	0.0027		0.0010	0.000092	ppm v/v		11/19/21 00:17	1.57
1,2-Dichloroethane	ND		0.0010	0.00013	ppm v/v		11/19/21 00:17	1.57
1,1-Dichloroethene	0.016		0.0010	0.00010	ppm v/v		11/19/21 00:17	1.57
cis-1,2-Dichloroethene	0.0022		0.0010	0.00013	ppm v/v		11/19/21 00:17	1.57
trans-1,2-Dichloroethene	ND		0.0010	0.000092	ppm v/v		11/19/21 00:17	1.57
1,2-Dichloropropane	ND		0.0010	0.00013	ppm v/v		11/19/21 00:17	1.57
cis-1,3-Dichloropropene	ND		0.0010	0.00021	ppm v/v		11/19/21 00:17	1.57
trans-1,3-Dichloropropene	ND		0.0010	0.00012	ppm v/v		11/19/21 00:17	1.57
Ethylbenzene	ND		0.0010	0.00017	ppm v/v		11/19/21 00:17	1.57
4-Ethyltoluene	ND		0.0021	0.00027	ppm v/v		11/19/21 00:17	1.57
Hexachlorobutadiene	ND		0.0052	0.00042	ppm v/v		11/19/21 00:17	1.57
2-Hexanone	ND		0.0026	0.00021	ppm v/v		11/19/21 00:17	1.57
4-Methyl-2-pentanone (MIBK)	ND		0.0026	0.00071	ppm v/v		11/19/21 00:17	1.57
Methylene Chloride	ND		0.0052	0.0051	ppm v/v		11/19/21 00:17	1.57
Styrene	ND		0.0010	0.00031	ppm v/v		11/19/21 00:17	1.57
1,1,2,2-Tetrachloroethane	ND		0.0010	0.00018	ppm v/v		11/19/21 00:17	1.57

Eurofins TestAmerica, Knoxville

11/23/2021

Page 42 of 1931

Client: Sandia National Laboratories

Project/Site: MWL LTMMP

Client Sample ID: 116200-001/MWL-SV03-300

Date Collected: 11/05/21 08:55 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

	Method: TO 15 LL - Volatile (	Organic Compounds in Amb	bient Air,	, Low Concentrat	ion (GC/MS) (C	ontinued)	
П	Analyta	Decult Qualifier	DI	MDI IInit	D Bronores	l Analysed	Dil Ess

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.0016	0.0010	ppm v/v			11/19/21 00:17	1.57
1,1,2-Trichloro-1,2,2-trifluoroetha	0.10		0.0010	0.00010	ppm v/v			11/19/21 00:17	1.57
ne									
1,2,4-Trichlorobenzene	ND		0.0052	0.00084	ppm v/v			11/19/21 00:17	1.57
1,1,1-Trichloroethane	0.00078	J	0.0010	0.00048	ppm v/v			11/19/21 00:17	1.57
1,1,2-Trichloroethane	ND		0.0010	0.000092	ppm v/v			11/19/21 00:17	1.57
Trichloroethene	0.17		0.00052	0.00017	ppm v/v			11/19/21 00:17	1.57
Trichlorofluoromethane	0.015		0.0010	0.00014	ppm v/v			11/19/21 00:17	1.57
1,2,4-Trimethylbenzene	ND		0.0010	0.00026	ppm v/v			11/19/21 00:17	1.57
1,3,5-Trimethylbenzene	ND		0.0010	0.00029	ppm v/v			11/19/21 00:17	1.57
Vinyl acetate	ND		0.0052	0.00037	ppm v/v			11/19/21 00:17	1.57
Vinyl chloride	ND		0.00052	0.00034	ppm v/v			11/19/21 00:17	1.57
m,p-Xylene	ND		0.0010	0.00038	ppm v/v			11/19/21 00:17	1.57
o-Xylene	ND		0.0010	0.00020	ppm v/v			11/19/21 00:17	1.57
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		60 - 140			-		11/19/21 00:17	1.57

#### Method: TO 15 LL - Volatile Organic Compounds in Ambient Air, Low Concentration (GC/MS) - DL

Analyte Tetrachloroethene	Result 0.21	Qualifier	RL 0.0031	MDL 0.00027	Unit ppm v/v	_ <u>D</u>	Prepared	Analyzed 11/19/21 17:06	1.57
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		60 - 140			-		11/19/21 17:06	1.57

Client Sample ID: 116201-001/MWL-SV03-400

Date Collected: 11/05/21 09:15 Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Lab Sample ID: 140-25404-24

Matrix: Air

Job ID: 140-25404-1

Lab Sample ID: 140-25404-23

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	0.0074	J	0.019	0.0054	ppm v/v	:		11/19/21 00:59	1.51
Benzene	0.00021	JB	0.00076	0.000076	ppm v/v			11/19/21 00:59	1.51
Benzyl chloride	ND		0.0015	0.00036	ppm v/v			11/19/21 00:59	1.51
Bromodichloromethane	ND		0.00076	0.00017	ppm v/v			11/19/21 00:59	1.51
Bromoform	ND		0.00076	0.000085	ppm v/v			11/19/21 00:59	1.51
Bromomethane	ND		0.00076	0.00021	ppm v/v			11/19/21 00:59	1.51
2-Butanone (MEK)	0.00092	J	0.0038	0.00069	ppm v/v			11/19/21 00:59	1.51
Carbon disulfide	0.00018	J	0.0019	0.00010	ppm v/v			11/19/21 00:59	1.51
Carbon tetrachloride	0.00025	J	0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
Chlorobenzene	ND		0.00076	0.000057	ppm v/v			11/19/21 00:59	1.51
Chloroethane	ND		0.00076	0.00027	ppm v/v			11/19/21 00:59	1.51
Chloroform	0.00092		0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
Chloromethane	ND		0.0019	0.00062	ppm v/v			11/19/21 00:59	1.51
Dibromochloromethane	ND		0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
1,2-Dibromoethane (EDB)	ND		0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.00076	0.00011	ppm v/v			11/19/21 00:59	1.51
1,2-Dichlorobenzene	ND		0.00076	0.00029	ppm v/v			11/19/21 00:59	1.51
1,3-Dichlorobenzene	ND		0.00076	0.00015	ppm v/v			11/19/21 00:59	1.51

Eurofins TestAmerica, Knoxville

Page 43 of 1931

Client: Sandia National Laboratories Job ID: 140-25404-1

Project/Site: MWL LTMMP

Client Sample ID: 116201-001/MWL-SV03-400 Lab Sample ID: 140-25404-24

Date Collected: 11/05/21 09:15 Matrix: Air

Date Received: 11/15/21 10:00

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		0.00076	0.00015	ppm v/v	:		11/19/21 00:59	1.51
Dichlorodifluoromethane	0.0041		0.00076	0.00013	ppm v/v			11/19/21 00:59	1.51
1,1-Dichloroethane	0.0017		0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
1,2-Dichloroethane	ND		0.00076	0.000094	ppm v/v			11/19/21 00:59	1.51
1,1-Dichloroethene	0.0078		0.00076	0.000076	ppm v/v			11/19/21 00:59	1.51
cis-1,2-Dichloroethene	0.0013		0.00076	0.000094	ppm v/v			11/19/21 00:59	1.51
trans-1,2-Dichloroethene	ND		0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
1,2-Dichloropropane	ND		0.00076	0.000094	ppm v/v			11/19/21 00:59	1.51
cis-1,3-Dichloropropene	ND		0.00076	0.00015	ppm v/v			11/19/21 00:59	1.51
trans-1,3-Dichloropropene	ND		0.00076	0.000085	ppm v/v			11/19/21 00:59	1.51
Ethylbenzene	ND		0.00076	0.00012	ppm v/v			11/19/21 00:59	1.51
4-Ethyltoluene	ND		0.0015	0.00020	ppm v/v			11/19/21 00:59	1.51
Hexachlorobutadiene	ND		0.0038	0.00030	ppm v/v			11/19/21 00:59	1.51
2-Hexanone	ND		0.0019	0.00015	ppm v/v			11/19/21 00:59	1.51
4-Methyl-2-pentanone (MIBK)	ND		0.0019	0.00051	ppm v/v			11/19/21 00:59	1.51
Methylene Chloride	ND		0.0038	0.0037	ppm v/v			11/19/21 00:59	1.51
Styrene	ND		0.00076	0.00023	ppm v/v			11/19/21 00:59	1.51
1,1,2,2-Tetrachloroethane	ND		0.00076	0.00013	ppm v/v			11/19/21 00:59	1.51
Tetrachloroethene	0.14		0.00076	0.000066	ppm v/v			11/19/21 00:59	1.51
Toluene	ND		0.0011	0.00074	ppm v/v			11/19/21 00:59	1.51
1,1,2-Trichloro-1,2,2-trifluoroetha	0.018		0.00076	0.000076	ppm v/v			11/19/21 00:59	1.51
ne									
1,2,4-Trichlorobenzene	ND		0.0038	0.00060				11/19/21 00:59	1.51
1,1,1-Trichloroethane	0.00058		0.00076	0.00035				11/19/21 00:59	1.51
1,1,2-Trichloroethane	0.000090	J	0.00076	0.000066				11/19/21 00:59	1.51
Trichloroethene	0.12		0.00038		ppm v/v			11/19/21 00:59	1.51
Trichlorofluoromethane	0.0052		0.00076	0.00010				11/19/21 00:59	1.51
1,2,4-Trimethylbenzene	ND		0.00076		ppm v/v			11/19/21 00:59	1.51
1,3,5-Trimethylbenzene	ND		0.00076		ppm v/v			11/19/21 00:59	1.51
Vinyl acetate	ND		0.0038		ppm v/v			11/19/21 00:59	1.51
Vinyl chloride	ND		0.00038		ppm v/v			11/19/21 00:59	1.51
m,p-Xylene	ND		0.00076	0.00027	ppm v/v			11/19/21 00:59	1.51
o-Xylene	ND		0.00076	0.00014	ppm v/v			11/19/21 00:59	1.51
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		60 - 140					11/19/21 00:59	1.51

#### **ANNEX D**

Mixed Waste Landfill Soil-Moisture Monitoring Forms

April 2021-March 2022

**Field Forms and Tables** 

# Mixed Waste Landfill Soil-Moisture Monitoring

**Soil-Moisture Monitoring Field Forms** 

# Mixed Waste Landfill Neutron Logging Data Field Form

Notes:					
Vertical Depth Below	Linear Depth Along	Winch Counter	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Cour (NW Corner)
Casing (ft)	Casing (ft)	Reading (ft)	Date/Time 4-14-2 1/10:40	Date/Time 419-21/11:47	Date/Tim
0.0	0	0	1170	2280	2557
0.9	1	9999	2349	2921	2560
1.7	2	9998	2657	3232	2448
2.6	3	9997	2/52	3211	2450
3.5	4	9996	2088	3170	2509
4.3	5	9995	2167	2737	2106
5.2	6	9994	1794	2060	2183
6.1	7	9993	1736	1823	1815
6.9	8	9992	2001	1831	1736
7.8	9	9991	1945	1798	2116
8.7	10	9990	2023	1633	2190
9.5	11	9989	1812	2037	2030
10.4	12	9988	1770	1893	1796
11.3	13	9987	1841	1758	1897
12.1	14	9986	1808	1602	FZOG
13.0	15	9985	1884	1828	2123
13.9	16	9984	1513	1688	1806
14.7	17	9983	1666	1788	1592
15.6	18	9982	172,6	1923	1464
16.5	19	9981	1362	2/39	1519
17.3	20	9980	1604	2059	1578
18.2	21	9979	1762	1848	2008
19.1	22	9978	1552	1866	2327
19.9	23	9977	1433	2042	3130
20.8	24	9976	1461	1661	1845
21.7	25	9975	1792	1668	17+3

Page 1 of 2

Mixed Waste Landfill Neutron Logging Data Field Form

Cacing (ft)	Linear Depth Along Casing (ft)	Winch Counter Reading (ft)	VZ-3 Counts (E Side)	VZ-2 Counts (SW Corner)	VZ-1 Counts (NW Corner)
4-21-22 26.0	30	9970	1670	1236	2552
30.3	35	9965	1733	1814	1940
34.6	40	9960	1665	1581	[877
39.0	45	9955	1601	1572	1775
43.3	50	9950	2013	1623	1616
47.6	55	9945	1919	1914	1311
52.0	60	9940	1685	1909	1766
56.3	65	9935	2143	2135	1962
60.6	70	9930	1311	2378	1701
65.0	75	9925	2/0/	2179	1981
69.3	80	9920	224-6	1594	1854
73.6	85	9915	1866	1774	1761
77.9	90	9910	1433	2315	0481
82.3	95	9905	2028	2217	2218
86.6	100	9900	2148	2185	2126
90.9	105	9895	1850	2352	2158
95.3	110	9890	2068	1887	1988
99.6	115	9885	1852	1850	1449
103.9	120	9880	1510	1935	2547
108.3	125	9875	1763	2198	1668
112.6	130	9870	2002	2187	1847
116.9	135	9865	1875	2672	1596
121.2	140	9860	1626	1916	1513
125.6	145	9855	2628	2537	FIFE
129.9	150	9850	3206	2421	2142
134.2	155	9845	2158	2269	1609
138.6	160	9840	2627	2553	2196
142.9	165	9835	2527	2166	£80£
147.2	170	9830	2635	1598	3041
151.6	175	9825	1915	2810	2487
155.9	180	9820	3070	2675	2790
160.2	185	9815	3004	2870	1869
164.5	190	9810	1692	1589	2329
168.9	195	9805	1692	2654	3315
173.2	200	9800	2072	3097	2538

Page 2 of 2

# Mixed Waste Landfill Soil-Moisture Monitoring

**Soil-Moisture Monitoring Results Tables** 

Table D-1 VZ-1 Soil-Moisture Monitoring Results April 2021

Vertical Depth Below Ground	Linear Depth	Collection Period April 2021	Baseline Average (2004-2006)	Difference between Baseline Average & April 2021	Soil-Moisture
Surface	Along		Soil-Moisture		Trigger Level
(ft)	Casing (ft)		(% content by volu	me)	(% content by volume)
3.5	4	4.7	2.9	1.8	NA
4.3	5	3.6	2.9	0.7	NA
5.2	6	3.8	2.9	0.9	NA
6.1	7	2.8	2.6	0.2	NA
6.9	8	2.6	2.2	0.4	NA
7.8	9	3.6	1.9	1.7	NA
8.7	10	3.8	1.7	2.1	23
9.5	11	3.4	2.0	1.4	23
10.4	12	2.7	2.7	0.0	23
11.3	13	3.0	3.1	-0.1	23
12.1	14	3.4	2.6	0.8	23
13.0	15	3.6	2.4	1.2	23
13.9	16	2.8	2.6	0.2	23
14.7	17	2.2	2.8	-0.6	23
15.6	18	1.8	2.9	-1.1	23
16.5	19	2.0	2.4	-0.4	23
17.3	20	2.2	2.0	0.2	23
18.2	21	3.3	2.0	1.3	23
19.1	22	4.2	2.1	2.1	23
19.9	23	3.6	3.0	0.6	23
20.8	24	2.9	4.3	-1.4	23
21.7	25	2.6	4.0	-1.4	23
26.0	30	2.1	2.9	-0.8	23
30.3	35	3.1	2.7	0.4	23
34.6	40	3.0	2.3	0.7	23
39.0	45	2.7	3.0	-0.3	23
43.3	50	2.3	2.9	-0.6	23
47.6	55	2.5	2.8	-0.3	23
52.0	60	2.7	3.4	-0.7	23
56.3	65	3.2	2.9	0.3	23

Table D-1 (Concluded) VZ-1 Soil-Moisture Monitoring Results April 2021

			1	T	
Vertical Depth Below Ground Surface	Linear Depth Along Casing	Collection Period April 2021	Baseline Average (2004-2006) Soil-Moisture	Difference between Baseline Average & April 2021	Soil-Moisture Trigger Level
(ft)	(ft)		(% content by volume)		
60.6	70	2.5	(% content by volu	0.4	23
65.0	75	3.2	5.6	-2.4	23
69.3	80	2.9	2.8	0.1	23
73.6	85	2.6	3.1	-0.5	23
77.9	90	2.9	3.7	-0.8	23
82.3	95	3.9	3.7	0.2	23
86.6	100	3.7	5.4	-1.7	23
90.9	105	3.7	5.0	-1.3	NA
95.3	110	3.3	3.0	0.3	NA
99.6	115	1.8	3.6	-1.8	NA
103.9	120	4.8	2.2	2.6	NA
108.3	125	2.4	2.7	-0.3	NA
112.6	130	2.9	3.3	-0.4	NA
116.9	135	2.2	3.1	-0.9	NA
121.2	140	2.0	2.1	-0.1	NA
125.6	145	5.2	3.8	1.4	NA
129.9	150	3.7	3.2	0.5	NA
134.2	155	2.2	2.7	-0.5	NA
138.6	160	3.8	2.1	1.7	NA
142.9	165	3.5	3.8	-0.3	NA
147.2	170	6.1	2.0	4.1	NA
151.6	175	4.6	6.0	-1.4	NA
155.9	180	5.4	5.5	-0.1	NA
160.2	185	2.9	4.4	-1.5	NA
164.5	190	4.2	3.0	1.2	NA
168.9	195	6.8	7.0	-0.2	NA
173.2	200	4.7	5.4	-0.7	NA
	Average	3.3	3.2		

Note: Shaded area represents depths where 23% soil moisture trigger applies.

NA = Not applicable.

Table D-2 VZ-2 Soil-Moisture Monitoring Results April 2021

Vertical Depth Below Ground Surface (ft)	Linear Depth Along Casing (ft)	Collection Period April 2021	Baseline Average (2004-2006) Soil-Moisture (% content by volu		Soil-Moisture Trigger Level (% content by volume)
3.5	4	6.4	2.7	3.7	NA
4.3	5	5.3	3.3	2.0	NA
5.2	6	3.4	3.6	-0.2	NA
6.1	7	2.8	3.6	-0.8	NA NA
6.9	8	2.8	3.5	-0.7	NA
7.8	9	2.7	3.1	-0.4	NA
8.7	10	2.3	2.4	-0.1	23
9.5	11	3.4	2.2	1.2	23
10.4	12	3.0	2.2	0.8	23
11.3	13	2.6	2.1	0.8	23
12.1	14		2.5		23
13.0	15	2.2	3.0	-0.3	23
13.9	16	2.8	2.8	-0.2	23
14.7	17	2.4	2.4	-0.4	23
		2.7	2.4	0.3	
15.6	18	3.1	2.6	0.5	23
16.5	19	3.7		1.0	23
17.3	20	3.4	2.9	0.5	23
18.2	21	2.9	3.1	-0.2	23
19.1	22	2.9	3.6	-0.7	23
19.9	23	3.4	3.7	-0.3	23
20.8	24	2.4	3.1	-0.7	23
21.7	25	2.4	2.7	-0.3	23
26.0	30	2.6	2.4	0.2	23
30.3	35	2.8	2.9	-0.1	23
34.6	40	2.2	2.7	-0.5	23
39.0	45	2.1	2.3	-0.2	23
43.3	50	2.3	2.1	0.2	23
47.6	55	3.1	3.1	0.0	23
52.0	60	3.0	3.0	0.0	23
56.3	65	3.6	5.5	-1.9	23

Table D-2 (Concluded) VZ-2 Soil-Moisture Monitoring Results April 2021

				1	
Vertical Depth Below Ground Surface (ft)	Linear Depth Along Casing (ft)	Collection Period April 2021	Baseline Average (2004-2006) Soil-Moisture (% content by volu	Difference between Baseline Average & April 2021	Soil-Moisture Trigger Level (% content by volume)
60.6	70	4.3	4.8	-0.5	23
65.0	75	3.8	5.1	-1.3	23
69.3	80	2.2	2.6	-0.4	23
73.6	85	2.7	2.6	0.1	23
77.9	90	4.1	3.1	1.0	23
82.3	95	3.9	3.6	0.3	23
86.6	100	3.8	4.7	-0.9	23
90.9	105	4.2	3.4	0.8	NA
95.3	110	3.0	3.1	-0.1	NA
99.6	115	2.9	3.6	-0.7	NA
103.9	120	3.1	2.0	1.1	NA
108.3	125	3.8	3.8	0.0	NA
112.6	130	3.8	3.6	0.2	NA
116.9	135	5.1	3.4	1.7	NA
121.2	140	3.1	2.4	0.7	NA
125.6	145	4.7	5.9	-1.2	NA
129.9	150	4.4	7.0	-2.6	NA
134.2	155	4.0	3.6	0.4	NA
138.6	160	4.8	3.8	1.0	NA
142.9	165	3.7	3.0	0.7	NA
147.2	170	2.2	2.9	-0.7	NA
151.6	175	5.5	2.4	3.1	NA
155.9	180	5.1	5.4	-0.3	NA
160.2	185	5.6	5.4	0.2	NA
164.5	190	2.2	4.1	-1.9	NA
168.9	195	5.0	3.5	1.5	NA
173.2	200	6.2	6.3	-0.1	NA
	Average	3.5	3.4		

Note: Shaded area represents depths where 23% soil moisture trigger applies.

NA = Not applicable.

Table D-3 VZ-3 Soil-Moisture Monitoring Results April 2021

Vertical Depth Below Ground	Linear Depth	Collection Period April 2021	Baseline Average (2004-2006)	Difference between Baseline Average & April 2021	Soil-Moisture
Surface	Along Casing		Soil-Moisture		Trigger Level
(ft)	(ft)		(% content by volu	ıme)	(% content by volume)
3.5	4	3.5	4.6	-1.1	NA
4.3	5	3.7	4.5	-0.8	NA
5.2	6	2.7	3.7	-1.0	NA
6.1	7	2.6	2.9	-0.3	NA
6.9	8	3.3	3.1	0.2	NA
7.8	9	3.1	2.3	0.8	NA
8.7	10	3.3	2.4	0.9	23
9.5	11	2.8	2.6	0.2	23
10.4	12	2.7	2.7	0.0	23
11.3	13	2.9	3.0	-0.1	23
12.1	14	2.8	2.6	0.2	23
13.0	15	3.0	2.8	0.2	23
13.9	16	2.0	2.9	-0.9	23
14.7	17	2.4	3.1	-0.7	23
15.6	18	2.6	3.1	-0.5	23
16.5	19	1.6	2.3	-0.7	23
17.3	20	2.2	2.7	-0.5	23
18.2	21	2.6	2.7	-0.1	23
19.1	22	2.1	1.8	0.3	23
19.9	23	1.8	2.7	-0.9	23
20.8	24	1.8	2.8	-1.0	23
21.7	25	2.7	2.1	0.6	23
26.0	30	2.4	2.5	-0.1	23
30.3	35	2.6	2.8	-0.2	23
34.6	40	2.4	2.1	0.3	23
39.0	45	2.2	2.7	-0.5	23
43.3	50	3.3	2.9	0.4	23
47.6	55	2.8	3.4	-0.6	23
52.0	60	2.4	2.9	-0.5	23
56.3	65	3.7	3.5	0.2	23

Table D-3 (Concluded) VZ-3 Soil-Moisture Monitoring Results April 2021

				<u> </u>	
Vertical Depth Below Ground Surface	Linear Depth Along Casing	Collection Period April 2021	Baseline Average (2004-2006) Soil-Moisture	Difference between Baseline Average & April 2021	Soil-Moisture Trigger Level
(ft)	(ft)	(	% content by volu	me)	(% content by volume)
60.6	70	1.4	1.9	-0.5	23
65.0	75	3.6	4.3	-0.7	23
69.3	80	3.9	4.5	-0.6	23
73.6	85	2.9	3.5	-0.6	23
77.9	90	1.8	1.9	-0.1	23
82.3	95	3.4	3.3	0.1	23
86.6	100	3.7	3.4	0.3	23
90.9	105	2.9	3.3	-0.4	NA
95.3	110	3.5	4.7	-1.2	NA
99.6	115	2.9	3.6	-0.7	NA
103.9	120	2.0	2.1	-0.1	NA
108.3	125	2.6	1.8	0.8	NA
112.6	130	3.3	4.3	-1.0	NA
116.9	135	3.0	4.0	-1.0	NA
121.2	140	2.3	2.3	0.0	NA
125.6	145	5.0	2.0	3.0	NA
129.9	150	6.5	4.4	2.1	NA
134.2	155	3.7	3.6	0.1	NA
138.6	160	5.0	4.4	0.6	NA
142.9	165	4.7	5.2	-0.5	NA
147.2	170	5.0	4.1	0.9	NA
151.6	175	3.1	4.3	-1.2	NA
155.9	180	6.2	6.6	-0.4	NA
160.2	185	6.0	5.6	0.4	NA
164.5	190	2.5	2.7	-0.2	NA
168.9	195	3.0	3.1	-0.1	NA
173.2	200	3.5	4.1	-0.6	NA
	Average	3.1	3.2		

Note: Shaded area represents depths where 23% soil moisture trigger applies.

NA = Not applicable.

#### **ANNEX E**

# Mixed Waste Landfill Groundwater Monitoring Forms and Reports

April 2021-March 2022

**Field Forms** 

**Sample Summary Sheet** 

**Data Validation Reports** 

**Contract Verification Forms** 

# **Field Sampling Forms**

# **Mixed Waste Landfill**

# **Long-Term Monitoring and Maintenance**

# **Groundwater Monitoring**

Form Title	Corresponding Procedure
Field Measurement Log For Groundwater Sample Collection	FOP 05-01
Groundwater Sample Collection Field Equipment Check Log	FOP 05-02
Portable Pump and Tubing/Water Level Indicator Decontamination Log Form	FOP 05-03
Analysis Request and Chain of Custody*	LOP 94-03

^{*}Completed AR/COC forms are provided in the Data Validation Reports in this Annex.

# Field Sampling Forms May 2021 Groundwater Monitoring

SNL/NM Project Name: MWL		
Well ID: MWL-BW2	Date: 05/11/21	Date:
Pump Method: Portable	Pump Depth: 496'	

#### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
481.68	0831	Start							10
484.43	0857	5	19.28	720.25	185.6	7.25	0.41	17.63	1.35
485.11	0914	10	19.36	705.11	178.5	726	1.45	19.99	1.50
18656	0930	15	19 28	71335	163.5	7.26	1.54	17.54	1.34
488.17	0947	20	19.46	719.94	152-6	7.26	2.02	21.12	1.61
489.01	0457	23	19.54	719.96	148.1	7.29	2.35	31.40	2.40
489.60	1004	25	19.59	717.63	143.1	7.30	2.45	32.12	2.44
490.17	IDII	27	19-60	711.55	139.2	7.30	1.93	30.05	2.28
49039	1014	28	19.71	712.25	136.9	732	1-69	29.94	2.27
490.68	1018	29	19.75	713.62	135.1	7.32	1.39	31-80	2.41
190.90	1021	30	19.79	716.56	133.9	7.32	1.74	37.33	283
191.23	1025	31	19.89	719.12	132.3	7.33	2.27	42.18	3.19
	1026		SAY	nolin	a-				->
	=!===			4	0				-

#### Comments:

~ 1.5 gals purged from tubing @<u>0839</u>

Lot # fb=042721

SNL/NM Project Name: MWL		
Well ID: MWL-MW7	Date: 05/10/21	Date:
Pump Method: Portable	Pump Depth: 496'	

### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	DO (mg/L)
490.01	0835	Start					2 - 2		
491.33	0850	1	21.78	478.59	159.7	7.29	0.37	92.04	6-63
191.61	0856	2	21.20	47546	151.9	7.51	2.32	88.76	6-46
19142	0901	3	20.94	47239	1483	7.51	2.34	87.99	6.44
491.54	0907	4	20.97	47255	144.1	7.52	1.70	87-53	6.40
491.60	0913	5	20.84	470.04	140.5	7.52	1.25	87.12	6.38
	0919	6	20.89	472.02	1374	7.52	1.03	87.08	6.38
191.68	0925	7	20.88	471.83	134.4	7.62	0.89	87.09	6.33
191.70	0931	8	20.86	471.59	132.4	7.53	0.79	87.35	6.40
491.70	0937	9	21.02	473.34	130.3	7.53	0.79	87.54	6.40
19170	0943	10	21.30	477.89	129.1	7.50	0.85	87.53	6.36
	0944		SAN	pling					

#### Comments:

~ 1.5 gals purged from tubing @ 6844

SNL/NM Project Name: MWL		
Well ID: MWL-MW8	Date: 05/13/21	Date:
Pump Method: Portable	Pump Depth: 497'	

### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	pН	Turbidity (NTU)	DO (%)	DO (mg/L)
491.78	0828	Start							
493.41	0845	1	19.49	639.13	169.7	7.46	0.43	68.46	5,22
493.83	0851	2	20.44	658.41	1616	7.50	0.65	64.30	4.78
194.27	0856	3	21.03	456-39	155.6	7.51	0.61	63.87	472
494.68	0902	4	21.52	668.85	151.2	7.49	0.53	63.01	4.61
495.10	0907	5	21.46	672.88	147.2	7.48	0.58	61.19	4.49
495.46		6	21.12	674.57	143-6	7.47	0.62	57.43	4.24
495.77	0920	7	21.20	676.48	139.8	7.47	0.81	53.81	3.97
496.07	0926	8	21.11	681.57	136.0	7.46	1.20	51.53	3.80
496.31	0934	9	21.00	684.62	131-8	7.46	1.01	47.43	3.51
	0935		SAV	ppling					
				r 0					

Comments:

~ 1.5 gals purged from tubing @ 1540

SNL/NM Project Name: MWL		
Well ID: MWL-MW9	Date: 05/12/21	Date:
Pump Method: Portable	Pump Depth: 497'	

#### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
481.45	0827	Start							
493.42	0845	1	17.77	577.65	178.3	7.12	0.33	2820	2.21
493.91	0857	2	18.94	589.57	165.9	7.18	0.38	24.26	1.87
494.33	0857	3	19.41	595.42	157.8	7.22	0.34	22.81	1.74
494.76	0903	4	19.67	59737	151.8	7.25	0.48	22.96	1.75
195.14	0908	5	20.26	608.14	145.9	7.28	1.07	21.76	1.64
495.47	0914	6	20.62	615.36	1416	7.30	1.64	20.26	1.51
495.80	0920	7	20.61	617.23	137.6	7.33	4.71	18.06	1.35
196.01	0926	8	20.31	616.50	130.8	7.35	5.93	19.53	1.47
496,24	0935	9	20.38	61875	1224	7.36	4.42	19.55	1.46
196.44	0943	10	20.44	61995	116.1	7.37	0.99	17.49	1.31
496.49	0946	10.5	20.40	621.15	113-6	7.37	0.87	16.87	1.27
496.51	0949	11	20.48	622.00	111.0	7.37	0.66	16.81	1.26
496.57	0963	11.5	20.52	622.02	108.5	7.38	0.76	16.71	125
	0954		SAM	pling				_	
		L		, (	)				

Comments:

Additional purge required due to turbitity

~ 1.5 gals purged from tubing @ <u>07331</u>

ac , FB Lot NO. 042721

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWI						
Calibrations done by:	Lynch		Date: 05/10	0/21		
Make & Model: In-Situ Aque Sonde (S/N) with DO, Ec, pH, CO Other (SN): NA		probes: 536303				
		pH Cal	ibration/Check			
pH Calibrated to (std): NA			pH sloped to (st	d): NA		
Reference value:	1 4	1.00	1	7.00	1	0.00
	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 56 38	4 03	2159	7.04	21.64	10.05	2165
2. Time (24 hr): 1255	4.03	23.60	7.03	2344	1004	28.2
3. Time (24 hr):	100		1			
4. Time (24 hr):						
Standard Lot No.:	0GK004		0GL004		0GK650	
Expiration Date.:	NOV/22		DEC/22		SEP/22	
SC Calii	bration/Check			ORP Call	oration/Check	
Reference Value: 1413 U	S/cm @ 25 C		Reference Value	: 220 mV		
	Value	Temp			Value	Temp
1, Time (24 hr): 0(35	12995	20.88	1. Time (24 hr):	0636	2213	21.64
2. Time (24 hr): /258	1342.0	29.11	2. Time (24 hr):	1254	2211	22.88
3. Time (24 hr):		1,	3. Time (24 hr):			
4. Time (24 hr):			4. Time (24 hr):		-	
Standard Lot No.: 0GK781	Expiration Date:	NOV/21	Standard Lot No	.: 0GL1015	Expiration Date.	: SEP/21
		DO Cali	bration/Check			
Calibration Value:	81% air saturs	ation @ 5200 ft.		Atmospheric	Pressure in Hg	
1. Time (24 hr): 0631	98	67		24.69		
2. Time (24 hr): 1253	90.8			25.33		
3. Time: (24 hr)						
4. Time (24 hr):						

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Calibration done by: R L	vnch	Date: 05	Date: 05/10/21			
	7	TURBIDIMETER				
Make & Model: HACH	12100Q	Serial No. 5	S/N 19050C076301	1		
Reference Value 10		20	100	800		
Standard Lot No.	A0288	A0295	A0276	A0279		
1. Time (24 hr):	10.1	19.9	98.9	801		
2. Time (24 hr):	10.0	20.1	99.6	802		
3. Time (24 hr):						
4. Time (24 hr):						
Comments:						

### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

Calibrations done by:	wnoh		Date:	5/11/21		
. 11	Lynch			0/11/21		
Make & Model: In-Situ Aqu						
Sonde (S/N) with DO, Ec, pH, C Other (SN): NA	ORP, and temperature	probes: 536303				
		pH Cali	oration/Check			
pH Calibrated to (std): NA			pH sloped to (st	id): NA		
Reference value:	4.	.00		7.00	10	00.00
The street	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 0632	4.03	21.09	7.01	21.58	10.03	21.70
2. Time (24 hr): /232	4.03	2253	7.03	23.00	10.04	22.66
3. Time (24 hr):						
4. Time (24 hr);					1	
Standard Lot No.:	0GK004		0GL004		0GK850	
Expiration Date.:	NOV/22		DEC/22		SEP/22	
SC Cali	bration/Check			ORP Calib	ration/Check	
Reference Value: 1413 u	S/cm @ 25 C		Reference Value	220 mV		
	Value	Temp			Value	Temp
1. Time (24 hr): DG 36	1323.3	21.80	1. Time (24 hr):	0637	221.9	22.20
2. Time (24 hr): 1237	13398	22.34	2. Time (24 hr):	1235	221.7	2249
3. Time (24 hr):	1		3. Time (24 hr):			
4. Time (24 hr);			4. Time (24 hr):			
Standard Lot No.: 0GK781	Expiration Date.:	NOV/21	Standard Lot No	.: 0GL1015	Expiration Date.:	SEP/21
		DO Calik	ration/Check			
Calibration Value:	81% air saturat	tion @ 5200 ft.		Atmospheric	Pressure in Hg	
1. Time (24 hr): 0631	91.60	7		24.97		
2. Time (24 hr): [23]	95.8	0		24.66		
3. Time: (24 hr)						
4, Time (24 hr):						

# GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Calibration done by: R L	ynch		Date: 05/11/21				
		TURB	DIMETER				
Make & Model: HACH	2100Q		Serial No. S/	N 19050C076301	W.		
Reference Value	10	10		100	800		
Standard Lot No.	A0288	-	<b>\0295</b>	A0276	A0279		
1. Time (24 hr):	9.99	:	20.1	99.7	801		
2. Time (24 hr):	10.1	8	20.2	101	800		
3. Time (24 hr):							
4. Time (24 hr):							

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

Calibrations done by:	l v — a la		Date: 04	5/12/21		
Cambradons done by.	Lynch		Date. Ut	0/ 12/2		
Make & Model: <u>In-Situ Aqu</u> Sonde (S/N) with DO, Ec, pH, C Other (SN): NA		probes: 536303				
		pH Cali	bration/Check			
pH Calibrated to (std): NA			pH sloped to (std	): NA		
Reference value:	4	.00	7	.00	10	.00
	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 0436	4.00	2217	6.98	21.83	10.03	21.88
2. Time (24 hr): 13/5	3.99	23.01	699	22.48	9.97	23 69
3. Time (24 hr):				100000000000000000000000000000000000000	1	1 2 2 1
4. Time (24 hr):						
Standard Lot No.:	0GK004		0GL004		0GK650	
Expiration Date.:	NOV/22		DEC/22		SEP/22	
SC Call	bration/Check			ORP Calib	ration/Check	
Reference Value: 1413 u	S/cm @ 25 C		Reference Value:	220 mV		
	Value	Temp			Value	Temp
1. Time (24 hr): D6 39	1362 4	22-06	1. Time (24 hr):	0641	222.4	22.49
2. Time (24 hr): /3/9	1366	22.92	2. Time (24 hr):	1320	2217	22.51
3. Time (24 hr):			3. Time (24 hr):			111 4 47 4
4. Time (24 hr);			4. Time (24 hr):			
Standard Lot No.: 0GK781	Expiration Date.:	NOV/21	Standard Lot No.	: 0GL1015	Expiration Date.:	SEP/21
		DO Calil	oration/Check			
Calibration Value:	81% air satura	tion @ 5200 ft.		Atmospheric	Pressure in Hg	
1. Time (24 hr); 6635	92.	07		25.04		
2. Time (24 hr): 1314	93	53	é	25.16		
3. Time: (24 hr)						
4. Time (24 hr):						

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

TURBIDIMETER  Make & Model: HACH 2100Q Serial No. S/N 19050C076301  Reference Value 10 20 100 80  Standard Lot No. A0288 A0295 A0276 A02  1. Time (24 hr): 0635 9.99 19.8 10 \ 80  2. Time (24 hr): 20.3 9.99 80)	0-19		D.		
Make & Model:         HACH 2100Q         Serial No. S/N         19050C076301           Reference Value         10         20         100         80           Standard Lot No.         A0288         A0295         A0276         A02           1. Time (24 hr):         0635         9.99         19.8         10 \ 80           2. Time (24 hr):         1313         10.1         20.3         9.99         80)           3. Time (24 hr):         10.1         20.3         9.99         80)	Calibration done by: R L	ynch	Date: (	05/12/21	
Reference Value  10 20 100 80 Standard Lot No.  A0288  A0295  A0276  A02  1. Time (24 hr):			TURBIDIMETER		
Standard Lot No.  A0288  A0295  A0276  A02  1. Time (24 hr):	Make & Model: HACH	2100Q	Serial No.	. S/N 19050C076301	
1. Time (24 hr):  2. Time (24 hr):  2. Time (24 hr):  2. Time (24 hr):  3. Time (24 hr):	Reference Value	10	20	100	800
2. Time (24 hr): 1313 10.1 20.3 49.9 80 3. Time (24 hr):	Standard Lot No.	A0288	A0295	A0276	A0279
2. Time (24 hr): 1313 10.1 20.3 99.9 80) 3. Time (24 hr):	1. Time (24 hr):	9.99	19.8	101	803
3. Time (24 hr):	2. Time (24 hr):	10.1	20.3	999	80)
4. Time (24 hr):					
	4. Time (24 hr):				
Comments:	Comments:		L.		

