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Abstract

The process of model learning can be considered in two stages: model selection and parameter estimation.
In this paper a technique is presented for constructing dynamical systems with desired qualitative
properties. The approach is based on the fact that an n-dimensional nonlinear dynamical system can
be decomposed into one gradient and (n � 1) Hamiltonian systems. Thus, the model selection stage
consists of choosing the gradient and Hamiltonian portions appropriately so that a certain behavior is
obtainable. To estimate the parameters, a stably convergent learning rule is presented. This algorithm
is proven to converge to the desired system trajectory for all initial conditions and system inputs. This
technique can be used to design neural network models which are guaranteed to solve certain classes of
nonlinear identi�cation problems.
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Chapter 1

Introduction

A fundamental problem in mathematical systems theory is the identi�cation of dynamical systems.
System identi�cation is a dynamic analogue of the pattern recognition problem. A set of input-output
pairs (u(t); y(t)) is given over some time interval t 2 [�i; �f ]. The problem is to �nd a model which for the
given input sequence returns an approximation of the given output sequence. Broadly speaking, solving
an identi�cation problem involves two steps. The �rst is choosing a class of identi�cation models which
are capable of emulating the behavior of the actual system. For non-linear identi�cation, a common
model choice is a recurrent neural network. One reason for this is that it was shown by Sontag (1992)
and Funahashi and Nakamura (1993) that certain classes of recurrent networks can approximate an
arbitrary dynamical system over a compact set for a �nite time interval. Several recurrent models for
system identi�cation were proposed in Narendra and Parthasarathy (1990). In a similar vein, a set of
constructive recurrent models were introduced in Cohen (1992). While the expressed purpose of these
models was associative memory, they can be modi�ed for use in system identi�cation by including an
appropriate term for the system inputs.

The second step in system identi�cation involves selecting a method to determine which member of
the class of models best emulates the actual system. In Narendra and Parthasarathy (1990) the model
parameters are learned using a variant of the back-propagation algorithm. No learning algorithm is
proposed for the models in Cohen (1992). Similar to the problem of learning model parameters for
system identi�cation is the problem that is often referred to in the literature as \trajectory following".
Algorithms to solve this problem for continuous time systems have been proposed by Pearlmutter (1989),
Sato (1990), and Saad (1992) to name only a few. One problem with all of these algorithms is that to our
knowledge, no one has ever proven that the error between the learned and desired trajectories vanishes.
The di�erence between system identi�cation and trajectory following is that in system identi�cation
one wants to obtain an approximation which is good for a broad class of input functions. Conversely,
in trajectory following one is often concerned only with the system performance on the small number
of speci�c inputs (i.e. trajectories) that are used in learning. Nevertheless these trajectory following
algorithms could be applied to parameter estimation for system identi�cation.

In this paper we present a class of nonlinear models and an associated learning algorithm. The
learning algorithm guarantees that the error between the model output and the actual system vanishes.
Our class of models is based on those in Cohen (1992), with an appropriate system input. We show that
these systems are one instance of the class of models generated by decomposing the dynamics into a
component normal to some surface and a set of components tangent to the same surface. Conceptually
this formalism can be used to design dynamical systems with a variety of desired qualitative properties.
Our learning procedure is related to one discussed in Narendra and Annaswamy (1989) for use in linear
system identi�cation. This learning procedure allows the parameters of Cohen's models to be learned
from examples rather than being programmed in advance. We prove that this learning algorithm is
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convergent in the sense that the error between the model trajectories and the desired trajectories is
guaranteed to vanish.

This paper is organized as follows. In Section 2 the decomposition of dynamics into a component
normal to some surface and a set of components tangent to the same surface is discussed. Section 3
is a brief review of one of the potential design techniques introduced in Cohen (1992). The learning
algorithm and some theorems about its behavior are given in Section 4. In Section 5 the results of some
computer simulations are presented. The proofs for all of the theorems are given in the Appendix.
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Chapter 2

Constructing the Model

First some terminology will be de�ned. For a system of n �rst order ordinary di�erential equations, the
phase space of the system is the n-dimensional space of all state components. A solution trajectory is
a curve in phase space described by the di�erential equations for one speci�c starting point. At every
point on a trajectory there exists a tangent vector. The space of all such tangent vectors for all possible
solution trajectories constitutes the vector �eld for this system of di�erential equations. The operation
kxk denotes the p-norm (jx1j

p + jx2j
p + � � �+ jxnj

p)
1

p of the n-dimensional vector x for some p such
that 1 � p <1, and where j � j is the absolute value. For the purposes of the theorems any p-norm may
be chosen. In the simulations p = 2 has been chosen so that the norm is the Euclidean distance.

The identi�cation models in this paper are systems of �rst order ordinary di�erential equations.
The form of these equations will be obtained by considering the system dynamics as motion relative to
some surface. At each point in the state space an arbitrary system trajectory will be decomposed into
a component normal to this surface and a set of components tangent to this surface. This approach
was suggested to us by the results of Mendes and Duarte (1981), where it is shown that an arbitrary
n-dimensional vector �eld can be decomposed locally into the sum of 1 gradient vector �eld and (n� 1)
Hamiltonian vector �elds. The concept of a potential function will be used to de�ne these surfaces. A
potential function V (x) is any scalar valued function of the system states x = [x1; x2; : : : ; xn]

y which
is at least twice continuously di�erentiable (i.e. V (x) 2 Cr : r � 2). The operation [�]y denotes the
transpose of the vector. If there are n components in the system state, the function V (x), when plotted
with respect all of the state components, de�nes a surface in an (n + 1)-dimensional space, which is
called the graph of V (x). There are two curves passing through every point on the graph which are of
interest in this discussion, they are illustrated in Figure 2.1. The dashed curve is referred to as a level

surface, it is a surface along which V (x) = k for some constant k. Note that in general this level surface
is an (n � 1)-dimensional manifold in Rn . The solid curve moves \downhill" along V (x) following the
path of steepest descent through the point x0. The vector which is tangent to this curve at x0 is normal
to the level surface at x0. The system dynamics will be designed as motion relative to the level surfaces
of V (x). Any point where rxV (x) = 0 is called a critical point of V (x). The three critical points of the
potential function in Figure 2.1 are labeled A1, A2, and B1. The points A1 and A2 are minima of the
potential surface, and B1 is a saddle point. The results in Mendes and Duarte (1981) require n di�erent
local potential functions to achieve arbitrary dynamics. However, the results of Cohen (1992) suggest
that a considerable number of dynamical systems can be realized using only a single global potential
function.

