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PSEUDOSPECTRAL SOLUTION OF THE TWO-DIMENSIONAL
NAVIER–STOKES EQUATIONS IN A DISK∗

D. J. TORRES† AND E. A. COUTSIAS‡

SIAM J. SCI. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 21, No. 1, pp. 378–403

Abstract. An efficient and accurate algorithm for solving the two-dimensional (2D) incompress-
ible Navier–Stokes equations on a disk with no-slip boundary conditions is described. The vorticity-
stream function formulation of these equations is used, and spatially the vorticity and stream func-
tions are expressed as Fourier–Chebyshev expansions. The Poisson and Helmholtz equations which
arise from the implicit-explicit time marching scheme are solved as banded systems using a postcon-
ditioned spectral τ -method. The polar coordinate singularity is handled by expanding fields radially
over the entire diameter using a parity modified Chebyshev series and building partial regularity into
the vorticity. The no-slip boundary condition is enforced by transferring one of the two boundary
conditions imposed on the stream function onto the vorticity via a solvability constraint. Significant
gains in run times were realized by parallelizing the code in message passage interface (MPI).

Key words. spectral methods, coordinate singularity, parallel

AMS subject classifications. 76D05, 35Q30, 65M70, 65N35

PII. S1064827597330157

1. Introduction. An efficient and accurate algorithm for solving the 2D in-
compressible Navier–Stokes equations on a disk with no-slip boundary conditions is
presented. The vorticity-stream function formulation of these equations is employed.

Spatially, the vorticity and stream functions are expressed as Fourier–Chebyshev
expansions. The temporal evolution treats the nonlinear terms explicitly and the dif-
fusion terms implicitly. The third-order stiffly stable scheme used for marching the
solution forward in time requires the solution of a Poisson and a Helmholtz equation
each time step. Since Fourier modes decouple, solving each of these elliptical equations
amounts to solving a singular ordinary differential equation (ODE) for each Fourier
mode, which is accomplished using the Chebyshev τ -method (Boyd [3]). The matri-
ces that arise from these are transformed to banded form using a variation on the
method developed by Coutsias et al. [7]. As such, only O(NMlog(NM)) operations
are required to advance the solution one time step, where N is the number of Fourier
modes and M is the number of Chebyshev modes, accounting for the fast Fourier
transform–fast cosine transform (FFT-FCT) (Temperton [20]) required to evaluate
the nonlinear terms (Canuto et al. [4]).

Poisson’s equation can be solved accurately in spite of the polar coordinate sin-
gularity. However, the singularity does degrade the accuracy of the Helmholtz equa-
tion for high Reynolds numbers. The singularity has been investigated by several
authors in a spectral τ, Galerkin, and collocation context; namely, Gottlieb and
Orszag [11], Eisen et al. [9], Fornberg [10], Huang and Sloan [12], Orszag [16], Shen
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2D FLOW IN A DISK 379

[19], Matsushima and Marcus [13], and Verkley [22, 23]. Several algorithms for three-
dimensional (3D) cylindrical geometries are discussed in Priymak [17].

Gottlieb and Orszag [11] propose using an even Chebyshev expansion for even
Fourier modes and an odd Chebyshev expansion for odd Fourier modes,

un =
M∑
k=0

n+keven

ankTk(r), 0 ≤ r ≤ 1,

in computing eigenvalues of Bessel’s equation,

u′′n +
1

r
u′n −

n2

r2
un = −λun,(1)

since the eigenfunctions of (1) inherit the parity of the Fourier mode, n. In addition,
they find that convergence improves if a boundary condition is imposed at the center,
u′n(0) = 0 for n 6= 1.