SNL/NM Project Name: MW						
Calibrations done by: R I	Lynch		Date: 05/	13/21		
Make & Model: In-Situ Aqu	ua Troll 600					
Sonde (S/N) with DO, Ec, pH, O		probes: 536303				
Other (SN): NA	,	<b>P.000</b>				
		pH Cali	bration/Check			
pH Calibrated to (std): NA			pH sloped to (st	td): NA		
Reference value:	4.0	00		7.00	10	0.00
	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 5637	3 99	2183	7.00	21.94	9.99	2198
2. Time (24 hr): 1235	4.02	23 8	7.01	23 9	9.98	23.04
3. Time (24 hr):				100000	1	
4. Time (24 hr);						
Standard Lot No.:	0GK004		0GL004		0GK650	
Expiration Date.:	NOV/22		DEC/22		SEP/22	
SC Cali	bration/Check			ORP Calil	oration/Check	
Reference Value: 1413 U	S/cm @ 25 C		Reference Valu	e: 220 mV		
	Value	Temp			Value	Temp
1. Time (24 hr): 06 34	13244	21.98	1. Time (24 hr):	0635	221.9	2187
2. Time (24 hr): 1241	1362.	23 11	2. Time (24 hr):		222.0	23.23
3. Time (24 hr):			3. Time (24 hr):			
4. Time (24 hr):			4. Time (24 hr):			
Standard Lot No.: 0GK781	Expiration Date.:	NOV/21	Standard Lot N	o.: 0GL1015	Expiration Date.:	SEP/21
		DO Cali	bration/Check			
Calibration Value:	81% air saturat	ion @ 5200 ft.	Atmospheric Pressure in Hg			
1. Time (24 hr): 6633	98.8	38		25.00		
2. Time (24 hr): 1234	92.0			25.30		
3. Time: (24 hr)						
4. Time (24 hr):						

### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

Calibration done by: R L	ynch	Date: 05/1	3/21	
		TURBIDIMETER		
Make & Model: HACH	1 2100Q	Serial No. S/	N 19050C076301	
Reference Value	10	20	100	800
Standard Lot No.	A0288	A0295	A0276	A0279
1. Time (24 hr): 0632	996	20.1	99.7	797
2. Time (24 hr):	10.1	19.8	103	795
3. Time (24 hr):				
4. Time (24 hr):				

LTS GW-2019-003 (7-2019)

SNL/NM Project Name: MWL	Monitoring Well ID #: Pre Decon	Date: 5/7/2021 Date:
The following equipm	nent was decontaminated at completion of sampling	activities in accordance with FOP-05-03.
Pump and Tubing Bundle ID #: 180	07B-950 Water Level Indicator ID #: 362721	
Zach Tenorio	Personnel Performing Decontamina	ation:
Print Name:	Initial	
Denisha Sanchez		R
Print Name:	Initial	
Pump: Excellent	Condition of Equipment  Tubing Bundle: Excellent	Water Level Indicator: Excellent
	List of Decontamination Materials	S
	-	
Deionized Water	HNO ₃	Detergent
Deionized Water Source: Culligan	HNO₃ Grade: NA	Detergent Manufacturer: Liquinox
Source: Culligan	Grade: NA	Manufacturer: Liquinox

Project Name: MWL	Monitoring Well ID #: MWL-BW2	Date: 5/11/2021 Date:
The following equipment w	as decontaminated at completion of sampling	activities in accordance with FOP-05-03.
Pump and Tubing Bundle ID #: 1807B-95	Water Level Indicator ID #: 362721	
William Gibson	Personnel Performing Decontamina	ation:
Print Name:	Initial	· ·
Zach Tenorio	2	7
Print Name:	Initial:	
Evcellent -	Condition of Equipment	Fig. 11 and
Pump:ExcellentT	ubing Bundle: Excellent	Water Level Indicator: Excellent
Pump:ExcellentT		Tract Ester Highestor.
Pump:ExcellentT	List of Decontamination Materials	Tract Ester Highestor.
Pump.	List of Decontamination Materials	S S S S S S S S S S S S S S S S S S S
Deionized Water	List of Decontamination Materials  HNO ₃	Detergent
Deionized Water Source: Culligan	List of Decontamination Materials  HNO3  Grade: NA  UN #: NA	Detergent  Manufacturer: liquinox  Lot Number: L1F9
Deionized Water Source: Culligan	List of Decontamination Materials  HNO ₃ Grade: NA	Detergent Manufacturer: liquinox

SNL/NM Project Name: MWL	Monitoring Well ID #: MWL-MW7	Date: 5/10/2021 Date:
The following equipmen	t was decontaminated at completion of sampling	activities in accordance with FOP-05-03.
Pump and Tubing Bundle ID #: 1807E	-950 Water Level Indicator ID #: 362721	
Denisha Sanchez	Personnel Performing Decontamin	ation:
Print Name:	Initia	<del></del>
Robert Lynch	X	2
Print Name:	Infitia	:
Pump: Excellent	Condition of Equipment  Tubing Bundle: Excellent	Water Level Indicator: Excellent
	List of Decontamination Material	s
Deionized Water	HNO ₃	Detergent
Source: Culligan	Grade: NA	Manufacturer: liquinox
Lot Number: 05/05/21	UN #: NA	Lot Number: L1F9
	Manufacturer: NA	Expiration Date: 06/21
	Lot Number: NA	

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW8	Date: 5/13/2021 Date:
The following equipmen	nt was decontaminated at completion of sampling a	activities in accordance with FOP-05-03.
Pump and Tubing Bundle ID #: 1807E	3-950 Water Level Indicator ID #: 362721	
Robert Lynch	Personnel Performing Decontamina	tion:
Print Name:	Initial:	
Denisha Sanchez		
Print Name:	Initial:	<del></del>
Pump Excellent	Condition of Equipment	Wester Level Indicate Fycellent
Pump: Excellent	Condition of Equipment  Tubing Bundle: Excellent	Water Level Indicator: Excellent
rump.	Condition of Equipment  Tubing Bundle: Excellent  List of Decontamination Materials	value Level Indicator.
Deionized Water	Condition of Equipment  Tubing Bundle: Excellent  List of Decontamination Materials  HNO ₃	Detergent
Deionized Water Source: Culligan	Condition of Equipment  Tubing Bundle: Excellent  List of Decontamination Materials  HNO3  Grade: NA	value Level Indicator.
Deionized Water	Condition of Equipment  Tubing Bundle: Excellent  List of Decontamination Materials  HNO ₃	Detergent
Deionized Water Source: Culligan	Condition of Equipment  Tubing Bundle: Excellent  List of Decontamination Materials  HNO3  Grade: NA	Detergent Manufacturer: liquinox

LTS GW-2019-003 (7-2019)

#### Portable Pump and Tubing / Water Level Indicator Decontamination Log Form

SNL/NM Project Name: MWL	Monitoring Well ID #: MWL-MW9	Date: 5/12/2021 Date:
The following equipmen	t was decontaminated at completion of sampling a	activities in accordance with FOP-05-03.
Pump and Tubing Bundle ID #: 1807B	-950 Water Level Indicator ID #: 362721	
Denisha Sanchez	Personnel Performing Decontamina	tion:
Print Name:	Initial:	
William Gibson		19
Print Name:	Initial	
Trees Bout		
Pump: Excellent	Tubing Bundle: Excellent  List of Decontamination Materials	Water Level Indicator: Excellent
rump.	List of Decontamination Materials	TOTAL ESTERNATION OF THE PROPERTY OF THE PROPE
Delonized Water	List of Decontamination Materials  HNO ₃	Detergent
Deionized Water Source: Culligan	List of Decontamination Materials  HNO3  Grade: NA	Detergent  Manufacturer: liquinox
Delonized Water	List of Decontamination Materials  HNO ₃	Detergent
Delonized Water Source: Culligan	List of Decontamination Materials  HNO3  Grade: NA	Detergent  Manufacturer: liquinox

## Summary Sheet For May 2021 Groundwater Samples

## Sample Summary for Mixed Waste Landfill Groundwater Monitoring May 2021

					Associated Equipment	Associated Trip	Associated Field	
	Sample		Sample		Blank	Blank (ARCOC # /	Blank (ARCOC # /	
Well ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Sample #)	Sample #)	Comments
<b>GEL Analytic</b>	al Data: Proje	ct Task # 19	5122.10.11.0	8, Service Order	# CF01-21			
MWL-BW2	11-May-21	622035	114927	Environmental	622039 / 114939	622035 / 114929	622035 / 114926	
MWL-BW2	11-May-21	622035	114928	Duplicate	622039 / 114939	622035 / 114929	622035 / 114926	
MWL-MW7	10-May-21	622036	114931	Environmental	n/a	622036 / 114932	622036 / 114930	
MWL-MW8	13-May-21	622037	114934	Environmental	n/a	622037 / 114935	622037 / 114933	
MWL-MW9	12-May-21	622038	114937	Environmental	n/a	622038 / 114938	622038 / 114936	
MWL-EB1	10-May-21	622039	114939	Equipment Blank	n/a	622039 / 114940	n/a	Equipment blank sample prior to MWL-BW2.
MWL-FB1	11-May-21	622035	114926	Field Blank	n/a	622035 / 114929	n/a	at MWL-BW2
MWL-FB2	10-May-21	622036	114930	Field Blank	n/a	622036 / 114932	n/a	at MWL-MW7
MWL-FB3	13-May-21	622037	114933	Field Blank	n/a	622037 / 114935	n/a	at MWL-MW8
MWL-FB4	12-May-21	622038	114936	Field Blank	n/a	622038 / 114938	n/a	at MWL-MW9
DIW/QC	12-May-21	622040	114941	Field Blank	n/a	622040 / 114942	n/a	DI source water for equipment decontamination

# Data Validation Reports For Environmental Samples Groundwater Monitoring May 2021







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 23, 2021

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622035 SDG: 544248 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

Four samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The CCV %D was >40% but ≤60% with negative bias for dichlorodifluoromethane. The associated sample results were non-detect and will be **qualified UJ,C3**.
- 2. The MS and/or MSD %Rs were < the lower acceptance limit but ≥20% for dichlorodifluoromethane and chloroethane. The associated sample results were non-detect and will be **qualified UJ,MS3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The CCV %Ds were >20% but ≤40% with negative bias for chloroethane and chloromethane. The associated sample results were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows.

Acetone was detected at  $\leq$  the PQL and chloroform, dibromochloromethane and bromodichloromethane were detected at > the PQL in FB1, sample 544248001 associated with samples -002 and -008. The associated sample results were non-detect and will not be qualified.

Acetone and 2-butanone were detected at  $\leq$  the PQL and chloroform, dibromochloromethane and bromodichloromethane were detected at > the PQL in EB1, sample 544086009 submitted on ARCOC 622039 in another SDG and associated with samples -002 and -008 in this SDG. The associated sample results were non-detect and will not be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria except as noted above in the Summary section.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met with the following exception.

The LCS %R was < the lower acceptance limit but >20% for dichlorodifluoromethane. According to the data validation procedure, one LCS recovery may be outside acceptance criteria with no qualification required since 36 target analytes were reported. Therefore, no data were qualified.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

A TB was submitted on the ARCOC. FB1 was submitted on ARCOC 622035 and was associated with the samples on the same ARCOC. EB1 was submitted on ARCOC 622039 in another SDG and was associated with the samples on ARCOC 622035 in this SDG. A field duplicate pair was submitted with ARCOC 622035. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/23/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 23, 2021

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622035 SDG: 544248 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows.

U was detected at ≤ the PQL in a CCB bracketing the samples. The associated sample results were detects > the PQL and >5X the CCB value and will not be qualified.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Mg, Al and Fe were < those in the ICS A and AB solutions.

#### **ICP Serial Dilution**


The serial dilution met all QC acceptance criteria.

#### Other QC

EB1 was submitted on ARCOC 622039 in another SDG and was associated with the samples on ARCOC 622035 in this SDG. A field duplicate pair was submitted with ARCOC 622035. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

**Reviewed by:** Mary Donivan Level: I Date: 06/23/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 23, 2021

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622035 SDG: 544248 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### Gamma spec and tritium:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### Gross alpha/beta:

1. The samples were analyzed undiluted; however, the MS/MSD analyses were performed on an SNL sample from another SDG diluted >5X and considered a dissimilar matrix. The associated sample results were > the MDA and will be **qualified J,MS1**.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### Calibration

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria except as noted above in the Summary section.

It should be noted that the MS analysis for tritium was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all target analytes were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**

The samples were not diluted. All required detection limits were met.

#### Other QC

EB1 was submitted on ARCOC 622039 in another SDG and was associated with the samples on ARCOC 622035 in this SDG. A field duplicate pair was submitted with ARCOC 622035. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

**Reviewed by:** Mary Donivan Level: I Date: 06/23/2021



## Sample Findings Summary



**AR/COC: 622035** Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	114927-004/MWL-BW2	ALPHA (12587-46-1)	J, MS1
	114927-004/MWL-BW2	BETA (12587-47-2)	J, MS1
	114928-004/MWL-BW2	ALPHA (12587-46-1)	J, MS1
	114928-004/MWL-BW2	BETA (12587-47-2)	J, MS1
EPA 901.1			
	114927-003/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	114927-003/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3
	114927-003/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	114927-003/MWL-BW2	Potassium-40 (13966-00-2)	BD, FR3
	114928-003/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	114928-003/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3
	114928-003/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	114928-003/MWL-BW2	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	114927-005/MWL-BW2	Tritium (10028-17-8)	BD, FR3
	114928-005/MWL-BW2	Tritium (10028-17-8)	BD, FR3
SW846 8260B DOE-AL			
	114926-001/MWL-FB1	Chloroethane (75-00-3)	UJ, MS3
	114926-001/MWL-FB1	Dichlorodifluoromethane (75-71-8)	UJ, C3,MS3
	114927-001/MWL-BW2	Chloroethane (75-00-3)	UJ, MS3
	114927-001/MWL-BW2	Dichlorodifluoromethane (75-71-8)	UJ, C3,MS3
	114928-001/MWL-BW2	Chloroethane (75-00-3)	UJ, MS3
	114928-001/MWL-BW2	Dichlorodifluoromethane (75-71-8)	UJ, C3,MS3
	114929-001/MWL-TB1	Chloroethane (75-00-3)	UJ, MS3
	114929-001/MWL-TB1	Dichlorodifluoromethane (75-71-8)	UJ, C3,MS3

**AR/COC: 622035** Page 2 of 2

Analytical Method Sample ID Analyte Name (CAS#) Qualifier, RC

All other analyses met QC acceptance criteria; no further data should be qualified.

#### Sandia Data Validation Summary Worksheet

			·			
ARCOC#: 622035	Site/Pr	oject: MWL LTMMP		Validation Date: 06/22/2021		
SDG #: 544248	Labora	tory: GEL Laboratorie	es, LLC	Validator: Linda Thal		
Matrix: Aqueous	# of Sa	mples: 14	CVR present: Yes			
ARCOC(s) present: Yes	Sample	Container Integrity:				
Analysis Type:  ⊠Organic ⊠Metals □G	Genchem ⊠Ra	d				
		Requested A	nalyses Not Reported			
Client Sample ID	Lab Sample ID	Analysis	Analysis Comments			

Hold Time/Preservation Outliers										
Client Sample ID	Lab Sample ID	Analysis	Pres.	Collection	Preparation	Analysis	Analysis<2	Analysis≥2		
Chefit Sample 1D	Lab Sample 1D	Anarysis	1108.	Date	Date	Date	X HT	XHT		
None										

Comments: Collected 05/11/2021

None

The ARCOC noted that the trip blank vials were received from the lab with headspace.

EB1 was submitted on ARCOC 622039 in another SDG and was associated with the samples on ARCOC 622035 in this SDG.

Validated by: X /hal

### Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622035	SDG: 544248		Matrix: Aqueous
Laboratory Sample IDs: 544248001, -002, -008, -014			
Method/Batch #s: <b>8260B</b> 2130835	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

			(	Calibratio	n											
Anal (outlie		Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	V MB	5X (10X) MB		CS 6R	MS %R	MSD %R	MS/ MSD RPD	TB1 -014	FB1 -001	EB1 544086 -009	5X (10X)
Acetone		NA	<b>✓</b>	<b>✓</b>	✓	✓	NA	,	<b>√</b>	<b>√</b>	✓	✓	✓	3.38J	6.25J	(62.5)
Bromodichloromet	hane	NA	✓	✓	✓	✓	NA	,	✓	✓	✓	✓	✓	2.2	3.08	15.4
Chloroform		NA	✓	✓	✓	✓	NA	,	✓	✓	✓	✓	✓	23.2	31.4	157
Dibromochloromet	hane	NA	✓	✓	✓	✓	NA	,	✓	<b>√</b>	✓	✓	✓	1.16	2.29	11.5
2-Butanone		NA	✓	✓	✓	✓	NA	,	✓	✓	✓	✓	✓	✓	3.27J	(32.7)
Methylene chloride		-1.0	✓	✓	✓	✓	NA	,	✓	✓	✓	✓	✓	✓	✓	NA
Dichlorodifluorome	ethane	NA	✓	✓	-56	✓	NA		44	31	33	✓	✓	✓	✓	NA
Chloroethane		NA	✓	✓	-29	✓	NA	,	✓	59	✓	✓	✓	✓	✓	NA
Chloromethane		NA	✓	✓	-25	✓	NA	,	✓	✓	✓	✓	✓	✓	✓	NA
						Surrogate Reco	overy Outli	ers								
Sample ID	1,2-DCA-d4 %	RT	oluene-d8	%R	BFB %R		Sample I	D	1,2-D	CA-d4	%R	Toluene-	d8 %R	BFB %	R	
None	, 222 22 70				, 42-		F							/		
1.0112	1	<u> </u>				IS Ou	tliers								I	
	FBZ			Chl-d	5	1,4-DCE	3-d4									
Sample ID	Area	RT	Ar		RT	Area	RT									
None																

Comments: HTs OK. MS/MSD on -002

VOA6.I 04/09/21 Linear: Methylene chloride (= to MDL not >, no data qualified)

## **Sandia Inorganic Metals Worksheet**

ARCOC	#(s): 622	2035						:	SDG #(s	s): 54424	8			Matrix	: Aqueous			
Laborato	ory Sampl	le IDs:	544248	3003, -00	)9									<u>.</u>				
Method/	Batch #s:	<b>3005</b> A	A/6020E	<b>3</b> : 21271	07/2127	7108												
CPMS Ma	ss Cal:	Z Pas	s 🗌 ]	Fail	□ NA	A ICP	MS Resolu	ition: 🛛 Pass		☐ Fail		□ NA						
Analyte (outliers)	Int.			oration	T		MB mg/L	5X Blank mg/L	LCS %R	MS %R	Lab Rep RPD	Serial Dil. %D	ICS AB %R	ICS A ±MDL ug/L	LLCCV %R	EB1 54403 -010	86	
	ug/L	R ²	ICV	CCV	ICB ug/L	<b>CCB</b> ug/L						, , , 2	/ <b>UK</b>	(x50)				
U	NA	✓	<b>√</b>	<b>√</b>	<b>√</b>	0.068J	✓	0.00034	<b>√</b>	<b>√</b>	<b>√</b>	<b>✓</b>	NA	NA	<b>√</b>	✓		
																	<del> </del>	
																	=	
			I	S Outli	ers 60-1	125%							IS C	Outliers 80-	120%			
Sam	ple ID		%Re	covery		%Recov	ery	%Recovery		CCV/C	CB ID		%Recove	ery	%Recovery	y	%Re	covery
n	one									noi	ne							
Comments Al, Ca, Fe						3.			1									

#### Sandia Radiochemistry Worksheet

ARCOC #(s): 622035 SDG #: 544248 Matrix: Aqueous

Laboratory Sample IDs: 544248 – see below

Method/Batch#s: EPA 901.1 (gammaspec)/2127390 Samples -004, -010

Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2128449 Samples -005, -011

Method/Batch#s: SM 7500 Rn B (Rn-222)/2126609 Samples -007, -013

riction batterns. Str. 7500 Rt. B (Rt. 222)/2120007 Samples 007, 015

Method/Batch#s: EPA 906.0 Modified (tritium)/2132572 Samples -006, -012

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	N	MS/ MSD RER	Lab Rep. RER	EB1			
none														
				Tracer/Ca	rrier Reco	overy Outl	iers	•				•		·
Sample ID	Tracer/Ca	rrier %l	R	Sample ID	)	Tracer/	Carrier	%R		Sample	ID	Tracer/	Carrier (	%R
NA														

 $\underline{Comments:} \ \ HTs \ OK. \ Note: No \ precision \ criteria \ apply \ to \ sample \ results < the \ MDA \ including \ where \ one \ result \ is > the \ MDA \ and \ the \ other <.$ 

GS: DUP on SNL sample 544086004. The K-40 results for sample and DUP were rejected by the laboratory due to the peak not meeting identification criteria.

Gross A/B: DUP, MS/MSD on SNL sample 544086005. Parent sample 151mL; DUP 152ml; MS/MSD 25.2/26.1ml; 6X dilution.

Rn-222: DUP on SNL sample 544486007. LCS/LCSD

Tritium: DUP and MS on SNL sample 544086006

## Page 5 of 512

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

544248

SDG: Internal Lab Page 1 of 2 Batch No. SMQ Use AR/COC 622035 Project Name: MWL LTMMP 5/11/2021 Date Samples Shipped: SMO Authorization: Waste Characterization Project/Task Manager: Timmie Jackson Carrier/Waybill No 32989 SMO Contact Phone: RMA Project/Task Number: 195122.10.11.08 Zac Worsham/843-300-4224 Lab Contact: Wendy Palencia/505-844-3132 Released by COC No. Service Order: CF01-21 Lab Destination GEL Send Report to SMO: 4° Celsius Contract No. 1983530 Stephanie Montaño/505-284-2553 Bill to: Sandia National Laboratories (Accounts Payable) Tech Area: P.O. Box 5800, MS-0154 Building: Room: Operational Site: Albuquerque, NM 87185-0154 Depth Date/Time Sample Container Preserv-Collection Sample Parameter & Method Lab Sample No. Fraction Sample Location Detail (ft) Collected Matrix Type Volume ative Method Type Requested Sample ID 114926 001 MWL-FB1 VOC-LTMMP (SW846-8260B) NA 5/11/21 10:00 G DIW 3x40 ml HCI G FB 001 114927 001 MWL-BW2 VOC-LTMMP (SW846-8260B) 496 5/11/21 10:26 G G GW 3x40 mi HC! SA 007 114927 002 MWL-BW2 496 5/11/21 10:28 Р METALS, LTMMP - Cd. Cr. Ni. U GW G 500 ml HNO3 SA 003 114927 003 MWL-BW2 496 5/11/21 Р GAMMA SPEC, SHORT LIST (EPA 901) 10:30 GW HNO₃ G SA 1 L COH 004 114927 MWL-BW2 496 5/11/21 GROSS-ALPHA/BETA (EPA 900) 10:32 Р GW G 1 L HNO3 SA 005 114927 005 MWL-BW2 496 TRITIUM (EPA 906) 5/11/21 10:34 GW AG 250 ml NONE G SA 006 114927 006 MWL-BW2 496 RADON (SM7500 Rn B) 5/11/21 10:36 G GW 2x40 ml NONE G SA 007 114928 001 MWL-BW2 496 5/11/21 10:27 VOC-LTMMP (SW846-8260B) GW G G 008 3x40 ml HCL DU 1002 114928 MWL-BW2 496 METALS, LTMMP - Cd, Cr, Ni, U 5/11/21 10:29 P 009 GW 500 ml G HNO3 DU 114928 1003 MWL-BW2 496 5/11/21 10:31 GW Р 1 L HNO3 G DH GAMMA SPEC, SHORT LIST (EPA 901) 010 Last Chain: ☐ Yes Sample Tracking SMO Use Special Instructions/QC Requirements: Conditions on Validation Reg'd: ☑ Yes Date Entered: EDD ✓ Yes Receipt ☐ Yes Background: Entered by: Turnaround Time ☐ 7-Day* ☐ 15-Day* ☑ 30-Day Confirmatory: ☐ Yes QC inits. Negotiated TAT Sample Name Signature Company/Organization/Phone/Cell Sample Disposal ☐ Return to Client Disposal by Lab William Gibson SNL/08888/505-284-3307/505-239-7367 Team Return Samples By: Robert Lynch SNL/08888/505-844-4013/505-250-7090 Comments: Trip Blanks received from Lab with head space. Members Zachary Tenorio SNL/08888/505-845-8636/505-259-5765 Denisha Sanchez SNL/08888/505-845-7829/505-208-1375 Lab Use Relinquished by Org. 08888 Date 5-11-2 Time 1105 Relinquished by Ora. Date Time Received by Date 5-11-2 Time //05 Received by Org. Date Time Relinquished by Org/Not 8 Date 5 - 11 - Z / Time 17 75 Relinguished by Ora Date Time Date 🔿 Time (()) Received by Org. Date Time *Prior confirmation with SMO required for 7 and 15 day TAT

Page 6 of 512

### **CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)**

Page 2 of 2

					***************************************	······································			ı				AR/COC	Page 2 6 622035
Project Nam	e:	MWL LTMMP	Project/Ta	sk Mana	ger:	Timmie Ja	ckson		Project/Ta	sk No.:	195122	2.10.11.08		
Tech Area:													1	
Building:		Room:												Lab us
				Depth	ł	Time	Sample	<del></del>	ntainer	Preserv-	Collection	Sample	Parameter & Method	Lab
Sample No.	1	T	on Detail	(ft)	Colle	ected	Matrix	Туре	Volume	ative	Method	Туре	Requested	Sample
114928	004	MWL-BW2	***************************************	496	5/11/21	10:33	GW	Р	1 L	HNO3	G	DU	GROSS-ALPHA/BETA (EPA 900)	011
114928	005	MWL-BW2		496	5/11/21	10:35	GW	AG	250 ml	NONE	G	DU	TRITIUM (EPA 906)	012
114928	006	MWL-BW2		496	5/11/21	10:37	GW	G	2x40 ml	NONE	G	DU	RADON (SM7500 Rn B)	013
114929	001	MWL-TB1		NA	5/11/21	10:00	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260B)	이스
						***************************************								
							·							
					TT TO THE TOTAL TOTAL TO THE TO									
					***************************************									
					***************************************	<del></del>								
					***************************************			***************************************						
			······						**************************************					
***************************************									***************************************				Amaria	
						***************************************								
	ž	Λ												
	11/	Ü												
Recipient Ini	tialis////	<u>4                                    </u>												







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 22, 2021

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622036 and 622039

SDG: 544086 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

Five samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercept was negative and > the MDL but  $\le 3X$  the MDL for methylene chloride. The associated sample results were non-detect and will be **qualified UJ,15**.
- 2. The initial calibration %RSD was >15% but ≤40% and the ICV %D was >20% but ≤40% with negative bias for acetone. The associated results for samples 544086001 and -009 were detects and will be **qualified J-,I3,C3**. The remaining associated sample results were non-detect and will be **qualified UJ,I3,C3**.
- 3. The ICV %D was >20% but ≤40% with negative bias for 2-butanone. The associated result for sample -009 was a detect and will be **qualified J-,C3**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICV %Ds were >20% but ≤40% with negative bias for 2-butanone and 1,1,2,2-tetrachloroethane. All associated sample results, *except* the 2-butanone result for sample -009, were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows.

Acetone was detected at  $\leq$  the PQL and chloroform, dibromochloromethane and bromodichloromethane were detected at > the PQL in FB2, sample -001 associated with sample -002. The associated sample results were non-detect and will not be qualified.

Acetone and 2-butanone were detected at ≤ the PQL and chloroform, dibromochloromethane and bromodichloromethane were detected at > the PQL in EB1, sample -009 associated with the samples submitted on ARCOC 622035 in another SDG. No data from this SDG will be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

A TB was submitted on each ARCOC. FB2 was submitted on ARCOC 622036 and was associated with the sample on the same ARCOC. EB1 was submitted on ARCOC 622039 in this SDG and was associated with the samples on ARCOC 622035 submitted in another SDG.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/25/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 22, 2021

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622036 and 622039

SDG: 544086 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

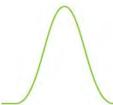
#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Mg, Al and Fe were < those in the ICS A and AB solutions.

#### **ICP Serial Dilution**


The serial dilution met all QC acceptance criteria.

#### Other QC

EB1 was submitted on ARCOC 622039 and was associated with samples on ARCOC 622035 submitted in another SDG.

No other specific issues that affect data quality were identified.

**Reviewed by:** Mary Donivan Level: I Date: 06/25/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 22, 2021

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622036 and 622039

SDG: 544086 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### All analyses:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### Rn-222:

1. The sample results that were  $\geq$  the MDA but <3X the MDA will be **qualified J,FR7.** 

#### Gross alpha/beta:

1. The sample was analyzed undiluted; however, the MS/MSD analyses were diluted >5X and considered a dissimilar matrix. The associated results for sample 544086005 were > the MDA and will be **qualified J,MS1.** 

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### **Calibration**

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria except as noted above in the Summary section.

It should be noted that sample -012, an EB, will not be qualified for the diluted MS/MSD since the LCS associated with this sample may be assessed for accuracy.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

#### **Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)**

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**

The samples were not diluted. All required detection limits were met.

#### Other QC

EB1 was submitted on ARCOC 622039 and was associated with the samples on ARCOC 622035 submitted in another SDG.

No other specific issues that affect data quality were identified.

