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Abstract

The material point method (MPM) was designed to solve problems in solid mechan-

ics, and it has been used widely in research and industry. In MPM, the equations of

motion are solved on a background grid and Lagrangian material points represent the

geometry of the body, carrying history-dependent material properties. The focus of

this work is on the convergence properties of MPM in terms of order of accuracy and

stability. It has been shown numerically that MPM loses convergence and suffers

cell crossing errors for large deformation problems. Two remedies that have been

proposed are the the generalized interpolation material point method (GIMP) and

the convected particle domain interpolation method (CPDI). Both GIMP and CPDI

try to improve MPM by altering the geometry of the evolved material-point domain.

Such changes lead to improvement of the quadrature part of the MPM algorithm. In

this work, we give a different approach to improving MPM by combining ideas from

meshfree particle methods and finite element methods. Such an approach provides

a general framework for improving MPM. Not only has the framework produced the

v



improved material point method (IMPM), but it can also be used to improve exist-

ing variations of MPM, such as CPDI. In addition, a Neumann stability analysis of

MPM on the linearized equations of motion is provided. However, this analysis did

not provide insight into the observed behavior of MPM. Limitations of the analysis

are given that perhaps account for the lack of correlation between the analysis and

observations.
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Chapter 1

Introduction

This dissertation seeks to solve problems in solid mechanics in which a body under-

goes large deformation. The underlying differential equations are nonlinear and the

solutions are numerical. Numerical methods in computational mechanics include the

classical finite element methods and, more recently, meshfree particle methods. The

numerical method I am interested in is called the material-point method.

In solid mechanics, equations of motion can be expressed using Lagrangian co-

ordinates, or Eulerian coordinates. In Lagrangian coordinates, the equations of mo-

tion are written in the initial configuration. In Eulerian coordinates, the equations

of motion are written in the current configuration. The corresponding discretized

equations of motion can similarly be expressed using Lagrangian coordinates or Eu-

lerian coordinates. There are two general types of numerical methods which solve

the equations of motion: mesh dependent methods, such as Finite Element Methods,

and mesh independent methods, such as meshfree particle methods.

For mesh-based methods in the Eulerian frame, one has to deal with the advec-

tion term, which is nonlinear. In addition, it is hard to apply history dependent

constitutive models. In the Lagrangian frame, one has to deal with mesh distortion
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Chapter 1. Introduction

when the body undergoes large deformation, but the history dependent constitutive

models can be easily applied. A third option, Arbitrary Lagrangian Eulerian Meth-

ods (ALE) introduce a reference domain, and the reference domain moves arbitrarily

with respect to the movement of the materials. Because of the freedom of moving

the mesh, the ALE approach potentially possesses the best properties of both the

Lagrangian and Eulerian approaches.

In meshfree particle methods, one can also solve the equations of motion using an

Eulerian approach, or using a Lagrangian approach. Such meshfree methods include

Smooth Particle Hydrodynamics, Element Free Galerkin Methods, Reproducing Ker-

nel Particle Methods and Partition of Unity Methods. The goal of meshfree particle

methods is to solve the equations of motion without explicitly constructing a mesh

which precludes problems with mesh distortion. However, some issues remain such

as accurate domain integration for methods developed based on the Galerkin weak

form, stable nodal integration for collocation methods, and accurate application of

boundary conditions.

The material point method (MPM) was invented by Sulsky and her coworkers

[29, 30, 32]. MPM is an extension of the particle in cell (PIC) method of Harlow

[11]. It is also a particular type of ALE method, in which the equations of motion

are solved on a background grid and the Lagrangian material points represent the

geometry of the body, carrying the history-dependent material properties. MPM

has been used widely in research and industry. It has been used to model sea ice

dynamics [31], rock fractures [33], snow simulations [28] and cutting processes [3].

Recently, it has been used for movie special effects (Disney’s Frozen) [28].

One of my research goals is to improve MPM in terms of convergence and order

of accuracy for large deformation problems. Although MPM is able to handle a

solid body that undergoes large deformation, it suffers low order convergence or no

convergence for some large deformation problems. There are two main reasons for

2



Chapter 1. Introduction

the inaccuracy. First is the mapping from the material-point information to the

grid information, which is first order. Second is the quadrature to approximate

nodal forces or nodal masses. In my research, we constructed a new framework

for improving the material-point method, combining ideas from meshfree methods

and the classical finite element methods. Not only has our framework produced the

improved material point method (IMPM), but it can also be used to improve existing

variations of MPM, such as the Convected Particle Domain Interpolation Method

(CPDI) [2].

The other goal in my research is to study the stability properties of MPM. It has

been seen that all variations of MPM, including MPM, GIMP, CPDI and IMPM, ap-

pear to become unstable on fine meshes. Such instability is still under investigation.

One possible reason for this instability is called the finite grid instability, which is a

well known phenomenon in the particle in cell method [15, 27]. This instability is due

to the fact that high frequency modes existing on the material points are mapped to

the low frequency modes on the grid. The instability is analyzed by linearizing the

equations of motion. In the original MPM, it is also shown by a nonlinear analysis

that energy is bounded. Thus, the nonlinear terms have the potential to control the

instability. It has also been demonstrated, [15, 27], that an implicit solver controls

the instability. Another remedy that has been proposed is jiggling the grid position

[7].

The general layout of this work is as follows. Chapter 2 introduces basic concepts

and conservation equations in continuum mechanics. Chapter 3 introduces the back-

ground on numerical methods for solving the continuum equations. Such methods

include finite element methods, and meshfree particle methods. The idea of function

reconstruction from scattered data, which is the foundation for the meshfree particle

methods, is discussed in detail in the multi-dimensional case with numerical illustra-

tions in 1D. Chapter 4 reviews the main structure of MPM. The mapping and the

3



Chapter 1. Introduction

quadrature parts of the MPM algorithm are discussed in detail. The convergence of

MPM is studied numerically both for small deformation problems and large defor-

mation problems for 1D and 2D cases, utilizing the idea of manufactured solutions.

Chapter 5 introduces the improved MPM algorithm, in which the improved mapping

and quadrature parts of the MPM algorithm are studied, utilizing the ideas of func-

tion reconstruction from scattered data introduced in Chapter 3. The improvements

of the convergence of the MPM algorithm are shown numerically with the same ex-

amples as in the convergence study of the MPM algorithms in Chapter 4, which

shows that the development identified as IMPM increases the convergence of MPM

to second order. Chapter 6 reviews other improvements of the MPM algorithms from

the literature, including GIMP and CPDI. Both GIMP and CPDI try to improve

MPM by changing the geometry of the evolved material-point domain. Such changes

lead to improvement of the quadrature part of the MPM algorithm; see [1, 2, 26, 24].

Based on the general framework of the IMPM algorithm, the CPDI algorithm is

further improved by alterations to the mapping part. Convergence of CPDI, IMPM

and improved CPDI are studied numerically in 1D with the same examples as in

Chapter 4, in which the IMPM and improved CPDI give the best results. Chapter

7 provides a Neumann stability analysis of the original MPM algorithm by lineariz-

ing the equations of motion and discretizing the linearized equations analogously to

MPM.

A general framework for improving MPM has been proposed by combining ideas

of meshfree particle methods and finite element methods. Within the framework, the

IMPM and improved CPDI are produced and they increase the order of convergence

of the original MPM algorithm to second order for large deformation problems. Be-

sides the improvements to the order of accuracy of the MPM algorithm, a Neumann

stability analysis of MPM on the linearized equations of motion is provided.

4



Chapter 2

Summary of Continuum Equations

2.1 Introduction

In this chapter, the basic concepts of motion, configuration, and mass conservation

are introduced, and the momentum balance equations are derived. Since thermo-

dynamics is not taken into consideration for the time being, the conservation of

energy is not discussed. When indicial notation is used, we also invoke the Einstein

summation convention of summing over repeated indices.

2.2 Motion and Configuration

Consider a body Ω0 ⊂ R3, at the time t0 as the initial configuration, and let the

current configuration of the body be Ω ⊂ R3, at the time t. Assume that an initial

point X ∈ Ω0 moves to the current position x ∈ Ω. The motion is represented by a

function

x = x(X, t). (2.1)
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Chapter 2. Summary of Continuum Equations

Note that the evolution in time of x(X, t) of a specific point X gives the trajectory

of a material point. The velocity of the material point is calculated by

V (X, t) =
∂x

∂t
(X, t). (2.2)

Since any two material points in the free body can never occupy the same position,

(2.1) has a unique inverse

X = X(x, t), (2.3)

which gives the initial position of the material point currently at x at time t. The

velocity in expression (2.2) also can be represented as a function of the current

configuration and time

v(x, t) = V (X(x, t), t). (2.4)

Based on the above definitions, a more general definition can be given. If a function

Φ is represented in the initial coordinates (X, t), it is referred as the Lagrangian

description; and if a function φ is represented in the current coordinates (x, t), it is

referred as the Eulerian description. Although the representations are physically and

mathematically equivalent, in practice, one representation might have an advantage

over the other depending on the situation. For example, the Lagrangian description is

commonly used in solid mechanics because it allows the labeling of the material points

in a solid body, and each material point can be traced from the initial state to the

current state for the purpose of applying history-dependent constitutive models. By

contrast, the Eulerian description is commonly used in fluid mechanics because there

is usually no history dependence in the constitutive models, and large deformations

make the Lagrangian description inconvenient.

Let Φ(X, t) be a Lagrangian quantity (scalar, vector or tensor). Since X is not

dependent on time, the time differentiation of Φ is given by ∂Φ
∂t

. On the other hand,

if we represent Φ(X, t) = Φ(X(x, t), t) = φ(x, t) in Eulerian coordinates, the total

6



Chapter 2. Summary of Continuum Equations

differential of φ(x, t) is

dφ(x, t) =
∂φ

∂t
dt+

∂φ

∂xi
dxi. (2.5)

Since vi(x, t) = Vi(X(x, t), t) = ∂xi(X,t)
∂t

, i = 1,2,3, we can write the material time

derivative in different ways

∂Φ

∂t
=
∂φ

∂t
+
∂φ

∂xi

∂xi
∂t

=
∂φ

∂t
+ v · ∇φ =

dφ

dt
. (2.6)

Here ∇ is the gradient with respect to x. Remark: the gradient operator ∇ or the

divergence operator ∇· operates on functions defined in the current configuration,

and the gradient operator ∇0 or divergence operator ∇0· operates on functions de-

fined in the initial configuration. The quantity φ̇ = dφ
dt

in (2.6) is defined as the

material time derivative in Eulerian coordinates. Since the above functions φ and Φ

can be any representative functions, the above result can be applied to the velocity

to obtain expressions for the acceleration.

A(X, t) =
∂V

∂t
=
∂v

∂t
+ v · ∇v = a(x, t). (2.7)

2.3 Mass Conservation Law

Let R(0) be an arbitrary material subregion in Ω0 with its subsequent image R(t) ⊂

Ω. The total mass M in the undeformed subregion R(0) is conserved in the deformed

subregion R(t). Therefore

M =

∫
R(0)

ρ0 dX =

∫
R(t)

ρdx, (2.8)

where ρ0 = ρ0(X, t) and ρ = ρ(x, t) are the densities in the Lagrangian and Eulerian

coordinates respectively. Since x = x(X, t), we have

dxi =
∂xi
∂Xj

dXj, (2.9)

= FijdXj,

7



Chapter 2. Summary of Continuum Equations

where F is the deformation gradient tensor and its components are Fij = ∂xi
∂Xj

, i, j =

1, 2, 3. Let J be the Jacobian of F (denoted by J = |F |). From relation (2.9), one

can derive the following relation between the infinitesimal change of volume between

Eulerian coordinates and Lagrangian coordinates

dx = J(X, t)dX. (2.10)

Substitute (2.10) into (2.8) to derive

M =

∫
R(0)

ρ0 dX =

∫
R(t)

ρ(x, t)dx =

∫
R(0)

ρ(x(X, t))J(X, t)dX.

From the last equality, we get∫
R(0)

(ρ0 − ρJ)dX = 0.

Since R(0) is an arbitrary material subregion of Ω0, and under the assumption that

the integrand is continuous, we get

ρ0 − ρJ = 0,

J =
ρ0

ρ
. (2.11)

Now, define R(X, t) = ρ(x(X, t), t), and take the time derivative of equation (2.8) to

get

dM

dt
=

d

dt

∫
R(t)

ρ(x)dx, (2.12)

=
d

dt

∫
R(0)

ρ(x(X, t))J(X, t)dX,

=
d

dt

∫
R(0)

R(X, t)J(X, t)dX,

=

∫
R(0)

∂

∂t
(R(X, t)J(X, t))dX,

=

∫
R(0)

∂R(X, t)

∂t
J(X, t)dX +

∫
R(0)

R(X, t)∇ · v(x(X, t))J(X, t)dX,

=

∫
R(t)

dρ(x, t)

dt
dx+

∫
R(t)

ρ(x, t)∇ · v(x, t)dx,

= 0.

8



Chapter 2. Summary of Continuum Equations

The above uses the identity

∂

∂t
J(X, t) =

∂

∂t
(| ∂x
∂X
|),

= (∇ · v)| ∂x
∂X
|,

= ∇ · v(x(X, t), t)J(X, t).

A proof of the above identity is

∂

∂t
J(X, t) =

∂

∂t
(| ∂x
∂X
|),

=
∂

∂t
(εijk

∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

),

= εijk(
∂v1

∂x1

∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

+
∂v2

∂x2

∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

+
∂v3

∂x3

∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

),

= (∇ · v)J,

where the third order tensor εijk is defined as ε123 = ε312 = ε231 = 1 and ε321 = ε132 =

ε213 = −1.

If the integrand in equation (2.12) is continuous, since R(t) is arbitrary, then

in local form, we have derived the following mass conservation law in the Eulerian

frame

dρ

dt
+ ρ∇ · v =

∂ρ

∂t
+∇ · (ρv) = 0. (2.13)

Note that if the material is incompressible, which means the material derivative of

the density is zero (i.e dρ
dt

= 0), the mass conservation law (2.13) can be written as

∇ · v(x, t) = 0. (2.14)

Note that the above mass conservation law is derived in the Eulerian coordinates,

9
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while the mass conservation law in the Lagrangian coordinates is derived as follows

dM

dt
=

d

dt

∫
R(0)

ρ0(X, t)dX,

=

∫
R(0)

∂ρ0(X, t)

∂t
dX,

= 0. (2.15)

Again, since R(0) is an arbitrary material subregion of Ω0 and under the assumption

that the integrand is continuous, we get the local form as follows

∂ρ0(X, t)

∂t
= 0. (2.16)

We can therefore write ρ0 = ρ0(X). Utilizing the mass conservation law (2.13), for

any function φ, we have the following

d

dt

∫
R(t)

ρφdx =

∫
R(t)

ρ
dφ

dt
dx, (2.17)

which is called the Reynold’s transport theorem. The proof of this theorem is as

follows

d

dt

∫
R(t)

ρ(x, t)φ(x, t)dx =
d

dt

∫
R(0)

R(X, t)Φ(X, t)J(X, t)dX,

=

∫
R(0)

[
∂R

∂t
(ΦJ) +

∂Φ

∂t
(RJ) +

∂J

∂t
(RΦ)]dX,

=

∫
R(0)

[
∂R

∂t
(ΦJ) +

∂Φ

∂t
(RJ) + (∇ · v)J(RΦ)]dX,

=

∫
R(t)

[
dρ

dt
φ+ ρ

dφ

dt
+ (∇ · v)ρφ]dx,

=

∫
R(t)

[(
dρ

dt
+ (∇ · v)ρ)φ+ ρ

dφ

dt
]dx,

=

∫
R(t)

[0φ+ ρ
dφ

dt
]dx,

=

∫
R(t)

ρ
dφ

dt
dx.

