
University of New Mexico
UNM Digital Repository
Electrical & Computer Engineering Technical
Reports Engineering Publications

1-5-2005

Speckle noise modeling and reduction of SAR
Images based Markov random fields
Ousseini Lankoande

Majeed M. Hayat

Bal Santhanam

Follow this and additional works at: https://digitalrepository.unm.edu/ece_rpts

This Technical Report is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for
inclusion in Electrical & Computer Engineering Technical Reports by an authorized administrator of UNM Digital Repository. For more information,
please contact disc@unm.edu.

Recommended Citation
Lankoande, Ousseini; Majeed M. Hayat; and Bal Santhanam. "Speckle noise modeling and reduction of SAR Images based Markov
random fields." (2005). https://digitalrepository.unm.edu/ece_rpts/16

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts/16?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu


DEPARTMENT OFELECTRICAL AND

COMPUTERENGINEERING

SCHOOL OFENGINEERING

UNIVERSITY OF NEW MEXICO

Speckle noise modeling and reduction of SAR images based on Markov
random fields

Ousseini Lankoande
Department of Electrical and Computer Engineering

The University of New Mexico
Albuquerque, NM 87131

e-mail: lankoande@ece.unm.edu

Majeed M. Hayat
Department of Electrical and Computer Engineering

The University of New Mexico Albuquerque, NM 87131
Phone: (505) 277-0297, Fax: (505) 277-1439

e-mail: hayat@ece.unm.edu

Balu Santhanam
Department of Electrical and Computer Engineering

The University of New Mexico Albuquerque, NM 87131
Phone: (505) 277-1611, Fax: (505) 277-1439

e-mail: bsanthan@ece.unm.edu

UNM Technical Report: EECE-TR-2004-26

Report Date: January 5, 2005



Abstract

One of the major factors plaguing the performance of synthetic aperture radar (SAR) imagery is the signal-
dependent, speckle noise. Grainy in appearance, it is due to the phase fluctuations of the electromagnetic re-
turned signals. Since the inherent spatial-correlation characteristics of speckle in SAR images are not embedded
in the multiplicative models for speckle noise, a new mathematical framework for modeling speckled imagery is
introduced. It is based on embedding the spatial correlation properties of speckled imagery, obtained from sta-
tistical optics, into a Markov-random-field (MRF) framework. The model is then used to perform speckle-noise
reduction through the utilization of a global energy-minimization algorithm, which consists of simulated anneal-
ing in conjunction with the Metropolis sampler algorithm. A comparative study using both simulations and real
SAR images indicates that the proposed approach performs better compared to filtering techniques such as the
Gamma Map, the modified-Lee and the enhanced-Frost algorithms. This success is attributable to the ability of
the proposed model to capture the physical spatial statistics of speckle within the confines of a MRF framework.
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1 Introduction

Synthetic aperture radar(SAR) is a type of imaging system that uses coherent radiation to create images. The
major advantage of SAR over non-radar imaging systems is that it does not rely on an external source. As an
active system, SAR emits its own radiations and remains effective independently of weather or daylight conditions
[8]. Unfortunately, this autonomy comes with a higher susceptibility to speckle noise.

A SAR system coherently records the amplitude and the phase echoed from a target. Since each resolution
cell of the system contains several scatterers, and since the phases of the returned signals from these scatterers
are randomly distributed, the inherent coherent processing involved results in interference noise like patterns also
called speckle. A large variety of speckle-reduction techniques have been proposed in the literature. Among them
are the Lee filter and its derivatives [12, 5], the geometric filter [15], the Kuan filter [11], the Frost filter and its
derivatives [5, 9], the Gamma MAP filter [5], the wavelet approach [2, 6] and the approaches based onMarkov-
random-fields(MRFs) [17, 7]. These approaches assume a multiplicative model for the speckled image intensity
hence each observed image pixel is the product of the noise-free image pixel with the noise [16]. The capability
of MRFs to model spatially correlated and signal-dependent phenomena makes them an excellent choice for
modeling speckled images. However, exiting MRF-based methods for speckle are not derived from the physical
statistical properties of speckle.