A system capable of traversing any downhill path along a given potential surface V (x), can be
constructed by decomposing each element of the vector �eld into a vector normal to the level surface of
V (x) which passes through each point x, and a set of vectors tangent to the level surface of V (x) at x.
So the potential function V (x) is used to partition the n-dimensional phase space into two subspaces.
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Figure 2.1: The graph of the potential function V (x) = x21 (x1�1)
2+x22 plotted versus its two dependent

variables x1 and x2. The dashed curve is called a level surface and is given by V (x) = 0:5.
The solid curve follows the path of steepest descent through x0. The points A1 and A2 are
minima of this surface, and B1 is a saddle point. All three of these points are critical points.

The �rst contains a vector �eld normal to some level surface V (x) = k for k 2 R, while the second
subspace holds a vector �eld tangent to V (x) = k. The subspace containing all possible normal vectors
to the n-dimensional level surface at a given point, has dimension 1. This is equivalent to the statement
that every point on a smooth surface has a unique normal vector. Similarly, the subspace containing all
possible tangent vectors to the level surface at a given point has dimension (n� 1). An example of this
partition in the case of a 3-dimensional system is shown in Figure 2.2. Since the space of all tangent

Q2(x) rxV (x)jx0

Q3(x) rxV (x)jx0

x0

(x � x0)y rxV (x)jx0 = 0

V (x) = k

� rxV (x)jx0

Figure 2.2: The partitioning of a 3-dimensional vector �eld at the point x0 into a 1-dimensional portion
which is normal to the surface V (x) = k and a 2-dimensional portion which is tangent to
V (x) = k. The vector (�rxV (x)jx0) is the normal vector to the surface V (x) = k at the
point x0. The plane (x�x0)

yrxV (x)jx0 = 0 contains all of the vectors which are tangent
to V (x) = k at x0. Two linearly independent vectors are needed to form a basis for this
tangent space, the pair Q2(x)rxV (x)jx0 and Q3(x)rxV (x)jx0 that are shown are just
one possibility.

vectors at each point on a level surface is (n� 1)-dimensional, (n� 1) linearly independent vectors are
required to form a basis for this space.

Mathematically, there is a straightforward way to construct dynamical systems which either move
downhill along V (x) or remain at a constant height on V (x). In this paper, dynamical systems which
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always move downhill along some potential surface are called gradient-like systems . These systems are
de�ned by di�erential equations of the form

_x = �P (x)rxV (x); (2.1)

where P (x) is a matrix function which is symmetric (i.e. P y = P ) and positive de�nite at every point x,
and where rxV (x) = [ @V

@x1
; @V
@x2

; : : : ; @V
@xn

]y. These systems are a special case of the Morse gradient 
ows
discussed in Franks (1982). Since the matrix function P (x) is symmetric, it is positive de�nite if all of the
eigenvalues are positive. This matrix de�nes a way to measure distance, or a Riemannian metric, which
may change at each point. Relative to this distance measure, the components of the vector �eld formed by
Equation (2.1) are always normal to some level surface of V (x). This implies that the trajectories of the
system formed by Equation (2.1) always move downhill along the potential surface de�ned by V (x). This
can be shown by taking the time derivative of V (x) which is _V (x) = �[rxV (x)]

y P (x) [rxV (x)] � 0.
Because P (x) is positive de�nite, _V (x) can only be zero where rxV (x) = 0, elsewhere _V (x) is negative.
This means that the trajectories of Equation (2.1) always move toward a level surface of V (x) formed by
\slicing" V (x) at a lower height (i.e. smaller k), as pointed out in Khalil (1992). It is also easy to design
systems which remain at a constant height on V (x). Such systems will be denoted Hamiltonian-like

systems. They are speci�ed by the equation

_x = Q(x)rxV (x); (2.2)

where Q(x) is a matrix function which is skew-symmetric (i.e. Qy = �Q) at every point x. These
systems are similar to the Hamiltonian systems de�ned in Arnold (1989), except that the matrix Q(x)

is not required to satisfy the Jacobi identity (i.e. qli
@qjk
@xl

+qlj
@qki
@xl

+qlk
@qij
@xl

= 0). The elements of the vector

�eld de�ned by Equation (2.2) are always tangent to some level surface of V (x). Hence the trajectories
of this system remain at a constant height (i.e. at V (x) = k) on the potential graph of V (x). Again this
is indicated by the time derivative of V (x), which in this case is _V (x) = [rxV (x)]

yQ(x) [rxV (x)] = 0.
This indicates that the trajectories of Equation (2.2) always remain on the level surface on which the
system starts. So a model which can follow an arbitrary downhill path along the potential surface V (x)
can be designed by combining the dynamics of Equations (2.1) and (2.2). The dynamics in the subspace
normal to the level surfaces of V (x) can be de�ned using 1 equation of the form in Equation (2.1).
Similarly the dynamics in the subspace tangent to the level surfaces of V (x) can be de�ned using
(n� 1) equations of the form in Equation (2.2). Hence the total dynamics for the model are

_x = �P (x)rxV (x) +

nX
i=2

Qi(x)rxV (x): (2.3)

For this model the number and location of equilibria is determined by the function V (x), while the
manner in which the equilibria are approached is determined by the matrices P (x) and Qi(x). The
critical points of V (x) are the only equilibria of this system.