10
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2.4 Law of Conservation of Linear Momentum

Conservation of linear momentum in Eulerian coordinates. The total linear

momentum in an arbitrary subregion R(t) of Ω is given by

L =

∫
R(t)

ρvdx. (2.18)

If a force per unit area, called the traction t, acts on the boundary of the subregion

denoted as ∂R(t), with the body force per unit mass b acting in the subregion R(t),

the total force is∫
∂R(t)

tds+

∫
R(t)

ρbdx, (2.19)

where ds is the infinitesimal surface area on the boundary of the subregion ∂R(t).

By Newton’s second law (i.e. the rate of change of linear momentum equals the net

force),

d

dt

∫
R(t)

ρvdx =

∫
∂R(t)

tds+

∫
R(t)

ρbdx. (2.20)

Here the fact that t = σn is stated without proof, where n the unit outward normal

to ∂R(t) and σ is the Cauchy stress tensor. Use the divergence theorem to write∫
∂R(t)

tds =

∫
∂R(t)

σnds =

∫
R(t)

∇ · σdx. (2.21)

Utilizing the Reynold’s transport theorem, equation (2.17) and (2.21) are combined

in equation (2.20) to get∫
R(t)

[ρ
dv

dt
−∇ · σ − ρb]dx = 0. (2.22)

Since R(t) is an arbitrary subdomain of Ω and the assumption is made that the

integrand in (2.22) is continuous, we get the local form of the momentum equation

∇ · σ + ρb = ρa. (2.23)

By conservation of angular momentum, we can get that the stress is symmetric (i.e:

σ = σT ). Here the fact is stated without proving the symmetry of stress.

11
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Conservation of linear momentum in Lagrangian coordinates. Linear mo-

mentum of an arbitrary subregion R(0) in Ω0 is given by

L =

∫
R(0)

ρ0V dX. (2.24)

If a force per unit area, called the traction T , acts on the boundary of the subregion

denoted as ∂R(0), with the body force per unit mass B acting in the subregion R(0),

the total force is∫
∂R(0)

TdS +

∫
R(0)

ρ0BdX, (2.25)

where dS is the infinitesimal surface area on the boundary of the subregion ∂R(0).

By Newton’s second law,

d

dt

∫
R(0)

ρ0V dX =

∫
∂R(0)

TdS +

∫
R(0)

ρ0BdX. (2.26)

Here the fact is stated without proof that T = PN , N is the unit outward normal to

∂R(0) and P is the first Piola-Kirchhoff stress tensor. Use the divergence theorem

to get∫
∂R(0)

TdS =

∫
∂R(0)

PNdS =

∫
R(0)

∇0 · PdX, (2.27)

Since the subregion R(0) is independent of time, the order of differentiation and

integration can be interchanged, and with (2.27) substituted in (2.26), we obtain∫
R(0)

[ρ0
∂V

∂t
−∇0 · P − ρ0B]dX = 0. (2.28)

Since R(0) is an arbitrary subdomain of Ω0 and the assumption is made that the

integrand in (2.28) is continuous, we obtain

∇0 · P + ρ0B = ρ0A. (2.29)

If the first Piola-Kirchhoff stress tensor is used, the stresses in the initial configuration

and current configuration are related as follows

PF T = Jσ,

12
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where F T is the transpose of F .

In short, the momentum equation can either be expressed in the initial configu-

ration or the current configuration. Conservation of mass and linear momentum in

Eulerian coordinates are

dρ

dt
+ ρ∇ · v =

∂ρ

∂t
+∇ · (ρv) = 0,

ρa = ∇ · σ + ρb. (2.30)

Conservation of mass is given by the algebraic relation ρ = ρ0

J
in the Lagrangian

coordinates and conservation of linear momentum in Lagrangian coordinates is

ρ0A = ∇0 · P + ρ0B. (2.31)

Generalization of conservation equations to arbitrary coordinates One can

also derive the conservation equations defined on an arbitrary reference coordinate

χ. These equations are briefly summarized as follows without proof. Let χ be the

reference coordinates, X the coordinates of initial configuration and x the coordinates

of current configuration. Conservation of mass and momentum in the Arbitrary

Lagrangian Eulerian (ALE) representation are

∂ρ

∂t
|χ + c · ∇ρ = −ρ∇ · v, (2.32)

ρ(
∂v

∂t
|χ + (c · ∇)v) = ∇ · σ + ρb, (2.33)

where c = v(x, t) − v̂(χ, t), v̂(χ, t) = ∂x
∂t
|χ and ∂φ

∂t
|χ = ∂φ(x(χ,t),t)

∂t
for any function

φ(x, t). The gradient operator ∇ and divergence operator ∇· are taken with respect

to the current configuration. Note that if the reference configuration is the initial

configuration (i.e χ = X), the conservation equations reduce to the Lagrangian

form, and if the reference configuration is the current configuration, the conservation

equations reduce to the Eulerian form. See [23].

13
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Conservation equations in weak form Soppose equations (2.30) and (2.31)

are multiplied by the test functions δu and δU respectively, integration by parts is

performed and the divergence theorem is utilized, the weak form of the conservation

equation in the Eulerian coordinates is∫
Ω

[ρδu · a+ σ : ∇δu]dx =

∫
Ω

ρδu · bdx+

∫
∂Ωτ

δu · τds. (2.34)

The weak form of the conservation equation in the Lagrangian coordinates is∫
Ω0

[ρ0δU · A+ P : ∇δU ]dX =

∫
Ω0

ρ0δU ·BdX +

∫
∂ΩT0

δU · TdS. (2.35)

In the above weak forms of the conservation equations, τ and T are applied tractions.

∂Ω is decomposed as ∂Ω = ∂Ωv∪∂Ωτ with ∂Ωτ∩∂Ωv = ∅. Here ∂Ωv is the part of the

boundary where the velocity boundary condition is prescribed and ∂Ωτ is the part of

the boundary where the traction boundary condition is prescribed. The momentum

equation alone is not sufficient to describe a well-posed problem, we also need a

constitutive model, which relates the stress and strain, or stress and deformation

gradient to describe a complete system of differential equations. Such a relation will

be given in the following sections. Furthermore, appropriate initial conditions and

boundary conditions are also needed. These will be given for specific problems in

later sections.
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Chapter 3

Background on Numerical

Methods

3.1 Introduction

In this chapter, some popular numerical methods for solving the conservation equa-

tions are reviewed. Such numerical methods can be classified into two categories.

One is mesh dependent methods, such as finite element methods, the other one is

mesh independent methods, for example, meshfree particle methods. The main dif-

ference between finite element methods and meshfree methods is in finite element

methods, the equations are solved on a mesh, where the nodes are connected, while

in meshfree methods, the equations are solved on the nodes with no implied con-

nectivity between the nodes. When developed using the Galerkin weak form, both

the finite element method and meshfree particle methods rely on representing the

numerical solution in terms of a finite set of basis functions. A main ingredient of

meshfree methods is construction of the basis functions. The basis function construc-

tion involves function reconstruction from scattered data, which not only constitutes
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the basis for meshfree methods, but is also critical for understanding and improving

MPM. In this chapter, finite element methods and meshfree methods are summa-

rized, and the details of how to construct functions from scattered data are discussed,

using the ideas of meshfree particle methods.

3.2 Finite Element Method

A popular method for solving the equations of motion numerically is the finite ele-

ment method (FEM). In FEM, an approximate solution is constructed from a basis

in a finite dimensional Sobolev space, with a mesh used to discretize the body. For

example, assume xi is the location of ith node on the mesh, i = 1, 2, · · · , n, where n is

the total number of nodes. If the displacement u is the unknown variable of interest,

and Pi(x), i = 1, 2, · · · , n is a piecewise polynomial basis in the corresponding finite

dimensional Sobolev space, the approximate function uh has the following form

uh(x) =
n∑
i=1

Pi(x)ui,

where ui are the coefficients of the basis functions defined on the node xi. The above

approximate function is inserted into the weak form of the equations of motion to

solve for the values ui.

The equations of motion can either be solved based on a Lagrangian frame or

an Eulerian frame using FEM. For the Eulerian approach, the equations of motion

can usually be solved on a uniform grid and grid generation becomes relatively easy.

However the Eulerian approach has defects. Because the material flows through the

fixed grid, information about the material boundaries is lost, especially for large

deformations. Additionally, the Eulerian approach introduces difficulty in keeping

track of the material deformation history and dealing with the nonlinear advection

term. By contrast, the Lagrangian approach allows the user to keep track of the
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histories of the deformation of the material but the defect is that mesh distortion

becomes severe for large deformation problems. The presence of small or distorted

elements also puts restrictions on the size of the time step in explicit time-stepping

algorithms.

Due to the above issues of both the Lagrangian approach and the Eulerian ap-

proach, the Arbitrary Lagrangian Eulerian method (ALE) has been developed. This

method utilizes the advantages of both the Lagrangian and Eulerian approaches.

ALE introduces a reference domain which moves arbitrarily with respect to move-

ment of the material. Accordingly, the conservation equations for mass and momen-

tum must be described in the reference configuration. In practice, one of the possible

approaches in ALE is the ability to solve the equations of motion in a Lagrangian

frame with an additional rezoning step. The rezoning step requires one to create a

new mesh based on the boundaries of the old mesh, and one has to map the infor-

mation from the old mesh to the new mesh. As a result of this rezoning step, the

mesh entanglement is avoided and the constraint on the time step is relaxed corre-

spondingly, so that a small time step is avoided. The drawbacks of ALE are the new

mesh generation and numerical dissipation for the rezoning step. See [9, 12].

3.3 Overview of Meshfree Methods

The general goal of meshfree methods is to solve the equations of motion without

explicitly constructing a mesh. The philosophy of meshfree methods is similar to

the finite element method, in which the generic variables or functions are projected

and the equations of motion are solved in a finite dimensional space. For example,

if the displacement u is the unknown variable of interest and φi, i = 1, 2, · · · , n are

the basis in the corresponding Sobolev space, then the approximate function uh has
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the following form,

uh(x) =
n∑
i=1

φi(x)ui,

where ui are the coefficients of the basis functions and n is the maximal number of the

basis functions in the Sobolev space. The above approximate function is inserted into

the weak form of the equations of motion to solve for the values ui, or a collocation

method is used to solve the strong form of the equations at selected points. Many

meshfree methods have been developed. Such meshfree methods include Smooth

Particle Hydrodynamics (SPH) [17, 25], Element Free Galerkin Methods (EFG) [4,

5], Reproducing Kernel Particle Methods (RKPM) [19, 20] and Partition of Unity

Methods (PU) [14].

In SPH, the approximate function is uh(x) =
∫

Ω
Chw(x − y, h)u(y)dΩy, where

w(x− y, h) is a kernel or a weight function. In practice, w is given by splines. The

parameter h measures the support of the weight function, and Ch is a normalization

constant such that
∫

Ω
Chw(x− y)dy = 1. Note that this is the current way in which

SPH is formulated (see [13]), but the original form did not contain the normalization

which restricted accuracy. In discrete form, uh(x) =
∑

i φi(x)ui =
∑

iChw(x −

xi)uiVi, where φi(x) = Chw(x−xi)Vi, ui is the coefficient, Vi is the volume associated

with node i, i = 1, 2, · · · , n, and n is the total number of nodes. It turns out that

the shape functions constructed above can reproduce polynomials of arbitrary order

by choosing the right normalization. The definition of reproducing conditions will

be given in the following sections. Equations for the unknowns ui are generally

determined using a collocation method.

In RKPM, one constructs an approximation of a function u(x) through the use of

an integral kernel, k(x, s), such that uh(x) =
∫

Ω
k(x, s)u(s)ds. The integral is then

approximated by choosing a set of nodes, xi ⊂ Ω, so that uh(x) =
∑

i k(x, xi)uiVi =∑
i φi(x)ui, where φi(x) = k(x, xi)Vi. The discrete kernel has the form k(x, xi) =

α(x)TP (x)w(x−xi). Here ui is the coefficient, Vi is the volume associated with node
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i, i = 1, 2, · · · , n, and n is the total number of nodes. The shape functions above

satisfy the reproducing conditions to arbitrary order if arbitrary order of polynomials

P (x) are used. In this representation, let α(x) = [α1(x), α2(x), · · · , αm(x)], where m

is the number of terms in the polynomial basis and α(x)T is the transpose of α(x).

By enforcing the reproducing conditions on φi, one can solve for the coefficients α(x).

Note that such shape functions have compact support since the weight function has

compact support. The details of the construction of such shape functions will be

given in the following sections. Note that the equations for the unknowns ui are

usually determined using Galerkin methods.

In EFG, the assumption is made that the approximate function has the form

uh(x, x̄) = α(x)TP (x̄), where α(x) and P (x̄) are defined as above. The shape function

φi(x) is constructed by minimizing the following functional

I(x) =
n∑
i=1

w(x− xi)(uh − ui)2,

=
n∑
i=1

w(x− xi)(α(x)P (xi)− ui)2,

where w(x − xi) is the same as above. α(x) is solved for by minimizing the above

functional, and inserting the expression for α(x) back into uh(x) = α(x)TP (x̄) to get

the shape function φi(x). It turns out that RKPM and EFG are equivalent. In EFG,

the discrete equations of motion are typically developed by the Galerkin conditions

as in RKPM.

In the meshfree methods described above, the equations of motion can be solved

either in the Lagrangian form or the Eulerian form, using a Galerkin method or a

collocation method. In the Galerkin method, the equations of motion are derived in

the weak form, and are projected into a finite dimensional space. In the collocation

method, a set of points is chosen so that the equations of motion in strong form are

satisfied at these points. SPH usually formulates the equations of motion in Eulerian

form using collocation, and EFG or RKPM are formulated either in Lagrangian
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form or Eulerian form using a Galerkin method. In the Lagrangian formulation of

the equations of motion, the weight function w and the basis function φi described

above are defined in the initial configuration, w = w(X−Xi). Correspondingly, they

are defined once initially, and the support of the weight function w(X −Xi) changes

with the dynamics. In the Eulerian formulation of the equations of motion, the

weight function w and the basis function φi are defined in the current configuration,

w = w(x−xi). Correspondingly, they need to be constructed at each time step, and

usually the support of the weight function is constant for all time. Note that if the

internal forces are approximated by nodal quadrature in EFG or RKPM, then EFG

or RKPM reduce to SPH with collocation.

There are three main stability issues in the above meshfree methods. The first

is the material instability in continua, which is related to the ill-possedness of the

PDE. This type of instability is independent of the numerical methods chosen. The

second stability issue is the tensile instability, which happens only in the Eulerian

formulation of equations of motion in any of SPH, EFG and RKPM. The tensile in-

stability is mainly due to the positive stress field and the negative value of the second

derivative of the basis function. The third type of instability results from the rank

deficiency of the discrete divergence operator on the stress field. The rank deficiency

occurs in both Lagrangian kernels and Eulerian kernels. Such rank deficiency can

be eliminated by using a different quadrature rule to approximate the nodal internal

forces or the divergence of stress field, but the tensile instability cannot be eliminated

in the Eulerian kernel. Therefore the most stable meshfree methods are based on

the Lagrangian formulation of the equations of motion. See [6] for more information

about the stability of meshfree methods.

There are some drawbacks of the meshfree methods. Although the goal of mesh-

free methods is to solve the equations of motion without explicitly generating a

mesh, these methods do need a mesh for quadrature in practice. Additionally, the
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construction of the shape functions and their derivatives are numerically expensive

to implement. For example, the inversion of a matrix is required to formulate the

shape functions. For a second order accurate approximation, a 2 by 2 matrix has to

be inverted in 1D, a 3 by 3 matrix has to be inverted in 2D, and a 4 by 4 matrix has

to be inverted in 3D at each node. Moreover, the derivatives of the corresponding

shape functions are computationally expensive to construct because of the matrix

inversion process. In the Lagrangian formulation of equations of motion, the shape

functions and derivatives of the shape functions can be constructed once initially, and

a background mesh for quadrature is also defined once initially in order to exclude

the rank deficiency. By contrast, the Eulerian formulation requires construction of

the shape functions, the derivatives of the shape functions and a background mesh

for quadrature at each time step.