In this report, the multiplicative model is not assumed; instead, we assume that the observed speckled intensity
image is one of the configurations of our MRF model whose high energy has to be reduced through de-noising.
We derive a novel MRF model for speckled imagery based on the spatial-correlation properties of speckle, which
are obtained from the literature on statistical optics [4]. More precisely, Goodman [4] has derived the joint
conditional probability density function (cpdf) of the speckled intensity of any two points. In this work, we
have incorporated this cpdf into a MRF model, which makes the resulting MRF model in tune with the physical
attributes of speckled imagery. With the availability of this MRF model, the noise reduction of SAR images
is undertaken using a global energy-minimization algorithm based on using simulated annealing (SA) [10] in
conjunction with the Metropolis sampler [13].

2 First order MRF model

A MRF consists of an undirected graphG= (V,E) that has undirected edges drawn as lines. The setV of vertices
of the graph is{Ik, Ik1, Ik2, Ik3, Ik4} andE is the set of edges. Two type of cliques can be defined for the graph in

Figure 1a. The single-clique:C1 =
{
(xk,yk),k∈ S

}
, and the pair-clique,C2 =

{
{(xk,yk),(xk1,yk1)},{(xk,yk),

(xk2,yk2)},{(xk,yk),(xk3,yk3)},{(xk,yk),(xk4,yk4)}k∈ S,ki ∈ S, i = 1, · · ·,4
}

, whereS is the set of indexes of the

image. Theconditional probability density(cpd) function of the intensityIk j at pointk j given the value of the
intensityIki at pointki is drawn from statistical optics theory and provided by Goodman in [4]. Here, the global
mean,〈I〉, has been substituted by(it)k j , which is defined as the true intensity image at pointk j . The realization
of the random variableIk j at pointk j is denoted byik j . More precisely,

p
Ik j
|Iki

(ik j |iki ) =
exp

(
− |µ(rki kj

)|2iki
+ikj

(it )kj
(1−|µ(rki kj

)|2)

)

(it)k j (1−|µ(rkik j )|2)
I0

( 2(iki ik j )
1/2|µ(rkik j )|

(it)k j (1−|µ(rkik j )|2)
)
, (1)

whereI0(·) is a modified Bessel function of the first kind and zero order, and|µ(rkik j )| andrkik j are, respectively,
the coherence factor and the Euclidian distance between the pointski andk j . For simplicity, we assume that the
coherence factor has the following form (other more complex forms can also be considered):

|µ(rkik j )|=
{
|αrki kj

| ∈ [0,1) rkik j ≤ 1

0 otherwise.
(2)
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Figure 1: (a) Graph form of the first-order neighborhood. (b) Lattice form of the first-order neighborhood.

If rkik j > 1, then the cpdf in (1) becomes independent ofiki andp
Ik j
|Iki

(ik j |iki ) = pIk j
(ik j ) = exp

(− ikj
(it )kj

)/
(it)k j .

In addition, the correlation in (2) is assumed to be limited to one unit from the center pixel. This condition can
still be met with larger correlation (more than one unit correlation) by preprocessing the data. Indeed, in the case
of an image having a larger correlation we will apply one of the interpolation methods in order for the correlation
to fit the above definition of the coherence factor [7]. The Euclidian distance between the pair of pixels(ik1, ik2),
(ik2 , ik3), (ik3, ik4), (ik4, ik1),(ik2, ik4) and(ik1, ik3), is either

√
2 or 2; in both cases, the distance is greater than

1 unit. Using the coherence factor defined in (2), we can conclude that these pairs of pixels are conditionally
independent given the center pixelik. Then cpdf of the intensity of the center pixel,ik, given the four neighbors
ik1, ik2, ik3 andik4 takes the following form:

p
Ik|Ik1···4

(ik|ik1···4) =
p

Ik|Ik1
(ik|ik1)p

Ik|Ik2
(ik|ik2)p

Ik|Ik3
(ik|ik3)p

Ik|Ik4
(ik|ik4)