If the graph of the potential function V (x) is 
1 bounded below (i.e. V (x) > M 8 x 2 R
n , where

M is a constant), 
2 radially unbounded (i.e. limkxk!1 V (x) ! 1) , and 
3 has only a �nite number
of isolated critical points (i.e. in some neighborhood of every point where rxV (x) = 0 there are no
other points where the gradient vanishes), then the system in Equation (2.3) satis�es the conditions
of Theorem 10 in Cohen (1992). Therefore the system will converge to one of the critical points of
V (x) for all initial conditions. Note that this system is capable of all downhill trajectories along the
potential surface only if the (n� 1) vectors Qi(x)rxV (x) 8 i = 2; : : : ;n are linearly independent at
every point x. This means that the rank of the n � (n � 1) matrix (Q2rV Q3rV � � � Q

n
rV ) is

(n � 1) for all x. If the number of states n is even, then it is always possible to construct a system of
(n� 1) linearly independent vectors which vanish at rxV (x) = 0. This is due to the following reason.
If V (x) satis�es the 3 criteria given above, then there is some closed and bounded region which contains
all of the critical points. Outside this region, the level surfaces of V (x) can be smoothly transformed
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into the sphere Sn�1 (i.e. for su�ciently large k, there is a homeomorphism from V (x) = k to Sn�1).
According to Milnor (1965), a result due to Brouwer states that Sn�1 has a smooth �eld of non-zero
tangent vectors if and only if (n� 1) is odd, which implies that n is even.
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Chapter 3

Designing the Potential

This chapter gives a brief overview of the method for potential construction presented as Theorem 4
and Proposition 8 in Cohen (1992). This construction guarantees that the resulting potential graph is
bounded below, radially unbounded, and has a �nite number of isolated critical points. The construction
in Theorem 4 is schematized for a 3-dimensional example in Figure 3.1. First choose a set of points A,
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Figure 3.1: The scheme described in Theorem 4 of Cohen (1992). The points labeled �1 and �2 are
the desired locations for local minima of the potential function, while that labeled �1 is
the desired location for a local maxima. The dashed lines indicate the projections of each
of these points onto the x1 coordinate axis. The function �L1(x1) is a polynomial which
vanishes at the x1 coordinates of the 3 points.

whose coordinates de�ne the locations of the desired point attractors, these points will be local minima
of the potential function. In Figure 3.1 these are the two points labeled �1 and �2. Project each of
these points onto the x1 coordinate axis. Then choose a second set of points B which will be the saddle
points of the potential function. The x1 coordinate value of each point in B must lie in between the
x1 coordinate values of two adjacent points from A. In Figure 3.1 this is the one point labeled �1.
Now construct a polynomial function of x1 which vanishes at the x1 coordinate values of all of the
points in both A and B. This is the polynomial labeled �L1(x1) in Figure 3.1. For each of the other
coordinates xi, i = 2; : : : ;n, construct a Lagrange interpolation polynomial Li(x1) such that the value
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of this polynomial at the x1 coordinate of any point in A or B is the projection of that point onto the
xi coordinate axis. The dynamics of this system in the x1 direction are merely given by the polynomial
�L1(x1). In the other directions, the system exponentially decays to the value of Li(x1) corresponding
to the value of x1. So the overall dynamics are

_x1 = �L1(x1)

_xi = �xi + Li(x1) 8 i = 2; : : : ;n:
(3.1)

Notice that since _xi in this equation depends only on xi and x1, each _x1- _xi pair can be considered as
an independent 2-dimensional system for every i. In fact, because Li(x1) is an interpolation polynomial
that depends only on x1, the entire behavior in the xi dimension is merely a transformation of the
behavior in the x1 dimension, with Li(x1) de�ning the transformation. This means that the dynamics
of the entire system is \lifted" out of the x1 dimension by the combination of all (n � 1) polynomial
transformations Li(x1); i = 2; : : : ;n. Based on these dynamics in Equation (3.1), Proposition 8 of
Cohen (1992) presents a potential function V (x) whose only critical points are the members of the set
A [ B. The resulting potential function has the form

V (x) = K

Z x1

�1

L1(
) d
 +

nX
i=2

�
1

2
(xi � Li(x1))

2
+

1

2

Z x1

�i

L1(
) [L
0
i(
)]

2
d


�
; (3.2)

where K is a real positive constant, �i 8 i = 1; : : : ;n are real constants chosen so that the integrals are
positive valued, and L0i(x1) �

dLi

dx1
.

8



Chapter 4

The Learning Rule

In this chapter we introduce a learning rule for systems similar to those in Equation (2.3). The only
change made to the system is the addition of a term for the system inputs. In Equation (2.3) the number
and location of equilibria can be controlled using the potential function V (x), while the manner in which
the equilibria are approached can be controlled with the matrices P (x) and Qi(x). If it is assumed that
the locations of the equilibria are known, then a potential function which has these critical points can
be constructed using Equation (3.2). The problem of system identi�cation is thereby reduced to the
problem of parameterizing the matrices P (x) and Qi(x) and �nding the parameter values which cause
this model to best emulate the actual system. If the elements P (x) and Qi(x) are correctly chosen,
then a learning rule can be designed which makes the model dynamics converge to that of the actual
system.

Speci�cally, choose each element of these matrices to have the form

Prs =

nX
j=1

l�1X
k=0

�rsjk #k(xj) and Qrs =

nX
j=1

l�1X
k=0

�rsjk %k(xj); (4.1)

where f#0(xj); #1(xj); : : : ; #l�1(xj)g and f%0(xj); %1(xj); : : : ; %l�1(xj)g are a set of l orthogonal polyno-
mials which depend on the state xj . There is a set of such polynomials for every state xj , j = 1; 2; : : : ;n.
The constants �rsjk and �rsjk determine the contribution of the kth polynomial which depends on the
jth state to the value of Prs and Qrs respectively. In this case the dynamics in Equation (2.3) become

_x =
nX

j=1

l�1X
k=0

(
�jk

�
#k(xj)rxV (x)

�
+

nX
i=2

�ijk

�
%ik(xj)rxV (x)

�)
+� g(u(t)) = f(x; �;�;�; t) (4.2)

where �jk is the (n � n) matrix of all values �rsjk which have the same value of j and k. Likewise
�ijk is the (n � n) matrix of all values �rsjk , having the same value of j and k, which are associated
with the ith matrix Qi(x). This system has m inputs, which may explicitly depend on time, that are
represented by the m-element vector function u(t). The m-element vector function g(�) is a smooth,
possibly nonlinear, transformation of the input function. The matrix � is an (n�m) parameter matrix
which determines how much of input s 2 f1; : : : ;mg e�ects state r 2 f1; : : : ;ng. So the dynamics
depend on the system states x and all of the parameters � = [�rsjk ]

y : r; s; j = 1; : : : ;n; k = 0; : : : ; l� 1,
� = [�rsjk ]

y : r; s; j = 1; : : : ;n; k = 0; : : : ; l� 1 and � = [�rs]
y : r = 1; : : : ;n; s = 1; : : : ;m.