Although the meshfree methods in the Lagrangian approach are demonstrated to

be the most stable methods, they suffer substantial distortion of the shape functions

for large deformation problems, which puts a restrictive constraint on the time step

for an explicit algorithm. Whether the large distortion of the shape function leads

to stability issues or convergence issues is not clear. The meshfree methods in the

Eulerian approach sometimes are advantageous; for example, they do not suffer large

distortion of shape functions because the kernels and shape functions are defined in

the current configuration. Additionally, the Eulerian formulation puts less restrictive

constraints on the time step for an explicit algorithm.

3.4 Function Reconstruction from Scattered Data

In order to illustrate the process of constructing the above basis functions in the

multi-dimensional case, a multi-index notation is introduced. The notation Pr =

Pr(Ω) denotes the space of polynomials of a degree less than or equal to r on Ω. The
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dimension of Pr is Nr,

Nr =

(
r + d

d

)
=

(r + d)!

r!d!
.

For any point x ∈ Rd, the monomial in Rd is xα = (x̃1)α1(x̃2)α2 · · · (x̃d)αd , where

α = (α1, α2, · · · , αd) and x̃i is the ith coordinate in Rd. The length of α is |α| =∑d
i=1 αi with |α| ≤ r. Given data, up, p = 1, 2, · · · , npt at points xp, Assume the

reconstructed function has the following form:

uh(x) =

npt∑
p=1

Φr
p(x)up, (3.1)

where the basis functions Φr
p satisfy the following polynomial reproducing conditions

xα =

npt∑
p=1

Φr
p(x)xαp . (3.2)

These are the reproducing conditions mentioned in the previous section used in

deriving basis functions for SPH and RKPM. In the meshfree particle methods, the

basis functions Φr
p(x), which satisfy the above polynomial reproducing conditions,

are assumed to have the following form:

Φr
p(x) = w(x− xp)

∑
α≤r

(x− xp)αaα(x), p = 1, 2, · · · , npt, (3.3)

where w(x−xp) is a weight function with compact support. Based on the reproducing

conditions (3.2), there are Nr equations that need to be solved for the coefficients

aα. ∑
|α|≤r

mα+β(x)aα(x) = δ|β|,0, |β| ≤ r, (3.4)

where the moment functions mα are defined as

mα =

npt∑
p=1

w(x− xp)(x− xp)α. (3.5)
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The above system of equations can be written in the matrix form as

M(x)a(x) = b(0), (3.6)

where the moment matrix is

M(x) =

npt∑
p=1

w(x− xp)b(x− xp)b(x− xp)T , (3.7)

and b(x) = (xα)|α|≤r ∈ RNr . Invert the moment matrix M to obtain the coefficients

a from (3.6), and substitute the expression for the coefficients a back into equation

(3.3). The final form of the basis functions Φr
p(x) are derived as

Φr
p(x) = w(x− xp)bT (x− xp)M−1(x)b(x− xp). (3.8)

3.5 Function Reconstruction Using Moving Least

Squares

In this section, the function reconstruction from scattered data is presented using the

idea of Moving Least Squares (MLS) with an example in 1D used as an illustration.

The reproducing condition of MLS basis functions is proved using the 1D example.

The idea of MLS is to construct basis functions from polynomials with variable

coefficients. Assume a function has the following form

uh(x, x̄) = a0(x̄) + a1(x̄)x+ · · ·+ ar(x̄)xr,

or

uh(x, x̄) = P T (x)a(x̄), (3.9)

where P (x) is a vector, Pr is a space of polynomials and the approximation function

uh(x, x̄) has two parameters, x and x̄. In 1D, P (x) and a(x) are defined as

P T (x) = [1, x, x2, · · · , xr],

aT (x) = [a0(x), a1(x), · · · , ar(x)].
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Here capital P is used as a vector for the basis of polynomials and p as the subindex

for indicating point values. The general idea of MLS is to find a(x̄), which depends

on a local parameter x̄ so that the approximation function uh(x, x̄) minimizes the

following functional with given data up. The position xp of the given data up is

locally close to the point of interest x̄. The functional is

I(a) =

npt∑
p=1

w(x̄− xp)[uhp(xp, x̄)− up]2,

=

npt∑
p=1

w(x̄− xp)[P T (xp)a(x̄)− up]2. (3.10)

Since the point of interest x̄ is arbitrary, we take x̄ = x so that

I(a) =

npt∑
p=1

w(x− xp)[uhp(xp, x)− up]2,

=

npt∑
p=1

w(x− xp)[P T (xp)a(x)− up]2. (3.11)

Take the derivative of I with respect to each component of a and set it to zero to get

δI(a)

δa
= 2

npy∑
p=1

w(x− xp)[P T (xp)a(x)− up]P (xp) = 0.

Further we get

M(x)a(x) = B(x)U, (3.12)

where M , B and U are defined as follows:

M =

npt∑
p=1

w(x− xp)P (xp)P
T (xp), (3.13)

B(x) =

npt∑
p=1

w(x− xp)P (xp), (3.14)

24



Chapter 3. Background on Numerical Methods

UT = [u1, u2, · · · , unpt]. (3.15)

Invert M to get

a(x) = M−1(x)B(x)U.

Put the above expression for a back into equation (3.9) to get

uh(x) = P T (x)M−1(x)B(x)U,

=

npt∑
p=1

Φp(x)up. (3.16)

where Φp(x) = P T (x)M−1(x)Bp(x) and Bp(x) = w(x − xp)P (xp). If linear polyno-

mials are used as an example, P T (x) = [1, x̃] in 1D, and the form for M(x) and B(x)

would therefore be

M(x) =

npt∑
p=1

w(x− xp)P (xp)P
T (xp),

= w(x̃− x̃1)

 1 x̃1

x̃1 x̃2
1

+ · · ·+ w(x̃− x̃npt)

 1 x̃npt

x̃npt x̃2
npt

 , (3.17)

B(x)U =

npt∑
p=1

w(x− xp)P (xp) · U, (3.18)

=
[
B1 B2 · · · Bnpt

]
· U,

=

 w(x̃− x̃1)

 1

x̃1

 , · · · , w(x̃− x̃npt)

 1

x̃npt

  ·


u1

u2

· · ·

unpt

 .
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In 2D, let P T (x) = [1, x̃1, x̃2], the form for M(x) and B(x) would therefore be

M(x) =

npt∑
p=1

w(x− xp)P (xp)P
T (xp), (3.19)

= w(x̃1 − x̃1
1) · w(x̃2 − x̃2

1)


1 x̃1

1 x̃2
1

x̃2
1 (x̃1

1)2 x̃1
1x̃

2
1

x̃2
1 x̃1

1x̃
2
1 (x̃2

1)2

+ · · ·

+ w(x̃1 − x̃1
npt) · w(x̃2 − x̃2

npt)


1 x̃1

npt x̃2
npt

x̃1
npt (x̃1

npt)
2 x̃1

nptx̃
2
npt

x̃2
npt x̃1

nptx̃
2
npt (x̃2

npt)
2

 ,

B(x)U =

npt∑
p=1

w(x− xp)P (xp) · U, (3.20)

=
[
B1 B2 · · · Bnpt

]
,

=

 w(x− x1)


1

x̃1
1

x̃2
1

 , · · · , w(x− xnpt)


1

x̃1
npt

x̃2
npt


 ·


u1

u2

· · ·

unpt

 ,

where w(x− xi) = w(x̃1 − x̃1
i ) · w(x̃2 − x̃2

i ), i = 1, 2, · · · , npt.

Remark: MLS reproduces functions up to order r if rth order polynomials are

chosen as the basis. The proof of reproducing conditions of MLS basis functions is

illustrated in 1D as follows.

Definition: a set of basis functions satisfies polynomial reproducing conditions of
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order r if and only if the following are true

npt∑
p=1

Φp(x) · 1 = 1,

npt∑
p=1

Φp(x) · xp = x,

npt∑
p=1

Φp(x) · x2
p = x2,

...

npt∑
p=1

Φp(x) · xrp = xr. (3.21)

Now let us study the reproducing conditions of the basis functions constructed from

MLS. Let

P T (x) =
[
1, x, x2, · · · , xr

]
,

aT (x) = [a0(x), a1(x), a2(x), · · · , ar(x)] .

Since Φp(x) = P T (x)M−1(x)Bp(x), where M and B are given by (3.17) and (3.18),

we derive the following

npt∑
p=1

Φp

[
1, xp, x

2
p, · · · , xrp

]
=

npt∑
p=1

P T (x)M−1(x)Bp(x)
[
1, xp, x

2
p, · · · , xrp

]
,

=

npt∑
p=1

P T (x)M−1(x)Bp(x)P T (xp),

=

npt∑
p=1

P T (x)M−1(x)w(x− xp)P (xp)P
T (xp),

= P T (x)M−1(x)

npt∑
p=1

w(x− xp)P (xp)P
T (xp),

= P T (x)M−1(x)M(x),

= P T (x).
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In the above proof, the definition for Bp = w(x − xp)P (xp) and the equation of

(3.17) for M were used. Note that the factor P T (x)M−1(x) can be factored out of

the sum because it is a quantity independent of the parameter xp. The reproducing

condition (i.e equation(3.21)) has been obtained. It can be observed from the above

calculation that the reproducing property does not depend on the choice of the weight

functions, but the smoothness of the shape function does depend on the smoothness

of the weight function, see [16]. In other words, the shape function Φp inherits the

smoothness of the weight function w.

28



Chapter 4

The Original Material-Point

Method

4.1 Introduction

The material point method (MPM) was invented by Sulsky, Chen and Schreyer

(1994). It is an extension of the particle in cell (PIC) method of Harlow [8]. It is

also a particular type of ALE method, in which Lagrangian material points represent

the geometry of the body and carry the history-dependent material properties with

a background grid used to solve the equations of motion.

Compared to the above meshfree methods, MPM has the advantage of efficiently

using finite element shape functions to discretize the momentum equations, with the

material points used to represent the geometry of the body. More specifically, MPM

can use an arbitrary grid and classical finite element shape functions to discretize

the equations of motion while the material points follow trajectories. The equations

of motion are solved in an updated Lagrangian frame, and the material derivative

becomes the total derivative so that the convection term does not appear in the
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formulation. The disadvantage of MPM is that it needs a special algorithm to handle

the interplay between the grid information and the material-point information, which

requires slightly more work in this aspect compared with classical finite element

methods. For details of a comparison study of MPM and SPH, see [22]. Remark:

the main difference between MPM and meshfree particle methods (SPH, EFG and

RKPM) is that in MPM, the equations of motion are solved on the background grid

and material points are used as the quadrature points to approximate nodal forces

and nodal masses, while in meshfree methods the equations of motion are solved on

the material points and a background mesh is constructed for quadrature purposes

to approximate the nodal forces.

The issue of MPM is that it has low order convergence or even no convergence

for some large deformation problems. This issue has necessitated the development

of an improved material point method (IMPM) for increasing the order of accuracy

of original MPM for large deformation problems. In MPM, the low order accuracy is

mainly due to two reasons. The first of these is the mapping from the material-point

field to the grid field. The mapping formula in MPM is first order for large deforma-

tion problems, but almost second order for small deformation problems. For a small

deformation problem, the material points do not move excessively. If the material

points are initially equally spaced, they are almost equally spaced throughout the

computation, then the mapping formula is almost second order. See Figure 4.1, 4.2

and 4.3 for illustration in the following sections. However for a large deformation

problem, the material points can have large displacements, so the corresponding

mapping formula in MPM reduces to first order. See Figure 4.4, 4.5 and 4.6 in the

following sections for illustration.

The other source of error is the integration scheme which we use to approximate

the nodal forces and nodal masses. In MPM, material points are used as the integra-

tion points. Since the material points are moving, their positions can be arbitrary in
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the computational cell, and then the accuracy of corresponding nodal forces is low

order.

The next sections review the original MPM formulation and its convergence prop-

erties.

4.2 Equations Solved by MPM

An example of the equations solved by MPM (i.e. the momentum equation plus the

constitutive equation and strain relation) is

∇ · σ + ρb = ρ
dv

dt
, (4.1)

dF

dt
= ∇v · F, (4.2)

ρ =
ρ0

J
, (4.3)

σ = σ(F ), (4.4)

where F is the deformation gradient tensor and J is the Jacobian of F . For example,

for the Neo-Hookean model, the stress is given as

σ =
1

J
[λ(ln J)I + µ(FF T − I)], (4.5)

where λ and µ are material constants. Other constitutive models also can be treated.

These equations are solved in the domain Ω with initial conditions

v(x, 0) = v0, x ∈ Ω0

σ(x, 0) = σ0(x).

Boundary conditions must also be specified and are given on the velocity or traction.

The philosophy of MPM is to solve the equations of motion on a background grid

and to keep track of trajectories of a set of material points, where the material points
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represent the geometry of the body Ω during deformation. The process is accom-

plished using the mapping between the information on the grid and the information

on the material points. The details of this process are given in the following sections.

4.3 Main Steps of MPM

A body Ω0 is discretized into a finite set of npt material points with positions xp, p =

1, 2, · · · , npt. Each of these points represents a material volume Ωp with a mass Mp.

Mass conservation requires thatMp be constant. The initial discretization determines

xp(0) and Ωp(0), whereas vp(0) and σp(0) come from the initial conditions. The aim

is to determine the velocity, vp, stress, σp and displacement up at later times. The

MPM algorithm for each time step consists of four steps:

(1) Map information from material points to the background grid (i.e reconstruct

functions from scattered data).

(2) Solve the momentum equation on the background grid.

(3) Update information on the material points.

(4) Generate a new grid.

4.3.1 Reconstruct a function from scattered data

In the MPM algorithm, mapping the information from the material points to the

grid is an important step. It involves reconstructing a function from scattered data

on the material points and evaluating the reconstructed function on the background

grid. The reconstructed function in the MPM algorithm is actually a particular case

of Shepard function interpolation. The Shepard function interpolation constructs
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uh(x) as

uh(x) =

npt∑
p=1

φp(x)up, (4.6)

where the shape function, φp(x) is

φp(x) =
w(x− xp)∑npt
p=1w(x− xp)

,

and up, p = 1, 2, · · · , npt is data on a set of scattered points. In MPM, the weight

function w is defined as

w(x− xp) = Mps(x− xp), (4.7)

where in 1D, with rx = |x−xp|
h

,

s(x− xp) =

 1− rx rx ≤ 1

0 otherwise
, (4.8)

where h is the support of s and is also the mesh spacing. In 2D, s(x− xp, y − yp) =

s(x− xp) · s(y − yp). Note that the Shepard interpolation reproduces only constant

functions. In other words, if up = C, where C is a constant, we would have uh(x) = C.

The proof is as follows:

uh(x) =

npt∑
p=1

φp(x)C,

=

∑npt
p=1w(x− xp)C∑npt
p=1w(x− xp)

,

= C.

For equally distributed sampled data, the Shepard interpolation almost reproduces

linear functions, except on the boundary of the domain. See the following 1D exam-

ples for an illustration. Here the domain is Ω0 = [−1, 1] and h = 1
10

. In each element,

there are four equally spaced material points, which are the sampled points. For a
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given function u(x), sample the function at points xp to get up = u(xp), use formula

(4.6) to obtain uh(x) with Mp = 1, and s(x) is given by (4.8), and p = 1, 2, · · · , 40.

The reconstructed function uh(x) is computed at the grid nodes xi = −1 + (i− 1)h,

where i = 1, 2, · · · , 11. The exact function values are given by u(xi) and the recon-

structed values are given by uh(xi) at i = 1, 2, · · · , 11. The difference u(xi)− uh(xi)

at the 11 nodes is computed for u(x) = 1, u(x) = x and u(x) = x2. Table 4.1 shows

the error at each node for three cases, u(x) = 1, u(x) = x and u(x) = x2. From Table

4.1, we see that for equally spaced points, the error, u(xi)−uh(xi), is identically zero

for u(x) = 1. The error is also identically zero for interior nodes even for the linear

function u(x) = x, but is nonzero throughout the interval for the example u(x) = x2.