(
pIk

(ik)
)3 . (3)

Recall that each term in (3) is precisely known using (1); therefore, after substitution we obtain

p
Ik|Ik1···4

(ik|ik1···4) = exp

{
4

∑
j=1
− ln[B(ik, ik j )]−

A(ik, ik j )
B(ik, ik j )

+ ln
{

I0
[C(ik, ik j )
B(ik, ik j )

]}

−3ln[pIk
(ik)]

}
(4)

whereA(ik, ik j ) = |αrkkj
|2ik j + ik, B(ik, ik j ) = (it)k(1−|αrkkj

|2), andC(ik, ik j ) = 2(ikik j )
1/2|αrkkj

|.
The cpdf obtained in (4) has the form

p
Ik|Ik1···4

(ik|ik1···4) = exp
[−U(ik, ik1···4)

]
, where

U(ik, ik1···4) = VC1(ik)+VC2(ik, ik1···4) and (5)

VC1(ik) = 3ln
[
pIk

(ik)
]
; VC2(ik, ik1···4) =

4

∑
j=1

{A(ik, ik j )
B(ik, ik j )

− ln
[
I0

[C(ik, ik j )
B(ik, ik j )

]]
+ ln

[
B(ik, ik j )

]}
.

From the Hammersley-Clifford theorem [3], the energy function is identified to beU(ik, ik1···4). The termsVC1(ik)
andVC2(ik, ik1···4) are, respectively, the single-clique and the pair-clique potential functions. The above energy
function will be utilized in the speckle reduction process.

2
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3 Simulation and Experimental Results

3.1 Image quality assessment parameters

The assessment of the speckle reduction quality will be based on four metrics. The first metric is themean square
error (MSE) between the noise-free and the denoised images having eachK pixels; it is defined as follows

MSE= K−1
K

∑
i=1

(Ii − Îi)2.

The second metric is the so-calledβ parameter used in [6], which assesses the quality of the edge preservation. It
is defined by

β =
Γ(IH− IH, ÎH− ÎH)√

Γ(IH− IH, IH− IH)Γ(ÎH− ÎH, ÎH− ÎH)
.

with Γ(I1, I2) = ∑K
i=1 I1i I2i . The best preservation coefficient is 1. The quantitiesIH andÎH are the highpass filtered

versions ofI and Î , respectively (using the Laplacian operator), andI and Î represent the original (or noise free)
and the noisy (or despeckle) intensity image, respectively. The third metric, which is thesignal-to-noise ratio
(SNR) in db is defined by

SNR= 10log10(
∑K

j=1 I i
2

∑K
j=1 (I i − Î i)

2 ).

The forth and final metric is theeffective number of looks(ENL); it is often used to estimate the speckle noise
level in a SAR image [7]. The higher the parameter the lower the speckle noise in the area will be. The ENL is
used to assess the reduction performance not only on simulated but also on real speckled images. It is obtained
by using the mean and variance intensity over a uniform area as follows

ENL =
(mean2)UniformArea

(variance)UniformArea
.

3.2 Proposed speckle reduction approach using the simulated annealing (SA) with the
Metropolis sampler algorithm

In this section we describe our proposed speckle reduction approach, which combined the SA and theMetropolis
sampler(MS). In what follows, a narrative description of the proposed approach for purpose of clarity is first
given and it is followed by a detailed mathematical description of the algorithm.