**Reviewed by:** Mary Donivan Level: I Date: 06/25/2021



## Sample Findings Summary



**AR/COC: 622036, 622039** Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	114931-004/MWL-MW7	ALPHA (12587-46-1)	J, MS1
	114931-004/MWL-MW7	BETA (12587-47-2)	J, MS1
	114939-004/MWL-EB1	ALPHA (12587-46-1)	BD, FR3
	114939-004/MWL-EB1	BETA (12587-47-2)	BD, FR3
EPA 901.1			
	114931-003/MWL-MW7	Americium-241 (14596-10-2)	BD, FR3
	114931-003/MWL-MW7	Cesium-137 (10045-97-3)	BD, FR3
	114931-003/MWL-MW7	Cobalt-60 (10198-40-0)	BD, FR3
	114931-003/MWL-MW7	Potassium-40 (13966-00-2)	BD, FR3
	114939-003/MWL-EB1	Americium-241 (14596-10-2)	BD, FR3
	114939-003/MWL-EB1	Cesium-137 (10045-97-3)	BD, FR3
	114939-003/MWL-EB1	Cobalt-60 (10198-40-0)	BD, FR3
	114939-003/MWL-EB1	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	114931-005/MWL-MW7	Tritium (10028-17-8)	BD, FR3
	114939-005/MWL-EB1	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	114931-006/MWL-MW7	Radon-222 (14859-67-7)	J, FR7
	114939-006/MWL-EB1	Radon-222 (14859-67-7)	BD, FR3
SW846 8260B DOE-AL			
	114930-001/MWL-FB2	Acetone (67-64-1)	J-, I3,C3
	114930-001/MWL-FB2	Methylene chloride (75-09-2)	UJ, 15
	114931-001/MWL-MW7	Acetone (67-64-1)	UJ, I3,C3
	114931-001/MWL-MW7	Methylene chloride (75-09-2)	UJ, 15
	114932-001/MWL- TB2	Acetone (67-64-1)	UJ, 13,C3

**AR/COC: 622036, 622039** Page 2 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	114932-001/MWL- TB2	Methylene chloride (75-09-2)	UJ, 15
	114939-001/MWL-EB1	2-Butanone (78-93-3)	J-, C3
	114939-001/MWL-EB1	Acetone (67-64-1)	J-, I3,C3
	114939-001/MWL-EB1	Methylene chloride (75-09-2)	UJ, 15
	114940-001/MWL- TB5	Acetone (67-64-1)	UJ, I3,C3
	114940-001/MWL- TB5	Methylene chloride (75-09-2)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

#### Sandia Data Validation Summary Worksheet

ARCOC#: 622036 and 622039	Site/Project: MWL LTMMI	)	Validation Date: 06/22/2021				
SDG #: 544086	Laboratory: GEL Laborator	ies, LLC	Validator: Linda Thal				
Matrix: Aqueous	# of Samples: 15	CVR present: Yes					
ARCOC(s) present: Yes	Sample Container Integrity:	OK					
Analysis Type:  ⊠Organic ⊠Metals □Genchem	⊠Rad						
Morganic Minerals Menchem							

	Requested Analyses Not Reported												
Client Sample ID Lab Sample ID Analysis Comments													
None													

Hold Time/Preservation Outliers												
Client Sample ID Lab Sample ID Analysis Pres. Collection Date Preparation Analysis Analysis Analysis Analysis Analysis X HT X												
None												

Comments: Collected 05/10/2021

The ARCOCs noted that the trip blank vials were received from the lab with headspace.

EB1 was submitted on ARCOC 622039 in this SDG and was associated with the samples on ARCOC 622035 submitted in another SDG.

One vial for TB2 was received with headspace.

Validated by: X /hal

### Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622036 and 622039	SDG: 544086		Matrix: Aqueous
Laboratory Sample IDs: 544086001, -002, -008, -009, -015			
Method/Batch #s: <b>8260B</b> 2128209	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

			(	Calibratio	on			5X									
Analy (outlies	te rs)	Int.	RF/ Slope	RSD/ r ²	(ICV)/CC	ev	МВ			LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB2 -001	TB2 -008	EB1 -009	TB5 -015
Acetone		NA	✓	25	(-29)		✓	NA		✓	<b>✓</b>	✓	✓	3.75J	✓	6.25J	✓
Bromodichlorometh	ane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	3.09	✓	3.08	✓
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	28	✓	31.4	✓
Dibromochlorometh	nane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	2.11	✓	2.29	✓
2-Butanone	NA ✓ ✓ (-21)			✓	NA		✓	✓	✓	✓	✓	✓	3.27J	✓			
Methylene chloride				✓	NA		✓	✓	✓	✓	✓	✓	✓	✓			
1,1,2,2-Tetrachloroe		NA	✓	✓	(-22)		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
				I	<u>l</u>	Surrogat	te Recov	ery Outli	ers		l		l			l	
Sample ID	1,2-DCA-d4 %	R	Foluene-d8	%R	BFB %R			Sample I	D	1,2-D	CA-d4	%R	Toluene-	d8 %R	BFB %	R	
None																	
							IS Outli	iers						•		•	
	FBZ			Chl-d	15	1,4	4-DCB-o	14									
Sample ID	Area	RT	Are	ea	RT	Are		RT									
None																	

Comments: HTs OK. MS/MSD on -002

VOA9.I 04/09/21 Linear: Methylene chloride

## **Sandia Inorganic Metals Worksheet**

ARCOC #(s): 622036 and 622039 SDG #(s): 544086 Matrix: Aqueous																
ory Sampl	e IDs:	544086	5003, -01	10									I			
/Batch #s:	3005A	A/6020B	<b>3</b> :212658	89/2126	590											
ass Cal: 🏻	Pass	s 🔲 I	Fail	□ NA	A ICF	MS Reso	olution: 🛛 Pa	SS	☐ Fail		□ NA					
	_	Calib	oration			MB mg/L	Blank	LCS %R	MS %R	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV %R	EB1 -010	
Int. ug/L	$\mathbb{R}^2$	ICV	ccv	ICB ug/L	CCB ug/L	mg E	mg/L	7011	7011	RPD	% <b>D</b>	%R	( <b>x50</b> )	/011	010	
							•									
							015		~~~~	~~			-			·
_		%Re	covery		%Recov	ery	%Recover	y				%Recove	ry	%Recovery	9	%Recovery
none									noi	ne						
				l <b>-</b> 010												
	Int. ug/L  mple ID  none	Int. ug/L R²  Int. ug/L R²  Int. ug/L R²  Int. ug/L R²	Int. ug/L R² ICV  Int. ug/L R² ICV  Int. ug/L R² ICV  Int. ug/L R² ICV	Int. ug/L R² ICV CCV  Int. ug/L R² ICV CCV  Is Outling the property of the pro	Southers 60-1	Sample IDs: 544086003, -010	Sory Sample IDs: 544086003, -010	Sory Sample IDs: 544086003, -010	Sample IDs: 544086003, -010	Sample IDs: 544086003, -010	Sample IDs: 544086003, -010     Watch #s: 3005A/6020B:2126589/2126590     ass Cal:   Pass   Fail   NA   ICPMS Resolution:   Pass   Fail     Int.   R²   ICV   CCV   ICB   Ug/L   Ug/L   Ug/L     Ug/L   ICS   Ug/L   Ug/L   Ug/L   Ug/L   Ug/L     Int.   R²   ICV   CCV   ICB   Ug/L   Ug/L   Ug/L     Int.   Ug/L   Ug/L   Ug/L   Ug/L   Ug/L     Int.   Ug/L   Ug/L   Ug/L   Ug/L   Ug/L     Int.   Ug/L   Ug/L   Ug/L	Sample IDs: 544086003, -010	Serial   S	Second   S	Southers 60-125%   Southers 60-125%   Southers 80-120%   Sector   St.	State   Stat

#### Sandia Radiochemistry Worksheet

ARCOC #(s): 622036 and 622039

Laboratory Sample IDs:544086 – see below

Method/Batch#s: EPA 901.1 (gammaspec)/2127390 Samples -004, -011

Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2128449 Samples -005, -012

Method/Batch#s: SM 7500 Rn B (Rn-222)/2126609 Samples -007, -014

Method/Batch#s: EPA 906.0 Modified (tritium)/2132572 Samples -006, -013

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER	EB1		
none												

	Tracer/Carrier Recovery Outliers												
Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R					
NA													

<u>Comments:</u> HTs OK. Note: No precision criteria apply to sample results < the MDA including where one result is > the MDA and the other <.

GS: DUP on -004. The K-40 results for the DUP were rejected by the laboratory due to the peak not meeting identification criteria.

 $Gross\ A/B:\ DUP,\ MS/MSD\ on\ -005.\ Parent\ sample\ 151mL;\ DUP\ 152ml;\ MS/MSD\ 25.2/26.1ml;\ 6X\ dilution.$ 

Rn-222: DUP on -007. LCS/LCSD

Tritium: DUP and MS on -006

# Page 5 of 603

# SDG: 544086 Rev1

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

544086

Internal Lab	1												!	Page 1 of 1
Batch No.	MA				SMO Use	,					101	1	AR/COC	622036
Project Name	e: (	MWL LTMMP	Date Sampl	es Shipped	5/10	12021		SMO A	uthorization		66		☐ Waste Characterization	VALUUU
Project/Task	Manager:	Timmie Jackson	Carrier/Way		33	983	7	4	ontact Phone				RMA	
Project/Task	Number:	195122.10.11.08	Lab Contact		Zac Worsh		-4224				5-844-3132	Released by COC No.		
Service Orde	r:	CF01-21	Lab Destina	tion:	GEL			Send Report to SMO:					The released by COC NO.	
L			Contract No	÷	1983530				•		05-284-2553	}	Bill to: Sandia National Laboratorio	
Tech Area:	****						***************************************						P.O. Box 5800, MS-0154	ss (Accounts Payable),
Building:		Room:	Operation	al Site:									Albuquerque, NM 87185-0154	
Sample No.	Fraction	Sample Location D	etail	Depth (ft)	Date/ Colle	Time ected	Sample Matrix	C Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	1	Lab Sample ID
114930	001	MWL-FB2		NA	5/10/21	09:11	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260B)	001
114931	001	MWL-MW7		496	5/10/21	09:44	GW	G	3x40 mi	HCI	G	SA	VOC-LTMMP (SW846-8260B)	002
114931	002	MWL-MW7		496	5/10/21	09:45	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	003
114931	003	MWL-MW7		496	5/10/21	09:46	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 901	2/4/50PH00000000000000000000000000000000000
114931	004	MWL-MW7		496	5/10/21	09:47	GW	Р	1 L	НИОЗ	G	SA	GROSS-ALPHA/BETA (EPA 900)	005
114931	005	MWL-MW7	WL-MW7			09:48	GW	AG	250 ml	NONE	G	SA	TRITIUM (EPA 906)	006
114931	006	MWL-MW7	*****	496	5/10/21	09:49	GW	G	2x40 ml	NONE	G	SA	RADON (SM7500 Rn B)	700
114932	001	MWL-TB2	·····	NA	5/10/21	09:11	DIW	G	3x40 ml	HCI	G	TB	VOC-LTMMP (SW846-8260B)	008
			***											
						·								
Last Chain		Yes		Sample	Tracking		SMO	Use	Special Ins	tructions/	QC Require	ments:		Conditions on
Validation		☑ Yes		Date Ent	ered:				EDD		☑ Yes			Receipt
Backgroun		☐ Yes	****	Entered I	by:				Turnaround	d Time	☐ 7-Day*		15-Day* ☑ 30-Day	
Confirmato		☐ Yes		QC inits.					Negotiated	TAT				
Sample		ame Signatu		Init.		y/Organizat			Sample Dis	posal	Return	to Client	☑ Disposal by Lab	
i caili i	William G		ely		SNL/08888/				Return Sam	ples By:		***************************************		
HALCHINGIS	Robert Ly		cl-		SNL/08888/				Comments:	Trip Blank	s received fr	om Lab w	ith head space.	
	Zachary T		<del></del>		SNL/08888/									1000
	Denisha S	Sanchez Juish	Sous.	105	SNL/08888/	505-845-782	29/505-20	8-1375						
Delinersiahad					1.7									Lab Use
Relinquished Received by	<u>2</u>		Org. <b>488</b>		5/10/21	Time //	<del></del>	Relinquis				Org.	Date	Time
Relinquished	and a	477	Org. 6		The state of the s	/ Time /		Received			·	Org.	Date	Time
Received by		Ki Ande	Org. 0 6					Relinquished by Org.					Date	Time
	nation	th SMO required for 7 and	Org. ( CL		5/11/21	Time 1	000	Received	d by			Org.	Date	Time
		an omo required rei 7 and	io day i A i											


Page 6 of 603

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

544086

Internal Lab						ø.				•	,			Pose 1 of 1
Batch No.	NA				SMO Use	4					100 1	7	AR/COC	Page 1 of 1 <b>622039</b>
Project Nam		MWL LTMMP	Date Sampl	es Shipped	1: 5/1	0/20	7/	SMO A	uthorization	10 1	16 th	<del></del>		022039
		Timmie Jackson	Carrier/Way	bill No.	73.	198	37	3	ontact Phone			***************************************		
Project/Task	Number:	195122.10.11.08	Lab Contact		Zac Worsh			1			5-844-3132		<b>-</b>	
Service Orde	er: 🦯	CF01-21	Lab Destina	tion:	GEL			Send R	eport to SMC	).	J-044-313Z		Released by COC No.	[] #0.:·
			Contract No	.:	1983530						05-284-255	2		
Tech Area:				<u> </u>					Otophanic	wontano, 3	03-204-200	3	Bill to: Sandia National Laboratori	es (Accounts Payable)
Building:		Room:	Operation	al Site									P.O. Box 5800, MS-0154	
*			Topolation	Depth	Date	Time	Tea	T		In.	T=	<u> </u>	Albuquerque, NM 87185-0154	
Sample No.	Fraction	Sample Location I	Detail	(ft)		ected	Sample Matrix	Type	ontainer Volume	ative	Collection	•	,	
114939	004	MAN EDA		1			MIGGIA	1,700	Volume	alive	Method	Туре	Requested	Sample II
114939	001	MWL-EB1		NA	5/10/21	10:54	DIW	G	3x40 ml	HCI	G	EB	VOC-LTMMP (SW846-8260B)	1009
114939	002	MWL-EB1		NA	5/10/21	10:55	DIW	P	500 ml	ниоз	G	EB	METALS, LTMMP - Cd, Cr, Ni, U	
114939	000	MM 5D4	<del></del>	1	1			<b></b>	300 1111	FINOS	6 -	EB		010
114939	003	MWL-EB1		NA	5/10/21	10:56	DIW	Р	1 L	HNO3	G	EB	GAMMA SPEC, SHORT LIST (EPA 90°	¹⁾  011
114939	004	MWL-EB1		NA	5/10/21	10:57	DIW	Р	1 L	HNO3	G	EB	GROSS-ALPHA/BETA (EPA 900)	
114939	005	MAIL ED4					1 2.00	<u> </u>	<del> </del>	111403	- 6	CD		012
114939	1005	MWL-EB1		NA	5/10/21	10:58	DIW	AG	250 ml	NONE	G	EB	TRITIUM (EPA 906)	013
114939	006	MWL-EB1		NA	5/10/21	10:59	DIW	G	2x40 ml	NONE	G	EB	RADON (SM7500 Rn B)	
114040	004	MAN TOE					Divv		2,401111	NONE	- 6	EB		014
114940	001	MWL-TB5		NA	5/10/21	10:54	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260B)	015
														7.3
						·		3.4						
	<b></b>		<del></del>								•			
Last Chain	:	☐ Yès	·	Sample '	Tracking		SMO	Hen	Special Inc		00 0			
Validation	Rea'd:	☑ Yes	· · · · · · · · · · · · · · · · · · ·	Date Ent			OWIO	Vae	Special Ins	tructions/		ements:		Conditions on
Backgroun		☐ Yes		Entered b					EDD _		☑ Yes			Receipt
Confirmato		☐ Yes							Turnaround		☐ 7-Day*		15-Day* ☑ 30-Day	
Sample		ame Signat		QC inits.					Negotiated			·		
	William G		are	Init.		y/Organizati			Sample Dis		☐ Return	to Client	☑ Disposal by Lab	
, ouiii	Robert Ly	9991111111	ALLY.	WAZ	SNL/08888/5	005-284-330	)//505-23		Return Sam			************		
Members	Zachary T			16	SNL/08888/5	05-844-40	13/505-25	0-7090	Comments:	Trip Blanks	s received fr	om Lab wi	ith head space.	
			7-6		SNL/08888/5						sty.			
Denisha Sanchez SNL/08888/505-845-7829/505-208-1375														
											Lab Use			
Received by	oy 3	1/4 Ele Man	Org. 88 81			Time_//		Relinqui				Org.	Date	Time
Relinquished I		7/1/2 4/	Org 6 (8		5/10/21	Time / j		Received				Org.	Date	Time
Received by	UY C	Har Branch	Org. 0613		1/10/21	Time 2		Relinquis				Org.	Date	Time
	nation	th SMO required for 7 and	Org.	_ · Date	51(1)21	Time [	<u> </u>	Received	l by			Org.	Date	Time
I HOI COIMIN	nauvii 🙌	ui swo required for and	າວαay ⊺AT		1 1									







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 21, 2021

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622037 and 622040

SDG: 544544 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

Five samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. Sample 544544011 was analyzed beyond the method-specified holding time. The associated result for methylene chloride was a detect and will be **qualified J-,H1**. All remaining associated sample results were non-detect and will be **qualified R,H1** due to analysis beyond the holding time.
- 2. The ICAL intercepts were negative with absolute values > the MDL but ≤3X the MDL for methylene chloride and dichlorodifluoromethane. The associated sample results for methylene chloride were detects < 3X the value of the intercept and will be **qualified J-,I5**. The associated sample results for dichlorodifluoromethane were non-detect and will be **qualified UJ,I5**.
- 3. The ICV %D was >20% and positive for methylene chloride. The associated sample results were detects and will be **qualified J+,C2**.
- 4. Methylene chloride was detected at ≤ the PQL in both TBs. All associated sample results were detects ≤ the PQL and will be **qualified 10.0U,B1**, non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved except as noted above in the Summary section.

#### **Instrument Tune**

All instrument tune requirements were met.

#### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows. The ICAL intercepts were positive and > the MDL for dibromochloromethane and bromoform. The dibromochloromethane results for samples -001 and -009 were detects >3X the value of the intercept and will not be qualified. All remaining associated sample results were non-detect and will not be qualified.

The ICV and/or CCV %Ds were >20% with positive bias for dichlorodifluoromethane and carbon tetrachloride. The associated sample results were non-detect and will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows. Acetone and methylene chloride were detected at ≤ the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB 3, sample -001 associated with sample -002. The associated FB result for methylene chloride was qualified non-detect due to TB contamination and was not applied to the associated field sample. The remaining associated sample results were non-detect and will not be qualified.

Acetone and methylene chloride were detected at ≤ the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in the DIW/QC sample, sample -009. The associated DIW/QC sample result for methylene chloride was qualified non-detect due to TB contamination. No field sample results will be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

One TB was submitted with each ARCOC. FB3 was submitted on ARCOC 622037 and was associated with the sample on the same ARCOC. The DIW/QC sample was submitted on ARCOC 622040 and was the DI source water for equipment decontamination.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 06/22/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 17, 2021

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622037 and 622040

SDG: 544544 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

It should be noted that the MS analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

It should be noted that the replicate analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

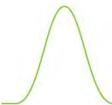
All detection limits were properly reported. The samples were not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Mg, Al and Fe were < those in the ICS A and AB solutions.

#### **ICP Serial Dilution**

The serial dilution met all QC acceptance criteria.


It should be noted that the serial dilution analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### Other QC

The DIW/QC sample was submitted on ARCOC 622040 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 06/22/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 17, 2021

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622037 SDG: 544544 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### Gamma spec and tritium:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### Gamma spec:

1. The K-40 result for sample 544544004 was rejected by the laboratory due to the peak not meeting identification criteria and will be **qualified R,Z2**.

#### Gross alpha/beta:

1. The sample was analyzed undiluted; however, the MS/MSD analyses were performed on an SNL sample from another SDG diluted >5X and considered a dissimilar matrix. The associated sample results were > the MDA and will be **qualified J,MS1.** 

#### **Holding Times and Preservation**

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### **Calibration**

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria except as noted above in the Summary section.

It should be noted that the MS analysis for tritium was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all analytes were performed on SNL samples of similar matrix from other SDGs. No data will be qualified.

#### Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**

The sample was not diluted. All required detection limits were met.

#### Other QC

No other specific issues that affect data quality were identified.

**Reviewed by:** Linda Thal Level: I Date: 06/22/2021

# Sandia Data Validation Summary Worksheet

ARCOC#: 622037 and 622040	Site/Project: MWL LTMMF		Validation Date: 06/17/2021
SDG #: 544544	Laboratory: GEL Laborator	ies, LLC	Validator: Mary Donivan
Matrix: Aqueous	# of Samples: 11	CVR present: Yes	
ARCOC(s) present: Yes	Sample Container Integrity:	OK	
Analysis Type:  ☑ Organic ☑ Metals ☐ Gencl	nem 🔀 Rad		
* **	nem 🛚 Rad		

Requested Analyses Not Reported										
Client Sample ID Lab Sample ID Analysis Comments										
None										

	Hold Time/Preservation Outliers										
Client Sample ID	Lab Sample ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT			
114942-001 MWL-TB6	544544011	VOC	HCl	05/12/21 09:05	NA	05/27/21 00:38	yes	no			

<u>Comments</u>: Collected: 05/12 and 05/13/2021

The ARCOCs noted that the trip blank vials were received from the lab with headspace.

Mary A. Donican

DIW/QC was submitted on ARCOC 622040 and was the DI source water for equipment decontamination.

Validated by:

# Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622037 and 622040	SDG: 544544		Matrix: Aqueous
Laboratory Sample IDs: 544544001, -002, -008, -009, -011			
Method/Batch #s: <b>8260B</b> 2132132	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

			C	Calibratio	on											
Analy (outlie		Int. RF/ RSD/ (ICV)/CCV %D		М	5X (10X MB		LCS %R	MS %R	MSD %R	MS/ MSD RPD	TB3 -008 ¹ TB6 -011 ²	FB3 -001	5X (10X)	DIW/ QC -009		
Acetone		NA	✓	✓	✓	~	/ NA		✓	✓	✓	✓	✓	3.03J	(30.3)	3.51J
Bromoform		+0.64	✓	✓	✓	<b>✓</b>	Y NA		✓	✓	✓	✓	✓	✓	NA	✓
Bromodichlorometh	nane	NA	✓	✓	✓	~	/ NA		✓	✓	✓	✓	✓	3.25	16.3	2.80
Chloroform		NA	✓	✓	✓	~	Y NA		✓	✓	✓	✓	✓	35.1	176	25.5
Dibromochlorometl	nane	+0.38	✓	✓	✓	~	NA NA		✓	✓	✓	✓	✓	2.19	11.0	1.84
Dichlorodifluorome	ethane	-0.90	✓	✓	$(+35), +41^3, +34$ $+33^5$	¹⁴ , ✓	/ NA		✓	✓	✓	✓	✓	✓	NA	✓
Methylene chloride		-1.53	✓	✓	(+24)	~	/ NA		✓	✓	✓	✓	1.83J ¹ 1.85J ²	1.86J	(18.6)	1.86J
Carbon tetrachlorid	tetrachloride NA ✓ ✓ (+2		(+21)	~	/ NA		✓	✓	✓	✓	✓	✓	NA	✓		
Chloromethane		NA	✓	<b>√</b>	+235	·	NA NA		✓	✓	✓	✓	✓	✓	NA	✓
					Sur	rrogate R	ecovery Out	liers								
Sample ID	1,2-DCA-d4 %	R T	oluene-d8	%R	BFB %R		Sample		1,2-D	CA-d4	%R	Toluene-	d8 %R	BFB %	R	
None																
						IS	Outliers									
	FBZ			Chl-d	5	1,4-D	CB-d4									
Sample ID	Area	RT	Are	ea	RT	Area	RT									
None																

Comments: HTs OK, Except for sample -011.
MS/MSD on SNL sample 545362002.
ICAL VOAA.I 05/19/21 Linear: Dichlorodifluoromethane, Methylene chloride, Dibromochloromethane, Bromoform

³Associated with samples -001, -002, -008, -009 ⁴Associated with sample -011 ⁵Associated with MS/MSD

# Sandia Inorganic Metals Worksheet

ARCOC	#(s): 622	037 ar	d 6220	40					SDG #(s	s): 54454	4			Matrix	Aqueous		
Laborato	-																
Method/																	
CPMS Ma	ss Cal: 🛭	Pass			□ NA	A ICP	MS Resolu	ution: 🛛 Pas	SS	☐ Fail	1	□ NA					
Analyte			Calib	oration			MB mg/L	5X Blank	LCS %R	MS %R	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL	LLCCV %R	DIWQC -010	
(outliers)	<b>Int.</b> ug/L	R ²	ICV	ccv	ICB ug/L	CCB ug/L	mg/L	mg/L	/0K	/0K	RPD	%D	%R	ug/L ( <b>x50</b> )	/0K	-010	
none																	
			I	S Outli	ers 60-1	25%							IS O	Outliers 80-	120%		
Sam	ple ID		%Re	covery		%Recov	ery	%Recovery	7	CCV/C	CB ID		%Recove	ery	%Recovery	y	%Recovery
n	one									noi	ne						
Comments	: HTs OK	: DUP/	MS/SD t	performe	d on SNI	L sample 5	44486003.										
Al, Ca, Fe						- sample s											

### Sandia Radiochemistry Worksheet

ARCOC #(s): 622037 SDG #:544544 Matrix: Aqueous Laboratory Sample IDs:544544 - see below Method/Batch#s: EPA 901.1 (gammaspec)/2127390 Sample -004 Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2128449 Sample -005 Method/Batch#s: SM 7500 Rn B (Rn-222)/2127910 Sample -007 Method/Batch#s: EPA 906.0 Modified (tritium)/2132572 Sample -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	I	MS/ MSD RER	Lab Rep. RER				
none														
				Tracer/Ca	rrier Reco	overy Outl	iers							
Sample ID	Tracer/Ca	arrier %	R	Sample II	)	Tracer/	Carrier	%R		Sample	ID	Tracer/	Carrier	%R
NA														

Comments: HTs OK. Note: No precision criteria apply to sample results < the MDA including where one result is > the MDA and the other <.

GS: DUP on SNL sample 544086004. The K-40 results for sample and DUP were rejected by the laboratory due to the peak not meeting identification criteria.

Gross A/B: DUP, MS/MSD on SNL sample 544086005. Parent sample 151mL; DUP 152ml; MS/MSD 25.2/26.1ml; 6X dilution.

Rn-222: DUP on SNL sample 544486007. LCS/LCSD

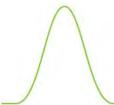
Tritium: DUP and MS on SNL sample 544086006

# SDG: 544544

# **CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY**

544544

Internal Lab	1.											-		D 4 44
Batch No.	NA				SMO Use	ı				,	, ,,	1	AR/CO	Page 1 of 1
Project Nam	e:	MWL LTMMP	Date Sampl	es Shinned		3/20:	71	CNAO A	uthorization:	<del>~</del>	7		···	
		Timmie Jackson	Carrier/Way			3/5/4	$\Delta Z_{}$		ontact Phone	<i>G</i> /V	7-0		Waste Characterization	'n
Project/Task		195122.10.11.08	Lab Contact			am/843-300	4224	JOINIO		•			RMA	
Service Orde		CF01-21	Lab Destina		GEL GEL	ani/043-300	-4224	Cardo			5-844-3132		Released by COC No.	
			Contract No		1983530			Sena K	eport to SMC					
Tech Area:			Contract No	••	1909030			<u> </u>	Stephanie	Montaño/5	05-284-2550	3	Bill to: Sandia National Labora	tories (Accounts Payable)
		In-	-										P.O. Box 5800, MS-0154	
Building:	Т	Room:	Operation	· · · · · · · · · · · · · · · · · · ·	<del></del>		- <del>, </del>	Ţ					Albuquerque, NM 87185-0154	j
Sample No.	Fraction	Sample Location D	)otoil	Depth		/Time	Sample		ontainer	Preserv-	Collection	Sample	Parameter & Meth	nod Lab
	1		zetan	(ft)	Colle	ected	Matrix	Туре	Volume	ative	Method	Туре	Requested	Sample ID
114933	001	MWL-FB3		NA	5/13/21	09:28	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260B)	001
114934	001	MWL-MW8		497	5/13/21	09:35	GW	G	3x40 ml	HCI	G	SA	VOC-LTMMP (SW846-8260B)	002
114934	002	MWL-MW8		497	5/13/21	09:36	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	003
114934	003	MWL-MW8		497	5/13/21	09:37	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA	
114934	004	MWL-MW8		497	5/13/21	09:38	GW	Р	1 L	HNO3	G	SA	GROSS-ALPHA/BETA (EPA 900)	005
114934	005	MWL-MW8		497	5/13/21	09:39	GW	AG	250 ml	NONE	G	SA	TRITIUM (EPA 906)	006
114934	006	MWL-MW8		497	5/13/21	09:40	GW	G	2x40 ml	NONE	G	SA	RADON (SM7500 Rn B)	ω ₇
114935	001	MWL-TB3		NA	5/13/21	09:28	DIW	G	3x40 ml	HCI	G	TB	VOC-LTMMP (SW846-8260B)	
									0.00 1111	1107		! 1.1		<u> </u>
Last Chain	:	☑ Yes		Sample	Tracking		CNIC							
Validation		☑ Yes	······································				SMO	use	Special Ins	tructions/		ements:		Conditions on
Backgroun	***************************************	☐ Yes		Date Ente					EDD		☑ Yes			Receipt
				Entered t					Turnaround	d Time	☐ 7-Day*		15-Day* ☑ 30-Day	
Confirmato		☐ Yes	***************************************	QC inits.					Negotiated	TAT				
Sample		ame Signatu	77	Init.		y/Organizat			Sample Dis	posal	Return	to Client	☑ Disposal by Lat	5
Team	William G		-DUHY		SNL/08888/				Return Sam	ples By:				
Members	Robert Ly		uch		SNL/08888/				Comments:	Trip Blank	received fr	om Lab w	vith head space.	1
	Zachary T		· ——		SNL/08888/								·	
	Denisha S	Sanchez Leusle	Loux		SNL/08888/	505-845-782	29/505-20	8-1375						
	<u> </u>		<u></u>											Lab Use
Relinquished		My Sayor	Org. <b>&amp;&amp;&amp;&amp;</b>		5-13-21	Time 10	15	Relinquis	shed by			Org.	Date	Time
Received by		42: 12-	Org.061		5-13-21	Time 10		Received			······································	Org.	Date	Time
Relinquished-	9y-12/	19 72	Org D (d)		5-13-7	/ Time / /		Relinquis	shed by			Org.	Date	Time
Received by		STAPETHING	Org.	Date (	5 14 2	/ Time	-	Received			****	Org.	Date	Time
*Prior confire	nation wit	h SMO required for 7 and	15 day TAT					***************************************			***************************************	<u> </u>	Date	LIINE


# Page 6 of 508 SDG: 544544

# **CONTRACT LABORATORY** ANALYSIS REQUEST AND CHAIN OF CUSTODY

544544

Internal Lab													•	<i></i>	,	1 1		
Batch No.	NA					SMO Use	. /					10	//				Page 1	
Project Nam	e:l'	MWL LTMM	5	Date Sampl	es Shipped		3/202	7 (	ISMO A	uthorization:	$\sim$	<del>, G//</del>		· · · · · · · · · · · · · · · · · · ·		AR/COC	6	22040 /
		Timmie Jack		Carrier/Way		43	Hi w	<del>, `</del>		Contact Phon	DAL	14		¬,		racterization		
Project/Task	Number:	195122.10.1	1.08	Lab Contact	t	Zac Worsh	am/843-300	1-4224	1000 C			5-844-3132		1 -	MA			
Service Orde	er:	CF01-21		Lab Destina	ition:	GEL			Send F	Report to SM	<u>ماداالاامانال</u> ۲۰	3-044-3132			eleased b	y COC No.		
<u></u>				Contract No	ı."	1983530				Stephanie I		05-284-255	3	Dill to: Co	ondin Nat			4º Celsius
Tech Area:		7							J			207 200			: 5800, MS		ries (Acco	ounts Payable
Building:	r	Room:		Operation	al Site:									1				
Sample No.	Fraction	Samp	le Location De	etail	Depth (ft)		/Time ected	Sample Matrix	C Type	ontainer Volume	Preserv-	Collection Method		Aibuquei	Paramet	87185-0154 ter & Metho	d	Lab
114941	001	DIW/QC			NA	5/12/21	09:05	DIW	G	3x40 ml	HCI	G	Type FB	VOC-LTMN		quested 6-8260B)		Sample II
114941	002	DIW/QC			NA	5/12/21	09:06	DIW	P	500 ml	HNO3	G	FB	<del> </del>		d, Cr, Ni, U		009
114942	001	MWL-TB6			NA	5/12/21	09:05	DIW	G	3x40 ml	HCI	G	TB	<del> </del>		-8260B) /	***************************************	010
										0X40 118	HO	G	10		(0,,0,0	32308) +		1011
														<u> </u>				
		***************************************	···						***									
			······································						***************************************								***************************************	
						*****			<del></del>									
Last Chain:		□ Yes															***************************************	
Validation F		□ Yes			Sample			SMO	Use	Special Inst	tructions/	QC Requir	ements:				Cond	litions on
Background		□ Yes			Date Ent					EDD		☑ Yes					Re	eceipt
Confirmato		□ Yes			Entered to					Turnaround		□ 7-Day*		15-Day*	. 🗵	30-Day		•
Sample		me	Signatur	e	Init.		//Organizatio	an/Dhana		Negotiated								
	Villiam Gi	ibson //	Wilder	1,21		SNL/08888/	505-284-330	77/505.23		Sample Dis Return Sam		□ Return	to Client	Ø	Dispo	sal by Lab		
	Robert Lyı	nch Z	vistant.	EL_		SNL/08888/				Comments:		0 500000000		- 711- 1				
	Denisha S	anchez 🖟	uisto S	see &		SNL/08888/				Comments.	прышк	s received i	rom Lab (	with head	space.			
-								· · · · · · · · · · · · · · · · · · ·										
Relinquished t	<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>	<del>-/d</del>	9														Lat	o Use
	Danny	-Su Su				5-12-21							Org.	<del></del>	Date		Time	
Relinquished t	NANY	Yerron		0rg.0618		1/12/2021	Time 10		Received	d by			Org.		Date		Time	
Received by	KIN	\$170 B		Org. <u>O(a)</u> Org.	Ø Date ₽	43/2	7	900F					Org.		Date		Time	
	ation wit	h SMO requi	red for 7 and 1	15 dav TAT	Date	456	Time	(	Received	d by			Org.		Date		Time	
	-	•	- · · · <del>- ·</del> ·			-												







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 23, 2021

To: File

From: Linda Thal

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622038 SDG: 544486 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260B (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercept was negative with an absolute value > the MDL but ≤3X the MDL for methylene chloride. The associated sample results were detects <3X the absolute value of the intercept and will be **qualified J-,15**.
- 2. The initial calibration intercept was negative with an absolute value > the MDL but ≤3X the MDL for dichlorodifluoromethane. The associated sample results were non-detect and will be qualified UJ,15.
- 3. The ICV %D was >20% and positive for methylene chloride. The associated sample results were detects and will be **qualified J+,C2**.
- 4. Methylene chloride was detected at ≤ the PQL in TB4, sample 544486008, associated with samples -001 and -002. The associated sample results were detects ≤ the PQL and will be **qualified 10U,B1**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration intercepts were positive and > the MDL for dibromochloromethane and bromoform. The dibromochloromethane result for sample -001 was a detect >3X the value of the intercept and will not be qualified. All remaining associated sample results were non-detect and will not be qualified.