The error for u(x) = x2 is fairly uniform in the interior of the interval with larger val-

ues at the endpoints. Therefore, although Shepard functions are only guaranteed to

reproduce constant functions, the error in reproducing a linear function with equally

spaced points is generally nonzero only at the boundary. In Figures 4.1, 4.2 and 4.3,

the blue circles are the computed nodal values of the reconstructed function uh(x),

and the blue line is the graph of u(x). If the material points are equally spaced, one

can see that in Figure 4.1, the Shepard interpolation reproduces constant functions.

In Figure 4.2, the Shepard interpolation reproduces a linear function in the interior

of the domain, but not on the boundary. In Figure 4.3, the Shepard interpolation

does not reproduce the quadratic exactly, and the errors are larger at the boundary

than in the interior of the interval.
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Table 4.1: Pointwise errors for Shepard Interpolation with equally spaced points.
i 1− uh(xi) xi − uh(xi) x2

i − uh(xi)
1 0 -0.0688 0.1306
2 0 0 -0.0069
3 0 0 -0.0069
4 0 0 -0.0069
5 0 0 -0.0069
6 0 0 -0.0069
7 0 0 -0.0069
8 0 0 -0.0069
9 0 0 -0.0069
10 0 0 -0.0069
11 0 0.0687 0.1306

x
-1 -0.5 0 0.5 1

u
(x

)=
1

0

0.5

1

1.5

2

Figure 4.1: Shepard interpolation for the constant function u(x) = 1 with equally
spaced points.
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Figure 4.2: Shepard interpolation for the linear function u(x) = x with equally
spaced points.
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Figure 4.3: Shepard interpolation for the quadratic function u(x) = x2 with equally
spaced points.
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For arbitrarily placed sampling points xp in the interval [-1,1] generated by the

rand command in Matlab, the Shepard interpolation only reproduces constant func-

tions. See the following table and 1D plots for an illustration. From Table 4.2, one

can see that the error is identically zero for u(x) = 1. The errors become large

throughout the domain for the linear function u(x) = x and the quadratic function

u(x) = x2. In Figures 4.4, 4.5 and 4.6, the blue circles are nodal values of the re-

constructed function uh(x), and the blue lines are graphs of the function u(x). For

the constant function u(x) = 1 in Figure 4.4, the Shepard interpolation reproduces

constant functions exactly. For the linear function u(x) = x and the quadratic func-

tion u(x) = x2, Shepard interpolation has errors throughout the interval, with larger

errors at the boundary. This observation explains why the mapping from the ma-

terial points to the grid in the MPM algorithm drops down to first order when the

positions of the material points become unequally distributed, which is one of the

main reasons for low order accuracy of the overall MPM algorithm.

Table 4.2: Pointwise errors for Shepard Interpolation with unequally spaced points.
i 1− uh(xi) xi − uh(xi) x2

i − uh(xi)
1 0 -0.1370 0.1963
2 0 0.0105 0.0114
3 0 -0.0046 -0.0273
4 0 -0.0330 -0.0250
5 0 0.0403 0.0104
6 0 -0.0129 -0.0090
7 0 -0.0275 -0.0187
8 0 -0.0134 -0.0187
9 0 0.0390 0.0472
10 0 -0.0119 -0.1511
11 0 0.0797 0.1751
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Figure 4.4: Shepard interpolation for the constant function u(x) = 1 with unequally
spaced points.
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Figure 4.5: Shepard interpolation for the linear function u(x) = x with unequally
spaced points.
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Figure 4.6: Shepard interpolation for the quadratic function u(x) = x2 with un-
equally spaced points.
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4.3.2 Solve the momentum equation on grid

Define grid coordinates xi, i = 1, 2, · · · , n, where n is the total number of grid points.

Multiply equation (4.1) with a test function δu on both sides of the equation and

perform integration by parts to get the following alternative form:

∫
Ω

ρ[δu · a+ σs : ∇δu]dx =

∫
Ω

ρδu · bdx+

∫
∂Ωτ

δu · τds, (4.9)

where ρ(x, t)σs(x, t) = σ(x, t) and ∂Ω = ∂Ωv ∪ ∂Ωτ with ∂Ωτ ∩ ∂Ωv = ∅. Here

∂Ωv is part of the boundary where the velocity boundary condition is prescribed and

∂Ωτ is part of the boundary where the traction boundary condition is prescribed.

Now, project functions to a finite dimensional space and use the conventional finite

element representation for the continuous variables to write the following:

δu =
n∑
i=1

δuiNi(x), (4.10)

v =
n∑
i=1

viNi(x), (4.11)

a =
n∑
i=1

aiNi(x), (4.12)

where Ni(x) are standard FEM nodal basis functions. Nodal values of δu, v and a are

denoted by δui, vi and ai. In 1D, the basis function is defined by Ni(xj) = δij, where

δij is the Kronecker delta function. In 2D, the basis function is the tensor product

of the 1D basis functions. Now, substitute (4.10), (4.11) and (4.12) into each term

of equation (4.9) and use one-point quadrature over material point domains to get
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the following expansions: ∫
Ω

ρδu · adx =
n∑

i,j=1

δuimij · aj, (4.13)

mij =

∫
Ω

ρNi(x)Nj(x)dx =
N∑
p=1

MpNi(xp)Nj(xp),∫
Ω

ρσs : ∇δudx = −
n∑
i=1

δui · f inti , (4.14)

f int
i = −

∫
Ω

ρσs · ∇Ni(x)dx = −
N∑
p=1

∇Ni(xp)Mp · σsp.

If the lumped mass is used, then the nodal mass has the following simplified form:

mi =
n∑
j=1

∫
Ω

ρNi(x)Nj(x)dx,

=

∫
Ω

ρNi(x)
n∑
j=1

Nj(x)dx,

=

∫
Ω

ρNi(x)dx,

=
N∑
p=1

MpNi(xp). (4.15)

For the right-hand side of equation (4.9), similar expansions can be found:∫
Ω

ρδu · bdx =
n∑
i=1

δui · bi, (4.16)

bi =

∫
Ω

Ni(x)ρbdx =
N∑
p=1

Ni(xp)Mpbp, (4.17)

∫
Ω

δu · τds =
n∑
i=1

δui · τ̂i, (4.18)

τ̂i =

∫
Ω

Niτds. (4.19)

Here bp = b(xp, t) is defined as the body force evaluated at the material points; [mij]

is the mass matrix associated with the background computation grid; and f int
i is
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defined as the internal force associated with node i. In addition, f ext
i is defined as

the external nodal force in the following manner:

f ext
i = bi + τ̂i. (4.20)

Combining (4.13) (4.14) and (4.20), the discrete form of the equation of motion has

been derived as follows:

n∑
i,j=1

δuimij · aj = −
n∑
i=1

δui · f int
i +

n∑
i=1

δui · bi +
n∑
i=1

δui · τ̂i,

n∑
i,j=1

δuimij · aj = −
n∑
i=1

δui · f int
i +

n∑
i=1

δuif
ext
i . (4.21)

Since δui is arbitrary, if terms with δui as the coefficient are collected, the following

system of equations has been achieved:

n∑
j=1

mijaj = f int
i + f ext

i , i = 1, 2, · · · , n. (4.22)

If the lumped mass is used, the equation of motion has the following simplified form:

miai = f int
i + f ext

i , i = 1, 2, · · · , n, (4.23)

where mi is given by (4.15).

Solving the momentum equation on the grid and updating the grid ve-

locity. The above procedure presents the discretized momentum equation, and in

practice, we need to indicate the time step. Let a superscript s denote the time step.

The grid velocity is updated as follows:

ms
ia
s
i = (f inti )s + (f exti )s, i = 1, 2, · · · , n,

v
s+ 1

2
i = v

s− 1
2

i + asi∆t, (4.24)

where ∆t is the time step. Note the initialization of velocity at a half time step

v
1
2
i is required. The initial half time step velocity can be approximated using v

1
2
i =
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1
2
(v1
i + v0

i ), where v0
i is given by the initial condition and v1

i can be obtained by

solving the equations of motion on the background grid (i.e. v1
i = v0

i + a0
i∆t). Or

the velocity at half time step can be approximated by another method as desired.

4.3.3 Update the material-point information

Once the equations of motion on the grid are solved, the material-point information

must be updated. The steps are presented as follows:

v
s+ 1

2
p = v

s− 1
2

p +
n∑
i=1

Ni(x
s
p)(v

s+ 1
2

i − vs−
1
2

i ), (4.25)

xs+1
p = xsp +

n∑
i=1

Ni(x
s
p)(v

s+ 1
2

i )∆t, (4.26)

us+1
p = xs+1

p − x0
p. (4.27)

The deformation gradient, density and stress are updated as

F s+1
p = (

n∑
i=1

∇Ni(x
s+1
p )v

s+ 1
2

i ∆t+ I)F s
p , (4.28)

ρs+1
p =

ρ0

|F s+1
p |

, (4.29)

σs+1
p = σ(F s+1

p ), (4.30)

where ∇Ni is the gradient of the basis function.

4.3.4 Generate a new grid

After the material-point information is updated, a new grid must be generated for

the next time step. Usually in MPM implementations, the new grid is simply moved

back to the location of the old grid so that grid generation becomes trivial. During
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the Lagrangian step, the grid moves to

xs+1
i = xsi + v

s+ 1
2

i ∆t.

During the re-grid, the grid is set back to the original grid

xs+1
i = xsi = xi. (4.31)

Note, however, one can generate any convenient grid instead.

4.4 Summary of the algorithm of MPM

There are four main steps in the MPM algorithm.

(1) Map information from material points to grid.

(mv)
s− 1

2
i =

npt∑
p=1

Mpv
s− 1

2
p Ni(x

s
p), i = 1, 2, · · · , n,

ms
i =

npt∑
p=1

MpNi(x
s
p),

v
s− 1

2
i =

(mv)
s− 1

2
i

ms
i

,

f int
i = −

N∑
p=1

∇Ni(xp)Mp · σsp,

f ext
i = bi + τ̂i.

bi and τ̂i are given by equations (4.17) and (4.19).

(2) Solve the equation of motion on the grid and update the grid information.

ms
ia
s
i = (f int

i )s + (f ext
i )s, i = 1, 2, · · · , n,

v
s+ 1

2
i = v

s− 1
2

i + asi∆t.
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(3) Update the information on the material points.

v
s+ 1

2
p = v

s− 1
2

p + ∆t
n∑
i=1

Ni(x
s
p)a

s
i ,

xs+1
p = xsp + ∆t

n∑
i=1

Ni(x
s
p)v

s+ 1
2

i ,

us+1
p = xs+1

p − x0
p,

F s+1
p = (

n∑
i=1

∇Ni(x
s+1
p )v

s+ 1
2

i ∆t+ I)F s
p ,

ρs+1
p =

ρ0

|F s+1
p |

,

σs+1
p = σ(F s+1

p ).

(4) Generate a new grid.

4.5 Method of Manufactured Solutions in 1D

The idea of a manufactured solution is that one assumes a solution has a certain

form and puts the solution back into the governing equation to solve for appropriate

data such as the body force or boundary conditions. See [1, 24] for the example used

in this section. First consider the equation of motion in Lagrangian form,

∇0 · P + ρ0B = ρ0A, (4.32)

where P is the first Piola-Kirchoff stress. The Neo-Hookean model is used, which is

given as

P = [λ(ln J)I + µ(F TF − I)]F−T . (4.33)

where λ and µ are generalized Lamé constants, F is the deformation gradient, which

is defined as F = I + ∂u
∂X

and J = |F |. The stress is related in Eulerian and
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Lagrangian forms as

Jσ = PF T , (4.34)

where σ is the Cauchy stress.

Consider a bar in the domain 0 ≤ X ≤ 1. Assume the following analytical

solution for displacement.

U(X, t) = G sin (πX) sin (cπt), (4.35)

where c =
√

E
ρ0

and E is Young’s modulus. Then, from U , find F , V and A:

F (X, t) = 1 +Gπ cos (πX) sin (cπt), (4.36)

V (X, t) = cπG sin(πX) cos(cπt), (4.37)

A(X, t) = −Gc2π2 sin (cπt) sin (πX). (4.38)

P is given by expression (4.33). The boundary conditions are given by

V (X, t)|X=0 = 0,

V (X, t)|X=1 = 0.

The corresponding initial conditions are given as

V (X, 0) = cGπ sin(πX),

P (X, 0) = 0,

F (X, 0) = 1.

In order that equation (4.35) is a solution to equation (4.32) with the Neo-Hooken

model, the corresponding equation for body force is

B(X, t) =
π2U(X, t)

ρ0

(
λ

F 2
(1− lnF ) + µ(1 +

1

F 2
)− E). (4.39)

In this expression, E is the Young’s modulus which is related to λ and µ by E =

λ(1+µ)(1−2µ)
µ

.
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4.6 Convergence of MPM in 1D

This section considers the solution to a initial-boundary-value problem in 1D using

the original version of MPM as summarized in the previous sections. The problem

is given as follows:

ρa = ∇ · σ + ρb,

dF

dt
= Fvx,

σ =
1

J
[λ(ln J)I + µ(FF T − I)],

σ(x, 0) = 0,

F (x, 0) = 1,

v0(x) = cπG sin(πx),

v(x, t)|x=x(X=0,t=0) = 0,

v(x, t)|x=x(X=1,t=0) = 0.

in what follows, we study convergence of the original MPM algorithm to the solution

of this problem. The analytical solution is (4.35), (4.36), (4.37) and (4.38). Here

the grid is defined as xi = (i − 1)h, i = 1, 2, · · · , Ne + 1 on the interval [0, 1], and

the meshsize is h = 1
Ne

, where Ne is the total number of elements. Note that the

mesh sizes used for the following convergence plot are h = 1
2i
, i = 3, 4, 5, 6. For the

following convergence plot, the axes are log base 10 of the L2 norm of the error vs.

the log base 10 of the mesh size. The slope of the line that approximates the data

reveals the convergence rate. The L2 error is defined as

El2 = (

∫
Ω

(unum
n (x)− uex

n (x))2dΩ)
1
2 , (4.40)

where unum
n is the numerical solution and uex

n is the analytical solution at time tn.

The error is computed using one point quadrature over the material-point domain

for the stress, density, velocity and displacement, and over the element domain for
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the velocity. Since the analytical solution for the velocity is only known on the

material points, second order MLS can be used to map the analytical velocity on the

material points to the grid so that the analytical solution of velocity on the grid can

be approximated and the error of velocity on the grid can be computed.

Figures 4.7 and 4.8 show computed convergence rates for the original MPM al-

gorithm for this manufactured solution. The Young’s modulus is E = 107Pa and

the Poisson’s ratio is ν = 0.3, the initial density is ρ0 = 103kg/m3 and the final time

is T = 0.02s, which corresponds to the solution after one period. The time step

chosen for the simulation is given by ∆t = 0.4h
c
, where c =

√
E
ρ0

. If we use strain

as a measure of how much deformation the elastic body undergos, in Figure 4.7, the

maximum strain is Gmax ∂U
∂X

= πG = 0.000314, which is a small deformation. In

Figure 4.8, the maximum strain is πG = 0.314, which is a large deformation. In the

figures, the top line is the error in the stress on the material points, the second line

is the error in the density on the material points, the third line is the error in the

velocity on the material points and on the grid, and the fourth line is the error in

the displacement on the material points.