The de-noising process essentially works as follows: For each pixel of the image, an initial test, termed
the uniformity test, is performed to determine if the pixel is a candidate for de-noising. This test is done by
calculating the intensity variability within a windowWk (of size3× 3 in this report) centered about the pixel
in question (the details are given below). The test also looks for the presence of lines, which may results in
high intensity variability that is not attributed to the noise. Low variability in intensity or high variability in the
presence of lines (within aWk neighborhood of the pixel) are indicative of relative homogeneity, which implies,
in turn, the “absence” of noise. In such a case, the pixel’s intensity is left unaltered and we move to the next pixel.
On the other hand, if the intensity variability is high and no lines are detected, the pixel will be subjected to the
simulated annealing-Metropolis sampler(SA-MS) procedure for de-noising. The SA-MS works by updating the
pixel’s intensity according to the energy function (which is obtained from the MRF model) whose temperature
T is allowed to gradually decrease [7, 10]. In particular, an energy difference,∆U , is calculated between the
energies before and after the pixel’s intensity is updated with a candidate intensity. This energy difference is then
used to accept or reject the pixel’s candidate intensity based on a rejection/acceptance sampling scheme. Once the

3
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update step is completed for a pixel, the next pixel is considered and handled similarly and the entire procedure
is repeated until all pixels in the image are exhausted. Note that the uniformity test described above also serves
as a stopping criterion and mechanism for the SA-MS algorithm.

The detailed mathematical description of the algorithm is now described as follows:
Step 1: Initialization stage:

• Set the initial temperatureT0

• Set the coherence factorαrkkj

• Set the parameterλ, which controls the cooling scheme

• Set the parameterδ, which is the threshold for line or noise detection

• Set the parameterγ, which is the threshold number of pixels within the windowWk of size3×3 centered
in ik whose variations are belowδ

Step 2: Perform the uniformity test
Consider thekth pixel with intensityik
ExtractWk and compute the variation of intensities about the center pixelik as follows:∆Wkkj

= |ik−Wk j
|, j =

1, · · ·,8. Next, evaluate the following (see Figure 2):

1. Nk = ∑8
j=1(∆Wkkj

< δ). This is the number of pixels withinWk whose intensities are similar (i.e., less than

δ apart) to the intensity of the center pixel.
2. Perform the uniform-neighborhood test:U = (Nk ≥ γ)

3. Horizontal line test:H = {(∆Wkk1
< δ)&(∆Wkk5

< δ)}

4. Vertical line test:V = {(∆Wkk3
< δ)&(∆Wkk7

< δ)}
5. 1stoblique line test:O1 = {(∆Wkk2

< δ)&(∆Wkk6
< δ)}

6. 2ndoblique line test:O2 = {(∆Wkk4
< δ)&(∆Wkk8

< δ)}

W
k
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W
k

3     
W
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W
k
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Figure 2: (a) The windowWk centered on thekth pixel (b) Corresponding window after subtraction ofik

Line/noise detection and the SA-MS process:
Test: Is (U or H orV or O1 or O2 ) true ?
If yes, the intensityik is unchanged.
If no a large variability has been detected andik is possibly noisy. Therefore proceeds to update the intensity:
Step 3: Perform intensity update

1. Generateiknew ∈ L\{ik} at random withL\{ik} being the set of grey levels exceptik

4
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2. Update the temperature withTk = λ×Tk−1

3. Computep = min{1,e−∆U/Tk}, where∆U = U(iknew, ik1···4)−U(ik, ik1···4)

4. Acceptance/Rejection step:
(a) Generate a uniformly-distributed r.v.R∈ [0,1]
(b) If R< p then acceptiknew, i.e., ik ← iknew

(c) If R≥ p then rejectiknew, i.e., ik is unchanged

Step 4: Repeat steps 2 and 3 for the next pixel
Incrementk and go to Step-2 untilk = M×N, theM×N being the size of the image.
Step 5: Repeat steps 2-4until the uniformity test is positive for almost every pixel.

Steps 2-4 constitute one iteration of the SA-MS scheme. The test at the end of Step 2 constitutes a reliable
criterion (based on our experience) to assess when to end the update of the intensities and hence gives us a
stopping criterion. Indeed, if the test is true overwhelmingly for the entire image, the four indicators of speckle
reduction quality will remain almost the same. It will therefore be used as a stopping criterion. The flow-chart
given in Figure 3 summarizes the proposed approach.

