Cognitive impairment after intracerebral hemorrhage: a systematic review and meta-analysis Syed Faraz Kazim, MD, PhD, Jonathan V. Ogulnick BS, Myranda B. Robinson BS, Javed Khader Eliyas MD, Benjamin Q. Spangler BS, Tyler J. Hough BS, Erick Martinez BS, Zafar Karimov BS, Devan W. Vidrine MA, Meic H. Schmidt MD, MBA,

INTRODUCTION

- Spontaneous, non-traumatic intracerebral hemorrhage (ICH) refers to bleeding within the brain parenchyma that occurs in the absence of trauma and carries significant morbidity and mortality
- ICH accounts for 6.5-19.6% of all The strokes, but it carries the highest mortality rate (1-year survival ~ 40% and 10-year survival ~ 24%) of all stroke subtypes
- strong association has been While a identified between stroke and dementia, most of the available literature focuses on post-stroke dementia in patient cohorts with ischemic stroke, and there are very few cognitive studies evaluating clinical dysfunction after ICH.

OBJECTIVES

The aim of the present systematic review and meta-analysis was to analyze the available clinical literature with regards the prevalence prognostic predictors of post-ICH and cognitive impairment. We conducted a pooled analysis of available studies to estimate the prevalence of post ICH cognitive impairment

MATERIALS AND METHODS

- The present systematic review and meta-analysis was performed following the PRISMA guidelines
- We conducted literature search until July 31, 2020 from following databases: PubMed, ScienceDirect, Scopus, and Web of Science
- The quality of the included studies was assessed by using the STROBE statement checklist
- The metaphor R package for R statistical software version 3.5.3 and MedCalc Statistical Software version **19.2.3 were used to perform the meta-analysis**

1. Flow diagram of literature selection process per **PRISMA** guidelines in the present systematic review and meta-analysis

3. Forest plot of pooled prevalence of post-ICH cognitive impairment in acute to subacute group (studies with follow-up duration ≤ 6 months)

Study	Cognitive deficit/Total	Pre	
Aam et al., 2020	35/53		
Gong et al., 2020	106/141		
Gong et al., 2020	57/90		
Banerjee et al., 2018	158/187		
Planton et al, 2017	35/40	8	
You et al., 2017	75/231	3	
Biffi et al., 2016	140/738		
Douiri et al., 2013	68/169		
Nakase et al., 2013	49/256		
Su et al., 2007	21/30		
Nys et al., 2007	14/17		
Tang et al., 2004	4/22		
Total	1974		
	Random Heteroge		

SUMMARY & CONCLUSIONS

- a follow-up duration ranging from 8 days to 4 years.
- follow-up post-ICH.

Christian A. Bowers, MD^{*}

Department of Neurosurgery, University of New Mexico Hospital, Albuquerque, NM, USA *Correspondence: CABowers@salud.unm.edu