As one can see in the Figures 4.7 and 4.8, for small deformation problems, MPM

appears to be second order accurate, but for large deformation problems, it does not

converge. The improved material point method is designed to improve MPM in this

situation.
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Figure 4.7: Convergence of the original MPM for a small deformation problem in
1D, G=0.0001.
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Figure 4.8: Convergence of the original MPM for a large deformation problem in 1D,
G=0.1.
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4.7 Convergence of MPM in 2D

In this section, a manufactured solution in two space dimensions is discussed as

originally presented in [1, 24]. For equations (4.1) to (4.5), the displacement is

assumed to have the following form:

U(X, Y, t) =


G sin(πX) sin(cπt)

G sin(πY ) sin(cπt)

0

 . (4.41)

From U , we can compute velocity and acceleration as follows:

V (X, Y, t) =


cπG sin(πX) cos(cπt)

cπG sin(πY ) cos(cπt)

0

 , (4.42)

A(X, Y, t) =


−c2π2G sin(πX) sin(cπt)

−c2π2G sin(πY ) sin(cπt)

0

 . (4.43)

The deformation gradient is

F (X, Y, t) =


1 + πG cos(πX) sin(cπt) 0 0

0 1 + πG cos(πY ) sin(cπt) 0

0 0 1

 .
(4.44)

The first Piola-Kirchoff stress P is found using equation (4.33) to be

P (X, Y, t) =


P11 0 0

0 P22 0

0 0 P33

 , (4.45)
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where P11 = λ
F11

ln(F11F22) + µ(F11 − 1
F11

), P22 = λ
F22

ln(F11F22) + µ(F22 − 1
F22

) and

P33 = λ ln(F11F22)). The corresponding body force is

B(X, Y, t) =


π2U1(X,Y,t)

ρ0
( λ
F 2

11
(1− ln(F11F22)) + µ(1 + 1

F 2
11

)− E)

π2U2(X,Y,t)
ρ0

λ
F 2

22
(1− ln(F11F22)) + µ(1 + 1

F 2
22

)− E)

0

 . (4.46)

U1 is the first component of the displacement vector, and U2 is the second compo-

nent of the displacement vector. F11 and F22 are the diagonal components of the

deformation gradient tensor.

The initial and boundary conditions are :

σ(x, y, 0) = 0,

F (x, y, 0) = I,

v0(x, y) = [cπG sin(πx), cπG sin(πy)],

v1(x, y, t)|x=x(X=0,Y,t=0) = 0,

v1(x, y, t)|x=x(X=1,Y,t=0) = 0,

v2(x, y, t)|y=y(X=0,Y,t=0) = 0,

v2(x, y, t)|y=y(X=1,Y,t=0) = 0,

τ(x, y, t)|x=x(X,Y=0,t=0) = 0,

τ(x, y, t)|x=x(X,Y=1,t=0) = 0,

where v1 and v2 are respectively the first and second components of the velocity. In

the following plots, the Young’s modulus is E = 107Pa and ν = 0.3, the initial density

is ρ0 = 103kg/m3 and the final time T = 0.02s, which corresponds to the solution

after one period. The time step chosen for the simulation is given by ∆t = 0.4h
c
,

where c =
√

E
ρ0

. The error in the density is computed using equation (4.40). The L2

error of displacement is computed to be

El2 = (

∫
Ω

((u1
n)num − (u1

n)ex)2 + ((u2
n)num − (u2

n)ex)2dx)
1
2 , (4.47)
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where (u1
n)num and (u2

n)num are the numerical values of the first and second compo-

nents of the displacement, and (u1
n)ex and (u2

n)ex are the exact values of the first and

second components of the displacement at time tn. The L2 error in the velocity is

computed similarly. The error in stress is computed to be

El2 = (

∫
Ω

((σ11
n )num − (σ11

n )ex)2 + ((σ12
n )num − (σ12

n )ex)2

+((σ21
n )num − (σ21

n )ex)2 + ((σ22
n )num − (σ22

n )ex)2dx)
1
2 , (4.48)

where (σ11
n )num, (σ12

n )num, (σ21
n )num, and (σ22

n )num are the 11, 12, 21 and 22 components

of the numerically computed stress tensor, and (σ11
n )ex, (σ12

n )ex, (σ21
n )ex, and (σ22

n )ex

are the 11, 12, 21 and 22 components of the analytical solution for the stress tensor

at time tn. The above errors are computed using one point quadrature over the

material-point domain for stress, density, velocity and displacement, and over the

element domain for the velocity. Since we only know the analytical solution of

velocity on the material points, we use second order MLS to map the analytical

velocity on the material points to the grid so that we can approximate the analytical

solution of velocity on the grid and compute the error of velocity on the grid.

In Figures 4.9 and 4.10, the top line shows errors in the stress tensor on the

material points, the second line is the error in the density on the material points, the

third line is the error in the velocity on the material points and on the grid, and the

fourth line is the error in the displacement on the material points.

For the small deformation problem in Figure 4.9, where G = 0.0001, the dis-

placement of MPM appears to be second order accurate, but other quantities have

a convergence rate between order 1 and order 2. For the large deformation problem

in Figure 4.10, where G = 0.05, MPM does not converge.
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Figure 4.9: Convergence of the original MPM for a small deformation problem in
2D, G=0.0001.
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Figure 4.10: Convergence of the original MPM for a large deformation problem in
2D, G=0.05.
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Improved Material-Point Method

5.1 Introduction

The main steps of IMPM are the same as the main steps of MPM. Two main issues

account for the low order behavior of the original MPM algorithm. The first issue

corresponds to mapping the velocity field from the material-point information to

the grid, which is first order for large deformation problems. The second issue cor-

responds to the quadrature used to approximate the nodal forces or nodal masses.

In MPM, material points are used as the integration points. Since the material

points move, their positions can be arbitrary in the computational cell, and then

the accuracy of corresponding nodal forces and nodal masses is low order for large

deformation problems. The general purpose of IMPM is to improve the algorithm

in each piece so that overall, the whole algorithm is improved. Here we only try to

improve MPM to second order (i.e., velocity has second order convergence).

The above two reasons naturally lead to the consideration of a better method

of constructing the mapping and the quadrature points. Here in IMPM, the MLS

techniques discussed in section (3.4) are used to reconstruct the functions from the
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information given on the material points. The function is then evaluated at any

desired points. For example, the reconstructed velocity can be evaluated on the grid

and the reconstructed stress tensors or density can be evaluated on any quadrature

points. More generally, by using MLS, the mapping can be done to an arbitrary

order from material-point information to information on any other desired points.

Here in IMPM, functions are only reconstructed up to second order, which will be

sufficient to increase the order of accuracy of original MPM in space up to second

order.

In this chapter, the improved mapping and improved quadrature will be studied

in detail and the main steps of IMPM will be discussed. The convergence of IMPM

in 1D and 2D simulations will be presented.

5.2 Convergence Study of First Order and Second

Order MLS

In this section, the function reconstruction technique illustrated in Section 3.4 is used

to study the convergence properties of first and second order MLS numerically for a

one-dimensional problem.

The domain is the interval [0,1], and h = 1
10

. In Figures, 5.1 and 5.2, the x-axis

is the position and the y-axis is the function values for both the original function

u(x) and the reconstructed function uh(x) given in equation (3.16). Two cases are

studied; u(x) = 1.5 and u(x) = x + 1. we sample the function u(x) at points xp to

get up = u(xp), with arbitrarily placed sample points xp. The black squares in the

figures are the positions of the sampled material points xp. Once the information on

the sampled points is obtained, the task is to reconstruct the function uh(x) from the

sampled points. The blue stars are the values of the reconstructed uh(x) at the grid
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points, where the grid points are the equally spaced points, xi = −1 + ih. The blue

line is the graph of the function u(x). As we saw in Chapter 4, the first order MLS

reproduces constant functions exactly, but no longer reproduces linear functions for

unequally distributed points. By contrast, in Figures 5.1 and 5.2, second order MLS

reproduces constant functions and linear functions exactly.

In Figures 5.3 and 5.4, the x-axis is log10(h) where h is the spacing, and the y-axis

is log10(error) where the error is computed using the standard l2 norm as follows:

error =

√√√√ n∑
i=1

h(u(xi)− uh(xi))2,

where n is the total number of grid points and h = 1
n−1

. The function used in

this example is u(x) = sin(πx). First order MLS is second order convergent for

equally spaced points, but reduces to first order convergence if the material points

are unequally distributed as in Figure 5.3. Second order MLS, even though the

material points are unequally distributed, is second order accurate as in Figure 5.4.

This situation explains how in order to improve MPM for large deformation problems,

where the material points become arbitrarily distributed, the mapping part of the

algorithm must be improved. In IMPM, second order MLS is used instead of Shepard

interpolation (first order MLS) to map the information from material-point fields to

information on the background grid.
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Figure 5.1: 2nd order MLS for a constant function with unequally spaced points.
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Figure 5.2: 2nd order MLS for a linear function with unequally spaced points.
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Figure 5.3: Convergence of the 1st order MLS.
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Figure 5.4: Convergence of the 2nd order MLS.
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5.3 Improvements of Mapping and Quadrature

This section utilizes the techniques of function reconstruction, using MLS to improve

the mapping and quadrature. First, the velocity field data is reconstructed from the

material points using second order MLS, and the reconstructed velocity is evaluated

on the background grid. This reconstruction and evaluation improves the mapping of

velocity from material-point information to the information on the background grid.

Next, the density and stress tensor data are reconstructed from the material points,

and the reconstructed density and stress tensor are evaluated on the quadrature

points. Once we obtain the information on the quadrature points, we can use them

to improve the accuracy of nodal forces and nodal masses.

At each time step, the density, velocity, and stress are known on the material

points, and by utilizing MLS, density, velocity and stress can be reconstructed from

the material points. Here linear polynomials are used as the basis for constructing

the function (i.e. P (x) = [1, x̃1] in 1D, and P (x) = [1, x̃1, x̃2] in 2D). To reconstruct

the velocity field, a cubic spline is used as the weight function. In 1D, the cubic

spline is

w(x− xp) =


2
3
− 4r2

x + 4r3
x rx ≤ 1

2

4
3
− 4rx + 4r2

x − 4
3
r3
x

1
2
≤ rx ≤ 1

0 rx ≥ 1

, (5.1)

where rx = 1
2h
|x − xp| and h is the grid spacing. To reconstruct the density and

stress field, the quadratic spline is used as the weight function. In 1D, the quadratic

spline is

w(x− xp) =


3
4
− r2

x rx ≤ 1
2

1
2
(3

2
− rx)2 1

2
≤ rx ≤ 3

2

0 rx ≥ 3
2

, (5.2)
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where rx = 1
h
|x− xp|. In higher dimensions, tensor products of weight functions are

used, eg. in 2D

w(r) = w(rx)⊗ w(ry).

By utilizing the process in Section 3.4, velocity, density and stress can be constructed.

The following expressions show the final expressions:

vh(x) =

npt∑
p=1

Φp(x)vp. (5.3)

ρh(x) =

npt∑
p=1

Qp(x)ρp. (5.4)

σh(x) =

npt∑
p=1

Qp(x)σp. (5.5)

Here Φp(x) is the basis function constructed from cubic splines, and Qp(x) is the

basis function constructed from quadratic splines. From this construction, the nodal

velocity, cell centered stress and cell centered density can be derived as

vi = vh(xi) =

npt∑
p=1

Φp(xi)vp, (5.6)

ρc = ρh(xc) =

npt∑
p=1

Qp(xc)ρp, (5.7)

σc = σh(xc) =

npt∑
p=1

Qp(xc)σp, (5.8)

where in 1D, xc = 1
2
(xi + xi+1), with c = i + 1

2
, and in 2D, xc is the center of the

4-noded element.
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Calculating the Nodal forces and Nodal Masses Using One Point Quadra-

ture. By the definition of the nodal forces and nodal masses (i.e. equation (4.14)),

nodal forces and masses can be approximated using a one point quadrature rule as

follows:

f int
i = −

∫
Ω

σ · ∇Ni(x)dx = −
nc∑
c=1

∇Ni(xc) · σcΩc, (5.9)

bi =

∫
Ω

Ni(x)ρbdx =
nc∑
c=1

Ni(xc)ρcb(xc)Ωc, (5.10)

τ̂i =

∫
Ω

Niτds, (5.11)

f ext
i = bi + τ̂i, (5.12)

mij =

∫
Ω

ρNi(x)Nj(x)dx =
nc∑
c=1

ρhcNi(xc)Nj(xc)Ωc, (5.13)

where Ωc is the volume of the element and nc is the total number of elements. The

subscript c means that the reconstructed function is evaluated at the element center.

If the lumped mass is used, the lumped nodal mass is

mi =

∫
Ω

ρNi(x)dx,

=
nc∑
c=1

ρcNi(xc)Ωc. (5.14)

5.4 Summary of the IMPM Algorithm

The main steps of the IMPM algorithm is summarized as follows.
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(1) Map the information from material points to the grid and element center.

v
s− 1

2
i = (vh)s−

1
2 (xi) =

npt∑
p=1

Φs
p(xi)v

s− 1
2

p , (5.15)

ρsc = (ρh)s(xc) =

npt∑
p=1

Qs
p(xc)ρ

s
p, (5.16)

σsc = (σh)s(xc) =

npt∑
p=1

Qs
p(xc)σ

s
p. (5.17)

(2) Solve the equation of motion on the grid and update the grid information.

ms
ia
s
i = (f int

i )s + (f ext
i )s, i = 1, 2, · · · , n, (5.18)

v
s+ 1

2
i = v

s− 1
2

i + asi∆t, (5.19)

where (f int
i )s, (f ext

i )s and ms
i are given by equations (5.9), (5.12) and (5.14)

respectively.

(3) Update the information on the material points.

v
s+ 1

2
p = v

s− 1
2

p + ∆t
n∑
i=1

Ni(x
s
p)a

s
i , (5.20)

xs+1
p = xsp + ∆t

n∑
i=1

Ni(x
s
p)v

s+ 1
2

i , (5.21)

us+1
p = xs+1

p − x0
p, (5.22)

F s+1
p = (

n∑
i=1

∇Ni(x
s+1
p )v

s+ 1
2

i ∆t+ I)F s
p , (5.23)

ρs+1
p =

ρ0

|F s+1
p |

, (5.24)

σs+1
p = σ(F s+1

p ). (5.25)

(4) Generate a new grid.

Specifically, the steps of the algorithm are implemented as follows in 1D. First, we

need to initialize the grid. The algorithm is presented for the manufactured solution
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in Section 4.5. The computational domain is given by the interval [0, 1]. The total

number of elements is denoted by Ne. For equally spaced nodes, the grid spacing

is h = 1
Ne

. Let x be a vector of length Ne + 1 for the grid-point positions and

xc be a vector of length Ne for the element-center positions. The grid points are

computed as xi = (i− 1)h, i = 1, 2, · · · , Ne + 1. The cell-center points are computed

as xc(i) = 1
2
(xi + xi+1), i = 1, 2, · · · , Ne. Let npcell be the number of material

points per cell, then dpt = h
npcell

is the initial material-point volume. In 1D, the

quantity dpt is also the spacing between the material points. The material points

are generated initially by looping over the elements and for each element, [xi, xi+1],

creating npcell equally spaced points at positions xi+(j−1)dpt, j = 1, 2, · · · , npcell,

i = 1, 2, · · · , Ne. The material-point positions are kept as a list in a vector xp of

length np = npcell ·Ne.

Let x0 be a vector of length np for the initial positions of the material points, vp

be a vector of length np for the velocity of the material points, stress be a vector of

length np for the stress of the material points, density be a vector of length np for

the density of the material points, mass be a vector of length np for the mass of the

material points, strain be a vector of length np for the strain of the material points,

up be a vector of length np for the displacement of the material points, FP be a

vector of length np for the deformation gradient of the material points, and body be

a vector of length np for the body force on the material points. These arrays are

initialized using the initial conditions for the problem.