3.3 Simulation of speckled images

In order to create a speckled image from an original image we feed the SA-MS algorithm with the original image
and set the temperature at a fix value; the algorithm is then run one time. The noise free image used in this
work is the aerial photograph of a scene; it will be calledTrue-scene[1]. Figures 4(b)-(f) show the results of the
simulations with varying temperatureT0. It can be seen from Figure 4 that, as the temperature increases, so does
the noise, resulting in a decreasingSNRas seen in Table I. For a temperatureT0 approaching zero, the Metropolis
algorithm predicts no major change of the output compared to the current input; this is shown in Figure 4(b).
Basically, in one hand if the temperatureT0 is set high, all configuration changes are accepted and only one scan
of the image is enough to produce a very noisy image (see Figure 4(f)); on the other hand, ifT0 is set very low,
almost no change is allowed and the output image is visually identical to its input (see Figures 4(a)-(b))

T0 0 10 20 30 40 500
SNR(dB) 27.84 14.34 11.12 9.92 9.27 7.06

Table I: Variation of theSNRin terms ofT0.

5
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   Nk=      (∆Wkkj< δ);
   

 U=(Nk> γ) 

H={(∆Wkk1<δ)&(∆Wkk5<δ)}

V={(∆Wkk3<δ)&(∆Wkk7<δ)};
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<δ)}
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k
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k
:
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8

Figure 3: Flow-chart of the speckle reduction proposed approach.
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(a) (b)

(c) (d)
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(e) (f)

Figure 4: (a)True-scene. (b) Speckled version ofTrue-scenewith T0 → 0 and SNR=27.84 dB. (c) Speckled
version ofTrue-scenewith T0 = 10 and SNR=14.34 dB. (d) Speckled version ofTrue-scenewith T0 = 20 and
SNR=11.12 dB. (e) Speckled version ofTrue-scenewith T0 = 40 and SNR=9.92 dB. (f) Speckled version of
True-scenewith T0 = 500and SNR=7.06dB.

3.4 Speckle reduction of simulated speckled image

The goal here is to reduce the speckle existing in Figure 4(c). We compare our proposed approach against
well-known speckle removal filters: the Gamma Map, the modified-Lee and the enhanced Frost filters [5]. The
results of the speckle reduction are presented in Figure 5(c)-5(h). Table II gives a summary of the results. It is
visually obvious that the proposed approach performs better: the results are not blurred and the features are better
preserved. The metrics ENL, MSE,β, and SNR defined in Section 3.1 are evaluated for the proposed approach and
compared to the other filters. From the figures shown and the results obtained, the proposed approach outperform
the other filters. Besides, based on the stopping criterion described in Section 3.2, the proposed approach converge
after the82nditeration (see Table II) since the values of the four metrics remain almost constant after the82nd
iteration.

ENL MSE β SNR(db)
Noisy image 21.96 760.02 0.3139 14.34

Gamma filtered 24.48 309.66 0.4427 18.24
Modified-Lee filtered 25.13 308.32 0.4289 18.26

Enhanced-Frost filtered 24.92 313.41 0.3808 18.19
Proposed approach after the20thiteration 47.75 259.47 0.4606 19.01
Proposed approach after the50thiteration 49.63 251.38 0.4652 19.15
Proposed approach after the82nditeration 49.73 251.15 0.4658 19.15
Proposed approach after the100thiteration 49.73 251.18 0.4657 19.15

Table II: Results of speckle reduction using the simulated speckled image.

8
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 5: (a)True-scene. (b) Speckled version ofTrue-scenewith T0 = 10and SNR=14.34 dB. (c) Modified-Lee
filtered version. (d) Gamma filtered version. (e) Enhanced-Frost filtered version. (f) Proposed approach after 20
iterations. (g) Proposed approach after 50 iterations. (h) Proposed approach after 82 iterations.