The dynamics given by Equation (4.2) are a model of the actual system dynamics. Using this model
and samples of the actual system states, an estimator for the states of the actual system can be designed.
The dynamics of this state estimator are

_̂x =Rs (x̂� x) + f(x; �;�;�; t) (4.3)

9
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where x is a sample of the actual system states. The term Rs is a matrix of real constants whose
eigenvalues must all be negative. This means that x̂ is an estimate of the actual system states which
depends on the form of the model f(x; �;�;�; t). The goal is to �nd a set of parameters �, � and �
which cause the error (x̂ � x) to vanish. The dynamics of a parameter estimator which accomplishes
this are

_�jk = �Rp (x̂� x)
�
#k(xj)rxV (x)

�y
8 j = 1; : : : ;n; k = 0; : : : ; l� 1

_�ijk = �Rp (x̂� x)
�
%ik(xj)rxV (x)

�y
8 i; j = 1; : : : ;n; k = 0; : : : ; l� 1

_� = �Rp (x̂� x)
�
g(u(t))

�y
;

(4.4)

where Rp is a matrix of real constants which is symmetric and positive de�nite. Note that the term
(x̂� x) [#k(xj)rxV (x)]

y is the outer product of n-dimensional vectors, hence the result is an (n� n)
matrix. Likewise the terms (x̂ � x) [%ik(xj)rxV (x)]

y and (x̂ � x) [g(u(t))]y are also outer products.
The following theorem shows that the system of di�erential equations de�ned by Equations (4.2), (4.3)
and (4.4) converge to a set of parameters such that the error (x̂�x) between the estimated and target
trajectories vanishes.

Theorem 4.1. Given the model system

_x =

kX
i=1

Ai f i(x) +B g(u(t)) (4.5)

where Ai 2 R
n�n and B 2 R

n�m are unknown matrices, and f i : R
n ! R

n , f i 2 C1 and g : Rm !
R
m , g 2 C1 are known functions such that ku(t)k � U for some U > 0 implies kx(t)k � Su for some

Su > 0 (i.e. bounded inputs imply bounded solutions). Choose a state estimator of the form

_̂x =Rs (x̂� x) +

kX
i=1

Âi f i(x) + B̂ g(u(t)) (4.6)

where Rs 2 R
n�n is a matrix of real constants whose eigenvalues must all be negative, and Âi and B̂

are the estimates of the actual parameters. Choose parameter estimators of the form

_̂
Ai = �Rp (x̂� x)

�
f i(x)

�y
8 i = 1; : : : ; k

_̂
B = �Rp (x̂� x)

�
g(u(t))

�y (4.7)

where Rp 2 R
n�n is a matrix of real constants which is symmetric and positive de�nite, and (x̂�x)

�
�
�y

denotes an outer product. For these choices of state and parameter estimators limt!1(x̂ � x) = 0 for

all initial conditions. Furthermore, this remains true if any of the elements of Âi or B̂ are set to 0,
or if any of these matrices are restricted to being symmetric or skew-symmetric.

The proof of this theorem appears in the Appendix. Note that convergence of the parameter estimates
to the actual parameter values is not guaranteed by this theorem. Since Equations (4.2), (4.3), and (4.4)
are in the form of Equations (4.5), (4.6), and (4.7) respectively, Theorem 4.1 implies that the parameter
estimates produced by Equation (4.4) cause the state estimates in Equation (4.3) to converge to the
actual state values.

Theorem 4.1 is based on the assumption that the state vector in Equation (4.5) is bounded if the
input u(t) is bounded (i.e. BIBS stability). If f i(�) and g(�) are linear functions, the resulting linear
system is BIBS stable if it is asymptotically stable when u(t) = 0, as shown by Willems (1970). However,
it was shown by Varaiya and Liu (1966) that asymptotic stability of the zero input case alone does not
guarantee BIBS stability for nonlinear systems. This means that in order to determine the boundedness
of the solutions x(t) of Equation (4.2), a non-autonomous nonlinear system must be considered. In
general this can be quite di�cult, but for systems of this form, results in LaSalle and Lefschetz (1961)
can be used to prove the following theorem.

10
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Theorem 4.2. Given the dynamical system

_x = �P (x)rxV (x) +

nX
i=2

Qi(x)rxV (x) + h(u(t)); (4.8)

where V : Rn ! R, V 2 C2 is the potential function, h : Rm ! R
n , h 2 C1, and u : R ! R

m , u 2 C1

is a time varying input function. The matrix function P : Rn ! R
n�n , P 2 C1 is symmetric positive

de�nite, and Qi : R
n ! R

n�n , Qi 2 C1 8 i = 2; : : : ;n are skew-symmetric. Furthermore, V (x) � 0 for

all x, and there exists an Fu > 0, such that for kxk > Fu, krxV (x)k � Ku for some Ku > 0 (i.e. the
length of rxV (x) has a non-zero lower bound). Also there exists a U > 0 such that ku(t)k � U. If all of
the above conditions are satis�ed, then there exists Su > 0 such that corresponding to each solution x(t)
of Equation (4.8) there is a T > 0 with the property that kx(t)k � Su for all t > T (i.e. the solutions

x(t) of Equation (4.8) are ultimately bounded).