For convenience, at the beginning of each time step, we store the element number

in which each material point resides and its natural coordinate. The computation

loops over material points, p = 1, 2, · · · , np. Within this loop set xpt = xp(p) to

the position of material point p. The element number of the element containing this

point is nepl(p) = fix(xpt
h

) + 1 and the natural coordinate of the material point is

ξp = (
xpt−xnepl(p)

h
). Each of the vectors nepl and ξ have length np.
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Now the time step begins by mapping information from the material points to grid

points. The implementation of equation (5.15) is accomplished by first constructing

the shape functions Φp(xi) evaluated at each grid point xi and then by evaluating

the sum. Since Φp(x) is given by equations (3.16), (3.17) and (3.18) with the weight

function given by equation (5.1), it is first necessary to form a moment matrix for

each grid point, M(xi), and the vector B(xi) for each grid point. These arrays are

assembled by looping over material points and determining the contribution each

material point makes to the arrays. Next we describe the assembly process.

Cubic splines (5.1) have compact support with support size 2h. Thus, given a

material point xp, there are four grid points for which w(xi − xp) is nonzero in the

sum (3.17) for the moment matrix M(xi). Similarly, four components of B(xi) have

contributions from xp. The four grid points are determined as follows. Given a

material point xp, it resides in element i = nepl(p), the four grid points are ni(1) =

i − 1, ni(2) = i, ni(3) = i + 1 and ni(4) = i + 2. The radius rx = |x−xp
2h
| used in

the weight function (5.1) at the four grid points x = xni(k), k = 1, 2, 3, 4 for a given

material point p is computed as rx(1) = 1
2
(ξp + 1), rx(2) = ξp

2
, rx(3) = 1

2
(1− ξp) and

rx(4) = 1 − ξp
2

. Then the weight function for the four grid points is computed by

evaluating equation (5.1) at rx(1), rx(2), rx(3) and rx(4) and the outputs are saved

as w3(1) = (1−ξp)3

6
, w3(2) = 3

2
+ ξ2

p(−1 + 0.5ξp), w3(3) = 1
6

+ ξp(0.5 + ξp(0.5− 0.5ξp))

and w3(4) =
ξ3
p

6
. The polynomial basis P T (x) = [1, x − xp] has to be computed in

order to construct the moment matrix M(xi) and the vector B(xi). Since the first

component of the polynomial basis is 1, it can be computed trivially. The second

component of the polynomial basis at the four grid points xni(k), k = 1, 2, 3, 4 is

computed as aijx(1) = xni(1) − xp, aijx(2) = xni(2) − xp, aijx(3) = xni(3) − xp and

aijx(4) = xni(4)−xp. Initialize M = zeros(3, Ne+1) and B = zeros(2, Ne+1), where

M(1, i) is the 11 component of the moment matrix, M(2, i) is the 12 component of

the moment matrix, M(3, i) is the 12 and 21 component of the moment matrix,

B(1, i) is the first component of the vector, and B(2, i) is the second component of
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the vector, i = 1, 2, · · · , Ne + 1. The assembly of the moment matrix M and the

vector B at each grid point is given as

Algorithm 1 Assembling of moment matrix M and B on the grid points

1: loop p = 1, np

2: Get the element in which the material point xp is located from nepl.

3: Compute the weight function w3 for the 4 grid points to which the material point

contributes.

4: Compute the 4 grid-point numbers saved in ni to which the material point con-

tributes.

5: Assemble the moment matrix M and B at each grid point.

6: loop j = 1, 4

aijx(j) = x(ni(j))− xp,

M(1, ni(j)) = M(1, ni(j)) + w3(j),

M(2, ni(j)) = M(2, ni(j)) + w3(j)aijx(j),

M(3, ni(j)) = M(3, ni(j)) + w3(j)aijx(j)2,

B(1, ni(j)) = B(1, ni(j)) + w3(j),

B(2, ni(j)) = B(2, ni(j)) + w3(j)ajix(j).

7: end loop j

8: end loop p.

After we have assembled the moment matrix M and the vector B, we need to solve

a linear system M(x)a(x) = B(x)U , where UT = [vp(1), vp(2), · · · , vp(np)], at each

grid point xi, i = 1, 2, · · · , Ne + 1. Since M is a 2 × 2 matrix (in 1D) at each grid

point, use gaussian elimination to solve for the coefficient a(x), where a(x) is a vector

of length two at each grid points (i.e. a has dimensions (2, Ne + 1)).

Recall that the shape function Φp(xi) that appears in equation (5.15) is given by

Φp(xi) = P T (xi)a(xi). The sum in (5.15) is evaluated by looping over the material

points. The assembly process is given as follows:
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Algorithm 2 Assembling of the basis function Φp(xi) on the grid points

1: loop p = 1, np

2: Get the element number in which the material point xp is located from nepl.

3: Compute the 4 grid-point numbers saved in ni to which the material point con-

tributes.

4: loop j = 1, 4

aijx(j) = x(ni(j))− xp,

v(ni(j)) = v(ni(j)) + a(1, ni(j)) + aijx(j)a(2, ni(j)),

5: end loop j

6: end loop p.

At the end, boundary conditions have to be applied to v(1) and v(Ne + 1), which

are zero for the manufactured solution.

The support of the quadratic spline given in equation (5.2) is 3
2h

. Thus, in evalu-

ating (5.16) and (5.17), the shape function Qp(xc) is assembled analogously to Φp(xi)

with each material point contributing to three element centers.

Let densityc be a vector of length Ne for the density at the element centers. It is

computed using equation (5.16). Let stressc be a vector of length Ne for the stress

at the element centers. It is computed using equation (5.17). Let bodyc be a vector

of length Ne for the body force at the element centers. It is computed using either

equation (5.16) or equation (5.17) by replacing either ρp or σp with body(p). Let

m, fint, fext and f be vectors of length Ne + 1. The nodal masses m(i), internal

forces fint(i) and external forces fext(i), i = 1, 2, · · · , Ne + 1 can be computed as

follows. Loop over element centers, i = 1, 2, · · · , Ne. At each center point xi+ 1
2
,

compute the linear hat basis functions defined on the two nearby grid points at

Ni(xi+ 1
2
) and Ni+1(xi+ 1

2
), which equal 1

2
. Then compute the gradient of ∇Ni(xi+ 1

2
)

and ∇Ni+1(xi+ 1
2
), which are given as ∇Ni(xi+ 1

2
) = −h and ∇Ni+1(xi+ 1

2
) = h. The

nodal masses, internal forces and external forces are assembled by m(i) = m(i) +

66



Chapter 5. Improved Material-Point Method

1
2
densityc(i), m(i + 1) = m(i + 1) + 1

2
densityc(i), fint(i) = fint(i) + stressc(i),

fint(i+ 1) = fint(i+ 1)− stressc(i), fext(i) = fext(i) + 1
2
bodyc(i)densityc(i) and

fext(i+1) = fext(i+1)+ 1
2
bodyc(i)densityc(i). The total forces are computed as the

sum of the internal forces and external forces, f(i) = fint(i)+fext(i), i = 2, · · · , Ne.

Equations (5.18) and (5.19) are implemented as follows. Let accel be a vector of

length Ne+1 for the acceleration on the grid points and v be a vector of length Ne+1

for the velocity on the grid points. Loop over the grid points, i = 1, 2, · · · , Ne + 1, if

m(i) = 0, set accel(i) = 0 and v(i) = 0, otherwise accel(i) = f(i)
m(i)

. Then use accel(i)

to update the velocity vector v(i) according to equation (5.19). Apply boundary

conditions to v(1) and v(Ne + 1), which are given as v(1) = 0 and v(Ne + 1) = 0.

Equations (5.20), (5.21) and (5.22) are implemented as follows. Loop over the

material points, p = 1, 2, · · · , np. Get the natural coordinate of each material point,

xip = xi(p). Get the element number in which the material point is located, k =

nepl(p). Update the position of the material point to xp(p) + ∆t(v(k)(1 − xip) +

v(k + 1)xip). Update the velocity of the material point to vp(p) + ∆t(accel(k)(1 −

xip) + accel(k + 1)xip). Update the displacement of the material point, up(p) =

xp(p)− x0(p).

Equations (5.23), (5.24) and (5.25) are implemented as follows. Loop over the

material points, p = 1, 2, · · · , np. Get the element number in which each material

point is located, k = nepl(i). The deformation gradient of the material points is

updated to (1 + ∆t
h

(v(k + 1) − v(k)))FP (p). The density of the material points is

updated as density(p) = ρ0

|FP (p)| , where ρ0 is the initial density and is a constant.

The stress on the material points is updated as stress(p) = σ(FP (p)).
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5.5 Convergence of IMPM in 1D

With the same manufactured solutions and parameters as in Section 4.6, the con-

vergence of IMPM is given in the following graphs. The axes are log base 10 of the

L2 norm of the error vs. the log base 10 of the mesh size. The slope of the line that

approximates the data reveals the convergence rate. The L2 error is defined as

El2 = (

∫
Ω

(unum
n (x)− uex

n (x))2dΩ)
1
2 , (5.26)

where unum
n is the numerical solution and uex

n is the analytical solution at time tn.

The error is computed using one point quadrature over the material-point domain

for the stress, density, velocity and displacement, and over the element domain for

the velocity. Since the analytical solution for the velocity is only known on the

material points, second order MLS can be used to map the analytical velocity on the

material points to the grid so that the analytical solution of velocity on the grid can

be approximated and the error of velocity on the grid can be computed.

In Figures 5.5 and 5.6, the top line is the error in the stress on the material points,

the second line is the error in the density on the material points, the third line is the

error in the velocity on the material points and on the grid, and the fourth line is

the error in the displacement on the material points.

For a small deformation problem, where G = 0.0001, IMPM has a similar conver-

gence rate to original MPM. For a large deformation problem, where G = 0.1, IMPM

has significant improvements over MPM for stress, density, velocity and displace-

ment. As one can see in Figures 5.5 and 5.6, IMPM has second order convergence

both for small deformation and large deformation problems.
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Figure 5.5: Convergence of IMPM for the small deformation problem in 1D,
G=0.0001.
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Figure 5.6: Convergence of IMPM for the large deformation problem in 1D, G=0.1.
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5.6 Convergence of IMPM in 2D

With the same manufactured solutions and parameters as those in Section 4.7, the

convergence of IMPM in the 2D is given in the following graphs. The error of the

density is computed using equation (5.26). The L2 error of displacement is computed

to be

El2 = (

∫
Ω

((u1
n)num − (u1

n)ex)2 + ((u2
n)num − (u2

n)ex)2dx)
1
2 , (5.27)

where (u1
n)num and (u2

n)num are the numerical values of the first and second compo-

nents of the displacement, and (u1
n)ex and (u2

n)ex are the exact values of the first and

second components of the displacement at time tn. The L2 error in the velocity is

computed similarly. The error in stress is computed to be

El2 = (

∫
Ω

((σ11
n )num − (σ11

n )ex)2 + ((σ12
n )num − (σ12

n )ex)2

+((σ21
n )num − (σ21

n )ex)2 + ((σ22
n )num − (σ22

n )ex)2dx)
1
2 , (5.28)

where (σ11
n )num, (σ12

n )num, (σ21
n )num, and (σ22

n )num are the 11, 12, 21 and 22 compo-

nents of the numerically computed stress tensor, and (σ11
n )ex, (σ12

n )ex, (σ21
n )ex, and

(σ22
n )ex are the 11, 12, 21 and 22 components of the analytical solution for the stress

tensor at time tn. The above errors are computed using one point quadrature over

the material-point domain and grid domain respectively. Since we only know the an-

alytical solution of velocity on the material points, we use second order MLS to map

the analytical velocity on the material points to the grid so that we can approximate

the analytical solution of velocity on the grid and compute the error of velocity on

the grid.

In Figures 5.7 and 5.8, the top line shows errors in the stress tensor on the material

points, the second line is the error in the density on the material points, the third

line is the error in the velocity on the material points and on the grid, and the fourth

line is the error in the displacement on the material points.
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For both the small deformation problem and the large deformation problem as in

Figure 5.7 and Figure 5.8, where G = 0.0001 and G = 0.1 respectively, IMPM has

dramatic improvements in terms of convergence over MPM in 2D case. In IMPM not

only the displacement has second order convergence, but all other quantities have

close to second order convergence.
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Figure 5.7: Convergence of IMPM for the small deformation problem in 2D,
G=0.0001.
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Figure 5.8: Convergence of IMPM for the large deformation problem in 2D, G=0.1.

72



Chapter 6

Variations of MPM and Suggested

Improvements

6.1 Introduction

Some improvements of MPM have been proposed in the last ten years including

various versions of the Generalized Interpolation Material Point Method (GIMP)

[24, 26] and various versions of the Convected Particle Domain Interpolation Method

(CPDI) [1, 2]. The philosophy of these methods is to improve MPM by improving the

accuracy of the approximation of nodal masses and nodal forces. Such a procedure

is accomplished by introducing the characteristic function χp over the material point

domain centered at position xp and by more accurately keeping track of the geometry

of the material volume centered at xp. Such characteristic functions form a partition

of unity:

Np∑
p=1

χp(x, t) = 1. (6.1)
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Based on the above identity, the entire material body can be decomposed by∫
Ω(t)

dx =

Np∑
p=1

∫
Ωp(t)

χp(x, t)dx, (6.2)

where Ωp is the material volume centered at current position xp. In order to compute

the right-hand side of the above integral, two approximations need to be made.

Firstly, the characteristic function χp(x, t) has to be approximated properly; secondly,

the material volume Ωp(x, t) has to be approximated more accurately.

In the original MPM algorithm, χp(x, t) = δp(x− xp) is chosen, and the material

volume is computed as Ωp(x, t) = mp/ρp(x, t). Such approximation results in low

order approximation to nodal forces and nodal masses.

By contrast, GIMP and CPDI choose the following characteristic function instead

χp(x, t) =

 1, x ∈ Ωp(t)

0, otherwise
. (6.3)

The main difference between GIMP and CPDI is the method of approximating the

evolving geometry of the material volume Ωp(x, t) in time. The evolving geometry

is ignored in MPM and only the evolving volume of the material-point domain is

computed.

In GIMP, there are two methods of approximating the geometry of the material

volume Ωp(x, t). One method is called unchanged GIMP (uGIMP), where Ωp(x, t) =

Ωp(x, 0) is kept fixed throughout the entire computation. This approximation is

inexpensive computationally, but obviously inaccurate. The second method is called

contiguous particle GIMP (cpGIMP), in which the geometry of the material domain

is updated using the diagonal part of the deformation gradient tensor F . Such

approximation takes into account the changes of the geometry of the material domain

in the axis aligned directions. In other words, it changes height and width. This

approximation does not accurately model material geometries which undergo shear

motion.
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In CPDI, there are two approximations of the evolving geometry of the mate-

rial domain, which result in CPDI1 and CPDI2. In CPDI1, the evolution of the

geometry of the material domain is approximated through the local tangent affine

deformation mapping to map initially parallelogram-shaped material domains into

new parallelograms. Such approximation takes into account the shear motion of the

material domain but restricts itself to the geometry of parallelograms. By contrast,

in CPDI2, the evolution of the geometry of the material domain is further improved

by updating the geometry of the material domain as 4−node quadrilateral elements

in two dimensions and 8−node hexahedral elements in three dimensions.

In this chapter, the general framework and formulations of GIMP and CPDI are

reviewed and the improved CPDI is proposed. A comparison of order of convergence

among CPDI, IMPM and improved CPDI is studied in an 1D example.

6.2 General framework of GIMP and CPDI

There are four main steps of GIMP and CPDI, which are the same as the four main

steps of MPM. They are listed as follows.

(1) Map information from material points to the grid.

(2) Solve the momentum equation on the background grid.

(3) Update material-point information.

(4) Generate a new grid.