The ICV and/or CCV %Ds were >20% and positive for dichlorodifluoromethane and carbon tetrachloride. The associated sample results were non-detect and will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as noted above in the Summary section and as follows.

Acetone and methylene chloride were detected at ≤ the PQL and chloroform, dibromochloromethane and bromodichloromethane were detected at > the PQL in FB4, sample -001 associated with sample -002. The associated methylene chloride results in the FB and field sample were qualified non-detect due to TB contamination. The remaining associated sample results were non-detect and will not be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

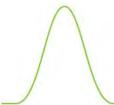
All LCS acceptance criteria were met.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.


#### Other QC

A TB was submitted on the ARCOC. FB4 was submitted on ARCOC 622038 and was associated with the sample on the same ARCOC.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/23/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 23, 2021

To: File

From: Linda Thal

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622038 SDG: 544486 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The sample was not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Ca, Mg, Al and Fe were < those in the ICS A and AB solutions.

#### ICP Serial Dilution

The serial dilution met all QC acceptance criteria.

#### Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/23/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: June 23, 2021

To: File

From: Linda Thal

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622038 SDG: 544486 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### Gamma spec and tritium:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### Gross alpha/beta:

1. The sample was analyzed undiluted; however, the MS/MSD analyses were performed on an SNL sample from another SDG diluted >5X and considered a dissimilar matrix. The associated sample results were > the MDA and will be **qualified J,MS1.** 

#### **Holding Times and Preservation**

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### Calibration

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria except as noted above in the Summary section.

It should be noted that the MS analysis for tritium was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all target analytes *except* Rn-222 were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**

The sample was not diluted. All required detection limits were met.

#### Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Mary Donivan Level: I Date: 06/23/2021



# Sample Findings Summary



**AR/COC: 622038** Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310			
	114937-004/MWL-MW9	ALPHA (12587-46-1)	J, MS1
	114937-004/MWL-MW9	BETA (12587-47-2)	J, MS1
EPA 901.1			
	114937-003/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	114937-003/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	114937-003/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	114937-003/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	114937-005/MWL-MW9	Tritium (10028-17-8)	BD, FR3
SW846 8260B DOE-AL			
	114936-001/MWL-FB4	Dichlorodifluoromethane (75-71-8)	UJ, 15
	114936-001/MWL-FB4	Methylene chloride (75-09-2)	10UJ, B1,I5,C2
	114937-001/MWL-MW9	Dichlorodifluoromethane (75-71-8)	UJ, 15
	114937-001/MWL-MW9	Methylene chloride (75-09-2)	10UJ, B1,I5,C2
	114938-001/MWL-TB4	Dichlorodifluoromethane (75-71-8)	UJ, 15
	114938-001/MWL-TB4	Methylene chloride (75-09-2)	J, I5,C2

All other analyses met QC acceptance criteria; no further data should be qualified.

# Sandia Data Validation Summary Worksheet

ARCOC#: 622038		Site/Projec	t: MWL LTMM	P			Validation 1	Date: 06/23/2021	l
SDG #: 544486		Laboratory	r: GEL Laborator	ries, LLC			Validator: I	inda Thal	
Matrix: Aqueous		# of Sampl	es: 8	CVR presen	nt: Yes				
ARCOC(s) present: Yes		Sample Co	ontainer Integrity	: OK					
Analysis Type:  ☑Organic ☑Metals ☐Ge	enchem	⊠Rad							
			Requested .	Analyses No	t Reported				
Client Sample ID	Lab Samp	ole ID	Analysis	1		Cor	nments		
None									
			Uold Time	/Preservatio	an Outliers				
Client Sample ID	Lab Sample	e ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis<2 X HT	Analysis≥2 X HT
None									
Comments: Collected 05/12/2021									
The ARCOC noted that the trip b	lank vials were r	eceived from	the lab with hea	adspace.					
Validated by: X /U	al								

# Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622038	Matrix: Aqueous		
Laboratory Sample IDs: 544486001, -002, -008			
Method/Batch #s: <b>8260B</b> 2132132	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

		(	Calibratio	on												
Analyte (outliers)	Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	CV	MB	5X (10X) MB		LCS %R	MS %R	MSD %R	MS/ MSD RPD	TB4 -008	5X (10X)	FB4 -001	5X (10X)
Acetone	NA	<b>√</b>	✓	✓		✓	NA		✓	✓	✓	✓	✓	NA	3.82J	(38.2)
Bromodichloromethane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	NA	2.86	14.3
Chloroform	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	NA	26.4	132
Dibromochloromethane	+0.38	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	NA	1.91	9.55
Methylene chloride	-1.53	✓	✓	(+24)		✓	NA		✓	✓	✓	✓	1.75	(17.5)	1.86J	(18.6)_
Dichlorodifluoromethane	-0.895	✓	✓	(+35), +41,	+331	✓	NA		✓	✓	✓	✓	✓	NA	✓	NA
Chloromethane	NA	✓	✓	+231		✓	NA		✓	✓	✓	✓	✓	NA	✓	NA
Bromoform	+0.64	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	NA	✓	NA
Carbon tetrachloride	NA	✓	✓	(+21)		✓	NA		✓	✓	✓	✓	✓	NA	✓	NA
			1		Surroga	ate Recov	very Outli	ers			1		1		1	
Sample ID 1,2-DCA-d4 9	6R T	oluene-d8	%R	BFB %R			Sample II	D	1,2-D	CA-d4	%R	Toluene-	d8 %R	BFB %	R	
None																
						IS Outl	iers									
FBZ			Chl-d	15	1,	,4-DCB-	d4									
Sample ID Area	RT	Arc	ea	RT	Ar	rea	RT									
None																

Comments: HTs OK.
MS/MSD on SNL sample 545362002¹
VOAA.I 05/19/21 Linear: Dichlorodifluoromethane; Methylene chloride; Dibromochloromethane; Bromoform

# **Sandia Inorganic Metals Worksheet**

ARCOC	#(s): 622	2038							SDG #(	s): 54448	6			Matrix	Matrix: Aqueous				
Laborato	ry Sampl	e IDs:	544486	5003										<b>,</b>					
Method/l	Batch #s:	3005	A/6020E	<b>3</b> : 21303	81/2130	0382													
ICPMS Ma	ss Cal: 🛭	☑ Pas	s 🔲 ]	Fail	□ NA	A ICP	MS Res	solution: 🛛 Pa	iss	☐ Fai	1	□ NA							
Analyte (outliers)	Int. ug/L	R ²	Calibration  ICV CCV ICB CCB ug/L ug/L		<b>MI</b> mg/		LCS %R	MS %R	Lab Rep RPD	Serial Dil. %D	ICS AB %R	ICS A ±MDL ug/L (x50)	LLCCV %R						
none	# ₆ , 2					#B/ Z													
попе																			
		l	II.	II.			l	<b>"</b>	l	1					1				
			I	S Outli	ers 60-1	125%							IS O	utliers 80-	120%				
Sam	ple ID		%Re	ecovery		%Recov	ery	%Recover	y	CCV/C	CB ID	'	%Recove	ry	%Recovery	%J	Recovery		
n	one									no	ne								
Comments:					d on -003	3.													

### Sandia Radiochemistry Worksheet

ARCOC #(s): 622038

Laboratory Sample IDs: 544486 – see below

Method/Batch#s: EPA 901.1 (gammaspec)/2127390 Sample -004

Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2128449 Sample -005

Method/Batch#s: SM 7500 Rn B (Rn-222)/2127910 Sample -007

Method/Batch#s: EPA 906.0 Modified (tritium)/2132572 Sample -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	MS/ MSD RER	Lab Rep. RER				
none													
Tracer/Carrier Recovery Outliers													

	Tracer/Carrier Recovery Outliers												
Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R	Sample ID	Tracer/Carrier	%R					
NA													

 $\underline{Comments:} \ \ HTs \ OK. \ Note: No \ precision \ criteria \ apply \ to \ sample \ results < the \ MDA \ including \ where \ one \ result \ is > the \ MDA \ and \ the \ other <.$ 

GS: DUP on SNL sample 544086004. The K-40 result for the DUP was rejected by the laboratory due to the peak not meeting identification criteria.

Gross A/B: DUP, MS/MSD on SNL sample 544086005. Parent sample 151mL; DUP 152ml; MS/MSD 25.2/26.1ml; 6X dilution.

Rn-222: DUP on -007. LCS/LCSD

Tritium: DUP and MS on SNL sample 544086006

Page 1 of 1

## **CONTRACT LABORATORY** ANALYSIS REQUEST AND CHAIN OF CUSTODY

544486

SD	Internal Lab	)
$\ddot{\Omega}$	Batch No.	
		•

Batch No.						SMO Use									AR/COC	622	2038
Project Name	<del></del>	MWL LTMN	ЛP	Date Sample	s Shipped:				SMO A	uthorization:				□ v	Vaste Characterization		
Project/Task		Timmie Jac	kson	Carrier/Wayl	oill No.				SMO Co	ontact Phone	e:			□ R	RMA		
Project/Task	Number:	195122.10.	11.08	Lab Contact:		Zac Worsha	m/843-300	-4224		Wendy Pa	lencia/505	5-844-3132		□ R	teleased by COC No.		
Service Orde	r;	CF01-21		Lab Destinat	ion:	GEL			Send Re	eport to SMC	):					☑ 4	° Celsius
				Contract No.		1983530				Stephanie Montaño/505-284-2553					Bill to: Sandia National Laboratories (Accounts Payable),		
Tech Area:														P.O. Box	x 5800, MS-0154		
Building:		Room:		Operation	al Site:									Albuque	rque, NM 87185-0154		
Sample No.	Fraction	San	nple Location D	ation Detail		Date/Time Collected		Sample Matrix	Container Type Volume		Preserv- ative	Collection Method	Sample Type	Parameter & Metho Requested		•	Lab Sample ID
114936	001	MWL-FB4	. <		NA	5/12/21	09:04	DIW	G	3x40 ml	HCI	G	FB	VOC-LTM	MMP (SW846-8260B)		001
114937	001	MWL-MW	'9		497	5/12/21	09:54 🖍	GW	G	3x40 ml	HCI	G	SA	VOC-LTM	MMP (SW846-8260B)		002
114937	002	MWL-MW	'9		497	5/12/21	09:56	GW	Р	500 ml	HNO3	G	SA	METALS,	LTMMP - Cd, Cr, Ni, U		003
114937	003	MWL-MW	<b>'</b> 9		497	5/12/21	09:57 🗸	GW	Р	1 L	HNO3	G	SA	GAMMA :	SPEC, SHORT LIST (EPA 90	1)	004
114937	004	MWL-MW	9		497	5/12/21	09:58 <	GW	Р	1 L	HNO3	G	SA	GROSS-A	GROSS-ALPHA/BETA (EPA 900)		005
114937	005	MWL-MW	/9		497	5/12/21	09:59 /	GW	AG	250 ml	NONE	G	SA	TRITIUM	(EPA 906)		006
114937	006	MWL-MW	<b>'</b> 9		497	5/12/21	09:55 🗸	GW	G	2x40 ml	NONE	G	SA	RADON (SM7500 Rn B)			700
114938	001	MWL-TB4	<u> </u>		NA	5/12/21	09:04 ~	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTM	MMP (SW846-8260B)		008
							***************************************										
Last Chain	•	□ Yes			Sample	Tracking		SMO	Use	Special Ins	structions	/QC Requi	rements:			Condi	tions on
Validation	Req'd:	Yes			Date En	tered:				EDD		☑ Yes				Re	ceipt
Backgroun	d:	□ Yes			Entered	by:				Turnaroun	d Time	□ 7-Day	* 🗆	15-Day	/* ☑ 30-Day		
Confirmato	ry:	□ Yes			QC inits					Negotiated	I TAT				Ė		
Sample	N	lame	Signat		Init.		y/Organizat			Sample Dis	sposal	□ Returi	ı to Client		☑ Disposal by Lab		
Team	William	Gibson	askers	8M		SNL/08888	/505-284-33	07/505-2	39-7367	Return Sar							
Members	Robert L	ynch	100/3/	ich	12	SNL/08888	/505-844-40	13/505-2	50-7090	Comments:	: Trip Blan	ks received	from Lab	with he	ad space.		
	Denisha	Sanchez	Durch &	ou &	IOR .												
	Zachary	Tenorio	320		31	SNL/08888	505-845-86	36/505-2	59-5765								
					1	<u> </u>										Lat	Use
Relinquished			Lus			5-12-2			Relinqui	ished by			Org.		Date	Time	~~~~
Received by	Dan	y Ferrer	<u> </u>	Org. 0618	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	5/12/2021			Receive				Org.		Date	Time	****
Relinquished				Org.0618		5/12/202			Relinqu	ished by		***************************************	Org.		Date	Time	***************************************
Received by			TOUL	Org.	Date	5/13/2	?! Time	750	Receive	ed by			Org.		Date	Time	
*Prior confir	Prior confirmation with SMO required for 7 and 15 day TAT																

# Contract Verification Review Forms Mixed Waste Landfill

# **Groundwater Monitoring May 2021**

AR/COC Number	Sample Type
622035	Environmental & Quality Control
622036	Environmental & Quality Control
622037	Environmental & Quality Control
622038	Environmental & Quality Control
622039	Quality Control
622040	Quality Control

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this Annex.

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622035

Analytical Lab GEL

**SDG No.** 544248

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622035

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Χ		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Χ		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

# 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	Dichlorodifluoromethane failed recovery limits for LCS (QC1204827555)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met		Χ	Dichlorodifluoromethane failed recovery limits for PS/PSD (QC1204827557/558). Chloroethane failed recovery limits for PS (QC1204827557).
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622035 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, chloroform and dibromochloromethane detected in MWL-FB1
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622035 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Х		
	d) ICP serial dilution provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622035 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	Item	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Χ		

#### 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. An	alysis Problems/Comments/Resolutions
------------------------	--------------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 06-16-2021 14:23:00

Closed by: Wendy Palencia Date: 06-16-2021 14:23:00

ARCOC No. 622035 5 of 5

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622036 & 622039

**Analytical Lab** GEL

**SDG No.** 544086

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	ITEM	Complete?		If no, explain
No.		Yes	No	η πο, εχριαίη
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	Item	Complete?		If no, explain
No.		Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622036 & 622039

Line	. Item	Complete?		If no, explain
No.		Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Χ		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

# 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622036 & 622039 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		X	Bromodichloromethane, chloroform and dibromochloromethane detected in MWL-FB2. Acetone, 2-butanone, bromodichloromethane, chloroform and dibromochloromethane detected in MWL-EB1.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Χ		
	b) Initial calibration provided	Χ		
	c) Continuing calibration provided	Χ		
	d) Internal standard performance data provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622036 & 622039 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Х		
	e) Instrument run logs provided	Χ		

ARCOC No. 622036 & 622039 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

# 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Based on the review, this data package is complete.  $\odot$  Yes  $\bigcirc$  No

Reviewed by: Wendy Palencia Date: 06-16-2021 15:53:00

Closed by: Wendy Palencia Date: 06-16-2021 15:53:00

ARCOC No. 622036 & 622039 5 of 5

# **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622037 & 622040

Analytical Lab GEL

**SDG No.** 544544

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	X		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

# 2.0 Analytical Laboratory Report

Line	Itom		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622037 & 622040 1 of 5

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met		Χ	VOC sample 114942-001 analyzed past holding time
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

# 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	Х		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622037 & 622040 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, chloroform, dibromochloromethane and methylene chloride detected in MWL-FB3 and DIW/QC. Methylene chloride detected in MWL-TB3 and MWL-TB6.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	Item	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Χ		
	b) Initial calibration provided	Χ		
	c) Continuing calibration provided	Χ		
	d) Internal standard performance data provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622037 & 622040 3 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622037 & 622040 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

# 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Based on the review, this data package is complete.  $\odot$  Yes  $\bigcirc$  No

Reviewed by: Wendy Palencia Date: 06-16-2021 13:17:00

Closed by: Wendy Palencia Date: 06-16-2021 13:17:00

ARCOC No. 622037 & 622040 5 of 5

# **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622038

Analytical Lab GEL

**SDG No.** 544486

In the tables below, mark any information that is missing or incorrect and give an explanation.

# 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	es No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Χ		

# 2.0 Analytical Laboratory Report

Line	Item		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622038 1 of 5

Line	ltem	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

# 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622038 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples	X		
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Acetone, bromodichloromethane, chloroform, dibromochloromethane and methylene chloride detected in MWL-FB4. Methylene chloride detected in MWL-TB4.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622038 3 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622038 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	Item	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Χ		

# 5.0 Data Anomaly Report

Line No.	Item		No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 06-16-2021 11:42:00

Closed by: Wendy Palencia Date: 06-16-2021 11:42:00

ARCOC No. 622038 5 of 5

# Field Sampling Forms November 2021 Groundwater Monitoring

SNL/NM Project Name: MWL		
Well ID: MWL-BW2	Date: 11/01/21 Date:	
Pump Method: Portable	Pump Depth: 496'	

#### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
48   83	0843	Start							
484.19	0911	5	18.25	673.80	196.8	7.32	0.33	19.43	1.64
18512	0932	10	19.05	672.65	168.3	7.37	1.88	20.62	1.72
186.44	0952	15	20.10	699.56	153-9	7.36	1.42	18.43	1.50
487.29	1004	18	20.28	705.87	147.0	7.36	1.44	21.92	1.78
487.79	1012	20	20.25	704.20	147.1	7.37	1.62	24.23	1.97
188.35	1019	22	20.13	700.13	148.3	7.38	2.09	27.74	2.27
488.84	1027	24	20.17	701.45	150.5	738	2-21	33.71	2.76
189.34	1036	26	20.13	698-65	153.5	7.39	2.02	38.70	3.15
48951	1040	27	20.18	698.30	154.4	7.40	1.86	39.00	3.17
489.60	1045	28	20.20	697.18	155.6	7.41	1.92	37.86	3.06
489.71	1050	29	20.23	195.65	156-9	7.41	1.88	36.58	2-97
489.84	1055	30	20.62	702.26	157.5	7.42	1.90	35.22	2.84
	1056		SA	mplin	ra-				
				1	0				

Comments:

~ 2 gals purged from tubing @ <u>0852</u>

SNL/NM Project Name: MWL		
Well ID: MWL-MW7	Date: 11/02/21	Date:
Pump Method: Portable	Pump Depth: 496	

# **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
490.08	0839	Start							
491.19	0855	1	17.46	545.65	181.3	7.52	0.19	90.80	7.77
491.40	0900	2	17.76	565.20	178.4	7.54	6 ZZ	89.44	7.6
491.58	0905	3	18.19	561.54	176.5	7.56	0.40	89.73	7.56
491.74		4	18.70	569.28	175.6	7.56	50.62	90.09	7.50
491.86	0915	5	19.04	574.15	175.7	7.57	0.45	90.49	7.49
191.95	0920	6	19.38	578.32	175.1	7.57	0.56	90.73	7.47
192.04	0925	7	19.56	57994	174.6	7.57	0.28	90.36	7.41
192.07	0930	8	19.25	574.66	1747	7.56	0.24	88.98	735
49211	0935	9	18.91	570.86	1730	7.57	0.27	87-92	7.30
192.14	0940	10	18.73	568.43	172.2	7.58	0.25	87.99	7.34
	0941		SAV	nolino	1-				->
				7	)				

Comments:

^{~ 2} gals purged from tubing @0849

SNL/NM Project Name: MWL							
Well ID: MWL-MW8	Date: 11/04/21	Date:					
Pump Method: Portable	Pump Depth: 497						

#### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
191.68	0838	Start				***			
	0857	1	17.71	542.65	252.3	7.47	6.38	6930	5.94
493.71	0903	2	17.96	546.36	237.5	7.57	0.42	64.42	5.50
194.18		3	18.38	549.84	225.3	7.54	0.57	64.33	5.44
194.47		4	18.68	550.92	215.6	7.55	0.61	65.12	5.48
494.81		5	18.87	555:50	207.3	7.55	0.54	64.32	5.39
195.15	0924	6	18.99	558.89	200.6	7.55	0.66	62.66	5.93
495.47	0930	7	19.20	568.20	194.0	7.55	0.52	58.53	487
495.76		8	19.28	572-88	186.4	7.54	0.68	58.03	481
496.04	0943	9	19.31	577.26	178.3	7.53	0.90	59.80	4.38
	0944	/	SAM	nplne					-
				/	0				
					1				

Comments:

~ 2 gals purged from tubing @ 085)

DIW QC LOT # 102001

SNL/NM Project Name: MWL		
Well ID: MWL-MW9	Date: 11/03/21	Date:
Pump Method: Portable	Pump Depth: 497'	

#### **PURGE MEASUREMENTS**

Depth to Water (ft)	Time (24 hr)	Vol. (L/gal)	Temp (°C)	SC (µS/cm)	ORP (mV)	рН	Turbidity (NTU)	DO (%)	DO (mg/L)
491.29	0836	Start							
493.06	0857	1	18.42	551.81	281.9	7.44	0.6	67.44	5.62
193.49	0856	2	18.76	56650	253.7	7.47	0.45	45.60	3.75
493.89	0901	3	19.24	571.15	230.8	7.48	0.41	31.76	2.63
194.37	0906	4	19.73	576.09	214.5	7.49	0.41	28.18	2.31
494.72	6911	5	20.08	578.24	204.3	7.50	0.66	27.08	2.21
195.09	0917	6	20.34	581.74	195.3	7.50	0.81	25.81	2.09
495.45	0921	7	20.46	585.90	187.1	7.49	1.18	23-30	1.88
495.69	0928	8	20.42	586.85	178.4	7.49	3.06	21.57	1.75
195.91	0936	9	20.46	589.71	171.5	7.49	3-96	25.18	2-04
196.16	0944	10	20.47	593.70	165.9	7.49	3.14	22.03	1.78
	0945		SAT	nplin	a —				
				1	0				
			4						
				15					

Comments:

~ 2 gals purged from tubing @ 0848

1. Time (24 hr):

2. Time (24 hr): 3. Time: (24 hr): 4. Time (24 hr):

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2 SNL/NM Project Name: MWL Calibrations done by: Date: 11/01/21 R Lynch Make & Model: In-Situ Agua Troll 600 Sonde (S/N) with DO, Ec, pH, ORP, and temperature probes: 571114 Other (SN): NA pH Calibration/Check pH Calibrated to (std): pH sloped to (std): 10.00 7.00 Reference value: 4.00 7.00 10.00 Value Value Value Temp Temp Temp 21.78 1. Time (24 hr): 7.02 22.25 31.98 4.00 10.04 2. Time (24 hr): 4.00 22.99 23.07 7.01 10.02 23.02 3. Time (24 hr): 4. Time (24 hr): Standard Lot No .: 1GC758 1GD1201 1GE278 Expiration Date .: MAR/23 APR/23 MAY/23 SC Calibration/Check **ORP Calibration/Check** 1413 uS/cm @ 25 C 220 mV Reference Value: Reference Value: Value Value Temp Temp 314.3 24.14 1. Time (24 hr): 21.47 1. Time (24 hr): 0625 220.0 2. Time (24 hr): 1306 342.4 2. Time (24 hr): 1305 223.4 22.74 22,01 3. Time (24 hr): 3. Time (24 hr): 4. Time (24 hr): 4. Time (24 hr): Standard Lot No.: 1GE263 MAY/22 Standard Lot No.: 1GD902 JAN/22 Expiration Date .: Expiration Date.: DO Calibration/Check 81% air saturation @ 5200 ft. Atmospheric Pressure in Hg Calibration Value:

7.02

100.28

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name:	MWL		11.71							
Calibration done by: R Ly	ynch		Date: 11/01/21							
TURBIDIMETER										
Make & Model: HACH	2100Q		Serial No. S/I	√ 21090D000519						
Reference Value	10		20	100	800					
Standard Lot No.	A1215R	Д	.1215R	A1205	A1243					
1. Time (24 hr): 0626	9.98		21.1	111	876					
2. Time (24 hr): 3 0 3	9.99	20.5		109	893					
3. Time (24 hr):										
4. Time (24 hr):										
Comments:										
				4						

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MVVL						-
Calibrations done by: R L	ynch.		Date: 1	1/02/21		
Make & Model: In-Situ Agu	a Troll 600					
Sonde (S/N) with DO, Ec, pH, Ol		e probes: 571114				
Other (SN): NA						
		pH Cal	ibration/Check			
pH Calibrated to (std): NA			pH sloped to (st	d): NA		
Reference value:	4	4.00		7.00	10	0.00
	Value	Temp	Value	Temp	Value	Temp
1. Time (24 hr): 1624	4.00	22.68	7.01	21.72	10.02	2177
2. Time (24 hr): 1254	3.99	22.20	7.02	22.25	10.03	22.22
3. Time (24 hr):						
4. Time (24 hr):						
Standard Lot No.:	1GC7	58	1GD1	201	1GE278	V
Expiration Date.:	MAR/2	23	APR/23 MAY/23			
SC Calib	oration/Check			ORP Calib	ration/Check	
Reference Value: 1413 us	S/cm @ 25 C		Reference Value	220 mV		
	Value	Temp		1	Value	Temp
1. Time (24 hr): 0622	1321-3	21.56	1. Time (24 hr):	0621	223.8	22-05
2. Time (24 hr): 1259	1334.2	22.18	2. Time (24 hr):	1251	225 4	22.21
3. Time (24 hr):			3. Time (24 hr):			
4. Time (24 hr):			4. Time (24 hr):			
Standard Lot No.: 1GE263	Expiration Date	.: MAY/22	Standard Lot No	o.: 1GD902	Expiration Date.:	JAN/22
		DO Ca	libration/Check			
Calibration Value:	81% air satur	ration @ 5200 ft.		Atmospheric	Pressure in Hg	
1. Time (24 hr): 0620 2. Time (24 hr): 1250	100	.53		26.87		
2. Time (24 hr): 1250	99	. 83		27.14		
3. Time: (24 hr)						
4. Time (24 hr):						

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL								
Calibration done by: R Ly	Calibration done by: R Lynch Date: 11/02/21							
TURBIDIMETER								
Make & Model: HACH	2100Q	Se	erial No. S/	√ 21090D00	00519			
Reference Value	10	2	0	100		800		
Standard Lot No.	A1215R	A12	15R	A1205		A1243		
1. Time (24 hr):	9.95	19.7		19.7		101		834
2. Time (24 hr):	9.98	19.9		102		829		
3. Time (24 hr):								
4. Time (24 hr):								
Comments:			· ·					
,								

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MWL								
Calibrations done by: R L	Calibrations done by: R Lynch							
Make & Model: In-Situ Aqua	a Troll 600							
Sonde (S/N) with DO, Ec, pH, OR	P, and temperature	probes: 571114						
Other (SN): NA								
		pH Cali	bration/Check					
pH Calibrated to (std): NA			pH sloped to (std	): NA				
Reference value:	4.0	00	7.	.00	10	0.00		
	Value	Temp	Value	Temp	Value	Temp		
1. Time (24 hr): 0629	398	21-25	7.01	21.30	10.01	21.18		
2. Time (24 hr): 1324	3.99	22.09	7.00	22.12	10.03	22.16		
3. Time (24 hr):		"						
4. Time (24 hr);								
Standard Lot No.:	1GC758 1GD1201 1GE278							
Expiration Date.:	APR/2	APR/23 MAY/23						
SC Calib	ration/Check		ORP Calibration/Check					
Reference Value: 1413 uS	3/cm @ 25 C		Reference Value: 220 mV					
	Value	Temp			Value	Temp		
1. Time (24 hr): 0636	1321.1	21.34	1. Time (24 hr):	0628	220.8	21.48		
2. Time (24 hr): 13 29	1340.1	22.11	2. Time (24 hr):	1323	220.8	22.16		
3. Time (24 hr):			3. Time (24 hr):					
4. Time (24 hr):			4. Time (24 hr):					
Standard Lot No.: 1GE263	Expiration Date.:	MAY/22	Standard Lot No.	: 1GD902	Expiration Date.:	JAN/22		
		DO Cal	ibration/Check					
Calibration Value: 81% air saturation @ 5200 ft.			Atmospheric Pressure in Hg					
1. Time (24 hr): 06 27	me (24 hr): 06 27 99.38			26.97				
2. Time (24 hr):   322	1322 99.73			27.06				
3. Time: (24 hr)								
4. Time (24 hr):				•				

# GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL								
Calibration done by: R Ly	/nch		Date: 11/0	03/21				
TURBIDIMETER								
Make & Model: HACH 2100Q Serial No. S/N 21090D000519								
Reference Value	10		20	100	800			
Standard Lot No.	A1215R	А	1215R	A1205	A1243			
1. Time (24 hr): 0626	9.98	19.9		19.9		99.6	829	
2. Time (24 hr):	9.99	19.7		10)	833			
3. Time (24 hr):								
4. Time (24 hr):								
Comments:								

#### GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG Page 1 of 2

SNL/NM Project Name: MVVL						1				
Calibrations done by: R L	Calibrations done by: R Lynch				Date: 11/04/21					
Make & Model: <u>In-Situ Aqu</u> Sonde (S/N) with DO, Ec, pH, Ol Other (SN): NA		probes: 571114			-					
		pH Cali	bration/Check							
pH Calibrated to (std): NA			pH sloped to (sto	I): NA						
Reference value:	4.	00	7	7.00	10	0.00				
	Value	Temp	Value	Temp	Value	Temp				
1. Time (24 hr): 0648	3.98	22.21	7.01	22.27	10:01	22.25				
2. Time (24 hr): 1303	3.99	22.31	7.01	22.35	10-00	22.29				
3. Time (24 hr):					13-1					
4. Time (24 hr):										
Standard Lot No.:	1GC75	8	1GD1201 1GE278							
Expiration Date.:	on Date.: MAR/23 APR/23 MAY/23									
SC Calib	oration/Check		ORP Calibration/Check							
Reference Value: 1413 us	S/cm @ 25 C		Reference Value	: 220 mV						
	Value	Temp			Value	Temp				
1. Time (24 hr): 0647	13384	22.26	1. Time (24 hr):	0646	222.	23.21				
2. Time (24 hr): 1301	1335.1	22.30	2. Time (24 hr):	1302	221.5	22.43				
3. Time (24 hr):			3. Time (24 hr):	122		1 2 2				
4. Time (24 hr):			4. Time (24 hr):							
Standard Lot No.: 1GE263	Expiration Date.:	MAY/22	Standard Lot No	.: _1GD902	Expiration Date.:	JAN/22				
		DO Cali	bration/Check							
Calibration Value: 81% air saturation @ 5200 ft.			Atmospheric Pressure in Hg							
1. Time (24 hr): 0645	99.	87	27.07							
2. Time (24 hr): 1300	99.	85	27.08							
3. Time: (24 hr)										
4. Time (24 hr):										

# GROUNDWATER SAMPLE COLLECTION FIELD EQUIPMENT CHECK LOG (continued) Page 2 of 2

SNL/NM Project Name: MWL									
Calibration done by: R Lynch  Date: 11/04/21									
	TURBIDIMETER								
Make & Model: HACH	2100Q		Serial No. S/I	√ 21090D000519					
Reference Value	10		20	100	800				
Standard Lot No.	A1215R	А	1215R	A1205	A1243				
1. Time (24 hr): 0644	9.97	19.3		19.3		97.2	853		
2. Time (24 hr): 1 2 5 9	10-1	19.7		99.3	861				
3. Time (24 hr):									
4. Time (24 hr):									
Comments:				2					

#### Portable Pump and Tubing / Water Level Indicator Decontamination Log Form

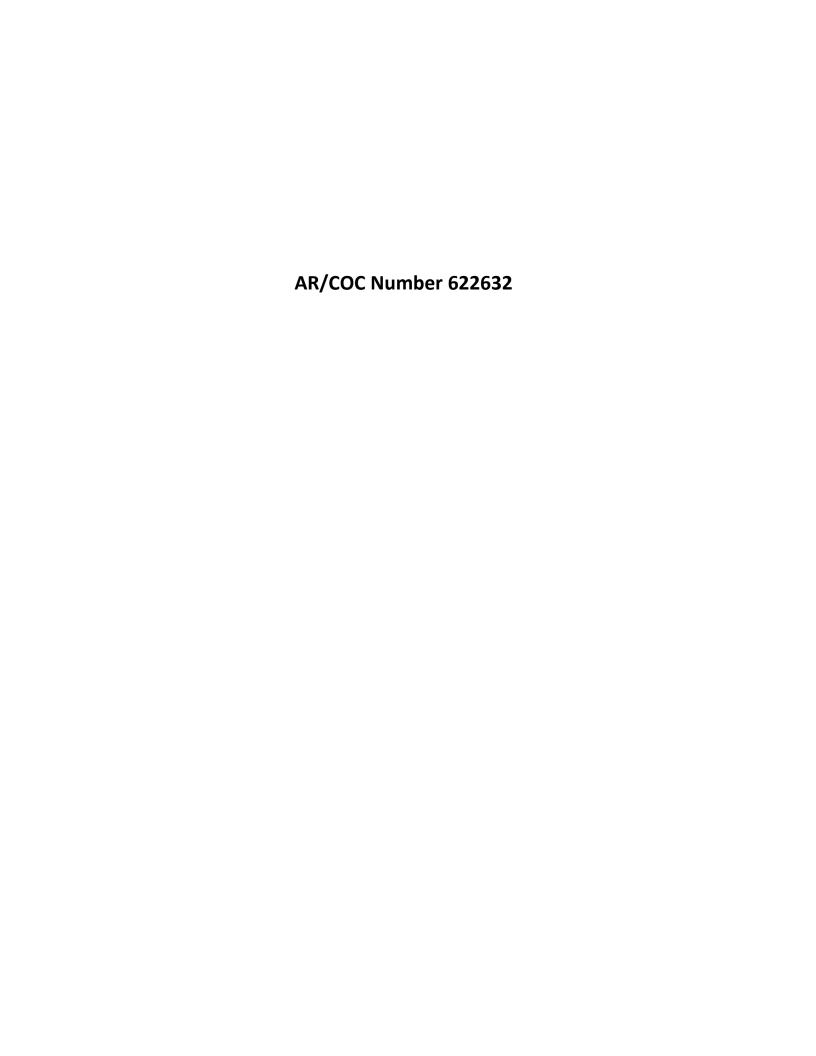
SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: Pre Decon	Date: 10/29/2021 Date:					
The following equipment was	decontaminated at completion of sampling	activities in accordance with FOP-05-03.					
Pump and Tubing Bundle ID #: 1807B-950	Water Level Indicator ID #: 362721						
	Personnel Performing Decontamina	ation:					
Denisha Sanchez	8	3					
Print Name:	Initial						
Zach Tenorio		7					
Print Name:	Irmials						
	Condition of Equipment						
Pump: Good Tub	oing Bundle: Good	Excellent					
	List of Decontamination Materials	S					
Deionized Water	HNO ₃	Detergent					
Source: Culligan	Grade: NA	Manufacturer: Liqunox					
Lot Number: 09/30/21 - 10/6/21	UN #: NA	Lot Number: L1L0					
Manufacturer: NA Expiration Date: 11/22							
Lot Number: NA							

IMPORTANT NOTICE: A printed (and uncompleted) copy of this form may not be the most current form. The official version is located in the Long-Term Stewardship (LTS) ARAS document library, for which access is required. Upon completion, this document becomes record.