10
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3.5 Application of speckle reduction to real SAR image

The SA-MS speckle reduction algorithm described in Section 3.2 is applied to a real SAR image [14]. Two
sub-images of size700×700pixels have been extracted and used to test the proposed approach; they are shown
in Figure 6. Let call these images Image-1 and Image-2, respectively. Note that the speckle reduction quality
assessment of real SAR images are based on theENL metric, since the other metrics required the knowledge of
the true image, which does not exist for real SAR imagery.

Different speckle reduction filters, such as the Lee [12], the Frost [9], the Kuan [11], or the modified-Lee,
the enhanced-Frost and the gamma MAP filters [5], have been tested and the best results were obtained with
the enhanced-Frost. The results obtained for the modified-Lee the gamma Map and the enhanced-Frost are all
presented in this report but the comparative analysis is only done between the enhanced-Frost and the proposed
speckle reduction approach.

Figure 8(a) represents the noisy image Image-1 and Figure 8(b) is its filtered version using the enhanced-
Frost; Figure 8(c)-(g) present its de-noised versions using the proposed approach after 14, 25, 50 and 80 iterations,
respectively. The parameters of the MRF model are set on a case-by-case basis. For this image, the best results
were obtained withT0 = 10−4, αrkkj

= 0.9, λ = 0.99, δ = 5, andγ = 4. Based on theENL, after 14 iterations, the
proposed approach performs better than the enhanced-Frost (see Table III). Besides, according to the stopping
criterion discussed earlier, after the80thiteration, the algorithm stops.

Let analyze and compare the image degradation due to the filtering process. Consider the bright “cross” in
the middle of Image-1. This “cross” will be used to compare the resolution degradation between the proposed
approach and the enhanced-Frost algorithm. At first glance, the“cross” seems to have a reduce resolution in the
proposed approach (Figure 8(e)-(g)) compare to the enhanced-Frost (Figure 8(b)). Let us zoom around the shiny
“cross”. The results are shown in Figure 7. It is clear that the proposed approach let untouched the noise free area,
here the bright “cross”, and de-noises the rest, contrarily to the enhanced-Frost. As a consequence the proposed
approach better preserve the edges compared to the enhanced-Frost approach.

ENL
Image-1 (Noisy) 2.66

Gamma filtered version 7.64
Modified-Lee filtered version 7.96

Enhanced-Frost filtered version 8.08
Proposed approach after the14thiteration 8.10
Proposed approach after the25thiteration 9.93
Proposed approach after the50thiteration 11.63
Proposed approach after the80thiteration 12.21
Proposed approach after the100thiteration 12.24

Table III: Speckle reduction using Image-1, (Note: The higherENL is, the better is the speckle reduction.)

11
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Image−1 Image−2 
Figure 6: Full image showing the two extracted sub-images.

12
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(a) (b)

(c) (d)
Figure 7: (a) First zoom on Image-1 (noisy). (b) First zoom on the enhanced-Frost filtered version of Image-1.
(c) First zoom on the proposed speckle reduction approach of Image-1 after 50 iterations. (d) First zoom on the
proposed speckle reduction approach of Image-1 after 80 iterations.

13
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(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 8: (a) Noisy Image-1. (b) enhanced-Frost. (c) Gamma-Map. (d) modified-Lee. (e) Proposed approach
after 14 iterations. (f) Proposed approach after 25 iterations. (g) Proposed approach after 50 iterations. (h)
Proposed approach after 80 iterations.

15
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Let us zoom in another area of the image as seen on Figure 9. The result of speckle reduction are shown in
Figure 10. Ones again, the proposed approach seems to be less blurred compared to the enhanced-Frost. A better
illustration can be found in Figure 11. The impulse-like curve in blue represents the magnitude in dB of points
from Figure 9 with same X-axis and whose Y-axis varies from index 295 to 310. The speckle reduction results
after 25 and 50 iterations are compared with the enhanced-Frost. It can be seen from Figure 11 that the proposed
approach has preserved the initial peak.