For the proof of this see the Appendix. This theorem states that if there is a region outside which
the length of rxV (x) has a non-zero lower bound, then all solutions to Equation (4.8) are ultimately
bounded provided that the norm of the input signal ku(t)k is bounded. Note that the system has n states
and m inputs. It turns out that Ku depends on U, the upper bound on ku(t)k (see the proof). So if the
system is to accommodate arbitrarily large inputs, there must be a region kxk > Fm in which krxV (x)k
is strictly increasing (i.e. kx1k > kx2k ) krxV (x1)k > krxV (x2)k). If this is the case, then for any
Ku, and hence any U, there exists a region kxk > Fu � Fm in which krxV (x)k � Ku. The condition
krxV (x)k � Ku implies that V (x) � Kukxk which means that V (x) is radially unbounded, but not
necessarily convex or even increasing. It is not obvious what condition on V (x) implies krxV (x)k � Ku,
for instance V (x) � Kukxk 6) krxV (x)k � Ku. An interesting converse to this theorem can also be
proven. If V (x) is continuous, lower bounded, and has some region kxk > Fu where krxV (x)k � Ku,
then there exists some region (or possibly regions) kx � Ck < Fl wherein krxV (x)k � Kl for some
Fl;Kl > 0. In this region it can be shown that _V (x) is always positive, hence this region is unstable
and the system will eventually leave it. Therefore the solutions of Equation (4.8) have both an ultimate
upper bound and an ultimate lower bound, so for t > T, Sl � kx(t)k � Su for some Su � Sl > 0.

As previously stated, Theorem 4.1 does not guarantee the convergence of the parameter estimates
to the actual parameter values. This issue has been widely addressed in the adaptive identi�cation
and control literature, as discussed in Narendra and Annaswamy (1987). It was determined that if
the signals within the adaptive system possessed certain properties, then the origin of the system was
globally uniformly asymptotically stable. This guarantees the convergence of the parameter estimates.
Signals with these properties are said to be persistently exciting by Narendra and Annaswamy (1987).
Intuitively, persistent excitation means that the input is rich enough to excite all the modes of the system
being considered. For linear systems persistent excitation becomes a condition on the input signal alone,
since a linear system can not generate frequency modes. For a nonlinear system the condition must be
on both the input signal and the internal signals of the system, since nonlinear systems can generate
new frequency modes. Using results from Morgan and Narendra (1977) the following theorem can be
proven for the identi�cation system de�ned by Equations (4.5), (4.6) and (4.7).

Theorem 4.3. Given the model system

_x =

kX
i=1

Ai Fi(~x)rxV (x) +B g(u(t)); (4.9)

where Fi : R
d ! R, d � n (i.e. ~x � fx1; x2; : : : ; xng), Fi 2 C1. Let all Ai 2 R

n�n be either symmetric

positive de�nite or skew-symmetric and let Equation (4.9) satisfy all of the conditions in Theorems 4.1

and 4.2. De�ne the error functions e = x̂�x, �i = Âi �Ai, and 	 = B̂ �B. From Equations (4.6)

11
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and (4.7) the state and parameter error dynamics are

_e = _̂x� _x =Rs e+

kX
i=1

�i Fi(~x)rxV (x) +	 g(u(t));

_�i =
_̂
Ai � _Ai = �Rp e [Fi(~x)rxV (x)]

y
;

_	 =
_̂
B � _B = �Rp e g(u(t))

y;

(4.10)

Let k _u(t)k � D for some D > 0, and let there exist positive constants t0, T, and � such that for every

unit vector w 2 Rn+m

1

T

Z t+T

t



�[F1(~x(�)) +F2(~x(�)) + � � �+ Fk(~x(�))] rxV (x(�))
y g(u(�))y

	
w


 d� � � 8 t � t0:

(4.11)

Then the equilibrium point e = 0, �i = O, 	 = O is globally uniformly asymptotically stable.

See the Appendix for a proof of this Theorem. Note that Equation (4.10) is non-autonomous due to
the input term. Also, the choice of parameter error dynamics is dictated by the fact that the actual
parameters Ai and B are assumed to be unknown constants. This theorem gives a condition on the
internal signals and inputs of the system in Equation (4.10) which guarantee convergence of the param-
eter estimates to their actual values. The intuitive meaning of this condition is far from obvious. In part
it means that there is a time interval T over which the vector

��P
k

i=1Fi(~x)
�
rxV (x) g(u(t))

	
points

in all directions with su�cient length as t takes on values in the interval. Notice that in Equation (4.2)
the form of Fi(~x) is !k(xj), k = 0; 1; : : : ; l� 1, j = 1; 2; : : : ;n where !k(�) is the kth member of a set of
l orthogonal polynomials, and xj 2 fx1; x2; : : : ; xng.

12



Chapter 5

Simulation Results

Now an example is presented in which the parameters of the model in Equation (4.2) are learned, using
the training rule in Equations (4.3) and (4.4), on one input signal and then are tested on a di�erent
input signal. The actual system has three equilibrium points, two stable points located at (1; 3) and

(3; 5), and a saddle point located at (2�
p
3

3
; 4 +

p
3

3
). In this example the dynamics of both the actual

system and the model are given by

 
_x1

_x2

!
= �

 
A1 +A2 x

2
1 +A3 x

2
2 0

0 A4 +A5 x
2
1 +A6 x

2
2

!0BB@
@V

@x1

@V

@x2

1
CCA+

 
0 �fA7 +A8 x1 +A9 x2g

A7 +A8 x1 +A9 x2 0

!0BB@
@V

@x1

@V

@x2

1
CCA+

 
A10

0

!
u; (5.1)

where V (x) is de�ned in Equation (3.2) and u is a time varying input. For the actual system the
parameter values were A1 = A4 = �4, A2 = A5 = �2, A3 = A6 = �1, A7 = 1, A8 = 3, A9 = 5,
and A10 = 1. In the model the 10 elements Ai are treated as the unknown parameters which must be
learned. Note that the �rst matrix function is positive de�nite if the parameters A1{A6 are all positive
valued. The second matrix function is skew-symmetric for all values of A7{A9. For this particular
system rxV (x) is0
BB@
@V

@x1

@V

@x2

1
CCA =

�
576 x51 � 5379:45 x41 + 19742:3 x31 � 35767:5 x21 + 31999:2 x1 � 24x1 x2 + 47 x2 � 11239:5