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-BW2	Date: 11/1/2021 Date:						
The following equipment was decontaminated at completion of sampling activities in accordance with FOP-05-03.								
Pump and Tubing Bundle ID #: 1807B-950	ump and Tubing Bundle ID #: 1807B-950 Water Level Indicator ID #: 362721							
Personnel Performing Decontamination:  Robert Lynch Print Name: William Gibson Print Name: Initial:  Condition of Equipment  Pump: Good Tubing Bundle: Good Water Level Indicator: Excellent								
	List of Decontamination Materials							
Deionized Water  Source: Culligan  Lot Number: 10/22/21	UN#: NA	Detergent anufacturer: liquinox ot Number: L1L0 xpiration Date: 11/22						

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW7	Date: 11/2/2021 Date:					
The following equipment was	decontaminated at completion of sampling a	activities in accordance with FOP-05-03.					
Pump and Tubing Bundle ID #: 1807B-950	Pump and Tubing Bundle ID #: 1807B-950 Water Level Indicator ID #: 362721						
	Personnel Performing Decontaminat	tion:					
Zach Tenorio Print Name:	37 Initial:						
Denisha Sanchez Print Name:	Initial:						
Pump: Good Tub	Condition of Equipment sing Bundle: Good	Water Level Indicator: Excellent					
	List of Decontamination Materials						
Deionized Water  Source: Culligan  Lot Number: 10/22/21	HNO ₃ Grade: NA  UN #: NA  Manufacturer: NA  Lot Number: NA	Detergent  Manufacturer: liquinox  Lot Number: L1L0  Expiration Date: 11/22					

SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW8	Date: 11/4/2021 Date:
The following equipment	was decontaminated at completion of sampling	activities in accordance with FOP-05-03.
Pump and Tubing Bundle ID #: 1807B-	950 Water Level Indicator ID #: 362721	
William Gibson Print Name: Denisha Sanchez Print Name:	Personnel Performing Decontamina Initial:	25_
Pump: Good	Condition of Equipment  Tubing Bundle: Good	Water Level Indicator: Excellent
	List of Decontamination Materials	
Deionized Water  Source: Culligan  Lot Number: 10/22/21	HNO ₃ Grade: NA  UN #: NA  Manufacturer: NA  Lot Number: NA	Detergent  Manufacturer: liquinox  Lot Number: L1L0  Expiration Date: 11/22


SNL/NM Project Name: ^{MWL}	Monitoring Well ID #: MWL-MW9	Date: 11/3/2021 Date:			
The following equipment was	s decontaminated at completion of sampling	activities in accordance with FOP-05-03.			
Pump and Tubing Bundle ID #: 1807B-950	Water Level Indicator ID #: 362721				
	Personnel Performing Decontamina	ation:			
Zach Tenorio	3	7			
Print Name:	Initial				
Robert Lynch	T				
Print Name:	Initial				
Pump: Good Tu	Condition of Equipment	Water Level Indicator:Excellent			
	List of Decontamination Material	S			
Deionized Water	HNO₃	Detergent			
Source: Culligan	Grade: NA	Manufacturer: liquinox			
Lot Number: 10/22/21	UN #: NA	Lot Number: L1L0			
	Manufacturer: NA	Expiration Date: 11/22			
Lot Number: NA					

# Summary Sheet For November 2021 Groundwater Samples

#### Sample Summary for Mixed Waste Landfill Groundwater Monitoring November 2021

					Associated Equipment	Associated Trip	Associated Field	
	Sample		Sample		Blank	Blank (ARCOC # /	Blank (ARCOC # /	
Sample ID	Date	ARCOC	Number	Sample Type	(ARCOC #/Sample #)	Sample #)	Sample #)	Comments
<b>GEL Analytic</b>	al Data: Proje	ct Task # 19	5122.10.11.0	8, Service Order #	¢ CF01-22			
MWL-BW2	1-Nov-21	622632	116167	Environmental	n/a	622632 / 116168	622632 / 116166	
MWL-MW7	2-Nov-21	622633	116170	Environmental	n/a	622633 / 116171	622633 / 116169	
MWL-MW8	4-Nov-21	622636	116179	Environmental	n/a	622636 / 116180	622636 / 116178	
MWL-MW9	3-Nov-21	622635	116175	Environmental	622634 / 116172	622635 / 116177	622635 / 116174	
MWL-MW9	3-Nov-21	622635	116176	Duplicate	622634 / 116172	622635 / 116177	622635 / 116174	
MWL-EB1	2-Nov-21	622634	116172	Equipment Blank	n/a	622634 / 116173	n/a	Equipment blank sample prior to MWL-MW9.
MWL-FB1	1-Nov-21	622632	116166	Field Blank	n/a	622632 / 116168	n/a	at MWL-BW2
MWL-FB2	2-Nov-21	622633	116169	Field Blank	n/a	622633 / 116171	n/a	at MWL-MW7
MWL-FB3	3-Nov-21	622635	116174	Field Blank	n/a	622635 / 116177	n/a	at MWL-MW9
MWL-FB4	4-Nov-21	622636	116178	Field Blank	n/a	622636 / 116180	n/a	at MWL-MW8
MWL-DIWQC	4-Nov-21	622637	116181	Field Blank	n/a	622637 / 116182	n/a	DI source water for equipment decontamination

# Data Validation Reports For Environmental Samples Groundwater Monitoring November 2021







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: December 9, 2021

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622632 SDG: 560722 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Three samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

1. The initial calibration intercepts were negative with absolute values > the MDL but ≤3X the MDL for acetone and methylene chloride. All associated sample results were non-detect and will be **qualified UJ,15**.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICV %Ds were >20% but ≤40% with negative bias for chloromethane and chloroethane. All associated sample results were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

The CCV %Ds were >20% and positive for chloromethane, vinyl chloride and bromomethane. All associated sample results were non-detect and will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows.

Bromoform was detected at  $\leq$  the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB 1, sample -001 associated with sample -002. The associated sample results were non-detect and will not be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

A TB was submitted on the ARCOC. FB 1 was submitted on ARCOC 622632 and was associated with the sample on the same ARCOC.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021





www.againc.net

#### Memorandum

Date: December 10, 2021

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622632 SDG: 560722 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

One sample was prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows. U was detected at  $\leq$  the PQL in the MB and in a CCB associated with sample 560722003. The associated sample result was a detect > the PQL and > 5X the blank values and will not be qualified.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

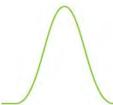
The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The sample was not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Ca, Mg and Fe were < those in the ICS A and AB solutions.


#### **ICP Serial Dilution**

The serial dilution met all QC acceptance criteria.

#### Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021





www.againc.net

#### Memorandum

Date: December 10, 2021

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622632 SDG: 560722 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### Gammaspec and tritium:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### **Holding Times and Preservation**

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### Calibration

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

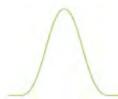
The MS and/or MSD met QC acceptance criteria.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

#### Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.


#### **Detection Limits/Dilutions**

The sample was not diluted. All required detection limits were met.

#### Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021



## Sample Findings Summary



**AR/COC: 622632** Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	116167-003/MWL-BW2	Americium-241 (14596-10-2)	BD, FR3
	116167-003/MWL-BW2	Cesium-137 (10045-97-3)	BD, FR3
	116167-003/MWL-BW2	Cobalt-60 (10198-40-0)	BD, FR3
	116167-003/MWL-BW2	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	116167-005/MWL-BW2	Tritium (10028-17-8)	BD, FR3
SW846 8260D			
	116166-001/MWL - FB 1	Acetone (67-64-1)	UJ, 15
	116166-001/MWL - FB 1	Methylene chloride (75-09-2)	UJ, 15
	116167-001/MWL-BW2	Acetone (67-64-1)	UJ, 15
	116167-001/MWL-BW2	Methylene chloride (75-09-2)	UJ, 15
	116168-001/MWL- TB 1	Acetone (67-64-1)	UJ, 15
	116168-001/MWL- TB 1	Methylene chloride (75-09-2)	UJ, 15
	·	. ,	·

All other analyses met QC acceptance criteria; no further data should be qualified.

## Sandia Data Validation Summary Worksheet

ARCOC#: 622632		Site/Projec	t: MWL LTMM	P			Validation D	ate: 12/09/2021	İ
SDG #: 560722		Laboratory	r: GEL Laborator	ries, LLC			Validator: M	ary Donivan	
Matrix: Aqueous		# of Sampl	les: 8	CVR preser	it: Yes				
ARCOC(s) present: Yes		Sample Co	ontainer Integrity	: OK					
Analysis Type:									
☐ Organic ☐ Metals	☐ Gench	em	⊠ Rad						
			Requested .	Analyses No	t Reported				
Client Sample ID	Lab Samp	le ID	Analysis			Cor	nments		
None									
			Hold Time	/Preservatio	n Outliers				
Client Sample ID	Lab Sample	ın	Analysis	Pres.	Collection	Preparation	Analysis	Analysis	Analysis
_	Lab Sample	: ID	Allalysis	1165.	Date	Date	Date	<2X HT	≥2X HT
None									
G G 11 1 .11/01/000	11	l	l						
Comments: Collected: 11/01/202	21								
The ARCOC noted that the trip b	lank vials were re	eceived from	the lab with hea	ndspace.					
Validated by:									
Mary A.	Donivan	<u>&gt;</u>							

## Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622632	SDG: 560722		Matrix: Aqueous
Laboratory Sample IDs: 560722001, -002, -008			
Method/Batch #s: <b>8260D</b> 2196023	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

			(	Calibratio	n											
<b>Analy</b> (outlie	rte ers)	Int.	RF/ Slope	RSD/ r ²	(ICV)/CC %D	CV	MB	5X (10X) MB	LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB 1 -001	5X (10X) FB 1	TB 1 -008	
Bromodichlorometh	nane	NA	✓	✓	✓		✓	NA	✓	✓	✓	✓	4.43	22.2	✓	
Bromoform		NA	✓	✓	✓		✓	NA	✓	✓	✓	✓	0.93J	4.65	✓	
Chloroform		NA	✓	✓	<b>√</b>		✓	NA	✓	✓	✓	✓	9.73	48.7	✓	
Dibromochlorometl	nane	NA	✓	✓	<b>√</b>		✓	NA	✓	✓	✓	✓	2.71	13.6	✓	
Acetone		-2.91	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	NA	✓	
Methylene chloride		-0.96	✓	✓	✓		✓	NA	✓	✓	✓	✓	✓	NA	✓	
Chloromethane		✓	✓	✓	(-21), +5	7	✓	NA	✓	✓	✓	✓	✓	NA	✓	
Chloroethane		NA	✓	✓	(-22)		✓	NA	✓	✓	✓	✓	✓	NA	✓	
Vinyl chloride		NA	✓	✓	+56		✓	NA	✓	✓	✓	✓	✓	NA	✓	
Bromomethane		NA	✓	✓	+43		✓	NA	✓	✓	✓	✓	✓	NA	✓	
						Surrogate	Recov	ery Outlie	PEC							
		_				Surrogate										
Sample ID	1,2-DCA-d4 %	R	Coluene-d8	%R	BFB %R			Sample II	1,2	-DCA-d4	%R	Toluene-	d8 %R	BFB %	R	
None																
						I	S Outli	iers								
	FBZ			Chl-da	5	1,4-	-DCB-c	14								
Sample ID	Area	RT	Are	ea	RT	Area	a	RT								
None																

Comments: HTs OK.
MS/MSD on sample -002

VOA3.I 10/11/21 Linear: Dichlorodifluoromethane, Chloromethane, Acetone, Methylene chloride

## Sandia Inorganic Metals Worksheet

ARCOC	#(s): 622	632							SDG #(s	): 560722	2			Matrix	: Aqueous		
	ory Sampl		560722	003						<u> </u>							
Method/	Batch #s:	3005A	\/6020B	<b>3</b> :219820	08/21982	210											
CPMS Ma	ss Cal: 🛭	Pass	s 🔲 1	Fail	□ NA	ICPM	IS Resolutio	n: 🛛 Pass		☐ Fail		□NA					
			Cali	bration									ICC	ICS A			
Analyte							MB mg/I	5X Blank	LCS %R	MS %R	Lab Rep	Serial Dil.	ICS AB	±MDL	LLCCV %R		
(outliers)	Int.																
U	NA																
			_														
				S Outli										Outliers 80-			
	ple ID		%Re	covery		%Recover	ry %	Recovery		CCV/C		•	%Recove	ery	%Recovery	9	%Recovery
n	one									nor	ne						

Comments: HTs OK; DUP/MS/SD on sample -003.
Al, Ca, Fe Mg all <ICSA in sample -003

#### Sandia Radiochemistry Worksheet

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	I	MS/ MSD RER	Lab Rep. RER				
none														
				Tracer/Ca	rrier Reco	very Outl	iers							
Sample ID	Tracer/Ca	rrier %	R	Sample ID	)	Tracer/	Carrier	%R		Sample	ID	Tracer/	Carrier	%R
NA		_								_				

Comments: HTs OK. Note: No precision criteria apply to sample results < the MDA including where one result is > the MDA and the other <.

GS: DUP on sample -004.

 $Gross\ A/B:\ DUP,\ MS/MSD\ on\ sample\ -005.\ Parent\ sample\ 152mL;\ DUP\ 150ml;\ MS/MSD\ 50.6/50.5ml;\ 3X\ dilution.$ 

Rn-222: DUP on sample -007. LCS/LCSD

Tritium: DUP and MS on sample -006.

# Page 5 of 402

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

560722

116167 001 MWL-BW2 496 11/1/21 10:56 GW G 3x40 ml HCl G FB VOC-LTMMP (SW846-8260D) 001 MWL-BW2 496 11/1/21 10:57 GW P 500 ml HN03 G SA METALS, LTMMP - Cd, Cr, Ni, U 003 MWL-BW2 496 11/1/21 10:58 GW P 1L HN03 G SA GROSS-ALPHA/BETA (EPA 901) 001 MWL-BW2 496 11/1/21 10:59 GW P 1 L HN03 G SA GROSS-ALPHA/BETA (EPA 900) 005 MWL-BW2 496 11/1/21 11:00 GW AG 250 ml NONE G SA TRITIUM (EPA 906)	S	Internal Lab															
Project Name:   Date Stander Report	DG	Batch No.					0140							2		Page	1 of 1
Content   Cont	(h	Project Nam	ie:	MWL LTMMP	Data Camel	C1							101		AR/CO	C	622632
Service Circle:   Lab Destination:   CEL   Send Report to SIMC:   Stephanie Montando/505-284-2553   Sile or Sangla National Laboratories (Accounts Psyablo).   Poss \$800, MS-075   Sangla National Laboratories (Accounts Psyablo).   Poss \$800, MS-075   National Laboratories (Accounts Psyablo).   Poss \$900, MS-075   Na	60	Project/Task					<del></del>						7.01	1	☐ Waste Characterizati		
Service Circle:   Lab Destination:   CEL   Send Report to SIMC:   Stephanie Montando/505-284-2553   Sile or Sangla National Laboratories (Accounts Psyablo).   Poss \$800, MS-075   Sangla National Laboratories (Accounts Psyablo).   Poss \$800, MS-075   National Laboratories (Accounts Psyablo).   Poss \$900, MS-075   Na	72	Project/Task	Number:		Company Company Company					ISMO (			<i>c.</i> -				
Tech Area:	Ü	Service Orde	er:					am/843-300	J-4224	ļ	Wendy P	alencia/50	<u>5-844-3132</u>		Released by COC No		
Stephanie Montano505-284-2553   Bit C. Sandia National Laboratories (Acosumb Physible)					1					Send F	-					V	4º Celsius
Building:   Room:   Operational Site:   Pic. Box 8600, MS-0194   Albuquerence   Matrix   Sample No.   Fraction   Sample Location Detail   (ft)   Collected   Matrix   Type   Volume   aftive   Method   Type   Parameter & Method   Sample   Parameter & Method   P		Tech Area:				**	1303330				Stephanie	Montaño/5	05-284-255	3	Bill to: Sandia National Labora		
Sample No.   Fraction   Sample Location Detail   Depth (ft)   Date/Time Collected Matrix   Type   Volume attive   Method   Type   Name   Sample   Depth (ft)   Date/Time (ft)   Depth (ft)   Date/Time (ft)   Depth		Building:		Room:	Operation	al Sito									P.O. Box 5800, MS-0154		
Sample No.   Fraction   Sample Location Detail   (ft)   Collected   Matrix   Type   Volume   adve   Method   Type   Requested   Sample   Parameter & Method   Sample   Parameter					Portation	T	Data	/Time	To			7			Albuquerque, NM 87185-015	4	
116166		Sample No.	Fraction	Sample Location De	etail		1					4			Parameter & Met	hod	Lab
116167   001   MVVL-BW2	£	116166	001	MWI - FR 1		T NIA		<del></del>	Matrix		volume	ative	Method	Type			Sample ID
116167   002   MWL-BW2   496   11/1/21   10:56   GW   G   3x/0 ml   HCl   G   SA   VOC-LTMMP (SW046-8260D)   OO2	ø	440407	1			INA	11/1/21	10:36	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)		വ
116167   00.2   MWL-BW2		176767	1001	JMWL-BW2		496	11/1/21	10:56	gw	G	3x40 ml	HCI	G	67	VOC-LTMMP (SW846-8260D)		
116167   003   MWL-BW2   496   11/1/21   10:58   GW   P   1L   HNO3   G   SA   GAMMA SPEC, SHORT LIST (EPA 901)   004   116167   004   MWL-BW2   496   11/1/21   10:59   GW   P   1L   HNO3   G   SA   GROSS-ALPHABETA (EPA 901)   005   116167   005   MWL-BW2   496   11/1/21   11:00   GW   AG   250 ml   NONE   G   SA   TRITIUM (EPA 908)   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006   006	æ	116167	002	MWL-BW2		496	11/1/21	10.57									002
116167   004   MWL-BW2   496   11/1/21   10:59   GW   P   1L   HNO3   G   SA   GROSS-ALPHA/BETA (EPA 901)   COST	e	116167	003	MIMI DIAIO		1	<u> </u>		GW	<u> </u>	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U		003
116167   004   MWL-BW2   496   11/1/21   10:59   GW   P   1 L   HNO3   G   SA   GROSS-ALPHA/BETA (EPA 900)   COS	,		1		·····	496	11/1/21	10:58	GW	Р	1 L	НИОЗ	G	SA	GAMMA SPEC, SHORT LIST (EPA	N 901)	2011
116167   005   MWL-BW2   496   11/1/21   11:00   GW   AG   250 ml   NONE   G   SA   TRITIUM (EPA 908)   OCC		116167	004	MWL-BW2		496	11/1/21	10:59	GW	Р	11	HNO3		C 4	GROSS-ALPHA/BETA (EPA 900)		
116167   006   MWL-BW2   496   11/1/21   11:01   GW   G   2x40 ml   NONE   G   SA   RADON (SM7500 Rn B)   OCC	4	116167	005	MWL-BW2		496	11/1/21	11.00							<u> </u>		005
Time   Team   Members	ď.	116167	006	MIMI DIMO				11.00	GW	AG	250 ml	NONE	G	SA	TRITIUM (EPA 906)		000
Tight   Tigh	.					496	11/1/21	11:01	GW	G	2x40 ml	NONE	G	SA	RADON (SM7500 Rn B)		700
Last Chain:		116168	001	MWL- TB 1		NA	11/1/21	10:36	DIW	G	3y40 ml	HCI			VOC-LTMMP (SW/846-8260D)		<del></del>
Validation Req'd:											0240 1111	1101	- 6	18	(0.0040-02000)	-	008
Validation Req'd:	ſ																
Validation Req'd:	ŀ	act Chain	<u> </u>														
Background:	-					Sample 7	Fracking		SMO	Use	Special Inst	ructions/0	OC Require	mente:	<u> </u>	T	
Confirmatory:	-					Date Ente	ered:							inchia.			
Sample Name Signature Init. Company/Organization/Phone/Cell Sample Disposal Return to Client Disposal by Lab    Name   Signature   Init.   Company/Organization/Phone/Cell   Sample Disposal   Return to Client   Disposal by Lab   Return Samples By:	-		***************************************			Entered b	у:				Turnaround	Time			15 Davit	-	Receipt
Team William Gibson William Gibson No. A SNL/08888/505-284-3307/505-239-7367 Return Samples By:  Robert Lynch Zachary Tenorio SNL/08888/505-844-4013/505-259-5765  Relinquished by Org. Org. Org. Org. Org. Org. Org. Org.	-					QC inits.:								Ц	15-Day" <u>© 30-Day</u>	4	30
Rederived by   Corg.   Source   Sourc		- 1		Olgitatur			Compan	y/Organizati	on/Phone/	Cell	1			to Client			
Relinquished by Org. Osg. Date (1/1/2) Time 1/35 Received by Org. Date Time Received by Org. Date Time Received by Org. Org. Org. Org. Org. Org. Org. Org.			***************************************		ALLAH	W/A	SNL/08888/5	05-284-330	7/505-239	-7367				to Chefft	⊔isposai by Lai	<u> </u>	
Relinquished by 2  Org. 0 8888 Date / 1 / 2 / Time // 3 5 Relinquished by Org. Date Time  Received by Org. Org. 0 Date / 1 / 2 / Time // 3 5 Received by Org. Date Time  Relinquished by Org. Org. Date Time  Relinquished by Org. Date Time  Received by Org. Date Time  Received by Org. Date Time					16-1	The second	SNL/08888/5	05-844-401	3/505-250	-7090			received fro	m lah with	h head space	-	
Received by Org. Org. Date Time Relinquished by Org. Date Time Received by Org. Date Time			Zacriary i	enono		21	SNL/08888/5	05-845-863	6/505-259	-5765				···· iab IIII	in fiedd Space.		
Received by Org. Org. Date Time Relinquished by Org. Org. Date Time Received by Org. Org. Date Time Received by Org. Org. Date Time Received by Org. Date Time Received by Org. Date Time		}	*	41.													
Received by Org. Org. Date Time Relinquished by Org. Org. Date Time Received by Org. Org. Date Time Received by Org. Org. Date Time Received by Org. Date Time Received by Org. Date Time	F	Relinguished t	nv 3 -														
Relinquished by Corg. Org. Org. Org. Date Time  Received by Org. Org. Date Time  Received by Org. Org. Date Time			100	A Comment of the comm								andan kelilagan	indialisti kananasi	Org.	Date		
Received by Org. Org. V. A. Dete 1/ (1/21 Time / 2/2/5 Relinquished by Org. Date Time	-		by the														
*Prior confirmation with SMO required for 7 and 15 day TAT Received by Org. Date Time	F	Received by	11		ra 💆 🗸	·	<del></del>							Org.			
	*	Prior confirm	ation with	h SMO required for 7 and 15	day TAT	Date	MILICA	Time UV	XV IR	eceiveo	by			Org.	Date		







www.againc.net

#### Memorandum

Date: December 7, 2021

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622633 and 622634

SDG: 560851 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

Five samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

The initial calibration intercepts were negative with absolute values > the MDL but ≤3X the MDL for acetone and methylene chloride. The acetone result for sample 560851009 was a detect <3X the value of the intercept and will be qualified J-,I5. The remaining associated sample results were non-detect and will be qualified UJ,I5.</li>

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### **Calibration**

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICV %Ds were >20% but ≤40% with negative bias for chloromethane and chloroethane. All associated sample results were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

The CCV %Ds were >20% and positive for chloromethane, vinyl chloride and bromomethane. All associated sample results were non-detect and will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows.

Bromoform was detected at  $\leq$  the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB 2, sample -001 associated with sample -002. The associated sample results were non-detect and will not be qualified.

Acetone was detected at  $\leq$  the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in EB 1, sample -009 associated with the samples submitted on ARCOC 622635 in another SDG. No data from this SDG will be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

It should be noted that the MS/MSD analyses were performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

A TB was submitted on each ARCOC. FB 2 was submitted on ARCOC 622633 and was associated with the sample on the same ARCOC. EB 1 was submitted on ARCOC 622634 in this SDG and was associated with the samples on ARCOC 622635 submitted in another SDG.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/08/2021





#### www.againc.net

#### Memorandum

Date: December 8, 2021

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622633 and 622634

SDG: 560851 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows. U was detected at  $\leq$  the PQL in the MB and in a CCB associated with sample 560851003. The U result for sample -003 was a detect > the PQL and > 5X the blank values and the U result for sample -010 was non-detect. Neither sample result will be qualified.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

It should be noted that the MS analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

It should be noted that the replicate analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

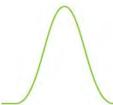
All detection limits were properly reported. The samples were not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Ca, Mg and Fe were < those in the ICS A and AB solutions.

#### **ICP Serial Dilution**

The serial dilution met all QC acceptance criteria.


It should be noted that the serial dilution was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### Other QC

EB 1 was submitted on ARCOC 622634 and was associated with samples on ARCOC 622635 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/08/2021





www.againc.net

#### Memorandum

Date: December 8, 2021

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622633 and 622634

SDG: 560851 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### All analyses:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### Gross beta and Rn-222:

1. The sample results that were  $\geq$  the MDA but <3X the MDA will be **qualified J,FR7.** 

#### Gammaspec:

1. The K-40 results for samples 560851004 and-011 were X-flagged by the laboratory due to the peak not meeting identification criteria and will be **qualified R,Z2**.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### Calibration

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria except as noted above in the Summary section.

It should be noted that the MS/MSD analyses for all analytes were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

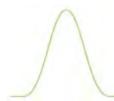
All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all analytes were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)**

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**


The samples were not diluted. All required detection limits were met.

#### Other QC

EB 1 was submitted on ARCOC 622634 and was associated with the samples on ARCOC 622635 submitted in another SDG.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/08/2021



## Sample Findings Summary



**AR/COC: 622633, 622634** Page 1 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 900.0/SW846 9310	Sumple 15	Analyte Name (GASII)	Qualifier, No
EPA 900.0/5W846 9310	116170-004/MWL-MW7	BETA (12587-47-2)	J, FR7
	116172-004/MWL - EB 1	ALPHA (12587-46-1)	BD, FR3
	116172-004/MWL - EB 1	BETA (12587-47-2)	BD, FR3
EPA 901.1	·	· · · ·	·
	116170-003/MWL-MW7	Americium-241 (14596-10-2)	BD, FR3
	116170-003/MWL-MW7	Cesium-137 (10045-97-3)	BD, FR3
	116170-003/MWL-MW7	Cobalt-60 (10198-40-0)	BD, FR3
	116170-003/MWL-MW7	Potassium-40 (13966-00-2)	R, Z2
	116172-003/MWL - EB 1	Americium-241 (14596-10-2)	BD, FR3
	116172-003/MWL - EB 1	Cesium-137 (10045-97-3)	BD, FR3
	116172-003/MWL - EB 1	Cobalt-60 (10198-40-0)	BD, FR3
	116172-003/MWL - EB 1	Potassium-40 (13966-00-2)	R, Z2
EPA 906.0 Modified			
	116170-005/MWL-MW7	Tritium (10028-17-8)	BD, FR3
	116172-005/MWL - EB 1	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	116170-006/MWL-MW7	Radon-222 (14859-67-7)	J, FR7
	116172-006/MWL - EB 1	Radon-222 (14859-67-7)	BD, FR3
SW846 8260D			
	116169-001/MWL - FB 2	Acetone (67-64-1)	UJ, 15
	116169-001/MWL - FB 2	Methylene chloride (75-09-2)	UJ, 15
	116170-001/MWL-MW7	Acetone (67-64-1)	UJ, 15
	116170-001/MWL-MW7	Methylene chloride (75-09-2)	UJ, 15
	116171-001/MWL - TB 2	Acetone (67-64-1)	UJ, 15
	116171-001/MWL - TB 2	Methylene chloride (75-09-2)	UJ, 15

**AR/COC: 622633, 622634** Page 2 of 2

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
	116172-001/MWL - EB 1	Acetone (67-64-1)	J-, I5
	116172-001/MWL - EB 1	Methylene chloride (75-09-2)	UJ, 15
	116173-001/MWL - TB 3	Acetone (67-64-1)	UJ, 15
	116173-001/MWL - TB 3	Methylene chloride (75-09-2)	UJ, 15

All other analyses met QC acceptance criteria; no further data should be qualified.

## Sandia Data Validation Summary Worksheet

ARCOC#: 622633 and 622634		Site/Proje	ct: MWL LTMM	IP .			Validation D	eate: 12/07/2021	
SDG #: 560851		Laborator	y: GEL Laborato	ries, LLC			Validator: M	ary Donivan	
Matrix: Aqueous		# of Samp	oles: 15	CVR presen	nt: Yes				
ARCOC(s) present: Yes		Sample C	ontainer Integrity	·: OK					
Analysis Type:  ☑ Organic ☑ Metals	☐ Gench	em	⊠ Rad						
			Requested	Analyses No	ot Reported				
Client Sample ID	Lab Samp	le ID	Analysis		· · · · · · · · · · · · · · · · · · ·	Cor	nments		
None									
			1						
			Hold Time	e/Preservatio	on Outliers				
Client Sample ID	Lab Sample	· ID	Hold Time Analysis	e/Preservation	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT
Client Sample ID  None	Lab Sample	· ID			Collection				Analysis ≥2X HT
-	Lab Sample	ID			Collection				
-	Lab Sample	· ID			Collection				
-	Lab Sample	· ID			Collection				
-		P ID			Collection				
None  Comments: Collected: 11/02/202	21		Analysis	Pres.	Collection				
None	21 blank vials were 1	received from	Analysis om the lab with he	Pres.	Collection Date	Date	Date		
None  Comments: Collected: 11/02/202 The ARCOCs noted that the trip	21 blank vials were 1	received from	Analysis om the lab with he	Pres.	Collection Date	Date	Date		

## Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622633 and 622634	SDG: 560851		Matrix: Aqueous
Laboratory Sample IDs: 560851001, -002, -008, -009, -015			
Method/Batch #s: <b>8260D</b> 2196023	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

			(	Calibrat	ion												
Analy (outlie		Int.	RF/ Slope	RSD/r ²	(ICV)/CC	ev	MB	5X (10X) MB		LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB 2 -001	TB 2 -008	EB 1 -009	TB 3 -015
Acetone		-2.91	✓	<b>✓</b>	✓		✓	NA		✓	<b>✓</b>	✓	✓	✓	✓	2.73J	✓
Bromodichlorometh	iane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	4.24	✓	3.93	✓
Bromoform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	0.870J	✓	✓	✓
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	9.86	✓	8.42	✓
Dibromochlorometh	nane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	2.44	✓	2.17	✓
Methylene chloride		-0.96	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Chloromethane		NA	✓	✓	(-21), +5	7	✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Chloroethane		NA	✓	✓	(-22)		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Vinyl chloride		NA	✓	✓	+56		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Bromomethane		NA	✓	✓	+43		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
				1		Surrogate	Recov	very Outli	ers								
Sample ID	1,2-DCA-d4 %	R	oluene-d8	%R	BFB %R			Sample I	D	1,2-D	CA-d4	%R	Toluene-	d8 %R	BFB %	R	
None																	
						I	S Outl	iers									
	FBZ			Chl-	d5	1,4	-DCB-	d4									
Sample ID	Area	RT	Ar	ea	RT	Area	ı	RT									
None																	

Comments: HTs OK.
MS/MSD on SNL sample 560722002

VOA3.I 10/11/21 Linear: Dichlorodifluoromethane, Chloromethane, Acetone, Methylene chloride

## Sandia Inorganic Metals Worksheet

ARCOC #(s): 622633 and 622634										SDG #(s): 560851 Matrix: Aqueous							
Laborato	aboratory Sample IDs: 560851003, -010																
Method/	Method/Batch #s: <b>3005A/6020B</b> :2198208/2198210																
CPMS Ma	MS Mass Cal: Pass Fail NA ICPMS Resolution: Pass Fail NA																
Analyte								5X Blank	LCS %R	MS	Lab Rep	Rep Dil.	ICS AB	ICS A ±MDL	LLCCV %R	EB 1 -010	
(outliers)	Int. ug/L	R ²	ICV	CCV	ICB ug/L	CCB ug/L	mg/L	mg/L	70 K	%R	RPD	%D	%R	ug/L ( <b>x50</b> )	7010	-010	
U	NA	<b>√</b>	<b>√</b>	<b>✓</b>	✓	0.118J ¹	0.000082J	$0.00059^{1}$ $0.00041$	<b>✓</b>	✓	✓	✓	NA	NA	✓	✓	
	l	1	1	1	l	I			1	l	l	l					<u> </u>

	IS Outliers	60-125%		IS Outliers 80-120%							
Sample ID	%Recovery	%Recovery	%Recovery	CCV/CCB ID	%Recovery	%Recovery	%Recovery				
none				none							

Comments: HTs OK	; DUP/MS/SD on SNL	sample 560722003
------------------	--------------------	------------------

Al, Ca, Fe Mg all <ICSA in samples -003 and -010

¹Associated with sample -003

#### Sandia Radiochemistry Worksheet

ARCOC #(s): 622633 and 622634 SDG #:560851 Matrix: Aqueous

Laboratory Sample IDs:560851 – see below

Method/Batch#s: EPA 901.1 (gammaspec)/2194861 Samples -004, -011

Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2198540 Samples -005, -012

Method/Batch#s: SM 7500 Rn B (Rn-222)/2194092 Samples -007, -014

Method/Batch#s: EPA 906.0 Modified (tritium)/2196503 Samples -006, -013

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	ľ	MS/ MSD RER	Lab Rep. RER	EB 1			
none														
Tracer/Carrier Recovery Outliers														
Sample ID	Sample ID Tracer/Carrier %		R	Sample ID		Tracer/	Carrier	Carrier %R		Sample ID		Tracer/Carrier		%R
NA														

Comments: HTs OK. Note: No precision criteria apply to sample results < the MDA including where one result is > the MDA and the other <.