Eisen et al. [9] also propose using even and odd expansions in solving the cylin-
drical Poisson, −∇2u = f, and Helmholtz equation

−∇2u+ λu = f(2)

with a spectral collocation method. However, they expand over the interval −1 ≤ r ≤
1. The expansion is constructed by extending a function fn(r), originally defined on
[0, 1] to [−1, 1], using

fn(−r) =

{
fn(r) if n even,
−fn(r) if n odd,

(3)

where n is the Fourier mode. The pole condition un(0) = 0 is suggested for Fourier
modes n 6= 0. For n = 0, the pole conditions

−2
d2u0

dr2

∣∣∣∣∣
r=0

= f0(0) and − 2
d2u0

dr2

∣∣∣∣∣
r=0

+ λu0|r=0 = f0(0)

are used for the Poisson and Helmholtz equations, respectively.
Eisen et al. [9] also investigate the handling of the polar coordinate singularity

by mapping the unit disk onto a rectangle with a monomial expansion

u(r, θ) =

M∑
n=0

M∑
k=−M+1

ankΦ◦nk

in the spectral collocation context, where Φ◦nk = rneikθ. While spectral accuracy is
achieved for N ≤ 16, rounding errors contaminate the results for large values of N .

A collocation approach is described by Huang and Sloan [12] for computing eigen-
values of Bessel’s equation (1) using a Chebyshev expansion on 0 ≤ r ≤ 1. Spectral
convergence for the first and second eigenvalue for different Fourier modes is realized
when

un(0) = 0, n 6= 0, u′0(0) = 0(4)

are enforced. A spectrally accurate solution of the Helmholtz equation (2) is also
achieved with an equivalent form of the pole condition (4).
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Building additional regularity into the solution

f(r, θ) =
∑

fn(r)rneinθ

is studied by Orszag et al. [16] and in a spherical context by Merilees [14]. Such
regularity is justified since the nth Fourier coefficient of a function f(r, θ) decays as
rn near the origin. However, generating the expansion coefficients fn(r) from f(r, θ)
is an ill-conditioned operation as r → 0 for large truncations on 0 ≤ r ≤ 1.

Shen [19] uses an efficient spectral-Galerkin approach in solving the Helmholtz
equation on a unit disk. He enforces the boundary condition un(0) = 0, n 6= 0 for
Fourier modes n greater than zero by using basis functions

φi(x) = Li(x)− Li+1(x), i = 0, 1, ..., N − 2,

where Li represents either the ith degree Legendre or the Chebyshev polynomial. A
regularity boundary condition for n = 0 is not enforced. The Galerkin method insures
that the regularity condition un(0) = 0, n 6= 0 will automatically be satisfied.

Matsushima and Marcus [13] treat the singularity in an elegant way using the basis
Qmn (α, β; r)eimθ (with m + n even), where Qmn (α, β; r) is an orthogonal polynomial
which behaves as O(r|m|) as r → 0. Verkley [22, 23] works along similar lines by using
the basis functions r|m|P (0,|m|)(2r2−1)eimθ, where P (0,|m|) are the Jacobi polynomials.
Although such expansions share with the Chebyshev method efficient representations
of the relevant differential operators, as they all rely on orthogonal polynomials of
a hypergeometric type (see [7]), an efficient implementation for large truncations
requires a fast transform on these bases which is not readily available.

The treatment of the Helmholtz polar coordinate singularity here follows Eisen
et al. [9] (see also Fornberg [10]) in expanding solutions over the interval −R ≤ r ≤ R
rather than 0 ≤ r ≤ R. From a Navier–Stokes perspective, the expansion also puts less
of a constraint on one’s time step, due to the distribution of the Gaussian quadrature
nodes. However, the implemented solution of the Helmholtz equation proposed here
builds partial regularity into the vorticity, similar to the coordinate transformation
used in [18] for velocity and pressure. If ωn represents the nth Fourier mode of vorticity,
we assume ωn = r2sn for n ≥ 2 and ω1 = rs1, and solve for sn rather than ωn in
the Helmholtz equation. While ideally ωn = rnsn, we are precluded from making
such an assignment due to severe ill-conditioning which arises in the FFT. Finding
an optimal α, where ωn = rαsn, is a matter of balancing the conditioning between
the FFT and the Helmholtz equation. Our choice of partial regularity represents an
adequate compromise while allowing a lean implementation. An optimal analysis will
be pursued later.