�12x21 + 47 x1 + x2 � 38

�
: (5.2)

It is relatively easy to show that for this example, krxV (x)k is eventually strictly increasing as il-
lustrated in Figure 5.1. The function is actually increasing in the X-shaped trough seen in the �g-

x2
x1

krxV (x)k

Figure 5.1: The graph of the norm of the gradient krxV (x)k for the system de�ned in Equation (5.2).
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ure, but at a much slower rate than in the surrounding areas. This means that for any bounded
input, the system de�ned by Equations (5.1) and (5.2) satis�es the conditions in Theorem 4.2 and
therefore has ultimately bounded solutions. The two input signals used for training and testing were
u1(t) = 10000

�
sin 1

3
1000 t+ sin 2

3
1000 t

�
and u2(t) = 5000 sin 1000 t. The phase space responses of the

actual system to the inputs u1 and u2 are shown by the solid curves in Figures 5.4(b) and 5.4(a) respec-
tively. Note that both of these inputs produce a periodic attractor in the phase space of Equation (5.1).

In order to evaluate the e�ectiveness of the learning algorithm the Euclidean distance between the
actual and learned state and parameter values was computed and plotted versus time. The results
are shown in Figure 5.2. Figure 5.2(a) shows these statistics when training with input u1, while Fig-

50 100 150 200 250 300
t

2.5

5

7.5

10

12.5

15

17.5

||e(t)||

(a)

50 100 150 200 250 300
t

2.5

5

7.5

10

12.5

15

||e(t)||

(b)

Figure 5.2: (a) The state and parameter errors for training using input signal u1. The solid curve is the

Euclidean distance (i.e.
pP

2
i=1x̂i � xi ) between the state estimates and the actual states

as a function of time. The dashed curve shows the distance (i.e.
pP

10
i=1Âi �Ai ) between

the estimated and actual parameter values versus time.
(b) The state and parameter errors for training using input signal u2.

ure 5.2(b) shows the same statistics for input u2. The solid curves are the Euclidean distance between
the learned and actual system states, and the dashed curves are the distance between the learned and
actual parameter values. These statistics have two noteworthy features. First, the error between the
learned and desired states quickly converges to very small values, regardless of how well the actual pa-
rameters are learned. This result was guaranteed by Theorem 4.1. Second, the minimum error between
the learned and desired parameters is much lower when the system is trained with input u1. Speci�cally
the minimum parameter error for input u1 is 1.65, while for input u2 it is 6.47. Intuitively this is because
input u1 excites more frequency modes of the system than input u2. Notice that the parameter error
curve in Figure 5.2(a) appears to be eventually monotonically decreasing. So it seems reasonable to
conclude that for input u1 the parameter estimates eventually converge to the actual parameter values.
The same conclusion also seems to justi�ed for input u2 since the envelope of the parameter error curve
in Figure 5.2(b) decreases with time. These observations illustrate the relationship between parameter
convergence and persistent excitation that was addressed in Theorem 4.3. Recall that in a nonlinear
system the frequency modes excited by a given input do not depend solely on the input because the
system can generate frequencies not present in the input. These conclusions are further supported by
the plots of the power spectrum of state x1(t) for each input, shown in Figure 5.3. Figure 5.3(a) shows
the power spectrum for input u1(t), while Figure 5.3(b) shows it for input u2(t). The dashed lines show
the frequencies present in the input signal. Note that the DC peak in both power spectra is due to the
fact that neither of the periodic structures generated by these inputs is centered at the origin. These
plots have two features of note. First, input u1 clearly excites more system modes than input u2. This
partially explains why the parameter convergence for u1 is better than for u2, as shown in Figure 5.2.
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Figure 5.3: (a) The power spectral density versus frequency of the state x1(t) when Equation (5.1) is
driven by input u1(t) . The dashed lines represent the two frequencies present in the input.
(b) The power spectral density of x1(t) for input u2(t). The dashed line represents the one
frequency present in the input.

Second, both inputs excite modes in the system which are at frequencies not present in the input. This
is a result of the nonlinearities in Equation (5.1). The large number of spectral components supports
the conclusion that for this particular system both u1 and u2 are persistently exciting.

The quality of the learned parameters can be qualitatively judged by comparing the phase plots
using the learned and actual parameters for each input, as shown in Figure 5.4. In Figure 5.4(a) the
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x
2

(a)

-2 -1 0 1 2 3 4

x1

-15
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-5

0

5

x
2

(b)

Figure 5.4: (a) A phase plot of the system response when trained with input u1 and tested with input
u2. The solid line is the response to the test input using the actual parameters. The dotted
line is the system response using the learned parameters.
(b) A phase plot of the system response when trained with input u2 and tested with input u1.

system was trained using input u1 and tested with input u2, while in Figure 5.4(b) the situation was
reversed. The solid curves are the system response using the actual parameter values, and the dashed
curves are the response using the �nal values of the learned parameters. The Euclidean distance between
the target and test trajectories in Figure 5.4(a) is in the range (0; 0:64) with a mean distance of 0.21 and
a standard deviation of 0.14. The distance between the the target and test trajectories in Figure 5.4(b)
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is in the range (0; 4:53) with a mean distance of 0.98 and a standard deviation of 1.35. Qualitatively,
both sets of learned parameters give an accurate response for non-training inputs. Note that even when
the error between the learned and actual parameters is large, the periodic attractor resulting from the
learned parameters appears to have the same \shape" as that for the actual parameters.

16



Chapter 6

Conclusion

We have presented a conceptual framework for designing dynamical systems with speci�c qualitative
properties by decomposing the dynamics into a component normal to some surface and a set of com-
ponents tangent to the same surface. We have presented a speci�c instance of this class of systems
which converges to one of a �nite number of equilibrium points. By parameterizing these systems, the
manner in which these equilibrium points are approached can be �tted to an arbitrary data set. We
also presented a learning algorithm to estimate these parameters which is guaranteed to converge to a
set of parameter values for which the error between the learned and desired trajectories vanishes.
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Appendix A

Proofs

Proof of Theorem 4.1

The following lemma, which is proved in Narendra and Annaswamy (1989), is used in the proof of this theorem.