GS: DUP on SNL sample 560722004. The K-40 results for samples -004 and-011 were rejected by the laboratory due to the peak not meeting identification criteria.

Gross A/B: DUP, MS/MSD on SNL sample 560722005. Parent sample 152mL; DUP 150ml; MS/MSD 50.6/50.5ml; 3X dilution.

Rn-222: DUP on SNL sample 560722007. LCS/LCSD

Tritium: DUP and MS on SNL sample 560722006

# Page 5 of 4/5

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY


560851


$\supseteq$	Internal Lab	1.														Page 1 of 1	
٠,	Batch No.	W/A			SMO Use	,					AR/COC	622633					
Project Name: MWL LTMMP Date Sample						11/0	2/20	21	SMO A	uthorization:	101	J. G. F.		ТП	Waste Characterization	022000	
	Project/Task		***************************************	Carrier/Way	bill No.	331	3835			Contact Phone	:			16	RMA		
	Project/Task		195122.10.11.08	Lab Contact		Zac Worsh	am/843-300	-4224		Wendy Palencia/505-844-3132					Released by COC No.		
-	Service Orde	er:	CF01-22	Lab Destina	nation: GEL					Report to SMC	);				Notable by GOO NO.		
-	Took Asset			Contract No.	:	1983530				Stephanie	Montaño/5	05-284-255	3	Bill to:	Sandia National Laboratori	es (Accounts Payable)	
ŀ	Tech Area: Building:			-											Box 5800, MS-0154	( uyusio)	
ŀ	bulluling:	T	Room:	Operation	·	T		<del></del>	<del>,</del>					Albuquerque, NM 87185-0154			
.	Sample No.	Fraction	Sample Location D	etail	Depth (ft)		Time ected	Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type		Parameter & Method Requested	Lab Sample ID	
-	116169	001	MWL - FB 2		NA	11/2/21	09:26	DIW	G	3x40 ml	HCI	G	FB	VOC-L	TMMP (SW846-8260D)	100	
-	116170	001	MWL-MW7	**************************************	496	11/2/21	09:41	GW	G	3x40 ml	HCI	G	SA	VOC-L	TMMP (SW846-8260D)	002	
ŀ	116170	002	MWL-MW7	***************************************	496	11/2/21	09:42	GW	Р	500 ml	HNO3	G	SA	METAL	S, LTMMP - Cd, Cr, Ni, U	003	
-	116170	003	MWL-MW7		496	11/2/21	09:43	GW	Р	1 L	HNO3	G	SA	GAMM	A SPEC, SHORT LIST (EPA 90°	1) 004	
-	116170	004	MWL-MW7	496	11/2/21	09:44	GW	Р	1 L	HNO3	G	SA	GROSS	S-ALPHA/BETA (EPA 900)	005		
ŀ	116170		MWL-MW7		496	11/2/21	09:45	GW	AG	250 ml	NONE	G	SA	TRITIUN	M (EPA 906)	900	
F	116170		MWL-MW7		496	11/2/21	09:46	GW	G	2x40 mi	NONE	G	SA	RADON	(SM7500 Rn B)	007	
-	116171	001	MWL - TB 2		NA	11/2/21	09:26	DIW	G	3x40 ml	HCI	G	TB	VOC-LT	TMMP (SW846-8260D)	800	
-																	
	ast Chain	<u> </u>															
-			Yes		Sample [*]			SMO	Use	Special Inst	tructions/6	QC Require	ments:	·		Conditions on	
-	/alidation		☑ Yes		Date Ente					EDD		✓ Yes				Receipt	
<b>—</b>	Backgroun		Yes		Entered b	y.				Turnaround	l Time	☐ 7-Day*		15-Da	y* ☑ 30-Day		
1	Confirmate		Yes		QC inits.:					Negotiated	TAT			***************************************			
	Sample		ame Signatu	Init.		y/Organizati			Sample Dis		Return	to Client	***************************************	☑ Disposal by Lab			
١.		Team   William Gloson   Walland Gloson   SNL/08888/505-284-3307/505-239-7367   Return Samples By:										and the second s	and malmostanted dame				
Members Zachary Tenorio 3						SNL/08888/5	05-844-401	13/505-250	0-7090	7090 Comments: Trip blanks received from lab wit					space.		
		Denisha S			SNL/08888/5 SNL/08888/5												
			- James C	Brus	3	0141700000/3	005-040-702	29/505-208	5-13/5								
Polinquished by (1 ** ** ** ** ** ** ** ** ** ** ** ** **											Lab Use						
Received by Grik Grid Org. Oct & Date 11 7 / 7 / Time 11 75 Proceived by									Time								
Relinquished by Washington Column Org. OG/8 Date 11/2/24 Time 12/05 Relinquished by Org. Org. Date								Date Date	Time								
	eceived by		17/2/2	Org.	Date i	113 21			Received				Org.		Date Date	Time	
*	rior confire	nation wit	h SMO required for 7 and 1	5 day TAT							***************************************		Oig.		Dale	Time	

# Page 6 of 473

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

SDG:	Internal Lab	A N													Page 1 of 1		
<u></u>	Batch No. MA					SMO Use						101	The state of the s	AR/COC	622634		
560851	Project Name: MWL LTMMP Date Sample					- 14/ c	2,200	γ'	SMO A	uthorization	-71	Gra		☐ Waste Characterization	UZZUUT		
80	Project/Task Manager: Timmie Jackson			Carrier/Wayl	Carrier/Waybill No. 338855							-		RMA			
51	Project/Task I		195122.10.11.08	Lab Contact:		Zac Worsha	m/843-300	-4224		Wendy P	alencia/50	5-844-3132		Released by COC No.			
	Service Order		CF01-22	Lab Destinat	ion:	GEL			Send R	eport to SMC	);				☑ 4° Celsius		
	Tech Area:			Contract No.		1983530				Stephanie I	Montaño/50	05-284-255	3	Bill to: Sandia National Laborator	ies (Accounts Pavable)		
			7-	$ulde{uldet}_{oldsymbol{-}}$										P.O. Box 5800, MS-0154	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Building:		Room:	Operationa	<del></del>	<del></del>		·						Albuquerque, NM 87185-0154			
	Sample No.	Efaction	Sample Location D	otail	Depth (ft)	Date/		Sample		ontainer	4	Collection	Sample	Parameter & Method	d Lab		
				Clair	(11)	Colle	ctea	Matrix	Туре	Volume	ative	Method	Туре	Requested	Sample ID		
	116172 √	001	MWL - EB 1		NA	11/2/21	10:51	DIW	G	3x40 ml	HCI	G	EB	VOC-LTMMP (SW846-8260D)	009		
	116172√	002	MWL - EB 1		NA	11/2/21	10:52	DIW	Р	500 ml	HNO3	G	EB	METALS, LTMMP - Cd, Cr, Ni, U	010		
	116172√	003	MWL - EB 1		NA	11/2/21	10:53	DIW	Р	1 L	HNO3	G		GAMMA SPEC, SHORT LIST (EPA 90			
	116172	904	MWL - EB 1	***	NA	<del></del>	***************************************			T			EB				
	7			***************************************		11/2/21	10:54	DIW	P	1 L	HNO3	G	EB	GROSS-ALPHA/BETA (EPA 900)	012		
	1	<i></i>	MWL - EB 1		NA	11/2/21	10:55	DIW	AG	250 ml	NONE	G	EB	TRITIUM (EPA 906)	013		
	116172	906	MWL - EB 1		NA	11/2/21	10:56	DIW	G	2x40 ml	NONE	G	EB	RADON (SM7500 Rn B)	014		
	116173√	001	MWL - TB 3		NA	11/2/21	10:51	DIW	G	3x40 ml	HCI	G	ТВ	VOC-LTMMP (SW846-8260D)	015		
												***************************************			0.0		
ŀ	Last Chain:	***************************************	☐ Yes														
Ì	Validation F	Poald:	☑ Yes		Sample '			SMO	- I mon autonor do requirements.						Conditions on		
F	Background		☐ Yes		Date Ente					EDD		☑ Yes	w		Receipt		
	Confirmato		☐ Yes		Entered b	ıy:				Turnaround	f Time	☐ 7-Day*		15-Day* ☑ 30-Day			
ŀ	Sample				QC inits.:					Negotiated							
	, ,-	William G		e ///	Init.		/Organizat		***************************************	Sample Dis		☐ Return	to Client	☑ Disposal by Lab			
				1		SNL/08888/5				Return Sam				and the transcent can would write manufall information the contract and an animal section of the contract and animal section of the contract and animal section animal section and animal section and animal section and anima	and the second section of the section of the second section of the second section of the section of the second section of the sectio		
Members Robert Lynch Zachary Tenorio 3						SNL/08888/5 SNL/08888/5				Comments:	Trip blanks	received fr	om lab witl	n head space.			
- 1	}	Denisha S		9		SNL/08888/5											
1	ľ		2	0		01120000075	03-043-702	29/303-200	5-13/5								
	Relinquished b		well Sent	Org. 8888	Date	11-2-21	Time //	//c  F	Relinquis	hed by	***************************************	····			Lab Use		
	Received by	F. 19 Ball C	May Lang	Org. 06/8		11/2/21			Received				Org. Org.	Date	Time		
L	Relinquished b	y Cll		Org. <i>©618</i>		11/2/21			Relinquis			**************************************	Org.	Date Date	Time		
S	Received by		1/7/65_	Org.	Date	11 3 21			Received			***************************************	Org.	Date Date	Time		
,	Prior confirm	ation wit	th SMO required for 7 and 1	5 day TAT			······································			<del></del>			Oig.	Dale	Time		







www.againc.net

#### Memorandum

Date: December 8, 2021

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622635 SDG: 560988 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

Four samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercept was negative with an absolute value > the MDL but ≤3X the MDL for acetone. The associated sample results were non-detect and will be **qualified UJ,I5**.
- 2. The initial calibration %RSD was >15% but ≤ 40% and the CCV %D was >20% but ≤ 40% with negative bias for methylene chloride. The associated sample results were non-detect and will be qualified UJ,I3,C3.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### Calibration

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The initial calibration intercept was positive for bromoform. The associated result for sample 560988001 was a detect >3X the value of the intercept and will not be qualified. The remaining associated sample results were non-detect and will not be qualified.

The ICV %Ds were >20% but ≤40% with negative bias for chloromethane and chloroethane. All associated sample results were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

The CCV %D was >20% and positive for dichlorodifluoromethane. All associated sample results were non-detect and will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows.

Bromodichloromethane, bromoform, chloroform and dibromochloromethane were detected at > the PQL in FB 3, sample -001 associated with samples -002 and -003. The associated sample results were non-detect and will not be qualified.

Acetone was detected at  $\leq$  the PQL and bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in EB 1, sample 560851009 submitted on ARCOC 622634 in another SDG and associated with the samples submitted on ARCOC 622635 in this SDG. The associated sample results were non-detect and will not be qualified.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

A TB was submitted on the ARCOC. FB 3 was submitted on ARCOC 622635 and was associated with the samples on the same ARCOC. EB 1 was submitted on ARCOC 622634 in another SDG and was associated with the samples on ARCOC 622635 submitted in this SDG. A field duplicate pair was submitted on ARCOC 622635. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021





www.againc.net

#### Memorandum

Date: December 8, 2021

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622635 SDG: 560988 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows. U was detected at  $\leq$  the PQL in the MB. The associated sample results were detects > the PQL and > 5X the blank value and will not be qualified.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

It should be noted that the MS analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

It should be noted that the replicate analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Ca, Mg and Fe were < those in the ICS A and AB solutions.

#### **ICP Serial Dilution**

The serial dilution met all QC acceptance criteria.


It should be noted that the serial dilution was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### Other QC

EB 1 was submitted on ARCOC 622634 in another SDG and was associated with samples on ARCOC 622635 submitted in this SDG. A field duplicate pair was submitted on ARCOC 622635. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021





www.againc.net

#### Memorandum

Date: December 8, 2021

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622635 SDG: 560988 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec - short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### Gammaspec and Tritium:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### **Calibration**

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria.

It should be noted that the MS/MSD analyses for all analytes were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all analytes were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### <u>Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)</u>

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**

The samples were not diluted. All required detection limits were met.

#### Other QC

EB 1 was submitted on ARCOC 622634 in another SDG and was associated with samples on ARCOC 622635 submitted in this SDG. A field duplicate pair was submitted on ARCOC 622635. There are no "required" review criteria for field duplicate analyses comparability; no data will be qualified as a result.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021



### Sample Findings Summary



**AR/COC: 622635** Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	116175-003/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	116175-003/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	116175-003/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	116175-003/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
	116176-003/MWL-MW9	Americium-241 (14596-10-2)	BD, FR3
	116176-003/MWL-MW9	Cesium-137 (10045-97-3)	BD, FR3
	116176-003/MWL-MW9	Cobalt-60 (10198-40-0)	BD, FR3
	116176-003/MWL-MW9	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	116175-005/MWL-MW9	Tritium (10028-17-8)	BD, FR3
	116176-005/MWL-MW9	Tritium (10028-17-8)	BD, FR3
SW846 8260D			
	116174-001/MWL - FB 3	Acetone (67-64-1)	UJ, 15
	116174-001/MWL - FB 3	Methylene chloride (75-09-2)	UJ, 13,C3
	116175-001/MWL-MW9	Acetone (67-64-1)	UJ, 15
	116175-001/MWL-MW9	Methylene chloride (75-09-2)	UJ, 13,C3
	116176-001/MWL-MW9	Acetone (67-64-1)	UJ, 15
	116176-001/MWL-MW9	Methylene chloride (75-09-2)	UJ, 13,C3
	116177-001/MWL - TB 4	Acetone (67-64-1)	UJ, 15
	116177-001/MWL - TB 4	Methylene chloride (75-09-2)	UJ, I3,C3

All other analyses met QC acceptance criteria; no further data should be qualified.

#### Sandia Data Validation Summary Worksheet

ARCOC#: 622635		Site/Projec	et: MWL LTMMI	P			Validation D	ate: 12/08/2021	L				
SDG #: 560988		Laboratory	y: GEL Laborator	ies, LLC			Validator: M	ary Donivan					
Matrix: Aqueous		# of Samp	les: 14	CVR prese	nt: Yes								
ARCOC(s) present: Yes		Sample Co	ontainer Integrity:	OK									
Analysis Type:  ☑ Organic ☑ Metals	☐ Gench	em	⊠ Rad										
			Requested A	Analyses N	ot Reported								
Client Sample ID	Lab Samp	le ID	Analysis			Con	nments						
None													
			Hold Time	/Preservati	on Outliers								
Client Sample ID	Lab Sample	ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT				
None													
Comments: Collected: 11/03/202	21	I											
The ARCOC noted that the trip b	lank vials were re	eceived fron	n the lab with hea	dspace.									
_	ARCOC noted that the trip blank vials were received from the lab with headspace.  was submitted on ARCOC 622634 in another SDG and was associated with the samples on ARCOC 622635 submitted in this SDG.												
Validated by:													
Mary A.	Donivan	2											

#### Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622635	SDG: 560988		Matrix: Aqueous
Laboratory Sample IDs: 560988001, -002, -008, -014			
Method/Batch #s: <b>8260D</b> 2197439	Tuning (pass/fail): pass	TICs Required?	(yes/no): no

Analyte (outliers)				(	Calibrati	ion													
Na			Int.				CV I	МВ											
Somotomore   19-40	Acetone		-2.55	<b>✓</b>	✓	<b>✓</b>		✓	NA		✓	<b>✓</b>	✓	✓	✓	✓	2.73J	(27.3)	
Sample ID   Area   RT   Area	Bromodichlorometl	nane	NA	✓	✓	· ·					✓	✓	✓	✓	5.03	✓	3.93	19.7	
Dibromochloromethane					· ·								•		_				
NA																			
Chloromethane						· ·							·						
Chloroethane	,														·				
NA				· ·	· ·	` ′		-				The state of the s	•		•				
						` ′							•	-	·		· ·		
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope	Dichlorodifluorome	ethane	NA	<b>✓</b>	<b>~</b>	+21		✓	NA		✓	<b>✓</b>	✓	<b>✓</b>	✓	✓	<b>√</b>	NA	
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope					1														
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope					1														
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope																			
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope																			
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope																			
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope																			
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope																			
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope					1														
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope																			
Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R         Sample ID         1,2-DCA-d4 %R         Toluene-d8 %R         BFB %R           None         Image: Control of the properties of the prope							Surrogate	Recove	 erv Qutli	erc									
None	Sample ID	1.2-DCA-d4 %	δR T	oluene-d8	%R		Surrogute				1.2-D	CA-d4 º	⁄ ₆ R	Toluene-	d8 %R	BFB %	R		
IS Outliers		1,2 2 0.11 u + /		- Cache do	, ,,,	212 /011			Jumpie II		1,2 D		V.28	_ Journe	, , ,	DID /			
FBZ         Chl-d5         1,4-DCB-d4         Chl-d5         1,4-DCB-d4         Chl-d5         Area         RT         Area         Area <th colspa<="" td=""><td>TVOILC</td><td></td><td></td><td></td><td></td><td></td><td>TS</td><td>S Outli</td><td>ers</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td>TVOILC</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TS</td> <td>S Outli</td> <td>ers</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TVOILC						TS	S Outli	ers									
Sample ID Area RT Area RT Area RT		FBZ.			Chl-	d5	1												
Theu Al Meu Al	Sample ID		RT	Ar		1													
INDUCE I I I I I I I I I I I I I I I I I I I	None			211		11.1	11100		***										

Comments: HTs OK.
MS/MSD on sample -008

VOA4.I 11/06/21 Linear: Acetone, Bromoform

#### **Sandia Inorganic Metals Worksheet**

Laborato Method/l						210											
CPMS Ma					D8/2198		MS Resolutio	n: 🛛 Pas	s	☐ Fail		□ NA					
Analyte (outliers)			Cali	bration			MB mg/L	5X Blank	LCS %R	MS %R	Lab Rep	Serial Dil.	ICS AB	ICS A ±MDL ug/L	LLCCV %R	EB 1 560851	
(outriers)	<b>Int.</b> ug/L	$\mathbb{R}^2$	ICV	CCV	ICB ug/L	CCB ug/L		mg/L		,,,==	RPD	%D	%R	(x50)	,,,,,	-010	
U	NA	✓	✓ 	✓	✓	✓	0.000082J	0.00041	✓ ————————————————————————————————————	·	✓	✓	NA	NA	·	<b>V</b>	
			I	S Outli	ers 60-1	25%							IS O	Outliers 80-1	120%		
	ple ID one			covery		%Recove	ery %	6Recovery	,	CCV/C			%Recove	i	%Recovery	7	%Recovery
Comments: Al, Ca, Fe					-	60722003.											

#### Sandia Radiochemistry Worksheet

ARCOC #(s): 622635 SDG #:560988 Matrix: Aqueous

Laboratory Sample IDs: 560988 – see below

Method/Batch#s: EPA 901.1 (gammaspec)/2194861 Samples -004, -010

Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2198540 Samples -005, -011

Method/Batch#s: SM 7500 Rn B (Rn-222)/2194092 Samples -007, -013

Method/Batch#s: EPA 906.0 Modified (tritium)/2196503 Samples -006, -012

5X Blank MS/ Lab Analyte LCS/D **Control Control** Method MS **MSD MSD** Rep. **EB 1** or %R %R Freq. Eval. Blank %R (outliers) 5X MDC RER RER none

					Tracer/Ca	rrier Rec	overy Outli	iers						
Samp	ole ID	Tracer/Ca	rrier %F	2	Sample ID		Tracer/0	Carrier	%R	Sample 1	D	Tracer/0	Carrier	%R
N	A													
					•									

 $\underline{Comments:} \ \ HTs \ OK. \ Note: No \ precision \ criteria \ apply \ to \ sample \ results < the \ MDA \ including \ where \ one \ result \ is > the \ MDA \ and \ the \ other < .$ 

GS: DUP on SNL sample 560722004.

Gross A/B: DUP, MS/MSD on SNL sample 560722005. Parent sample 152mL; DUP 150ml; MS/MSD 50.6/50.5ml; 3X dilution.

Rn-222: DUP on SNL sample 560722007. LCS/LCSD

Tritium: DUP and MS on SNL sample 560722006

#### **CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY**

560988

Internal Lab												Pa	ge 1 of 2
Batch No.				SMO Us	e						/	AR/COC	622635
Project Name:	MWL LTM	MP Date	Samples Shipp	ed: Nov.	3,202	/	SMO A	uthorization	4/1/	7/1	A	☐ Waste Characterization	
Project/Task Manage	***************************************		ier/Waybill No		8848	5.05	sмо с	ontact Phone	: //	000		☐ RMA	
Project/Task Number	***************************************		Contact:	Zac Wors	nam/843-300	-4224		Wendy P	alencia/50	5-844-3132		Released by COC No.	
Service Order:	CF01-22	Lab	Destination:	GEL			Send Re	eport to SMC	):				✓ 4º Celsius
		Cont	ract No.:	1983530				Stephanie l	Montaño/5	05-284-2553	}	Bill to: Sandia National Laboratories	(Accounts Payable),
Tech Area:												P.O. Box 5800, MS-0154	
Building:	Room:	Ope	erational Site:									Albuquerque, NM 87185-0154	
Sample No. Fraction	n Sar	nple Location Detail	Dept (ft)		e/Time llected	Sample Matrix	Type	ontainer Volume	Preserv-	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample ID
116174 V 001	MWL - FE		NA NA	11/3/21	09:24	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	001
116175 001	MWL-MW		497	11/3/21	09:45	GW	G	3x40 ml	HCI	G	SA	VOC-LTMMP (SW846-8260D)	002
116175 002	MWL-MV		497	11/3/21	09:47	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	003
116175 003	MWL-MW		497	11/3/21	09:49	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 901)	004
116175 1004	MWL-MW	<b>'</b> 9	497	11/3/21	09:51	. GW	Р	1 L	HNO3	G	SA	GROSS-ALPHA/BETA (EPA 900)	005
116175 005	MWL-MW		497	11/3/21	09:53	GW	AG	250 ml	NONE	G	SA	TRITIUM (EPA 906)	006
116175 006	MWL-MW	/9	497	11/3/21	09:55	GW	G	2x40 ml	NONE	G	SA	RADON (SM7500 Rn B)	007
116176 001	MWL-MW	/9	497	11/3/21	09:46	GW	G	3x40 ml	HCI	G	DU	VOC-LTMMP (SW846-8260D)	700
116176 002	MWL-MW	/9	497	11/3/21	09:48	GW	Р	500 ml	HNO3	G	DU	METALS, LTMMP - Cd, Cr, Ni, U	009
116176 003	MWL-MW	/9	497	11/3/21	09:50	GW	Р	1 L	HNO3	G	DU	GAMMA SPEC, SHORT LIST (EPA 901)	010
Last Chain:	☐ Yes		Samp	le Tracking		SMC	) Use	Special Ins	structions	QC Requir	ements:		Conditions on
Validation Req'd	☑ Yes		Date B	Intered:				EDD		✓ Yes			Receipt
Background:	☐ Yes		Entere	ed by:				Turnaroun	d Time	☐ 7-Day*		15-Day* ☑ 30-Day	
Confirmatory:	☐ Yes		QC in					Negotiated	TAT				
Sample	Name	Signature	lnit.		any/Organiza			Sample Di	sposal	☐ Return	to Client	☑ Disposal by Lab	
Team Willian	Gibson	willest 20	90- WD	A-1	8/505-284-3			Return Sa					
Members Robert		full Grove	12		8/505-844-4			Comments	: Trip blank	s received f	rom lab wi	th head space.	
Zachai	y Tenorio	3-	= 21	SNL/0888	8/505-845-8	636/505-2	59-5765	-					
								-					Lab Use
Relinquished by	- 1 - 2 - 2 - 2	<b>O</b> ra	.68888 D	ate ///3/2	Time	1136	Relinqu	ished by			Org.	Date	Time
Received by	waterld (	And Org		ate 11/3/6		1130	Receive	······································			Org.		Time
Relinquished by	Misball .			ate 11/3/6		1215	Relinqu	ished by			Org.	Date	Time
Received by	J.F.	<b>K</b> A Org		ate ji di	21 Time	720	Receive	ed by			Org.	Date	Time
*Prior confirmation	with SMO fee	uired for 7 and 15 d	ay ⊺AT										

# Page 6 of 469 SDG: 560988

# CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY (Continuation)

Page 2 of 2 622635

Í			·										AR/COC	622635
Project Nam	ie:	MWL LTMMP	Project/Ta	sk Manag	ger:	Timmie Jac	ckson		Project/Tas	sk No.:	195122	2.10.11.08		
Tech Area:														
Tech Area: Building:	.,	Room:	<u> </u>											Lab use
				Depth	Date/		Sample	***************************************	ntainer	Preserv-	Collection	Sample	Parameter & Method	Lab
Sample No.	Fraction	Sample Location D	Detail	(ft)	Colle	ected	Matrix	Type	Volume	ative	Method	Type	Requested	Sample ID
116176	√904	MWL-MW9		497	11/3/21	09:52	GW	Р	1 L	ниоз	G	DU	GROSS-ALPHA/BETA (EPA 900)	011
116176	1005	MWL-MW9		497	11/3/21	09:54	GW	AG	250 ml	NONE	G	DU	TRITIUM (EPA 906)	012
116176	006	MWL-MW9	***************************************	497	11/3/21	09:56	GW	G	2x40 ml	NONE	G	DU	RADON (SM7500 Rn B)	013
116177	001	MWL - TB 4	***************************************	NA	11/3/21	09:24	DIW	G	3x40 ml	HCI	G	TB	VOC-LTMMP (SW846-8260D)	014
			***************************************					******************************						
									·					
			····						·					
	***************************************									SANTENETTE CONTENTS OF THE PROPERTY OF		a anno ano maranta o maranta anno		
	/	16					- 15							
Recipient In	itials_/_	<u> </u>												100







PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: December 9, 2021

To: File

From: Mary Donivan

Subject: GC/MS Organic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622636 and 622637

SDG: 561184 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: VOCs

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### **Summary**

Five samples were prepared and analyzed with accepted procedures using method EPA 8260D (VOCs). All compounds were successfully analyzed. Problems were identified with the data package that resulted in the qualification of data.

- 1. The initial calibration intercepts were negative with absolute values > the MDL but ≤3X the MDL for acetone and methylene chloride. All associated sample results for methylene chloride were detects <3X the value of the intercept and will be **qualified J-,I5**. All associated sample results for acetone were non-detect and will be **qualified UJ,I5**.
- 2. Methylene chloride was detected at ≤ the PQL in TB5, sample 561184008, associated with samples -001 and -002, and TB6, sample -011 associated with sample -009. The associated sample results were detects ≤ the PQL and will be **qualified 5.0U,B1**, non-detect at the PQL.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were analyzed within the prescribed holding time and were properly preserved.

#### **Instrument Tune**

All instrument tune requirements were met.

#### **Calibration**

The initial calibration and continuing calibration data met QC acceptance criteria except as noted above in the Summary section and as follows.

The ICV %Ds were >20% but ≤40% with negative bias for chloromethane and chloroethane. All associated sample results were non-detect and since no other calibration infractions occurred for these compounds, will not be qualified.

The CCV %Ds were >20% and positive for chloromethane, vinyl chloride and bromomethane. All associated sample results were non-detect and will not be qualified.

#### **Blanks**

No target analytes were detected in any of the blanks except as noted above and as follows.

Bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in FB 4, sample -001 associated with sample -002. The associated sample results were non-detect and will not be qualified. Methylene chloride was detected at  $\le$  the PQL in FB 4 but the FB result was qualified non detect due to TB contamination and will not be applied to the associated field sample result.

Bromodichloromethane, chloroform and dibromochloromethane were detected at > the PQL in the DIWQC, sample -009. No field sample results will be qualified. It should be noted that methylene chloride was detected at  $\le$  the PQL in the DIWQC but the sample result was qualified non detect due to TB contamination.

#### **Surrogates**

All surrogate recoveries met QC acceptance criteria.

#### **Internal Standards**

All internal standards met QC acceptance criteria.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

All MS/MSD recoveries and RPDs met QC acceptance criteria.

#### **Laboratory Control Sample (LCS)**

All LCS acceptance criteria were met except as follows. The %R for vinyl chloride was > the upper acceptance limit. The associated sample results were non detect and will not be qualified.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### **Tentatively Identified Compounds (TICs)**

TIC reports were not required.

#### Other QC

A TB was submitted on each ARCOC. The DIWQC sample was submitted on ARCOC 622637 and was the DI source water for equipment decontamination.

Mass spectra acceptability were verified during data validation and met QC acceptance criteria.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: December 9, 2021

To: File

From: Mary Donivan

Subject: Inorganic Data Review and Validation – SNL

Site: MWL LTMMP

ARCOC: 622636 and 622637

SDG: 561184 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: Metals

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

Two samples were prepared and analyzed with approved procedures using method EPA 6020B (ICP-MS). Data were reported for all required analytes. No problems were identified with the data package that resulted in the qualification of data.

Data are acceptable and reported QC measures appear to be adequate. The following sections discuss the data review and validation.

#### **Holding Times and Preservation**

The samples were prepared and analyzed within the prescribed holding times and were properly preserved.

#### **ICP-MS Instrument Tune**

The ICP-MS tune met QC acceptance criteria.

#### Calibration

All initial and continuing calibration criteria met QC acceptance criteria.

#### **Reporting Limit Verification**

All LLCCV recoveries met QC acceptance criteria.

#### **Blanks**

No target analytes were detected in any of the blanks except as follows. U was detected at  $\leq$  the PQL in the MB. The associated sample results were either detects > the PQL and > 5X the blank value or non-detect and will not be qualified.

#### **ICP -MS Internal Standards**

The ICP-MS internal standards met QC acceptance criteria.

#### Matrix Spike (MS)

The MS met all QC acceptance criteria.

It should be noted that the MS analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

The replicate met all QC acceptance criteria.

It should be noted that the replicate analysis was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Control Sample (LCS)**

The LCS met all QC acceptance criteria.

#### **Detection Limits/Dilutions**

All detection limits were properly reported. The samples were not diluted.

#### ICP Interference Check Sample (ICS A and AB)

Results of the ICS A and AB analyses were not evaluated because the sample concentrations for Al, Ca, Mg and Fe were < those in the ICS A and AB solutions.

#### **ICP Serial Dilution**

The serial dilution met all QC acceptance criteria.

It should be noted that the serial dilution was performed on an SNL sample of similar matrix from another SDG. No data will be qualified.

#### Other QC

The DIWQC sample was submitted on ARCOC 622637 and was the DI source water for equipment decontamination.

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021





PO Box 21987 Albuquerque, NM 87154 1-888-678-5447

www.againc.net

#### Memorandum

Date: December 9, 2021

To: File

From: Mary Donivan

Subject: Radiochemical Data Review and Validation – SNL

Site: MWL LTMMP ARCOC: 622636 SDG: 561184 Laboratory: GEL

Project/Task: 195122.10.11.08

Analysis: RAD

See the attached Data Validation Worksheets for supporting documentation on the data review and validation. This validation was performed according to SNL/NM SMO Procedure AOP 00-03 Rev 06.

#### Summary

One sample was prepared and analyzed with approved procedures using methods EPA 901.1 (gamma spec short list), EPA 900.0/ SW846 9310 (gross alpha/beta), SM 7500 Rn B (Rn-222) and EPA 906.0 modified (tritium). Problems were identified with the data package that resulted in the qualification of data.

#### Gammaspec and Tritium:

1. The sample results that were either < the associated 2-sigma TPU or < the associated MDA will be **qualified BD,FR3.** 

#### Rn-222:

1. The sample result that was  $\geq$  the MDA but <3X the MDA will be **qualified J,FR7.** 

#### **Holding Times and Preservation**

The sample was prepared and analyzed within the prescribed holding times and was properly preserved.

#### Quantification

All quantification criteria were met except as noted above in the Summary section.

#### **Calibration**

The case narratives stated that the instruments used were properly calibrated.

#### **Blanks**

No target analytes were detected in the blanks at concentrations ≥ the MDA and 2-sigma TPU.

#### **Tracer/Carrier Recovery**

Tracer/Carriers were not a method requirement.

#### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

The MS and/or MSD met QC acceptance criteria except as noted above in the Summary section.

It should be noted that the MS/MSD analyses for all analytes were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### **Laboratory Replicate**

All replicate error ratio acceptance criteria were met.

It should be noted that the replicate analyses for all analytes *except* Rn-222 were performed on SNL samples of similar matrix from another SDG. No data will be qualified.

#### <u>Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD)</u>

The LCS and/or LCSD met QC acceptance criteria for accuracy and/or precision.

#### **Detection Limits/Dilutions**

The sample was not diluted. All required detection limits were met.

#### Other QC

No other specific issues that affect data quality were identified.