Since the fourth step in GIMP and CPDI is exactly the same as MPM, only the

details of the first three steps will be illustrated.
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An effective shape function S̄ip is defined as the convolution of the characteristic

function χp and nodal basis function Ni(x) (i.e. the same nodal basis functions as

in MPM) as follows:

S̄ip =
1

Ωp(t)

∫
Ωp∩Ω

χp(x)Ni(x)dx, (6.4)

where Ω is the support of the whole material volume, Ωp is the support of the material

point volume, and Ωp(t) is the material volume. The gradient of the effective basis

function is defined as

∇S̄ip =
1

Ωp(t)

∫
Ωp∩Ω

χp(x)∇Ni(x)dx. (6.5)

(1). Map information from material points to the background grid.

mi =

Np∑
p=1

S̄ipMp, (6.6)

(mv)i =

Np∑
p=1

S̄ipMpvp, (6.7)

vi =
(mv)i
mi

. (6.8)

(2). Solve the discretized weak form of the equations of motion on the

background grid.

miai = f int
i + f ext

i , (6.9)

v
s+ 1

2
i = v

s− 1
2

i + ai∆t. (6.10)

In the above equations, the leapfrog scheme is used to update the grid velocity

instead of the Forward Euler scheme as in the original GIMP and CPDI methods.
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The internal nodal forces f int
i and external nodal forces are computed as follows:

f int
i = −

Np∑
p=1

∇S̄ipσpΩp, (6.11)

f ext
i =

Np∑
p=1

S̄ipbpMp. (6.12)

(3). Update material-point information. The material-point positions and

velocities are updated by

xs+1
p = xsp +

n∑
i=1

S̄ipv
s+ 1

2
i ∆t, (6.13)

v
s+ 1

2
p = v

s− 1
2

p +
n∑
i=1

S̄ip(v
s+ 1

2
i − vs−

1
2

i ). (6.14)

The velocity gradients at the material points are computed as

∇vs+
1
2

p =
n∑
i=1

∇S̄ipv
s+ 1

2
i . (6.15)

The deformation gradient and stress tensors on the material points are updated as

F s+1
p = (1 +∇vs+

1
2

p ∆t)F s
p , (6.16)

σs+1
p = σ(F s+1

p ), (6.17)

Ωs+1
p = Ω0

p|F s+1
p |. (6.18)

6.3 GIMP formulation

In GIMP, the effective basis function S̄ip in 1D is constructed as follows:

S̄ip = S̄i(xp) =
1

Ωp(t)

∫
Ωp∩Ω

χp(x)Ni(x)dx, (6.19)
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where the basis functions Ni(x) in 1D are defined as follows:

Ni(x) =


1 + x−xi

h
, −h < x− xi ≤ 0

1− x−xi
h
, 0 < x− xi ≤ h

0, otherwise.

(6.20)

The support of the material volume Ωp, which characterizes the local geometry of

each material point, is defined as |x− xp| ≤ lp, and the characteristic function χp(x)

equals 1 when its domain lies in the support of the material volume Ωp and is zero

otherwise. By expanding the above effective basis functions, the following can be

derived:

S̄ip = S̄i(xp) =



(h+lp+xp−xi)2

4hlp
, −h− lp < xp − xi ≤ −h+ lp

1 + xp−xi
h

, −h+ lp < xp − xi ≤ −lp
1− (xp−xi)2+l2p

2hlp
, −lp < xp − xi ≤ lp

1− xp−xi
h

, lp < xp − xi ≤ h− lp
(h+lp−(xp−xi))2

4hlp
, h− lp < xp − xi ≤ h+ lp

0, otherwise.

Its gradient is computed as

S̄ip = S̄i(xp) =



h+lp+xp−xi
2hlp

, −h− lp < xp − xi ≤ −h+ lp
1
h
, −h+ lp < xp − xi ≤ −lp

−xp−xi
hlp

, −lp < xp − xi ≤ lp

− 1
h
, lp < xp − xi ≤ h− lp

h+lp−(xp−xi)
2hlp

, h− lp < xp − xi ≤ h+ lp

0, otherwise.

In the above equations, h is the same as the grid spacing in MPM. The above

effective basis functions are one of the ingredients of GIMP; the second ingredient of

GIMP is the approximation of the geometry of the material volume, which defines

the support size of the characteristic function χp. In uGIMP, Ωp(t) = Ωp(0) is kept

fixed, so it is computationally cheap. By contrast, in cpGIMP, the geometry of each
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material point domain is updated from a rectangular shape to rectangular shape. The

updated material point domain is therefore an axis-aligned rectangle in 2D without

shear motions taken into account; such approximations can model materials which

undergo axis-aligned motion, but can’t handle materials which undergo rotations

and shear motions.

6.4 CPDI1 formulation

In CPDI1, the initial particle domain is discretized as a parallelogram described by

two vectors (r0
1, r

0
2) with the centroid as the material point xp. At each step s, the

deformed particle domain is approximated by using the fully updated deformation

gradient tensor as follows:

rs1 = F s
p r

0
1,

rs2 = F s
p r

0
2. (6.21)

The corresponding effective basis functions and their gradients are defined as

S̄ip =
1

Ωp(t)

∫
Ωp

Spi (x)dx, (6.22)

∇S̄ip =
1

Ωp(t)

∫
Ωp

∇Spi (x)dx, (6.23)

where

Spi (x) =


∑4

α=1N
p
α(x)Ni(x

p
α), x ∈ Ωp

0, otherwise
, (6.24)

where Ni(x) uses the same FEM nodal basis functions as MPM, and Np
α(x) is the

linear finite element nodal basis functions defined on the particle domain as a four-

node element. For both CPDI1 and CPDI2, Np
α(x) are defined on the αth corner of

the particle domain with xpα being the position of this corner, having the following

79



Chapter 6. Variations of MPM and Suggested Improvements

property:

Np
α(xpβ) =

 1, α = β

0, otherwise
. (6.25)

Based on the above property of the finite element basis function Np
α, the effective

basis function can be computed as

S̄ip =
1

Ωp(t)

∫
Ωp

Spi (x)dx

=
1

Ωp(t)

4∑
α=1

Ni(x
p
α)

∫
Ωp

Np
α(x)dx

=
1

4
(Ni(x

p
1) +Ni(x

p
2) +Ni(x

p
3) +Ni(x

p
4)). (6.26)

Its gradient can be computed as

∇S̄ip =
1

Ωp(t)

∫
Ωp

∇Spi (x)dx,

=
1

Ωp(t)

4∑
α=1

Ni(x
p
α)

∫
Ωp

∇Np
α(x)dx, (6.27)

=
1

2Ωp(t)

 (Ni(x
p
1)−Ni(x

p
3))

 r1y − r2y

r2x − r1x

+ (Ni(x
p
2)−Ni(x

p
4))

 r1y + r2y

−r1x − r2x

  ,
where (r1x, r1y) and (r2x, r2y) are respectively the components of vectors r1 and r2.

6.5 CPDI2 formulation

In CPDI2, the material domains are initialized as quadrilaterals, and they evolve

as quadrilaterals to quadrilaterals. Such a process is accomplished by generating a

quadrilateral mesh initially, in which the location of each material point is the cen-

troid of each element defining the material-point domain, and the evolving material

geometry is computed by tracking the positions of the corners of the quadrilateral
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material-point domain. Instead of updating the material-point positions as in the

CPDI1, GIMP, and MPM algorithms, an update of the positions of the material-

point corners is needed at each time step. These are given as

xs+1
α = xsα +

n∑
i=1

Ni(xα)v
s+ 1

2
i ∆t, (6.28)

where Ni(x) is the original MPM nodal basis functions on the background grid, and

xα is the position of the corner node α. Here the letter p is still referred to a material

point, and α is referred to the corner of the material point domain. If the positions

of the material points are needed, the material-point position can be obtained by

averaging the material-point corners’ positions. For example,

xp =
1

Ωp(t)

∫
Ωp

xdx,

=
1

Ωp(t)

4∑
α=1

xpα

∫
Ωp

Np
α(x)dx, , (6.29)

=
1

24Ωp(t)
((1− a− b)xp1 + (1− a+ b)xp2 + (1 + a+ b)xp3 + (1 + a− b)xp4),

where a = (xp4−x
p
1)(yp2−y

p
3)−(xp2−x

p
3)(yp4−y

p
1), b = (xp3−x

p
4)(yp1−y

p
2)−(xp1−x

p
2)(yp3−y

p
4)

and xpi , i = 1, 2, 3, and 4 are the positions of the four corners of the material-point

domain p.

Since in CPDI2 the material-point domains are computed as quadrilaterals by

keeping track of the positions of the corners of the material-point domain, the effec-

tive basis functions become

S̄ip =
1

Ωp(t)

∫
Ωp

Spi dx,

=
1

Ωp(t)

4∑
α=1

Ni(x
p
α)

∫
Ωp

Np
α(x)dx, (6.30)

=
1

24Ωp(t)
((1− a− b)Ni(x

p
1) + (1− a+ b)Ni(x

p
2)+

(1 + a+ b)Ni(x
p
3) + (1 + a− b)Ni(x

p
4)).
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Gradients of the shape functions become

∇S̄ip =
1

Ωp(t)

∫
Ωp

∇Spi (x)dx, (6.31)

=
1

Ωp(t)

4∑
α=1

Ni(x
p
α)

∫
Ωp

∇Np
α(x)dx,

=
1

2Ωp(t)

[
Ni(x

p
1)Ā+Ni(x

p
2)B̄ +Ni(x

p
3)C̄ +Ni(x

p
4)D̄

]
, (6.32)

where Ā =

 yp2 − y
p
4

xp4 − x
p
2

, B̄ =

 yp3 − y
p
1

xp1 − x
p
3

, C̄ =

 yp4 − y
p
2

xp2 − x
p
4

 and D̄ =

 yp1 − y
p
3

xp3 − x
p
1

.

As seen in the above equations, the CPDI2 formulation gives the best approxi-

mation of the evolving geometry of material-point domains and results in the best

accuracy among MPM, CPDI, GIMP, CPDI1, and CPDI2. Both GIMP and CPDI

formulations aim toward improving the accuracy of the geometry of the evolved

material-point domain. Such improvements essentially lead to the improvements of

the accuracy of nodal forces and nodal masses. However based on the general frame-

work of the IMPM algorithm, simply improving the accuracy of the nodal forces and

nodal masses, is not enough to improve the whole algorithm to be second order in

space. The mapping of velocity from the material point field to the background grid

field must also be improved. In the next section, the improved CPDI algorithm is

presented using the techniques of Moving Least Squares.

6.6 Improve the mapping in CPDI using MLS

In this section, the illustration of the algorithm of CPDI and improved CPDI will

be presented in 1D. In 1D, we don’t distinguish the differences between CPDI1 and

CPDI2, since they are equivalent. The effective basis functions of CPDI in 1D are
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given as follows:

S̄ip =
1

Ωp(t)

∫
Ωp

Spi dx

=
1

Ωp(t)

2∑
α=1

Ni(x
p
α)

∫
Ωp

Np
α(x)dx

=
1

2(xp2 − x
p
1)

(Ni(x
p
1) +Ni(x

p
2)), (6.33)

where Ni is given by equation (6.20). Ωp(t) = xp2 − x
p
1 is the length of the material

interval at time t, xp2 is the right corner of the material-point domain containing xp,

and xp1 is the left corner of the material-point domain containing xp. Here Si is the

same function as in equation (6.20). Correspondingly, the gradient of the effective

basis function is given as

∇S̄ip =
1

Ωp(t)

∫
∇Ωp

Spi dx

=
1

Ωp(t)

2∑
α=1

Ni(x
p
α)

∫
Ωp

∇Np
α(x)dx

=
1

(xp2 − x
p
1)

(−Ni(x
p
1) +Ni(x

p
2)). (6.34)

With the above given effective basis functions and its gradients, the algorithm of

CPDI is summarized as follows:

(1) The mapping from material points to grid.

ms
i =

Np∑
p=1

S̄ipMp, i = 1, 2, · · · , n,

(mv)
s− 1

2
i =

Np∑
p=1

S̄ipMpv
s− 1

2
p ,

v
s− 1

2
i =

(mv)
s− 1

2
i

ms
i

.
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(2) Solve the equation of motion on the grid and update the grid information.

n∑
i=1

ms
ia
s
i = (f int

i )s + (f ext
i )s, i = 1, 2, · · · , n,

v
s+ 1

2
i = v

s− 1
2

i + asi∆t,

where (f int
i )s and (f ext

i )s are given by equation (6.11) and (6.12) respectively.

(3) Update the information on the material points.

(xp1)s+1 = (xp1)s +
n∑
i=1

Ni((x
p
1)s)v

s+ 1
2

i ∆t,

(xp2)s+1 = (xp2)s +
n∑
i=1

Ni((x
p
2)s)v

s+ 1
2

i ∆t,

xs+1
p = xsp +

n∑
i=1

S̄ipv
s+ 1

2
i ∆t,

v
s+ 1

2
p = v

s− 1
2

p +
n∑
i=1

S̄ip(v
s+ 1

2
i − vs−

1
2

i ),

∇vs+
1
2

p =
n∑
i=1

∇S̄ipv
s+ 1

2
i ,

F s+1
p = (1 +∇vs+

1
2

p ∆t)F s
p ,

σs+1
p = σ(F s+1

p ),

Ωs+1
p = (xp2)s+1 − (xp1)s+1.

(4) Generate a new grid.

In the first step of the above algorithm, one notices that the mapping from the

material-point data to the background grid is essentially first order MLS; in the

improved CPDI, we choose to use the same second order MLS mapping defined in

the IMPM algorithm. The improved CPDI algorithm is summarized as follows:
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(1) The mapping from material points to grid.

ms
i =

Np∑
p=1

S̄ipMp, i = 1, 2, · · · , n,

v
s− 1

2
i =

npt∑
p=1

Φs
p(xi)v

s− 1
2

p .

Here Φp(x) is defined the same as in equation (5.6).

(2) Solve the equation of motion on the grid and update the grid information.

n∑
i=1

ms
ia
s
i = (f int

i )s + (f ext
i )s, i = 1, 2, · · · , n,

v
s+ 1

2
i = v

s− 1
2

i + asi∆t,

where (f int
i )s and (f ext

i )s are given by equations (6.11) and (6.12) respectively.

(3) Update the information on the material points.

(xp1)s+1 = (xp1)s +
n∑
i=1

Ni((x
p
1)s)v

s+ 1
2

i ∆t,

(xp2)s+1 = (xp2)s +
n∑
i=1

Ni((x
p
2)s)v

s+ 1
2

i ∆t,

xs+1
p = xsp +

n∑
i=1

S̄ipv
s+ 1

2
i ∆t,

v
s+ 1

2
p = v

s− 1
2

p +
n∑
i=1

S̄ip(v
s+ 1

2
i − vs−

1
2

i ),

∇vs+
1
2

p =
n∑
i=1

∇S̄ipv
s+ 1

2
i

F s+1
p = (1 +∇vs+

1
2

p ∆t)F s
p ,

σs+1
p = σ(F s+1

p ),

Ωs+1
p = (xp2)s+1 − (xp1)s+1.

(4) Generate a new grid.
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6.7 Convergence of CPDI and improved CPDI

With the same manufactured solutions and parameters as in Section 4.6, the con-

vergence of CPDI, IMPM and improved CPDI is given in the following graphs. The

axes are log base 10 of the L2 norm of the error vs. the log base 10 of the mesh size.

The slope of the line that approximates the data reveals the convergence rate. The

L2 error is defined as

El2 = (

∫
Ω

(unum
n (x)− uex

n (x))2dΩ)
1
2 , (6.35)

where unum
n is the numerical solution and uex

n is the analytical solution at time tn.

The error is computed using one-point quadrature over the material-point domain

for the stress, density, velocity and displacement, and over the element domain for

the velocity. Since the analytical solution for the velocity is only known on the

material points, second order MLS can be used to map the analytical velocity on the

material points to the grid so that the analytical solution of velocity on the grid can

be approximated and the error of velocity on the grid can be computed.