Lemma A.1 (Barbalat). If _f(t) is bounded and
�
lim
t!1

R t
t0
jf(�)j2d�

� 1

2

exists and is �nite, then lim
t!1

f(t) = 0.

Proof. To show that the equilibrium point e = 0, �i = O, 	 = O in Equation (4.10) is globally stable, choose
the Lyapunov function

W (e;�i;	) = e
y
Rp e+Tr

 
kX
i=1

�yi �i +	y	

!
;

where Tr(�) is the trace of the matrix in the argument. Since Rp is positive de�nite, W (�) is positive de�nite
because the trace of a sum of matrix inner products is a quadratic form. Since both terms of W (�) are quadratic
forms, W (�) is radially unbounded. The time derivative of W (�) is

_W = _eyRp e+ e
y
Rp _e+Tr

 
kX
i=1

_�
y
i �i +

kX
i=1

�yi
_�i + _	

y
	+	y _	

!
:

Using the fact that Tr(A+B) = Tr(A) + Tr(B), Tr(AyB) = Tr(ByA), and for A symmetric dyAc = cyAd,
the time derivative can be rewritten as

_W = e
y
�
RpRs +R

y
sRp

�
e+ 2

kX
i=1

e
y
Rp�i f i(x) + 2eyRp	 g(u(t)) + Tr

 
2

kX
i=1

_�
y

i �i + 2 _	
y
	

!
:

(A.1)

Substituting in the adaptive laws gives

_W = e
y
�
RpRs +R

y
sRp

�
e+ 2

kX
i=1

e
y
Rp�i f i(x) + 2eyRp	g(u(t))

+ Tr

 
�2

kX
i=1

f i(x) e
y
Rp�i � 2 g(u(t))eyRp	

!
:

Using the fact that Tr(dcy) = cyd, the time derivative can be reduced to

_W = e
y
�
RpRs +R

y
sRp

�
e:

SinceRs has strictly negative eigenvalues, the solution to the equationRpRs+R
y
sRp = �Q0 for any symmetric

positive de�nite matrix Q0 is a symmetric positive de�nite matrix Rp.

) _W = �eyQ0 e � 0
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Therefore the equilibrium state of the error functions is globally uniformly stable. This implies that e(t), �i(t),
and 	(t) are bounded for all t � t0. Since f i(x) and g(u(t)) are bounded for bounded inputs, _e as de�ned in
Equation (4.10), is bounded. Since Q0 is positive de�nite and _W � 0,

0 �

Z 1

t0

e(�)yQ0 e(�) d� <1:

Therefore by Barbalat's Lemma lim
t!1

e(t) = 0.

The following proof segments outline the technique used to prove that this result continues to be true if the
matrix 	 is restricted to being symmetric or skew-symmetric. It is apparent that these arguments follow if any
of the parameter matrices are restricted in this manner.

Case 1) 	 is symmetric (i.e. 	y = 	)
This can be insured by writing the adaptive law as

_	 = �
1

2

�
Rp e g(u(t))

y +
�
Rp eg(u(t))

y
�y�

:

In this case Equation (A.1) for _W becomes

_W = � � �+ 2eyRp	 g(u(t)) + Tr

 
2

�
�
1

2

�
Rp eg(u(t))

y +
�
Rp e g(u(t))

y
�y��y

	

!
+ : : : ;

= � � �+ 2eyRp	 g(u(t))� eyRp	
y
g(u(t))� eyRp	 g(u(t)) + : : :

	
y
=	
= 0:

Case 2) 	 is skew-symmetric (i.e. 	y = �	)
This can be insured by writing the adaptive law as

_	 = �
1

2

�
Rp e g(u(t))

y �
�
Rp eg(u(t))

y
�y�

:

In this case Equation (A.1) for _W becomes

_W = � � �+ 2eyRp	 g(u(t)) + Tr

 
2

�
�
1

2

�
Rp eg(u(t))

y �
�
Rp e g(u(t))

y
�y��y

	

!
+ : : : ;

= � � �+ 2eyRp	 g(u(t)) + eyRp	
y
g(u(t))� eyRp	 g(u(t)) + : : :

	
y
=�	
= 0:

The following proof segment outlines the technique used to prove that this result continues to be true if any
elements of the matrix 	 are set to 0. Again, these arguments follow if any of the parameter matrices are
restricted in this manner.

Case 3) Any elements of 	 are set to 0
This can be achieved by writing 	 as

	 =

gX
i=1

Ri	f Ci;

where g < n
2 and 	f is the matrix containing all n2 possible parameters. The leading matrix Ri has a

single 1 in the diagonal position corresponding to the row of the desired element of 	f . All other elements
of Ri are 0. The trailing matrix Ci has a 1 in the diagonal position corresponding to the column of the
desired element of 	f , with all other elements being 0. The appropriate adaptive law in this case is

_	 = �

gX
i=1

Ri

�
Rp eg(u(t))

y
�
Ci:

22



UNM Technical Report EECE95{003

In this case Equation (A.1) for _W becomes

_W = � � �+ 2 eRp

 
gX
i=1

Ri	f Ci

!
g(u(t)) + Tr

0
@�2

"
gX
i=1

Ri

�
Rp eg(u(t))

y
�
Ci

#y " gX
i=1

Ri	f Ci

#1
A+ : : : :

From the distributive property of matrix multiplication ay
Pg

i=1Bi c =
Pg

i=1 a
yBi c and

�Pg

i=1Ai

�y�Pg

i=1Bi

�
=
Pg

i=1

Pg

j=1A
y
i Bj . So the expression for _W becomes

_W = � � �+ 2

gX
i=1

eRp

�
Ri	f Ci

�
g(u(t)) + Tr

0
@�2 gX

i=1

gX
j=1

h
Ri

�
Rp e g(u(t))

y
�
Ci

iy �
Rj 	f Cj

�1A+ : : : :

(A.2)

If these two terms can be shown to cancel for a single value of i, then they will cancel for any sum over
di�erent i values. For a single i value the matrix Ri	f Ci contains only one non-zero value, located in
the uth row and the wth column. The result of the product Rp (Ri	f Ci) is to select the uth column of
Rp. The result of the product Rp (Ri	f Ci) g(u(t)) is to select the wth row of g(u(t)). Hence the �rst
term is