Reviewed by: Linda Thal Level: I Date: 12/10/2021



#### Sample Findings Summary



**AR/COC: 622636, 622637** Page 1 of 1

Analytical Method	Sample ID	Analyte Name (CAS#)	Qualifier, RC
EPA 901.1			
	116179-003/MWL-MW8	Americium-241 (14596-10-2)	BD, FR3
	116179-003/MWL-MW8	Cesium-137 (10045-97-3)	BD, FR3
	116179-003/MWL-MW8	Cobalt-60 (10198-40-0)	BD, FR3
	116179-003/MWL-MW8	Potassium-40 (13966-00-2)	BD, FR3
EPA 906.0 Modified			
	116179-005/MWL-MW8	Tritium (10028-17-8)	BD, FR3
SM 7500 Rn B			
	116179-006/MWL-MW8	Radon-222 (14859-67-7)	J, FR7
SW846 8260D			
	116178-001/MWL - FB 4	Acetone (67-64-1)	UJ, 15
	116178-001/MWL - FB 4	Methylene chloride (75-09-2)	5.0UJ, B1,I5
	116179-001/MWL-MW8	Acetone (67-64-1)	UJ, 15
	116179-001/MWL-MW8	Methylene chloride (75-09-2)	5.0UJ, B1,I5
	116180-001/MWL - TB5	Acetone (67-64-1)	UJ, 15
	116180-001/MWL - TB5	Methylene chloride (75-09-2)	J-, I5
	116181-001/MWL - DIWQC	Acetone (67-64-1)	UJ, 15
	116181-001/MWL - DIWQC	Methylene chloride (75-09-2)	5.0UJ, B1,I5
	116182-001/MWL - TB6	Acetone (67-64-1)	UJ, 15
	116182-001/MWL - TB6	Methylene chloride (75-09-2)	J-, I5

All other analyses met QC acceptance criteria; no further data should be qualified.

#### Sandia Data Validation Summary Worksheet

ARCOC#: 622636 and 622637		Site/Projec	t: MWL LTMM	P			Validation D	ate: 12/09/2021	1
SDG #: 561184		Laboratory	: GEL Laborator	ries, LLC			Validator: M	ary Donivan	
Matrix: Aqueous		# of Sampl	es: 11	CVR preser	nt: Yes				
ARCOC(s) present: Yes		Sample Co	ntainer Integrity	: OK					
Analysis Type:									
☐ Organic ☐ Metals	Gench	em	⊠ Rad						
			Requested .	Analyses No	t Reported				
Client Sample ID	Lab Samp	le ID	Analysis	i		Cor	nments		
None									
			Hold Time	/Preservatio	n Autliars				
Client Sample ID	Lab Sample	ID	Analysis	Pres.	Collection Date	Preparation Date	Analysis Date	Analysis <2X HT	Analysis ≥2X HT
None					Date	Date	Date	<b>\2X 111</b>	≥2X 111
Comments: Collected: 11/04/202	1								
The ARCOCs noted that the trip b	lank vials were 1	received from	n the lab with he	eadspace.					
Validated by:									
Mary A.	Donivan	2							

#### Sandia Organic Worksheet (GC/MS VOC)

ARCOC #(s): 622636 and 622637	SDG: 561184		Matrix: Aqueous
Laboratory Sample IDs: 561184001, -002, -008, -009, -011			
Method/Batch #s: <b>8260D</b> 2197987	Tuning (pass/fail): pass	TICs Required? (	yes/no): no

			(	Calibratio	on												
Analy (outlie		Int.	RF/ Slope	RSD/ r ²	(ICV)/CC	CV	MB	5X (10X) MB		LCS %R	MS %R	MSD %R	MS/ MSD RPD	FB 4 -001	TB5 -008	DIWQC -009	TB6 -011
Bromodichlorometh	nane	NA	✓	✓	<b>√</b>		✓	NA		✓	<b>√</b>	✓	✓	4.16	✓	4.02	✓
Chloroform		NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	9.49	✓	9.04	✓
Dibromochlorometh	nane	NA	✓	✓	✓		✓	NA		✓	✓	✓	✓	2.52	✓	2.32	✓
Methylene chloride		-0.96	✓	✓	✓		✓	NA		✓	✓	✓	✓	0.62J	0.79J	0.65J	0.66J
Acetone		-2.91	✓	✓	✓		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Chloromethane		✓	✓	✓	(-21), +5	8	✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Chloroethane		NA	✓	✓	(-22)		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
Vinyl chloride		NA	✓	✓	+56		✓	NA		136	✓	✓	✓	✓	✓	✓	✓
Bromomethane		NA	✓	✓	+37		✓	NA		✓	✓	✓	✓	✓	✓	✓	✓
						Surrogate	e Recov	ery Outli	ers								
g 1 TD	10001 110	- T	T. 1. 10	0/P	DED 0/D	Burroguit				120	GA 14.0	/ D	<b></b>	10.0/P	DED 0/		
Sample ID	1,2-DCA-d4 %	oK	Toluene-d8	%K	BFB %R			Sample I	U	1,2-D	CA-d4 %	oK	Toluene-	18 %K	BFB %	K	
None																	
						I	S Outl	iers									
	FBZ			Chl-d	15	1,4	-DCB-	d4									
Sample ID	Area	RT	Ar	ea	RT	Area	a	RT									
None																	

Comments: HTs OK.
MS/MSD on sample -002
VOA3.I 10/11/21 Linear: Dichlorodifluoromethane, Chloromethane, Acetone, Methylene chloride

#### **Sandia Inorganic Metals Worksheet**

ARCOC	#(s): 622	2636 ar	nd 6226	37				3	SDG #(s	s): 56118	4			Matrix	: Aqueous		
Laborato	ry Samp	le IDs:	561184	1003, -01	10												
Method/	Batch #s:	3005A	A/6020F	<b>3</b> :219820	08/2198	210											
CPMS Ma	ss Cal: [	Z Pass	s 🔲 ]	Fail	□ NA	A ICPN	AS Resolutio	n: 🛛 Pass	3	☐ Fail		□NA					
Analyte (outliers)	Int.			ibration	ICB	ССВ	MB mg/L	5X Blank mg/L	LCS %R	MS %R	Lab Rep RPD	Serial Dil. %D	ICS AB %R	ICS A ±MDL ug/L (x50)	LLCCV %R	DIWQC -010	
	ug/L	R ²	ICV	CCV	ug/L	ug/L								(A30)			
U	NA	<b>V</b>		✓ ————————————————————————————————————	✓ ————————————————————————————————————	✓	0.000082J	0.00041	✓	✓	\frac{1}{2}	✓ ————————————————————————————————————	NA	NA	✓		
			]	S Outli	ers 60-1	125%							IS O	outliers 80-	120%		
Sam	ple ID			ecovery		%Recove	ry %	Recovery		CCV/C	CB ID		%Recove		%Recovery	y	%Recovery
n	one									noi	ne						
Comments Al, Ca, Fe						60722003.											

#### Sandia Radiochemistry Worksheet

ARCOC #(s): 622636 SDG #:561184 Matrix: Aqueous Laboratory Sample IDs: 561184 – see below Method/Batch#s: EPA 901.1 (gammaspec)/2194861 Sample -004 Method/Batch#s: EPA 900.0/SW846 9310 (gross A/B)/2198540 Sample -005 Method/Batch#s: SM 7500 Rn B (Rn-222)/2194851 Sample -007 Method/Batch#s: EPA 906.0 Modified (tritium)/2196503 Sample -006

Analyte (outliers)	Control Freq.	Control Eval.	Method Blank	5X Blank or 5X MDC	LCS/D %R	MS %R	MSD %R	ľ	MS/ MSD RER	Lab Rep. RER				
none														
				Tracer/Ca	rrier Reco	overy Outl	iers							
Sample ID	Tracer/Ca	arrier %I	₹ .	Sample II	)	Tracer/	Carrier	%R		Sample	ID	Tracer/	Carrier	%R
NA														

Comments: HTs OK. Note: No precision criteria apply to sample results < the MDA including where one result is > the MDA and the other <.

GS: DUP on SNL sample 560722004.

Gross A/B: DUP, MS/MSD on SNL sample 560722005. Parent sample 152mL; DUP 150ml; MS/MSD 50.6/50.5ml; 3X dilution.

Rn-222: DUP on sample -007. LCS/LCSD

Tritium: DUP and MS on SNL sample 560722006

# Page 5 of 4

## CONTRACT LABORATORY ANALYSIS REQUEST AND CHAIN OF CUSTODY

561184

	Internal Lab														Page 1 of 1
įΣ.	Batch No.	NA				SMO Ųse	1					100		AR/COC	622636
<b>۱۱</b>	Project Name		MWL LTMMP	Date Sample		11/4/	202	1	SMO A	uthorization: 2	TE/4	941	<del></del>	☐ Waste Characterization	UZZUJU
		-	Timmie Jackson	Carrier/Wayl	oill No.	<u> 33</u>	885	3		ontact Phone	: 7	1		RMA	
2	Project/Task			Lab Contact:		Zac Worsha	m/843-300	-4224		Wendy Pa	alencia/50	5-844-3132		Released by COC No.	
	Service Orde	er:	CF01-22	Lab Destinat	ion:	GEL			Send R	eport to SMO			1	☑ 4° Celsius	
	T 1- A			Contract No.	:	1983530			<u> </u>	Stephanie I	Montaño/5	05-284-2550	Bill to: Sandia National Laboratori		
	Tech Area:		<u></u>	- _									P.O. Box 5800, MS-0154		
ı	Building:	T	Room:	Operationa				· · · · · · · · · · · · · · · · · · ·	·	····	·		Albuquerque, NM 87185-0154		
	Sample No.	Fraction	Sample Location D	)etail	Depth (ft)	Date/ Colle		Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type	Parameter & Method Requested	Lab Sample ID
	116178	001	MWL - FB 4		NA	11/4/21	09:30	DIW	G	3x40 ml	HCI	G	FB	VOC-LTMMP (SW846-8260D)	001
	116179	001	MWL-MW8		497	11/4/21	09:44	GW	G	3x40 ml	HCI	G	SA	VOC-LTMMP (SW846-8260D)	007
ø	116179	002	MWL-MW8		497	11/4/21	09:45	GW	Р	500 ml	HNO3	G	SA	METALS, LTMMP - Cd, Cr, Ni, U	003
.	116179	003	MWL-MW8		497	11/4/21	09:46	GW	Р	1 L	HNO3	G	SA	GAMMA SPEC, SHORT LIST (EPA 90	1) 004
	116179	004	MWL-MW8	***************************************	497	11/4/21	09:47	GW	Р	1 L	НИОЗ	G	SA	GROSS-ALPHA/BETA (EPA 900)	905
1	116179	005	MWL-MW8		497	11/4/21	09:48	GW	AG	250 ml	NONE	G	SA	TRITIUM (EPA 906)	006
-	116179	006	MWL-MW8		497	11/4/21	09:49	GW	G	2x40 ml	NONE	G	SA	RADON (SM7500 Rn B)	007
ŀ	116180	001	MWL - TB5		NA	11/4/21	09:30	DIW	G	3x40 ml	HCI	G	TB	VOC-LTMMP (SW846-8260D)	700
ŀ	***************************************												···		
+	Last Chain	<u> </u>	∐ Yes												
-	Validation		☑ Yes			Tracking		SMO	Use	Special Inst	tructions/		ements:		Conditions on
-	Backgroun		☐ Yes		Date Ente					EDD	·····	☑ Yes			Receipt
-	Confirmate		☐ Yes		Entered b					Turnaround		☐ 7-Day*		15-Day* ☑ 30-Day	
F	Sample	<del>,                                      </del>	ame Signati		QC inits.		·/Oii	: DI	,	Negotiated					
	Team	William C		13.41		SNL/08888/5	//Organizat			Sample Dis	·	☐ Return	to Client	☑ Disposal by Lab	
	Members	Robert Ly				SNL/08888/5				Return Sam		received fr	1	h head space.	
- [	Mellinel 2	Zachary		2		SNL/08888/5				Commicnes.	Trip biating	received in	un iau wil	n nead space.	
1		Denisha S	Sanchez Juiste	Saus		SNL/08888/5									
L															Lab Use
	Relinquished	and the same of th	7.63	Org. 0888		11/4/21	Time /		Relinquis			***************************************	Org.	Date	Time
	Received by		A GARAGE	OrgO6(8		1/4/20			Received				Org.	Date	Time
-	Relinquished Received by		Sold Hay	Org <i>@QUI</i>		11152		3 4	Relinquis		***************************************	<del></del>	Org.	Date	Time
١	73%		th SMO required for 7 and	Org. 15 day TAT	Date	<u>11)5P1</u>	Time		Received	l by			Org.	Date	Time
			s roquirou ioi i unu	. Gauy IAI		4									

# SMO 2012-ARCOC (4-2012)

#### **CONTRACT LABORATORY** ANALYSIS REQUEST AND CHAIN OF CUSTODY

j Internal Lab														F	Page 1 of 1
Batch No. 🛝	114				SMO Ųse	و ا					100	,		AR/COC	622637
Project Name	:	MWL LTMMP	Date Sample	es Shipped	11/4	12021		SMO A	uthorization:	N h	9-Cr	$\overline{}$	Tov	Waste Characterization	
Project/Task I	Manager:	Timmie Jackson	Carrier/Way	bill No.	33	885	3	sмо с	ontact Phone	: -			7	RMA	
Project/Task I	Number:	195122.10.11.08	Lab Contact		Zac Worsh	am/843-300	)-4224		Wendy P	alencia/505	5-844-3132		· —	Released by COC No.	
Service Order	r:	CF01-22	Lab Destina	tion:	GEL			Send R	eport to SMC					•	
			Contract No		1983530				Stephanie	Montaño/50	05-284-2553	}	Bill to: S	Sandia National Laboratorie	
Tech Area:													-1	x 5800, MS-0154	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Building:	<del>ya</del>	Room:	Operation	al Site:									1	erque, NM 87185-0154	
Sample No.	Fraction	Sample Location D	etail	Depth (ft)	į	/Time ected	Sample Matrix	Type	ontainer Volume	Preserv- ative	Collection Method	Sample Type		Parameter & Method Requested	Lab Sample ID
116181	001	MWL - DIWQC		NA	11/4/21	09:27	DIW	G	3x40 ml	HCI	G	FB	VOC-LTN	MMP (SW846-8260D)	009
116181	002	MWL - DIWQC		NA	11/4/21	09:28	DIW	Р	500 ml	НИОЗ	G	FB	METALS	, LTMMP - Cd, Cr, Ni, U	010
116182	001	MWL - TB6		NA	11/4/21	09:27	DIW	G	3x40 ml	HCI	G	TB	VOC-LTN	MMP (SW846-8260D)	011
						***************************************									
							<u> </u>								
							ļ								
							ļ								
							ļ			<u> </u>		***************************************			
			····				<u> </u>								
Last Chain	s	☑ Yes		Sample	Frankins		CMC	Use	C!-!!-				<u></u>	F &	
Validation		☑ Yes	·····	Date Ent			SIVIC	ouse	Special Ins	tructions/	•	ements:			Conditions on
Backgroun		☐ Yes							EDD		☑ Yes		•		Receipt
Confirmato		☐ Yes	***************************************	Entered t					Turnaroun		☐ 7-Day*	<u>Ll</u>	15-Day	* ☑ 30-Day	
Sample		ame Signati	ıra	QC inits.		ny/Organiza	tion/Dhans	-/C-II	Negotiated					<b>—</b>	
	William G		2.77		SNL/08888				Sample Dis		☐ Return	to Client		☑ Disposal by Lab	
1 Cairi	Robert Ly		XZ-		SNL/08888/				Comments:		received fr	om lob wit	th hood (		
Members	Zachary				SNL/08888/				Joonancina.	TTIP DIGITA	received in	UIII IAU WII	in nead s	space.	
	Denisha		Sand	<del> </del>	SNL/08888										
Polinguished	- Comp		~ .00	005.	11/4/2	<i>*</i> )	1	I	<u> </u>						Lab Use
Received by	Perceived by All St. One of the Date of th										Time				
Relinquished I	hy (V)	astople Chine	Org Ø Ø 6,		11/2/21	Time Time						Org.	***********	Date	Time
Received by	3 3	AT FIRM	Org.		1155	Time		Relinqui Receive	···	<del></del>		Org.		Date	Time
1/3/	1 1 1 1 1 1	th SMO required for 7 and			444	11110 7	4 <del>-)</del> -	i veneive	и ру			Org.	· · · · · · · · · · · · · · · · · · ·	Date	Time

# Contract Verification Review Forms Mixed Waste Landfill Groundwater Monitoring November 2021

AR/COC Number	Sample Type
622632	Environmental & Quality Control
622633	Environmental & Quality Control
622634	Quality Control
622635	Environmental & Quality Control
622636	Environmental & Quality Control
622637	Quality Control

Note: The forms in this section include AR/COC numbers for environmental and quality control samples; the AR/COC forms are provided in the Data Validation Reports in this Annex.

SMO-2019-CVR (4-2019) SMO-05-03

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622632

Analytical Lab GEL

**SDG No.** 560722

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Х		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622632 1 of 5

Line	Item		olete?	If no, explain
No.	item	Yes	No	II IIO, EXPIAIII
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

#### 3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Χ		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622632 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	Uranium detected in method blank (QC1204959050)
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Х		Bromodichloromethane, bromoform, chloroform and dibromochloromethane detected in MWL - FB 1
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622632 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622632 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

#### 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Based on the review, this data package is complete. • Yes O No

Reviewed by: Wendy Palencia Date: 12-07-2021 12:47:00

Closed by: Wendy Palencia Date: 12-07-2021 12:47:00

ARCOC No. 622632 5 of 5

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622633 & 622634

Analytical Lab GEL

**SDG No.** 560851

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Com	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Х		
1.3	Sample volume adequate for # and types of analyses requested	Х		
1.4	Preservative correct for analyses requested	Х		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	ltem		olete?	If no, explain
No.	iteill	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622633 & 622634 1 of 5

Line	Item	Com	olete?	If no, explain
No.	item	Yes	res No	II IIO, EXPIAIII
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

#### 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	Х		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		

ARCOC No. 622633 & 622634 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	Uranium detected in method blank (QC1204959050)
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met	Χ		Bromodichloromethane, bromoform, chloroform and dibromochloromethane detected in MWL - FB 2. Acetone, bromodichloromethane, chloroform and dibromochloromethane detected in MWL - EB 1.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622633 & 622634 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Х		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Х		
	e) Instrument run logs provided	Χ		

ARCOC No. 622633 & 622634 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	Item	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Χ		

#### 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. An	alysis Problems/Comments/Resolutions
------------------------	--------------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Based on the review, this data package is complete.  $\odot$  Yes  $\bigcirc$  No

Reviewed by: Wendy Palencia Date: 12-07-2021 15:07:00

Closed by: Wendy Palencia Date: 12-07-2021 15:07:00

ARCOC No. 622633 & 622634 5 of 5

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622635

Analytical Lab GEL

**SDG No.** 560988

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line No.	Item	Complete?		If no, explain
		Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	Χ		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Χ		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Χ		

#### 2.0 Analytical Laboratory Report

Line No.	ltem	Complete?		If no, explain
		Yes	No	η πο, εχριαίτ
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622635

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	II IIO, EXPIAIII
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

## 3.0 Data Quality Evaluation

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples	X		
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Χ		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	X		

ARCOC No. 622635 2 of 5

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Х		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	Uranium detected in method blank (QC1204959050)
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Χ	Bromodichloromethane, bromoform, chloroform and dibromochloromethane detected in MWL - FB 3
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	×		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Х		
3.8	Narrative included, correct, and complete	Х		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622635 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622635 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	ltem	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

#### 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? ○ Yes ⊙ No

Reviewed by: Wendy Palencia Date: 12-08-2021 08:44:00

Closed by: Wendy Palencia Date: 12-08-2021 08:44:00

ARCOC No. 622635 5 of 5

SMO-2019-CVR (4-2019) SMO-05-03

#### **Contract Verification Form (CVR)**

Project Leader JACKSON

Project Name MWL LTMMP

Project/Task No. 195122_10.11.08

**ARCOC No.** 622636 & 622637

**Analytical Lab** GEL

**SDG No.** 561184

In the tables below, mark any information that is missing or incorrect and give an explanation.

#### 1.0 Analysis Request and Chain of Custody Record and Log-In Information

Line	Item	Comp	olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
1.1	All items on ARCOC complete - data entry clerk initialed and dated	X		
1.2	Container type(s) correct for analyses requested	Χ		
1.3	Sample volume adequate for # and types of analyses requested	Χ		
1.4	Preservative correct for analyses requested	Χ		
1.5	Custody records continuous and complete	Χ		
1.6	Lab sample number(s) provided and SNL sample number(s) cross referenced and correct	Х		
1.7	Date samples received	Х		
1.8	Condition upon receipt information provided	Х		

#### 2.0 Analytical Laboratory Report

Line	ltem C		olete?	If no, explain
No.	iteiii	Yes	No	ii iio, expiaiii
2.1	Data reviewed, signature	Х		
2.2	Method reference number(s) complete and correct	Х		
2.3	QC analysis and acceptance limits provided (MB, LCS, Replicate)	Х		
2.4	Matrix spike/matrix spike duplicate data provided	Х		
2.5	Detection limits provided; PQL and MDL(or IDL), MDA and Lc	Х		

ARCOC No. 622636 & 622637

Line	Item	Com	olete?	If no, explain
No.	item	Yes	No	II IIO, EXPIAIII
2.6	QC batch numbers provided	Х		
2.7	Dilution factors provided and all dilution levels reported	Х		
2.8	Data reported in appropriate units and using correct significant figures	Х		
2.9	Radiochemistry analysis uncertainty (2-sigma error or 1-sigma for bioassay) and tracer recovery (if applicable) reported	Х		
2.10	Narrative provided	Х		
2.11	TAT met	Х		
2.12	Holding times met	Х		
2.13	Contractual qualifiers provided	Х		
2.14	All requested result and TIC (if requested) data provided	Х		

## 3.0 Data Quality Evaluation

Line No.	ltem	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
3.1	Are reporting units appropriate for the matrix and meet contract specified or project-specific requirements? Inorganics and metals reported as ppm (mg/liter or mg/Kg)? Tritium reported in picocuries per liter with percent moisture for soil samples? Units consistent between QC samples and sample data	X		
3.2	Quantitation limit met for all samples	Х		
3.3	Accuracy a) Laboratory control sample accuracy reported and met for all samples		X	Vinyl chloride failed recovery limits for LCS (QC1204958599)
	b) Surrogate data reported and met for all organic samples analyzed by a gas chromatography technique	Х		
	c) Matrix spike recovery data reported and met	Х		
3.4	Precision a) Replicate sample precision reported and met for all inorganic and radiochemistry samples	Х		

ARCOC No. 622636 & 622637

Line No.	Item	Yes	No	If no, Sample ID No./Fraction(s) and Analysis
	b) Matrix spike duplicate RPD data reported and met for all organic samples	Χ		
	c) Laboratory control sample duplicate RPD data reported and met for other analyses	Χ		
3.5	Blank data a) Method or reagent blank data reported and met for all samples		X	Uranium detected in method blank (QC1204959050)
	b) Sampling blank (e.g., field, trip, and equipment) data reported and met		Х	Bromodichloromethane, chloroform, dibromochloromethane and methylene chloride detected in MWL - FB 4. Methylene chloride detected in MWL - TB5 and MWL - TB6. Bromodichloromethane, chloroform, dibromochloromethane and methylene chloride detected in MWL - DIWQC.
3.6	Contractual qualifiers provided: "J"- estimated quantity; "B"-analyte found in method blank above the MDL for organic and inorganic; "U"- analyte undetected (results are below the MDL, IDL, or MDA (radiochemical)); "H"- analysis done beyond the holding time; "h" - analysis done beyond the extraction/preparation holding time; "N" - result associated with spike analysis outside control limits	X		
3.7	Narrative addresses planchet flaming for gross alpha/beta	Χ		
3.8	Narrative included, correct, and complete	Χ		
3.9	Second column confirmation data provided for methods 8330 (high explosives), pesticides/PCBs 8081 and 8082 and herbicides 8151.	N/A		

#### 4.0 Calibration and Validation Documentation

Line No.	ltem	Yes	No	Comments
4.1	GC/MS (8260 and 8270 and TO-15) a) 12-hour tune check provided	Х		
	b) Initial calibration provided	Х		
	c) Continuing calibration provided	Х		All CCV limits not met
	d) Internal standard performance data provided	Х		
	e) Instrument run logs provided	Х		

ARCOC No. 622636 & 622637 3 of 5

Line No.	ltem	Yes	No	Comments
4.2	GC/HPLC (8330, 8082, 9070A, and 8010) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) Instrument run logs provided	N/A		
4.3	HRGC/HRMS (1668 and 8290) a) 12-hour tune check provided	N/A		
	b) Initial calibration provided	N/A		
	c) Continuing calibration provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Labeled compound recovery data provided	N/A		
	f) RRTs for samples and standards provided	N/A		
	g) Ion abundance ratios for samples and standards provided	N/A		
	h) Instrument run logs provided	N/A		
4.4	LC/MS/MS (6850 and 8330) a) Initial calibration provided	N/A		
	b) Continuing calibration provided	N/A		
	c) CRI provided	N/A		
	d) Internal standard performance data provided	N/A		
	e) Chlorine isotope ratios provided (perchlorate only)	N/A		
	f) ICS provided (perchlorate only)	N/A		
4.5	Inorganics (metals) a) Initial calibration provided	Х		
	b) Continuing calibration provided	Χ		
	c) ICP interference check sample data provided	Χ		
	d) ICP serial dilution provided	Χ		
	e) Instrument run logs provided	Χ		

ARCOC No. 622636 & 622637 4 of 5

SMO-2019-CVR (4-2019) SMO-05-03

Line No.	Item	Yes	No	Comments
4.6	Radiochemistry and General Chemistry a) Instrument run logs provided	Х		

#### 5.0 Data Anomaly Report

Line No.	ltem	Yes	No	If no, explain
5.1	DAR completed for monitoring and surveillance sample data	N/A		
5.2	Problems or outliers noted	N/A		
5.3	Verification or reanalysis requested from lab	N/A		

#### **6.0 Problem Resolution**

Summarize the findings in the table below. List only samples/fractions for which deficiencies has been noted.

Sample/Fraction No. Analysis	Problems/Comments/Resolutions
------------------------------	-------------------------------

Were deficiencies unresolved? € Yes € No

Based on the review, this data package is complete.  $\odot$  Yes  $\bigcirc$  No

Reviewed by: Wendy Palencia Date: 12-08-2021 10:14:00

Closed by: Wendy Palencia Date: 12-08-2021 10:14:00

ARCOC No. 622636 & 622637 5 of 5

#### **ANNEX F**

## Mixed Waste Landfill Inspection Forms

**April 2021-March 2022** 

Soil-Vapor Monitoring Network
Soil-Moisture Monitoring Network
Groundwater Monitoring Network
Cover Inspection
Biology Inspection

Note: Radon monitoring system inspection forms are provided in Annex A

## Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form

1.	Date of Inspection	5/6/21
2.	Time of Inspection	0820
3.	Name of Inspector	Zach Tenorio

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required.

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
<ul> <li>Concrete pads, bollards, and protective casings in need of repair/maintenance.</li> </ul>	Yes	100	
B. Well cover caps in need of repair/maintenance.	Yes	100	
C. Well casing or sampling ports in need of repair/maintenance.	Yes	No	
D. Monitoring location and sampling ports properly labeled.	yes	No	
E. Locks in need of cleaning or replacement.	Yes	No	
II. SAMPLING EQUIPMENT [Semiannually or Annually]			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	Yes	No	
<ul> <li>Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.</li> </ul>	Yes	No	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	BCI	

## Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form (Continued)

#### **NOTES**

Note Number			Description	
Action (No	te Number)	assigned to	Date action completed	
		assigned to		
		assigned to		
		assigned to		
Additiona	al Comments:			
				_
Inspector's S	ignature			
Original to: !	Mixed Waste Lar	dfill Operating Record		

Copy to: SNL/NM Records Center

### Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form

1.	Date of Inspection	11/5/21	_
	Time of Inspection		
	Name of Inspector	Zach Tenurio	_

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required.

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	yes	20	
B. Well cover caps in need of repair/maintenance.	yes	20	
C. Well casing or sampling ports in need of repair/maintenance.	yes	No	
D. Monitoring location and sampling ports properly labeled.	yes	No	
E. Locks in need of cleaning or replacement.	yes	100	
II. SAMPLING EQUIPMENT [Semiannually or Annually]			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	yes	100	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	yes	20	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

## Mixed Waste Landfill Soil-Vapor Monitoring Network Checklist/Form (Continued)

#### **NOTES**

Note Number			Description						
Action (No	ote Number) ote Number)	assigned to assigned to assigned to assigned to assigned to	Date action completed						
Additiona	al Comments:								
£									
<u></u>									
Inspector's	Signature3	1							
		ndfill Operating Record							
Copy to: Si	Copy to: SNL/NM Records Center								

AL/5-16/WP/SNL12:MWL LTMMP_App I_Final.doc

## Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form

1. 2.	Date of Inspection April 19, 2021  Time of Inspection 14:20  Name of Inspector Robert Trock Daniel Michael  Name of Inspector Robert Trock Daniel Michael  Note of Inspection			
3.	Name of Inspector Robert Fiock Daniel Miche	4		
	ovide explanatory notes for each parameter not inspected intenance or repair required.		required. In	clude any
I.	SOIL-MOSITURE MONITORING LOCATIONS [Semia	nnually or Ann	ually]	
Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
F.	Concrete pads, bollards, and protective casings in need of repair/maintenance.	425	No	
G.	Access tube cover caps in need of repair/maintenance.	yes	No	
H.	Access tube casing in need of repair/maintenance.	yes	Ne	
I.	Monitoring location properly labeled.	lyes	No	
J.	Locks in need of cleaning or replacement.	yes	No	
II.	SAMPLING EQUIPMENT [Semiannually or Annually]	,		
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Neutron probe in need of repair/maintenance.	yes	No	
B.	Cable reel or cable in need of repair/maintenance.	yes	No	
Ш	. PREVIOUS DEFICIENCIES			
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Un	corrected/undocumented previous deficiencies.	NA	NA	

## Mixed Waste Landfill Soil-Moisture Monitoring Network Checklist/Form (Continued)

## NOTES

Note Description			
		×	
		-	
			3.
		× *	
		assigned to	
		assigned to	
Action (No	ote Number)	assigned to	Date action completed
Action (No	ote Number)	assigned to	Date action completed
Addition	al Comments:		
8			
3			
	,		~
	1	1811	
Inspector's	Signature //	my you	
Original to:	Mixed Waste La	ndfill Operating Record	

AL/5-16/WP/SNL12:MWL LTMMP_App I_Final.doc

Copy to: SNL/NM Records Center

## Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection 05/10/21					
2. Time of Inspection 0808					
3. Name of Inspector Robert Lynch					
Provide explanatory notes for each parameter not inspected or maintenance or repair required.	each action	required. In	clude any		
I. GROUNDWATER MONITORING LOCATIONS [Semianne	ually]				
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number		
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	YES	No			
B. Well cover caps in need of repair/maintenance.	YES	MO			
C. Well casing in need of repair/maintenance.	YES	NO			
D. Monitoring well properly labeled.	YES	NO			
E. Locks in need of cleaning or replacement.	YES	No			
II. GROUNDWATER SAMPLING EQUIPMENT [Semiannual	lly]				
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number		
A. Sampling pump in need of repair/maintenance.	YES	No			
B. Sampling assembly (e.g., tubing, gauges, and valves) in need of repair/maintenance.	YE	No			
III. PREVIOUS DEFICIENCIES					
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number		
Uncorrected/undocumented previous deficiencies.	NA	NA			

## **Mixed Waste Landfill** Groundwater Monitoring Network Checklist/Form (Continued)

### **NOTES**

Note Number	Description			
Action (No	te Number)	assigned to	Date action completed	
Action (No	te Number)	assigned to	Date action completed	
Action (No	te Number)	assigned to	Date action completed	
Action (No	te Number)	assigned to	Date action completed	
Additiona	l Comments:			
	_			
Inspector's Si	ignature Z	It mal		

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center

### Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form

1. Date of Inspection			
2. Time of Inspection806			
3. Name of Inspector Zach Tensrio			
Provide explanatory notes for each parameter not ins maintenance or repair required.	pected or each action	required. In	clude any
I. GROUNDWATER MONITORING LOCATIONS	[Semiannually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Concrete pads, bollards, and protective casings in need of repair/maintenance.	Yes	סע	
B. Well cover caps in need of repair/maintenance.	yes	ND	1
C. Well casing in need of repair/maintenance.	yes	NO	
D. Monitoring well properly labeled.	yes	סע	
E. Locks in need of cleaning or replacement.	yes	MD	
II. GROUNDWATER SAMPLING EQUIPMENT [Se	emiannually]		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Sampling pump in need of repair/maintenance.	Yas	No	
B. Sampling assembly (e.g., tubing, gauges, and valves) in need repair/maintenance.		No	
III. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	1 A	ΑΙΔ	

## Mixed Waste Landfill Groundwater Monitoring Network Checklist/Form (Continued)

### **NOTES**

Note Number	Description					
1	Baro Ball	Installed	at an	wells		
	ote Number)					
	te Number)					
	te Number)					
Action (No	te Number)	_assigned to		Date action completed		
Additions	al Comments:					
a						
Inspector's S	Inspector's Signature					
Original to:	Original to: Mixed Waste Landfill Operating Record					
Copy to: SNL/NM Records Center						

# Mixed Waste Landfill Cover Inspection Checklist/Form

1. 2.	Date of Inspection June 1, 2021 Time of Inspection 09:30			
3.	Name of Inspector Robert Ziock, Caittin La Chan	ce		
ma	ovide explanatory notes for each parameter not inspected or aintenance or repair required in notes section at the end of this for COVER SYSTEM [Quarterly]	each action	required. In	clude any
Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	725	No	
B.	Erosion of the soil cover in excess of 6 inches deep.	Yes	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	406	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	Na	
E.	Contiguous areas of no vegetation greater than 200 ft ² .  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	ype	No	
F.	Potentially deep-rooted plants present.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES [C	Quarterly]	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Channel or sidewall erosion in excess of 6 inches deep.	yes	No	
B. Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. Debris that blocks more than 1/3 of the channel width.	yes	yes	1

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	2_
B. Fence wires and posts in need of repair/maintenance.	yes	No	
C. Gates in need of oiling/repair/maintenance.	res	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of MWL visible.	485	No	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	1/14	NA	

## **NOTES**

Note Number	Description
1.	Wind blown plant debris in drainage culverts. Wind blown plant debris on security fence.
2.	Wind blown plant debris on security fence.