In Figures 6.1, 6.2, 6.3 and 6.4, the top line is the error in the stress on the

material points, the second line is the error in the density on the material points, the

third line is the error in the velocity on the material points and on the grid, and the

fourth line is the error in the displacement on the material points.

As one can see in Figure 6.1, CPDI appears second order for all the field variables

for course meshes. But if one refines the mesh size as in Figure 6.2, the convergence

rate of CPDI drops, and when the mesh size is very small, it stops converging. In

Figure 6.3, the black curves show errors computed using IMPM, and the curves in

red show errors for CPDI. As one can see, IMPM has better convergence than CPDI

in terms of finer meshes but it also eventually becomes unstable on fine meshes. In

Figure 6.4, the red curves show errors obtained using original CPDI, and the curves

in black show errors computed using improved CPDI using second order MLS for
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the mapping. As one can see, the rate of convergence of CPDI is improved for finer

meshes when the mapping algorithm is improved. When the mesh size is in the range

of 1
104 , CPDI, improved CPDI and IMPM all have stability issues. Such instability

is still under investigation.
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Figure 6.1: Convergence of CPDI for a large deformation problem with course mesh
sizes in 1D, G=0.1.
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Figure 6.2: Convergence of CPDI for a large deformation problem with finer mesh
sizes in 1D, G=0.1.
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Figure 6.3: Convergence of IMPM and CPDI for a large deformation problem in 1D,
G=0.1.
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Figure 6.4: Convergence of CPDI and improved CPDI for a large deformation prob-
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Chapter 7

Stability Analysis of MPM

7.1 Introduction

There has been some confusion about what should be the correct CFL condition in

the MPM literature. We have also seen that all variations of MPM, including MPM,

GIMP, CPDI and IMPM, appear to become unstable on fine meshes. Such instability

is still under investigation. One possible reason for this instability is called the finite

grid instability, which is a well known phenomenon in the particle-in-cell method

[15, 27]. This instability is due to the fact that high frequency modes existing on the

material points are mapped to the low frequency modes on the grid. The instability

is analyzed by linearizing the equations of motion. In original MPM, it is also shown

by a nonlinear analysis that energy is bounded. Thus, the nonlinear terms have

the potential to control the instability. It has been demonstrated, [15, 27], that an

implicit solver controls the instability. Another remedy that has been proposed is

jiggling the grid position [7].

In this chapter, the linearization of the MPM equations will be presented and

the corresponding linearized stability analysis will be studied. As usual, the solution
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to the linearized equations is studied by Fourier transform. The analysis in this

thesis differs from the reference [15, 27] by providing a more careful derivation of the

transformed equations which leads to a slightly different dispersion relation.

7.2 Equations to Solve

Consider the following system of equations for MPM to solve in 1D,

ρ
dv

dt
=
∂σ

∂x
, (7.1)

dF

dt
= F

∂v

∂x
, (7.2)

ρ =
ρ0

J
, (7.3)

σ = E(F − 1), (7.4)

where σ is the Cauchy stress, ρ is the density in current configuration, ρ0 is the

density in the initial configuration, E is Young’s modulus which is a constant, F is

the deformation gradient and J is the Jacobian of F (i.e J = |F |). Other constitutive

models rather than equation (7.4) can be treated similarly. Since the equations are

written in 1D, we have J = F . By substituting equations (7.3) and (7.4) into

equation (7.1), we get

ρ0

|F |
dv

dt
=
∂(E(F − 1))

∂x
,

dF

dt
= F

∂v

∂x
.

Further simplify to get

dv

dt
= C2|F |∂F

∂x
, (7.5)

dF

dt
= F

∂v

∂x
, (7.6)

where C2 = E
ρ0

. We need to linearize the above system of equations written in

Eulerian coordinates in order to study the dispersion relation.
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7.3 Linearized Equations

Let us assume

v = v0 + v,

F = F0 + F.

In the above, v0 and F0 are constant terms, and v and F are perturbations. Sub-

stituting these expressions into equation (7.5) and (7.6) for v and F . We derive the

following by separating the constant and perturbed terms:

dv0

dt
= C2F0

∂F0

∂x
, (7.7)

dF0

dt
= F0

∂v0

∂x
, (7.8)

∂v

∂t
+ v0

∂v

∂x
= C2F0

∂F

∂x
, (7.9)

∂F

∂t
+ v0

∂F

∂x
= F0

∂v

∂x
. (7.10)

7.4 Dispersion Relation of MPM

Consider the case of equally spaced material points, labeled as xp− 1
2

with spacing

h
′

= h
Ne
p
, where N e

p is the number of material points per element. Thus the location

of xp− 1
2

is (p− 1
2
)h
′
= (p− 1

2
) h
Ne
p
.

A local numbering of material points is denoted by xpe,I , p = 1, 2, · · · , N e
p within

element I which is the interval ΩI = [xI−1, xI ] of size h = xI − xI−1. The position

xpe,I is

xpe,I = xI−1 +
2pe − 1

2N e
p

h, pe = 1, 2, · · · , N e
p , (7.11)

92



Chapter 7. Stability Analysis of MPM

or

xpe,I = (I − 1 +
2pe − 1

2N e
p

)h,

= ((I − 1)N e
p + pe − 1

2
)h
′
. (7.12)

The relation between the local and global numbering is, given pe and I, then p− 1
2

=

(I − 1)N e
p + pe − 1

2
or p = (I − 1)N e

p + pe. Now, given the global number p− 1
2
, we

can find the element number and the local material-point number as follows: divide

p− 1
2

by N e
p and take the integer part, rounding to −∞ and set I − 1 = floor(

p− 1
2

Ne
p

),

where floor is the floor function in Matlab, then pe = p− (I − 1)N e
p .

A discretization of (7.9) similar to the MPM discretization is

v
s+ 1

2
I − vs−

1
2

I

∆t
= −C2F0

1

N e
p

∑
p

∂NI

∂x
|x=x

p− 1
2

F s
p− 1

2
,

= −C2F0
1

N e
p

(

Ne
p∑

pe=1

F n
pe,I

∂NI

∂x
|x=xpe,I −

Ne
p∑

pe=1

F s
pe,I+1

∂NI

∂x
|x=xpe,I+1

),

= C2F0
1

N e
p

(−1

h

Ne
p∑

pe=1

F s
pe,I +

1

h

Ne
p∑

pe=1

F s
pe,I+1),

= C2F0
1

hN e
p

Ne
p∑

pe=1

(F s
pe,I+1 − F s

Ne
p−pe+1,I). (7.13)

A discretization of (7.10) similar to the MPM discretization is

F s+1
p− 1

2

− F s
p− 1

2

∆t
= F0(

v
s+ 1

2
I − vs+

1
2

I−1

h
). (7.14)

The above equation holds for any material point pe in element I. Since F s
pe,I has

global index p = (I − 1)N e
p + pe − 1

2
, F s

pe,I+1 has global index p = IN e
p + pe − 1

2
and

F s
Ne
p−pe+1,I has global index p = (I−1)N e

p + (N e
p −pe+ 1)− 1

2
. Then equations (7.13)
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and (7.14) become

v
s+ 1

2
I − vs−

1
2

I

∆t
= C2F0

1

hN e
p

Ne
p∑

pe=1

(F s
INe

p+pe− 1
2
− F s

(I−1)Ne
p+(Ne

p−pe+1)− 1
2
), (7.15)

F s+1
(I−1)Ne

p+pe− 1
2

− F s
(I−1)Ne

p+pe− 1
2

∆t
= F0(

v
s+ 1

2
I − vs+

1
2

I−1

h
). (7.16)

To study the dispersion relation, Let us assume that the solution has the following

form, where ω is the frequency and k is the wave number of a Fourier mode,

F s
p− 1

2
= F̂ e

ikx
p− 1

2 e−iωt
s

, (7.17)

v
s+ 1

2
I = v̂eikxIe−iωt

s+ 1
2 . (7.18)

Put the above forms of solution into equation (7.15) to get

v̂eikxIe−iωt
s+ 1

2 − v̂eikxIe−iωts−
1
2

∆t
= C2F0

1

hN e
p

Ne
p∑
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(F̂ e
ikx

INep+pe− 1
2 eiωt

s−

F̂ e
ikx

(I−1)Nep+(Nep−pe+1)− 1
2 eiωt

s

).

Simplify to get

v̂(e−iω
∆t
2 − eiω∆t

2 )

∆t
= C2F0F̂

1

hN e
p

Ne
p∑

pe=1

(e
ik(x

INep+pe− 1
2
−xI)−

e
ik(x

(I−1)Nep+(Nep−pe+1)− 1
2
−xI)

). (7.19)

Since

xINe
p+pe− 1

2
− xI = −(x(I−1)Ne

p+(Ne
p−pe+1)− 1

2
− xI),

= −h
′

2
+ peh

′
=

2pe − 1

2
h
′
, (7.20)
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further simplify (7.19) as

−
2iv̂ sinω∆t

2

∆t
= C2F0F̂

1

hN e
p

Ne
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(eikh
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1
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2
), (7.21)

= C2F0F̂
1

hN e
p

2i
sin2(kh

2
)

sin(kh
′

2
)
. (7.22)

The last equality is derived from the following identity:

Ne
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2
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Ne
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2 ),
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e
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2
)

sin(kh
′

2
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. (7.23)

Put equations (7.17) and (7.18) into equation (7.16) to get

F̂ (e
ikx

(I−1)Nep+pe− 1
2 e−iωt

s+1 − eikx(I−1)Nep+pe− 1
2 e−iωt

s
)
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h
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2 ).

Simplify further to get
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Since xI − x(I−1)Ne
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2
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2
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2
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2

, we get
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Sum over pe on both sides of the above equation to get
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Ne
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Since we have the following identity for equally spaced material points:

Ne
p∑

pe=1

eik(h−h′ 2p
e−1
2

) =

Ne
p∑

pe=1

eikh
′ 2pe−1

2 , (7.25)

equation (7.24) simplifies further to
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Again, the last equality is derived from identity (7.23). To summarize, the following

dispersion relations are derived

−
2iv̂ sin(ω∆t

2
)
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= C2F0F̂

1

hN e
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2
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, (7.27)

−
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2
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1

h

2i sin2(kh
2
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N e
p sin(kh

′

2
)
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Further, the relation between the frequency ω and the wave number k is as follows:

ω =
2

∆t
sin−1(±∆t

h
CF0

1

N e
p

sin2(kh
2

)

sin(kh
′

2
)

). (7.29)

Now, let θ = kh, CFL = CF0
∆t
h

, and let M = ∆t
h
CF0

1
Ne
p

sin2( kh
2

)

sin( kh
′

2
)
; then equation (7.29)

becomes

ω =
2

∆t
sin−1(±M). (7.30)

If |M | ≤ 1, we have for the amplification factor |g| = eImω∆t that |g| ≤ 1. Thus,

if |M | ≤ 1, solutions to the linearized system do not grow and the method is stable.
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If |M | > 1, |g| > 1; and the method is unstable. Since M = ±CFL 1
Ne
p

sin( θ
2

)

sin( θ
2Nep

)
, in

order to have stability (i.e. |M | ≤ 1), we need to have

CFL ≤ min
0≤θ≤2π

(N e
p

sin( θ
2Ne

p
)

sin( θ
2
)

). (7.31)

Since f(θ) =
sin( θ

2Nep
)

sin( θ
2

)
is an increasing function of θ for a given N e

p , we can derive

min0≤θ≤2πN
e
pf(θ) = 1. A sufficient condition for stability becomes

CFL ≤ 1. (7.32)

Consider the dispersion relation in equation (7.29), Let θ = kh, since h
′

= h
Ne
p
,

we have kh
′

= θ
Ne
p
. For θ small, we have sin( θ

2
) = θ

2
+ higher order terms, then we

can approximate ω

ω =
1

∆t
(
∆t

h
CF0θ +O(θ3)). (7.33)

Since θ = kh, simplify further to get

ω = CF0k +O(θ2). (7.34)

Since the analytic dispersion relation for equations (7.9) and (7.10) is ω = CF0k,

we can see that the numerical dispersion relation in equation (7.34) has the leading

order term O(θ2).

In summary, the linearized stability analysis derived in this chapter has limita-

tions. First of all, it does not take into account the nonlinear advection term. Second

of all, it does not predict the dispersive and dissipative properties of the MPM al-

gorithm accurately. Third of all, although it gives a rough bound on the sufficient

condition for the CFL number, it fails to give a tight bound.
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Conclusions

8.1 Summary

A general framework for improving MPM is provided by combining ideas of func-

tion reconstruction from scattered data and the finite element method. Within this

framework, the IMPM and improved CPDI are produced and they become the most

accurate algorithms among the variations of MPM including MPM, GIMP, CPDI,

IMPM and improved CPDI. IMPM not only retains good features of the original

MPM, but it increases the order of accuracy of MPM from zeroth order to second

order for large deformation problems both in space and time. In the improved CPDI,

it also retains the good features of the original CPDI and it increases the order of

accuracy of CPDI from first order to second order for fine meshes. In addition, a

stability analysis on the linearized equations of motion is derived. Although it gives

a rough approximation on the sufficient condition for the upper bound of the CFL

number, such stability analysis has limitations. It does not predict the dispersive

and decaying behavior of the numerical solutions of MPM very well.
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8.2 Future Work

Boundary Conditions Even though IMPM provides a general framework for im-

proving MPM, it has limitations in terms of how to enforce boundary conditions in

complicated geometry. One interesting question is how to enforce boundary condi-

tions in the situation where the boundary of the body does not coincide with the

background grid. In MPM, IMPM, GIMP, CPDI and improved CPDI, we enforce

boundary conditions on the closest exterior grid points to the boundary of the body

instead of enforcing boundary conditions on the exact boundary. As a result, errors

are introduced.

One of my future research directions is to make further improvements in handling

boundary conditions in complicated geometry. A possible approach is to use ideas

from the immersed boundary method [21], the immersed interface method [18] or

the fictitious domain method [10]. For example, in the immersed boundary method,

the body is immersed in the background grid, where the boundary of the body also

does not coincide with the background grid. In such a situation, there are two

general approaches to enforce the boundary condition in a more accurate way. One

approach is to use ghost cells, where one has to do interpolation to get information

on the ghost cell or closest exterior grid points from information on the boundary

and interior points of the body. The other approach relies on Lagrangian multipliers,

where one has to solve a larger system of equations. The most promising approach to

further improve IMPM is to use the ghost cell method. In such an approach, we can

firstly find the image point of the ghost grid point along the normal to the boundary.

By doing simple linear interpolation, or higher order interpolation as one desires,

from the nearby interior grid points, we can obtain values (i.e velocity) on the image

point. Then we can obtain the values of the ghost grid point by linear interpolation

from the values of image point and the boundary point along the normal to the

boundary.
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Arbitrary Order The second direction of my future research is to improve IMPM

to arbitrary order. In order to accomplish this, one has to combine ideas from

the meshfree particle methods and the Finite Element Methods. In original MPM,

the function reconstruction is first order MLS, while in IMPM, the function recon-

struction is second order MLS. One can utilize the ideas from the meshfree particle

methods to construct an approximate function from scattered data to arbitrary or-

der, so that one can further improve IMPM in the function reconstruction. In the

second step of MPM, the equations of motion are solved on the background grid. In

MPM and IMPM, the linear nodal basis function is used, which limits the algorithm

to second order in this step. For further improvements, one can use higher or arbi-

trary order nodal basis functions to solve the equations of motion. Furthermore, one

can use arbitrary MLS to map data from material points to the quadrature points

to improve the quadrature to arbitrary order. Of course, one possible difficulty in

generalizing IMPM to arbitrary order is the issue of stability, which is still under

investigation and further research.

Stability Control The third direction of my future research is to control the sta-

bilities of IMPM for fine meshes. One possible approach is to add artificial numerical

dissipation to the IMPM algorithm. The other approach is to use an implicit solver

instead of an explicit solver. It has been demonstrated, [15, 27], that an implicit

solver controls the instability.
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