RESULTS

2. Forest plot of pooled prevalence of post-ICH cognitive impairment in all studies included in the meta-analysis

Study	Cognitive deficit/Total	Prevalence	95% CI	Forest plot of prevalence	Age (yr)	Follow-up duration	Excl. pre-existing cognitive deficit
Aam et al., 2020	35/53	66%	51.733 to 78.480		72 (M)	3 mo	No
Aam et al., 2020	24/45	53%	37.872 to 68.340		72 (M)	18 mo	No
Gong et al., 2020	106/141	75%	67.205 to 82.061		67 (M)	2 wk	Yes
Gong et al., 2020	57/90	63%	52.515 to 73.248		67 (M)	6 mo	Yes
Banerjee et al., 2018	158/187	84%	78.493 to 89.361		59 (M)	12 d (Md)	No
Planton et al, 2017	35/40	87.5%	73.197 to 95.814		68 (M)	116 d (Md)	Yes
You et al., 2017	75/231	32.5%	26.473 to 38.919		62 (M)	90 d	No
Biffi et al., 2016	140/738	19%	16.202 to 21.988	■ [−]	74 (M)	6 mo	Yes
Biffi et al., 2016	139/435	32%	27.593 to 36.563 _	− +	74 (M)	47.4 mo (M)	Yes
Moulin et al., 2016	63/218	29%	22.977 to 35.405 -	- F -	65 (Md)	4 yr	Yes
Moulin et al., 2016	31/218	14%	9.481 to 19.059	.	65 (Md)	1 yr	Yes
Benedictus et al., 2015	62/167	37%	30.361 to 45.698 -	- <u>-</u>	64 (Md)	4 yr (Md)	Yes
Tveiten et al., 2014	27/50	54%	39.324 to 68.185 -		71 (M)	3.8 yr (Md)	No
Garcia et al., 2013	18/78	23%	14.287 to 33.997 -		62 (M)	40 mo (M)	No
Douiri et al., 2013	68/169	40%	32.779 to 48.044 -		73 (M)	3 mo	No
Nakase et al., 2013	49/256	19%	14.509 to 24.503 -	+ T	The Mensel -	ill hospital discharge	Yes
nle-Hansen et al., 2011	7/16	44%	19.753 to 70.122 -		72 (M)	1 yr	Yes
Su et al., 2007	21/30	70%	50.604 to 85.265 -		57 (M)	97 d (M)	Yes
Nys et al., 2007	14/17	82%	56.568 to 96.201 -		63 (M)	8 d (M)	Yes
de Koning et al., 2005	8/19	42%	20.252 to 66.500 -		70 (M)	3-9 mo	No
Greenberg et al., 2004	19/53	36%	23.143 to 50.197 -		55 (M)	28 mo (M)	Yes
Tang et al., 2004	4/22	18%	5.187 to 40.285 -		71 (M)	3 m	No
Total	3270	46%	35.948 to 55.943 -				
		effects model neity, / ² = 96.8	3%, <i>p</i> < 0.0001	20 40 60 80 1	00		

6 months)

Study	Cognitive deficit/Total	Prevalence	95% CI	Forest plot of prevalence	Age (yr)	Follow-up duration	Excl. pre-existing cognitive deficit
Aam et al., 2020	24/45	53%	37.872 to 68.340 -		72 (M)	18 mo	No
Biffi et al., 2016	139/435	32%	27.593 to 36.563 -		74 (M)	47.4 mo (M)	Yes
Moulin et al., 2016	63/218	29%	22.977 to 35.405 -		65 (Md)	4 yr	Yes
Moulin et al., 2016	31/218	14%	9.481 to 19.059 -		65 (Md)	1 yr	Yes
Benedictus et al., 2015	62/167	37%	30.361 to 45.698 -		64 (Md)	4 yr (Md)	Yes
Tveiten et al., 2014	27/50	54%	39.324 to 68.185 -		71 (M)	3.8 yr (Md)	No
Garcia et al., 2013	18/78	23%	14.287 to 33.997 -		62 (M)	40 mo (M)	No
Ihle-Hansen et al., 2011	7/16	44%	19.753 to 70.122 -		72 (M)	1 yr	Yes
de Koning et al., 2005	8/19	42%	20.252 to 66.500 -		70 (M)	3-9 mo	No
Greenberg et al., 2004	19/53	36%	23.143 to 50.197 -		55 (M)	28 mo (M)	Yes
Total	1296	35%	26.978 to 42.715 -				
		effects model neity, / ²= 86.7	%, <i>p</i> < 0.0001 0	10 20 30 40 50 60 70	80		
				Prevalence (%)			

The prevalence of post-ICH cognitive impairment is high. Based on analysis of data from 18 studies (3270 patients), we found prevalence of post-ICH cognitive impairment to be 46% (CI, 35.9-55.9) with

The estimated pooled prevalence of cognitive decline decreased over longitudinal follow-up, from 55% (range 37.7-71.15%) within 6 months of ICH to 35% (range 27-42.7%) with > 6 months to 4 years

5. Funnel plots demonstrating the absence of publication bias

A. Funnel plot of all studies

4. Forest plot of pooled prevalence of post-ICH cognitive impairment in long-term follow-up group (studies with follow-up duration greater than