2 eRp (Ri	f Ci) g(u(t)) = 2

nX
k=1

ek rku  uw gw: (A.3)

Similarly, for a single i value, the matrix Ri

�
Rp eg(u(t))

y
�
Ci contains only one non-zero value located

in the uth row and the wth column. Consideration of the form of Rp eg(u(t))
y leads to the conclusion

that the single entry has the form

Ri

�
Rp eg(u(t))

y
�
Ci =

nX
k=1

ek ruk gw:

The transpose of this matrix contains the above entry in the wth row and uth column. Likewise the
matrix Ri	f Ci contains a single non-zero value for each value of j. When j = i this value occurs in

the uth row and the wth column and the result of the product
�
Ri

�
Rp eg(u(t))

y
�
Ci

�y
[Ri	f Ci] is a

matrix with a single non-zero entry in the uth position along the diagonal. When j 6= i the single entry

in Ri	f Ci occurs somewhere else and the result of the product
�
Ri

�
Rp eg(u(t))

y
�
Ci

�y
[Ri	f Ci] is

the zero matrix. So the second term is

Tr

0
@�2 gX

i=1

gX
j=1

h
Ri

�
Rp e g(u(t))

y
�
Ci

iy �
Rj 	f Cj

�1A = �2
nX

k=1

ek ruk  uw gw
R

y
p=Rp

= �2
nX

k=1

ek rku  uw gw:

(A.4)

Taking the sum of Equations (A.3) and (A.4) leads to the conclusion that the two terms in Equation (A.2)
cancel for a single i value. Therefore they will also cancel for a sum over any set of i values. �

Proof of Theorem 4.2

The following lemma, which is proved in the reference, is used in the proof of this theorem.

Lemma A.2 (LaSalle and Lefschetz (1961)). Let V (x) be a scalar function which for all x has continuous

�rst partial derivatives with the property that limkxk!1 V (x) ! 1. If _V (x) � �� < 0 for all x outside some

closed and bounded set M, then the solutions of _x = f(x; t) are ultimately bounded.

Proof. Since h(�) is continuous, ku(t)k � U) kh(u(t))k � ~U. It is given that krxV (x)k � Ku. Choose Ku to
be

krV k � Ku =
~U+

p
~U2 + 4�min �

2 �min

;

where � is a positive constant and �min is the smallest eigenvalue of P (x) in the region where kxk > Fu. Since
P is symmetric positive de�nite, the smallest eigenvalue �min is real and positive.

) �min krV k
2 � krV k ~U� � � 0
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It is given that khk � ~U) �khk � �~U

) �min krV k
2 � krV k khk � � � �min krV k

2 � krV k ~U� � � 0

By the Cauchy-Schwarz inequality krV k khk � jrV y hj

) �min krV k
2 � jrV y hj � � � �min krV k

2 � krV k khk � �;

where j � j is the absolute value. For the absolute value jrV y hj � rV yh

) �min krV k
2 �rV y h� � � �min krV k

2 � jrV y hj � �

Since �min is the smallest eigenvalue of the matrix P (x)

) rV yP rV �rV y h� � � �minrV
yrV �rV y h� � � 0

) �rV yP rV +rV y h � ��

The quantity on the left side of the inequality is precisely _V (x) for Equation (4.8). Therefore krxV (x)k �
Ku ) _V (x) � �� for all x such that kxk > Fu.

It is well known from real analysis that
R
krV k dx � k

R
rV dxk.

)

Z
krV k dx �






Z
rV dx





 >





Z
Ku dx






) kV + ck > kKu xk

By Minkowski's inequality kV k+ kck � kV + ck,

) kV k+ kck � kV + ck > Ku kxk

Since V � 0 and since V and c are scalars

) V > Ku kxk � jcj

Hence krxV (x)k � Ku ) V (x) > Ku kxk ) limkxk!1 V (x)!1. Note that the converse of this implication is
not true. Using these two results, it follows immediately from LemmaA.2 that the solutions x(t) of Equation (4.8)
are ultimately bounded. �

Proof of Theorem 4.3

Proof. Since Equation (4.9) satis�es all of the conditions of Theorem 4.2, its solutions kx(t)k are bounded. Let
f i(x) = Fi(~x)rxV (x) and note that k _f i(x(t))k = k

@fi
@x

_xk � k
@fi
@x
k k _xk. Since f i and g are continuous, and

kx(t)k and ku(t)k are bounded, kf i(x(t))k and kg(u(t))k are bounded. Therefore k _xk = k
Pk

i=1Ai f i(x) +

B g(u(t))k �
Pk

i=1 kAik kf i(x)k + kBk kg(u(t))k is bounded. Since f i is continuously di�erentiable, @fi
@x

is

continuous. Since kx(t)k is bounded, k
@f i
@x
k is bounded. Therefore k _f i(x(t))k is bounded, since it is less than or

equal to the product of bounded functions. Similarly k _g(u(t))k = k @g
@u

_uk � k @g
@u
k k _uk. Since g is continuously

di�erentiable, @g

@u
is continuous. Since ku(t)k is bounded, k @g

@u
k is bounded. Since it is given that k _u(t)k is

bounded, k _g(u(t))k is bounded.

It is given that there exist positive constants t0, T, and � such that for every unit vector w 2 Rn+m

1

T

Z t+T

t




n[F1(~x(�)) + F2(~x(�)) + � � �+ Fk(~x(� ))] rxV (x(� ))
y
g(u(� ))y

o
w



 d� � � 8 t � t0;

)
1

T

Z t+T

t




nf1(x(� ))y f2(x(�))y : : :fk(x(� ))y g(u(�))yo wk


 d� � � 8 t � t0:

where wk 2 R
kn+m. With this inequality and the fact that k _f i(x)k and k _g(u)k are bounded, it follows immedi-

ately from Theorem 4 in Morgan and Narendra (1977) that Equation (4.10) is globally uniformly asymptotically
stable. �
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