Zoomed area 
(a)

Figure 9: (a) Image-1 showing the second zoomed area.

16
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(a) (b)

(c) (d)

Figure 10: (a) Second zoom of Image-1(noisy). (b) Second zoom on the enhanced-Frost version of Image-1. (c)
Second zoom on the proposed speckle reduction approach after 25 iterations. (d) Second zoom on the proposed
speckle reduction approach after 50 iterations.
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Figure 11: (a) Original PSF-like curve, after enhanced-Frost and after 25 iterations of the proposed approach. (b)
Original PSF-like curve, after enhanced-Frost and after 50 iterations of the proposed approach.

The second image (Image-2) is now processed. Figure 12 and Table IV give a summary of the results. For
this image, the convergence occurs after 60 iterations. Then, an area of Image-2 shown in Figure 13 is zoomed,
in order to compare the degradation effect on the edges due to the two speckle reduction approaches. The results
are presented in Figure 14; once again, the results of the proposed approach seem to be less blurred compare to
the enhanced-Frost.

(a) (b)
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(c) (d)

(e) (f)

Figure 12: (a) Noisy Image-2. (b) Enhanced-Frost. (c) Gamma-Map. (d) Modified-Lee. (e) Proposed approach
after 46 iterations. (f) Proposed approach after 60 iterations.

ENL
Image-2 (Noisy) 3.07

Gamma filtered version 9.39
Modified-Lee filtered version 10.17

Enhanced-Frost filtered version 10.39
Proposed approach after the46thiteration 10.40

Proposed approach after55thiteration 10.50
Proposed approach after60thiteration 10.53
Proposed approach after80thiteration 10.54

Table IV: Speckle reduction using Image-2 (Note: The higherENL is, the better is the speckle reduction).
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Zoomed area 

(a)

Figure 13: (a) Image-2 showing the zoomed area

20



UNM Technical Report: EECE-TR-2004-26

(a) (b)

(c) (d)

Figure 14: (a) Zoomed Image-2. (b) Zoomed enhanced-Frost. (c) Zoomed proposed approach after 46 iterations.
(d) Zoomed proposed approach after 60 iterations.

4 Conclusion

The three major contributions of this report are: first, it presents a novel model of speckled imagery in the context
of MRFs; second, the model is used together with the Metropolis SA algorithm to reduce the speckle in real
SAR imagery; third, it introduces a stopping criterion for the SA in order to have an objective assessment of the
convergence of the algorithm and avoid over-smoothed or blurred images.

The reduction process using our proposed approach seems to outperform the Gamma Map, the modified-Lee
and the enhanced-Frost filters. Various speckled images have been tested showing a similar trend. Three main
reasons can explain this improved performance. Firstly, the intrinsic spatially-correlated and signal-dependent
nature of speckle noise makes the MRF framework a natural choice. Secondly, the SA, being an iterative method,
allows a gradual and interactive noise removal compared to the standard methods [7]. Thirdly, since the energy
function used in the SA is derived according to the physical model of the speckle, which, in turn, leads to a
reliable speckle reduction.

Due to the computational complexity of the SA-MS algorithm, a more efficient version of the speckle de-
noising approach, within the same MRF framework, has also been developed showing comparable results. The
new procedure is based on an optimal estimate of the true image intensity, in the sense of minimizing the MSE,
and it is given by the conditional expectation of a pixel given its four neighbors. This alternate approach takes
on Matlab approximately 5 minutes yieldingENL= 8.23 (using only one iteration!), compared to the SA-MS
algorithm, which takes approximately 66 minutes to yieldENL= 8.10 (using 14 iterations).

The authors wish to thank Dr. Armin Doerry at Sandia National Laboratories for providing valuable sugges-
tions and SAR imagery.
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