Action (Note Number)/.	assigned to Robert Ziocs	Date action completed 6/1/2021
Action (Note Number) 2.	assigned to Robert Bocs	Date action completed 6/1/2021
Action (Note Number)	assigned to	Date action_completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:		
1. 22. Wind	blown plant deb	iris removed at time
of 1	the inspection.	iris removed at time
1	11 -	

Inspector's Signature

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center



Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0104

date: June 22, 2021

to: Mike Mitchell (08888) Robert Ziock (08888)

from: Jennifer Payne (00643) jipayne@sandia.gov

subject: MWL June 2021 Quarterly Inspections - Biology Follow-Up

#### **Biological Requirement:**

Biological Surveys are required prior to driving across any area of native vegetation, spraying herbicides or initiating other work activities that disturb wildlife.

Please submit request three weeks to prior work at: <a href="https://ecoticket-ng.sandia.gov/request.php">https://ecoticket-ng.sandia.gov/request.php</a>. Should personnel find a bird's nest during any of the work associated with these sites, they will need to halt work, and contact the Ecology Program at <a href="https://ecoticket-ng.sandia.gov/request.php">https://ecoticket-ng.sandia.gov/request.php</a> If other wildlife is encountered that may cause a health and safety issue, contact the Ecology Program.

All proposed project activities would be conducted according to applicable requirements identified in ESH001, ES&H Policy. Detailed instruction can be found in the ES&H Manual, MN471022: "Migratory Birds, Protected Species, and Other Biota".

#### **ET Cover Observations and Recommendations**

The biology quarterly evaluation of the MWL ET Cover was conducted on June 7, 2021.

- Overall, the MWL looks excellent. Extremely low presence of weeds observed.
- The grasses are mostly still in dormancy; very little green foliage was observed. This condition is normal currently in native grass communities due to low soil moisture with the ongoing drought in the KAFB area. The MWL has a crushed fine (very small) rock component within its topsoil layer, some of which has migrated to the surface. However, the MWL does not have rock mulch covering it, as is covering the CAMU and the CWL. The rock mulch the other two EUs assists with soil moisture retention and has enabled their native vegetation to currently engage in a higher level of photosynthesis. The lack of photosynthesis at the MWL is not of concern because the MWL native grass metabolic activity is in alignment with the surrounding native grass community.
- Two whiptail lizards were observed. The cover continues to be recognized as native habitat and utilized regularly by wildlife.

- The burrow system previously observed on the cover appears to be vacant. The burrow entrances have mostly collapsed and/or have spiderwebs and debris obscuring the entrances. A well-maintained tarantula burrow entrance that appears to be active was observed within one of the collapsing small mammal burrow entrances. This also shows wildlife recognize the cover as native habitat.
- There is an orange cone at the NE corner of the cover that is slowly disintegrating. If it does not have a current use it should be disposed of to prevent its break down into micro plastics on the cover.

If you should have any questions, don't hesitate to contact me at my office 845-9849, cell 218-1815, or email at jipayne@sandia.gov.

cc: Customer Funded Records Center Ecology Library Matt Baumann

### Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection 4/23/20 21	
2.	Time of Inspection 14:07 - 1431	
3.	Name of Inspector Robert Ziock Caitlin	r La Chance

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required in notes section at the end of this form.

Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	yes	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² .  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	RUCTURES [	Quarterly]	
Insp	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Α.	Channel or sidewall erosion in excess of 6 inches deep.	yes	16	
В. (	Channel sediment accumulation in excess of 6 inches deep.	yes	No	
C. 1	Debris that blocks more than 1/3 of the channel width.	/	10	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	1
B. Fence wires and posts in need of repair/maintenance.	yes	NB	
C. Gates in need of oiling/repair/maintenance.	yes	No	
D. Locks in need of cleaning or replacement.	yes	yes	2
E. Warning signs in need of repair or replacement.	yes	16	
F. Survey monuments in vicinity of MWL visible.	yes	16	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	1/4	NA	

### **NOTES**

Note Number	Description
1.	Wind-blown plant debris on security fence.
2.	South gate lock needs to be replaced.

Action (Note Number) assigned to Robert Z	back Date action completed 9/23/20 21
Action (Note Number) 2 assigned to Robert 2	Date action completed 9/24/2021
Action (Note Number) assigned to	Date action completed
Action (Note Number) assigned to	Date action completed
Action (Note Number) assigned to	Date action completed
Additional Comments:	
	at the second se
<del></del>	
0	
-	
Inspector's Signature	
Original to: Mixed Waste Landfill Operating Record	

Copy to: SNL/NM Records Center

## Mixed Waste Landfill Cover Inspection Checklist/Form

1.	Date of Inspection $12/8/2$
2.	Time of Inspection 045
3.	Name of Inspector Danielle Michel, Cartin LaChance

Provide explanatory notes for each parameter not inspected or each action required. Include any maintenance or repair required in notes section at the end of this form.

Inspection Parameter		Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	Yes	No	
B,	Erosion of the soil cover in excess of 6 inches deep.	Yes	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet,	Yes	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	Yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² .  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	Yes	No	
F.	Potentially deep-rooted plants present.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	Yes	No	
11.	SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES [	Quarterly	
Inspection Parameter		Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Channel or sidewall erosion in excess of 6 inches deep.	Yes	No	
В.	Channel sediment accumulation in excess of 6 inches deep.	Yes	No	
C. 1	Debris that blocks more than 1/3 of the channel width.	Vac	110	

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	Yes	Yes	0
B. Fence wires and posts in need of repair/maintenance.	Yes	No	
C. Gates in need of oiling/repair/maintenance.	Yes	No	
D. Locks in need of cleaning or replacement.	Yes	No	
E. Warning signs in need of repair or replacement.	Yes	No	
F. Survey monuments in vicinity of MWL visible.	Yes	No	
IV. PREVIOUS DEFICIENCIES			
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	N/A	NA	

## NOTES

Note Number	Description
	windblown plants/clebns (tamble weeds) on perimeter fence

Action (Note Number)	assigned to	Millel Date action completed  2/8/21
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Action (Note Number)	assigned to	Date action completed
Additional Comments:  (1) Windblown plants	ants/debis re	moved from perimeter fence
Same day as		
	110	
Inspector's Signature	Haller	

Copy to: SNL/NM Records Center

Original to: Mixed Waste Landfill Operating Record



Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0104

date: December 8, 2021

to: Mike Mitchell (08854) Robert Ziock (08854)

from: Jennifer Payne (00643) jjpayne@sandia.gov

#### subject: December 2021 MWL Quarterly Biology Inspection

#### **Biological Requirement:**

Biological Surveys are required prior to driving across any area of native vegetation, spraying herbicides or initiating other work activities that disturb wildlife.

Please submit request three weeks to prior work at: <a href="https://info.sandia.gov/esh/ecoticket/request.php">https://info.sandia.gov/esh/ecoticket/request.php</a>

Should personnel find a bird's nest during any of the work associated with these sites, they will need to halt work, and contact the Ecology Program at <a href="https://info.sandia.gov/esh/ecoticket/request.php">https://info.sandia.gov/esh/ecoticket/request.php</a> If other wildlife is encountered that may cause a health and safety issue, contact the Ecology Program.

All proposed project activities would be conducted according to applicable requirements identified in ESH001, ES&H Policy. Detailed instruction can be found in the ES&H Manual, MN471022: "Migratory Birds, Protected Species, and Other Biota".

#### **ET Cover Observations and Recommendations**

The biology quarterly evaluation of the MWL ET Cover was conducted on December 7, 2021.

- Overall, the native vegetation community on the MWL cover appears to be in excellent condition and the ET cover looks great overall. Nothing unexpected was observed.
- The native bunchgrasses appear to be healthy and in the same condition as observed during the August inspection except the grass leaves have dried out, they are no longer green and photosynthesizing. After full seed development in the summer, the leaves of warm season perennial bunchgrasses begin to dry out in the summer heat in preparation for winter dormancy. During winter dormancy the bunchgrasses remain alive using resources stored in their roots and the base of their stems.
- The fence surrounding the cover was clear of tumbleweeds, as was the cover.

## **December 2021 MWL Quarterly Biology Inspection**

- 2 -

December 7, 2021

cc: Customer Funded Records Center

Ecology Library

# Mixed Waste Landfill Cover Inspection Checklist/Form 3/1/2022

1. Date of Inspection _

3.	Name of Inspection Johert Fisch, Danielle Mice	hel, Car	thin Lac	hance
	ovide explanatory notes for each parameter not inspected or intenance or repair required in notes section at the end of this for		required. In	clude any
I.	COVER SYSTEM [Quarterly]			
Ins	spection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Visible settlement of the soil cover in excess of 6 inches.	yes	No	
В.	Erosion of the soil cover in excess of 6 inches deep.	485	No	
C.	Evidence of water ponding on the MWL cover surface in excess of 100 square feet.	Les	No	
D.	Animal intrusion burrows in excess of 4 inches in diameter.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
E.	Contiguous areas of no vegetation greater than 200 ft ² .  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
F.	Potentially deep-rooted plants present.  Note: During period when the Biology Inspection is occurring quarterly, this inspection requirement will be covered on the Biology Inspection Checklist/Form.	yes	No	
II.	SURFACE-WATER (STORM-WATER) DIVERSION STR	UCTURES [	Quarterly]	
Ins	pection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A.	Channel or sidewall erosion in excess of 6 inches deep.	ye)	No	
B.	Channel sediment accumulation in excess of 6 inches deep.	405	No	
C.	Debris that blocks more than 1/3 of the channel width.	1000	167	,

## Mixed Waste Landfill Cover Inspection Checklist/Form (continued)

Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
A. Accumulation of wind-blown plants and debris.	yes	yes	2
B. Fence wires and posts in need of repair/maintenance.	405	No	
C. Gates in need of oiling/repair/maintenance.	405	No	
D. Locks in need of cleaning or replacement.	yes	No	
E. Warning signs in need of repair or replacement.	yes	No	
F. Survey monuments in vicinity of MWL visible.	yes	16	
IV. PREVIOUS DEFICIENCIES	/		
Inspection Parameter	Parameter Inspected (Yes or No)	Action Required (Yes or No)	Note Number
Uncorrected/undocumented previous deficiencies.	NA	NA	

## Mixed Waste Landfill Cover Inspection Checklist/Form (continued)

## **NOTES**

Note Number	Description
1.	Wind-blown plant debris in the drainage culverts
2.	Wind-blown plant debris on the security fence,

## Mixed Waste Landfill Cover Inspection Checklist/Form (continued)

Wind-blown plant de bris was removed from the security fence and drainage culverts on March 10, 2022 by SNL personnel.  March 10, 2022 by SNL personnel.  May 3/10/202	Action (Note Number) assigned to Robers	+ ZickDate action completed 3/10/2022
Action (Note Number) assigned to Date action completed Action (Note Number) assigned to Date action completed  Action (Note Number) assigned to Date action completed  Action (Note Number) assigned to Date action completed  Action (Note Number) assigned to Date action completed  Date action completed  Additional Comments:  Wind blown plant de bris was removed from the	Action (Note Number) 2 assigned to Rober	1 Zickbate action completed 3/10/2022
Action (Note Number) assigned to Date action completed		
Additional Comments:  Wind blown plant de bris was removed from the  Security fence and drainage culverts on March 10, 2022 by SNL personnel.  May 3/10/202	Action (Note Number) assigned to	Date action completed
Wind-blown plant de bris was removed from the security fence and drainage culverts on March 10, 2022 by SNL personnel.  March 10, 2022 by SNL personnel.  May 3/10/202	Action (Note Number) assigned to	Date action completed
	Additional Comments:	
	Wind-blown plant de b	vis was removed from the
	security fence ar	nd drainage culverts on
	March 10, 2022 by	SNL personnel.
		12 3/10/202

Inspector's Signature Milly

Original to: Mixed Waste Landfill Operating Record

Copy to: SNL/NM Records Center



Operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia. LLC.

Albuquerque, New Mexico 87185-0104

date: March 14, 2022

to: Mike Mitchell (08888) Robert Ziock (08888)

from: Jennifer Payne (00643) jipayne@sandia.gov

subject: MWL March 2022 Quarterly Inspections - Biology Follow-Up

#### **Biological Requirement:**

Biological Surveys are required prior to driving across any area of native vegetation, spraying herbicides or initiating other work activities that disturb wildlife.

Please submit request three weeks to prior work at: https://info.sandia.gov/esh/ecoticket/request.php

Should personnel find a bird's nest during any of the work associated with these sites, they will need to halt work, and contact the Ecology Program at <a href="https://info.sandia.gov/esh/ecoticket/request.php">https://info.sandia.gov/esh/ecoticket/request.php</a> If other wildlife is encountered that may cause a health and safety issue, contact the Ecology Program.

All proposed project activities would be conducted according to applicable requirements identified in ESH001, ES&H Policy. Detailed instruction can be found in the ES&H Manual, MN471022: "Migratory Birds, Protected Species, and Other Biota".

The biology quarterly evaluation of the Mixed Waste Landfill was conducted on March 14, 2022.

#### Observations

- Currently the MWL looks excellent. The mature native grass community appears to be very healthy while in winter dormancy.
- No late winter weeds observed on the cover.
- No biological concerns observed at this time.

#### Recommendations

- No recommendations at the time of this inspection.

If you should have any questions, don't hesitate to contact me at my office 845-9849, cell 218-1815, or email at jjpayne@sandia.gov.

cc: Customer Funded Records Center

Ecology Library Sue Collins Matt Baumann

## Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover

Approximate vegetative coverage (actively photosynthesizing*):41%
Approximate percent native vegetation of the total vegetative cover:99%
Listed below are the main plant species identified as growing on the MWL cover and the
percentage of the cover populated by each species.

Scientific Name	Common Name (optional)	% of Cover ¹
Pleuraphis jamesii	Galleta grass	30 %
Bouteloua gracilis	Blue grama	1 %
Sporobolus flexuosus	Mesa dropseed	2 %
Bouteloua eriopoda	Black grama	6 %
Sporobolus cryptandrus	Sand dropseed	1 %
Salsola tragus	Russian thistle	1 %
Xanthisma spinulosum	Spiny goldenweed	< 0.5 %
Sporobolus contractus	Spike dropseed	< 0.5 %
Kallstroemia californica	California caltrop	< 0.5 %
Sphaeralcea angustifolia	Narrowleaf globemallow	< 0.5 %
Oryzopsis hymenoides	Indian ricegrass	< 0.5 %
Solanum elaeagnifolium	Silverleaf nightshade	< 0.5 %
Opuntia phaeacantha	Brown-spined prickly pear	< 0.5 %
Euphorbia exstipulata	Square-seed spurge	< 0.5 %

#### Notes:

^{*} Living plants per Section 4.1 of the MWL LTMMP.

¹ Percentage of total MWL Cover populated by living plants of these species. All species observed to be present at less than 0.5% are not calculated into the total vegetative coverage.

# Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (continued)

Are there any contiguous areas of no vegetation greater than 200 square feet? (approximately 14 x 14 ft)? No
If "Yes," mark such areas on a map and attach to this checklist. Address actions and schedule to improve such area(s) in the notes section below.
Are there any very deeply rooted (roots greater than 8 feet deep at maturity) plant species present on the cover? No
If "Yes," describe the plant(s) and their general distribution. Address actions and schedule to remove plant(s) from the cover in the notes section below.
Notes:
Inspection for Animal and Insect Intrusion into MWL Cover
Are any burrows present on the cover? <u>No</u>
Do any of the burrows appear to be active? <u>N/A</u>
Any ant hills/nests? Yes_
Describe below observations regarding animal and insect features. If burrows with an entrance diameter of 4 inches or greater are present or appear to be that of a species that is able to burrow 6 feet deep or greater, indicate the location(s) on a map and attach to this checklist. Address actions and schedule to repair cover damage that exceeds prescribed limits. As appropriate, identify animal and insect features and have them surveyed and marked for biota sampling.
Notes: Fourteen active and one inactive ant hills were observed on the cover, occurring
primarily on the side-slopes. Two ant hill locations were selected, flagged for biota sampling,
and surveyed using a GPS unit. The sampling locations are shown in the biological inspection
map.
-

# Mixed Waste Landfill Biology Inspection Checklist/Form for the MWL Cover (continued)

Notes (continued):

Copy to: SNL/NM Records Center

General Observations:
- Overall, the MWL ET Cover vegetation is in excellent condition. The species complexity,
spacing, and appearance of the mature native perennial grasses continues to be similar to that of
the surrounding area vegetation. At the time of inspection seed heads were not abundant,
making the quantification of grass species difficult due to identification primarily by seed head.
- Part of mirroring of the varied age surrounding native plant communities is that some of the
older, large galleta bunch grasses, or portions of them, have died off throughout the MWL cover
And quite notably, black grama has recently propagated very well across the cover. Black grama
grass is considered to be an important climax species of New Mexico grasslands, a final
successional species in grassland development. Reproduction by seed is rare because the natural
ratio of viable seeds to sterile ones is low. Black grama instead reproduces primarily by stolons,
creeping horizontal plant stems or runners that root to form new plants. Another very interesting
development is what appears to be the initial formation of biological soil crusts in at least one
area of the MWL cover. Biological soil crusts are most often composed of fungi, lichens,
cyanobacteria, bryophytes, and algae in varying proportions. These communities of living
organisms grow on the soil surface in arid and semi-arid environments and perform important
ecological roles including soil stabilization, carbon fixation, and nitrogen fixation.
- Overall, there is still a low weed presence on MWL Cover. Russian thistle and other species of
weed, including spotted sandmat (listed here for species inclusion) were clearly more abundant
this year than last year. The application of a pre-emergent herbicide should be considered before
the 2022 growing season to prevent the germination of this years' weed seeds in future years.
- A few lizards were observed on the MWL cover at the time of the inspection.
Biological Aspects Map [note: sketch map to locate specific features described above will b
attached as appropriate)
Inspector's Signature: Date: August 16, 2021
Time: 11:20AM – 2:35PM
Original to: Mixed Waste Landfill Operating Record

### **ANNEX G**

Mixed Waste Landfill Biology Report

April 2021-March 2022

#### 1.0 Introduction

As required by the Mixed Waste Landfill (MWL) Long-Term Monitoring and Maintenance Plan (LTMMP) (SNL/NM March 2012, Section 4.2.1), this summary report for the annual reporting period (April 1, 2021-March 31, 2022) presents the results of vegetation inspection and monitoring activities performed by the staff biologist on the MWL Evapotranspirative (ET) Cover. The purpose of this report is to provide relevant background information, describe local climate trends over the 2021 growing season and reporting period, expand on the inspection results if appropriate, and provide recommendations for future ET Cover vegetation monitoring and maintenance. The annual Biology Inspection of the ET Cover was conducted on August 16, 2021. The inspection observations are documented on the *Biology Inspection Checklist/Form for the MWL Cover* and included in Annex F of this MWL Annual Long-Term Monitoring and Maintenance (LTMM) Report. The staff biologist also provided support during the other quarterly ET Cover Inspections (June and December 2020, and March 2021) as a best practice.

A self-sustaining plant community is an important component of overall ET Cover performance. Vegetation minimizes erosion by stabilizing the ET Cover surface and moves soil moisture from the ET Cover Topsoil and Native Soil Layers to the atmosphere through transpiration. Native grass species create the optimal, self-sustaining plant community because the species are specifically adapted to the local climate and soil conditions. The MWL is located at an elevation of 5,380 feet in a semi-arid climate that experiences high temperatures throughout the summer, cold temperatures in the winter, drying winds in the spring, and infrequent precipitation. Perennial native grass species are ideal due to their extensive near-surface root systems that are poised to uptake moisture throughout the year and prevent precipitation from percolating more deeply into the subsurface soil. The deeper, permanent roots of perennial native grasses enable them to withstand drought conditions, provide soil stabilization, and remove moisture from deeper within the Native Soil Layer relative to non-native or annual species.

#### 2.0 Background Information

To meet the revegetation criteria as required in the MWL LTMMP, Section 4.1, the MWL was seeded in August 2009 after cover construction was completed. The native seed mix was drill-seeded and hand-broadcast uniformly across the cover. To facilitate seed germination and seedling growth, supplemental watering was performed as approved by NMED (Bearzi December 2008). Specific conditions and limits for supplemental watering are addressed in Section 4.2.3 of the LTMMP (SNL/NM March 2012). All cover maintenance and supplemental watering activities from 2009 through 2011 are documented in Appendix B of the LTMMP. ET Cover maintenance and supplemental watering activities performed since 2011 are documented in MWL Annual LTMM Reports.

ET Cover Biology Inspections were initiated in May 2013 prior to LTMMP approval, which occurred on January 8, 2014. The ET Cover met the LTMMP criteria for successful revegetation as documented in all quarterly inspections. In accordance with the LTMMP, the frequency of Biology Inspections transitioned to an annual frequency after the August 2014 growing season inspection, which provided confirmation that all successful revegetation criteria had been met (SNL/NM June 2015).

Percentage of vegetative cover of each plant species across the site (i.e., foliar coverage of living plants of each identified species) is determined by dividing the cover into smaller sections of approximately 35 meters by 35 meters. Each section is visually assessed for the percent cover of each species; the sections are then averaged overall for the entire cover. Species that are present at a density of less than one-half of one-percent (%) are recorded as "< 0.5%." Due to the presence of these species in very low numbers, they are not calculated into the total vegetative coverage. Species that are present between one-half and one percent are recorded as "1%" and are calculated into the total vegetative coverage.

#### 3.0 Local Climate Trends for 2021 Growing Season

Climate trends for north-central New Mexico are presented in this section as they have a significant impact on the cover vegetation. Since the seeding occurred in August 2009, the local climate has generally been characterized by below average precipitation and warmer than average temperatures across the seasons.

Precipitation, relative humidity, wind speed, and temperature all impact soil moisture and plant growth. These meteorological factors are presented in the local meteorological discussion below. They are integrated into the U. S. Drought Monitor status (briefly summarized in the two following paragraphs), which is a very useful tool that provides a regularly updated snapshot summary of soil moisture and plant stress. Table 1 and 2 at the end of this report provide local SNL Technical Area III meteorological data for the period preceding and including the CY 2021 growing season. A 25-year data set (1995-2019) provides the reference mean monthly meteorological data and is included in Table 1 and 2 for comparison; these data are hereafter referred to as the "average." Meteorological data for the January through March 2022 period will be presented and discussed in the June 2023 MWL Annual LTMM Report.

The U.S. Drought Monitor provides a simple but robust insight into the meteorological conditions affecting the local vegetation. It is a weekly updated map that shows the parts of the U.S. in drought and breaks them into categories depending on severity. This weekly map is produced jointly by the National Oceanic and Atmospheric Administration (NOAA), the U.S. Department of Agriculture (USDA), and the National Drought Mitigation Center (NDMC) at the University of Nebraska-Lincoln. The map authors synthesize varied drought indicator data sources to create a snapshot of current drought conditions. Data sources include climatological inputs, soil moisture indicators, hydrologic data, and contributions from a nationwide network of more than 450 scientific observers.

At the time of the 2021 Biology Inspection, the MWL area drought status was on the border between D2 Severe and D3 Extreme Drought. This status indicates crops are impacted and the native vegetation is likely under significant stress.

Soil moisture content during the dormant seasons can significantly stress or assist the root systems, which compose the bulk of each native plant. An extended period of very low soil moisture can severely injure root systems during the dormant season, whereas ample soil moisture during the dormant season can promote vigorous above ground growth during the growing season. In arid and semiarid climates such as New Mexico, plant functions such

as growth and photosynthesis are limited by low soil moisture conditions (Xu January 2011). For this reason, monitoring the ET Cover vegetation and local meteorological conditions throughout the year is important. The following brief discussion of meteorological conditions includes the last three months of CY 2020.

#### Precipitation and Relative Humidity

Extremely dry meteorological conditions dominated the nine months (October 2020 through June 2021) preceding the 2021 monsoon season. October 2020 through May 2021 was an eight-month period of significantly below average precipitation. June 2021 was the only month in this timeframe with above average precipitation. Monthly relative humidity was also lower than average during this timeframe except for the months of May and June 2021.

The North American Monsoon season is July through September and is an important feature of New Mexico's summer climate and growing season. Monsoonal moisture typically provides approximately half of the annual precipitation in the Kirtland Air Force Base area. Slightly above-average precipitation was received overall during the 2021 monsoon season (total of 4.35 inches versus 4.17 inches). Relative humidity was above average in July, but slightly below average in August and September.

The last three months of 2021 experienced a return to drier conditions, with below average precipitation and relative humidity. Total precipitation in 2021 was 6.81 inches, 23% below the annual average of 8.86 inches.

#### Temperature and Wind Speeds

In CY 2021 the MWL experienced 96.5 degrees of temperature variability, with a low of  $6.3^{\circ}F$  in February and a high of  $102.8^{\circ}F$  in July. Monthly mean temperature for 2021 was  $59.0^{\circ}F$ , this was  $1.6^{\circ}F$  above the 25-year annual mean of  $57.4^{\circ}F$ . The monthly mean temperature for nine months in 2021 exceeded their 25-year monthly means, with a maximum variation of  $+5.6^{\circ}F$  in November.

The 2021 monthly and annual wind speed means were very close to 25-year monthly and annual means. All monthly wind means were within 1.0 miles per hour of their respective 25-year means, except for November (1.1 miles per hour difference).

#### 4.0 August 16, 2021 Inspection Results

The August 16, 2021 MWL ET Cover Biology Inspection occurred during the warm New Mexico growing season after the monsoon rains had begun. Inspection during the growing season allows for the most accurate assessment of living plant coverage because the greatest amount of photosynthesis occurs during this time of the year.

The August 2021 MWL ET Cover Biology Inspection results confirmed the ET Cover continues to meet the successful revegetation criteria defined in the MWL LTMMP, Section 4.1 (SNL/NM March 2012) as shown in the photographs of the ET Cover taken during the August 16, 2021 inspection presented at the end of this report. The approximate foliar

coverage of living plants was 41%, with 99% of the foliar coverage comprised of native perennial species. There were no contiguous bare areas that exceeded 200 square feet. Nearly all the MWL ET Cover vegetation was comprised of grasses, with galleta grass continuing as the dominant grass species (30% foliar coverage). The vegetative community was observed to be very healthy overall, with mature native species spaced evenly across the cover.

The overall species complexity, spacing, and appearance of the mature native grass community was very similar to the surrounding vegetation in Technical Area III. At the time of inspection seed heads were not abundant making identification of grass species difficult. Notably, some of the older, large galleta bunch grasses, or parts of them, had died and black grama (6% foliar coverage) propagated more across the cover. This is significant because black grama grass is an important climax species of New Mexico grasslands, a final successional species in grassland development. Overall there was a very low presence of weed species; however Russian thistle and other weed species were more abundant than at the time of the 2020 inspection.

No small animal burrows were observed on the MWL ET Cover during the August 2021 Biology Inspection. Fourteen active ant hills were observed across the ET Cover on both the side-slopes and cover surface, two of which were selected for biota surface soil sampling based on current ant activity and to obtain samples from different locations than last year's sampling locations. No potentially deep-rooted plants were observed on the ET Cover in 2021. Biota sampling activities and results are presented in Chapter 8 of this MWL Annual LTMM Report.

A few lizards were observed on the ET Cover. This observation is consistent with previous biology inspection observations that wildlife recognizes the MWL Cover as native habitat.

#### **5.0** Cover Maintenance

The successional development of the native grasses on the ET Cover has benefited greatly from best practice maintenance activities designed to minimize invasive weed growth. ET Cover best practice maintenance activities performed in CY 2021 are presented in Section 9.7 of this MWL Annual LTMM Report and were performed in response to inspections, general site conditions, and recommendations by the staff biologist. The four maintenance events conducted in March, May, July, and October were designed to achieve the long-term goal of establishing a healthy, self-sustaining native grass community on the ET Cover by reducing competition with weedy species for limited moisture and nutrients. This work included removal of live and dead weeds from the ET Cover, the storm-water diversion drainage, and other perimeter areas. In addition, an annual application of an herbicide sterilant (Hyvar) to the North and South Staging Areas was performed (May 2021).

#### 6.0 Recommendations

The MWL ET Cover Biology Inspections will continue on an annual frequency and be conducted in August or September. As a best practice, the SNL staff biologist will continue

to support quarterly ET Cover inspections, document observations, and provide recommendations to maintain the ecological health and integrity of the ET Cover.

Routine, minor weed removal events will be needed during the April 2022 – March 2023 reporting period to clear the perimeter fence and remove windblown tumbleweeds from the ET Cover, perimeter drainage, and perimeter area based on LTMMP inspection requirements and best practice. If present, live annual weedy species on the MWL ET Cover and perimeter should also be removed during the growing season weed removal events if they pose a threat to the established native grasses. The North and South Staging Areas (graveled areas) are prone to weed growth; sterilant herbicide should be applied to these areas at the frequency recommended by the manufacturer. If observed, four-wing saltbush and any other potentially deep-rooted plants or shrubs will be pulled by hand, clipped at the ground surface, or removed for biota sampling. These routine weed control activities help the desired native grasses by reducing the availability of weed seeds and competition from the future growth of invasive plants.

The application of a pre-emergent herbicide should be considered for the ET Cover and perimeter fence area before the 2022 growing season to prevent the germination of the current weed seed bank. Given the low abundance of annual weedy species on the ET Cover in CY 2021 and the foliar coverage of mature native bunch grasses, this is not a critical weed control measure at this time.

Based upon experience since initial seeding of the ET Cover in 2009, maintenance activities have had a significant, positive impact on the establishment of healthy, self-sustaining, mature native grasses in a relatively short period of time. Successful revegetation requirements were met in 5 years after initial seeding; this is a process that could take 50 years or more without active seeding and maintenance activities.

#### 8.0 References

Bearzi, J.P. (New Mexico Environment Department), December 2008. Letter to K. Davis (U.S. Department of Energy) and F. Nimick (Sandia Corporation), "Conditional Approval, Mixed Waste Landfill Corrective Measures Implementation Plan, November 2005, Sandia National Laboratories NM5890110518, SNL-05-025." December 22, 2008.

Sandia National Laboratories/New Mexico (SNL/NM), March 2012. "Long-Term Monitoring and Maintenance Plan for the Mixed Waste Landfill," Environmental Restoration Operations, Sandia National Laboratories, Albuquerque, New Mexico.

Sandia National Laboratories/New Mexico (SNL/NM), June 2015. "Mixed Waste Landfill Annual Long-Term Monitoring and Maintenance Report, January – March 2015," Sandia National Laboratories, Albuquerque, New Mexico.

U. S. Drought Monitor (March 2021) Accessed March 2021. http://droughtmonitor.unl.edu/

Table 1
October-December 2020 Meteorological Data Summary for the Mixed Waste Landfill^a

Month	October	November	December		
Temperature (°F)				3-Month Avg	
Monthly Mean	57.9	50.5	36.8	48.4	
25-year Temp Means	58.0	46.6	37.3	47.3	
Precipitation (Inches)				3-Month Total	
Monthly Total	0.13	0.12	0.15	0.13	
25-year Precip Means	0.95	0.47	0.57	0.66	
Relative Humidity (RH) (%)				3-Month Avg	
Monthly Mean	28.4	39.0	43.7	37.0	
25-year RH Means	42.6	45.0	53.4	47.0	
Wind (Miles/hour)				3-Month Avg	
Monthly Mean	7.9	7.9	6.6	7.5	
25-year Wind Means	7.9	7.1	6.7	7.2	

^aInformation Source: SNL/NM Meteorological Monitoring Program.

% = Percent.

°F = Fahrenheit.

RH = Relative humidity.

SNL/NM = Sandia National Laboratories/New Mexico.

Table 2
Summary of 2021 Meteorological Data at the Mixed Waste Landfill^a

Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec	
Year	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	
Temperature (°F)													Annual ^b
Monthly Mean	37.9	41.3	48.1	57.2	66.9	77.5	76.5	75.9	72.5	58.8	52.2	43.4	59.0
25-year Temp Means	37.7	42.1	49.3	56.0	65.7	75.7	76.8	74.8	69.3	58.0	46.6	37.3	57.4
Precipitation (Inches)													Annual ^c
Monthly Total	0.13	0.26	0.31	0.30	0.29	0.66	1.60	1.55	1.20	0.06	0.16	0.29	6.81
25-year Precip Means	0.39	0.43	0.50	0.52	0.34	0.52	1.72	1.46	0.99	0.95	0.47	0.57	8.86
Relative Humidity (%)													Annual ^b
Monthly Mean	46.3	41.8	33.8	26.9	28.1	30.3	49.3	43.5	41.1	36.5	35.7	41.5	37.9
25-year RH Means	51.1	44.5	35.8	30.7	27.2	25.3	40.6	44.3	42.3	42.6	45.0	53.4	40.2
Wind (Miles/hour)													Annual ^b
Monthly Mean	7.7	8.8	9.4	11.1	10.7	9.8	8.4	8.6	7.2	7.8	6.0	7.0	8.5
25-year Wind Means	6.9	8.2	9.1	10.3	9.9	9.7	8.4	7.9	8.0	7.9	7.1	6.7	8.3

^aInformation Source: SNL/NM Meteorological Monitoring Program.

% = Percent.

°F = Fahrenheit.

RH = Relative humidity.

SNL/NM = Sandia National Laboratories/New Mexico.

^bValues provided are averages of the monthly data.

^cValues provided are totals of the monthly data.

This page intentionally left blank.

August 16, 2021 Mixed Waste Landfill Biology Inspection Photographs



Looking north from approximate center of ET Cover



Looking west from approximate center of ET Cover

August 16, 2021 Mixed Waste Landfill Biology Inspection Photographs



Looking south from approximate center of ET Cover



Looking east from approximate center of ET Cover

August 16, 2021 Mixed Waste Landfill Biology Inspection Photographs



North Slope of ET Cover: facing west from the upper eastern portion of slope



West Slope of ET Cover: looking south from northern end

August 16, 2021 Mixed Waste Landfill Biology Inspection Photographs



South Slope of ET Cover: looking east from the western end



East slope of ET Cover: facing north from south of the dogleg

**August 16, 2021 Mixed Waste Landfill Biology Inspection Photographs** 



Northwest corner of ET Cover: facing center of cover



Southwest corner of ET Cover: facing center of cover

August 16, 2021 Mixed Waste Landfill Biology Inspection Photographs



Southeast corner of ET Cover: facing center of cover



Northeast corner of ET Cover: facing center of cover