In addition, no-slip boundary conditions are constructed and imposed differently
than methods used by other authors: Dennis and Quartapelle [8] and Coutsias and
Lynov [5] solve the incompressible fluid equations in a vorticity-stream function for-
mulation.

The code is written in Fortran 90 and is parallelized using the MPI parallel
language. Since Fourier modes can be handled independently of each other, the Pois-
son and Helmholtz equations can be solved independently on each processor for a
particular range of Fourier modes. In addition, the potential memory capacity is en-
hanced in parallel, since each processor only holds a fraction of the total number of
Fourier modes. No communication between processors is required, except when non-
linear terms need be multiplied. Multiplication is performed by transforming fields
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Table 1
Computational speed-up m× n denotes m Chebyshev modes and n Fourier modes.

Processors 256x256 512x512 1024x512 1000x800
1 1.00 1.00 1.00 1.00
2 1.35 1.42 1.41 1.51
4 2.43 2.78 2.74 3.06
6 3.54 4.01 3.98 4.51
8 4.33 5.00 5.02 5.75
10 5.39 6.05 6.00 6.83
12 6.21 6.79 6.90 8.16
14 6.71 7.92 7.70 9.35
16 7.00 8.67 8.49 10.11

to point space using a parallel FFT-FCT algorithm, multiplying the fields in point
space in transposed form, and transforming the product back into mode space. Using
our implementation in MPI, we realize significant gains in computational speed by
parallelizing the code, especially at larger truncations, as Table 1 shows. The code
developed for one processor eliminates inefficiencies introduced by the parallelization
and thus differs from the parallel code.

The paper is organized as follows: Section 2 discusses the incompressible Navier–
Stokes equations and the implicit-explicit time discretization used to solve them. As-
pects of the Fourier–Chebyshev spatial expansion are also described. Appendix A
discusses an efficient technique for solving ODEs using the spectral τ -method. Sec-
tion 3 applies the technique to the Poisson and Helmholtz operators which arise from
the vorticity-stream function formulation and the implicit time discretization. We
also discuss how imposing regularity on the vorticity improves the conditioning of
the linear systems. Section 4 discusses the construction and imposition of boundary
constraints on the vorticity. Section 5 summarizes the work and ends with a numerical
calculation of a vortex dipole colliding with a cylindrical wall.

2. Incompressible Navier–Stokes equations. This section discusses the so-
lution of the 2D incompressible Navier–Stokes equations in the vorticity-stream func-
tion formulation, using a Fourier–Chebyshev spectral expansion. The equations are
solved in a disk geometry, 0 ≤ r ≤ R, 0 ≤ θ < 2π.

Let ~u, ρ, p, and ν denote the velocity field, density, pressure, and kinematic viscos-
ity, respectively. The incompressible Navier–Stokes equations include the momentum
equation

∂~u

∂t
+ ~u · ∇~u = −1

ρ
∇p+ ν∇2~u(5)

and the conservation of mass equation

∇ · ~u = 0.(6)

Taking the curl of (5) yields

∂ω

∂t
+ J(ω, ψ) = ν∇2ω,(7)

where ω is the vorticity in the z-direction and ψ, the stream function, is defined by

~u = ∇ψ × êz.(8)
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The Jacobian J(ω, ψ) is defined by

J(ω, ψ) =
1

r

[
∂ω

∂r

∂ψ

∂θ
− ∂ω

∂θ

∂ψ

∂r

]
(9)

and is computed at the origin using Cartesian coordinates,

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ψ

∂x

∂ω

∂y
.

To find the x- and y-derivative at the origin of a function defined in terms of r and
θ, it is easiest to set θ equal to 0 and π

2 , respectively, and find the r-derivative.
By taking the curl of (8), one obtains

∇2ψ = −ω.(10)

Equations (7) and (10) form the vorticity-stream function formulation of the
incompressible Navier–Stokes equations (5) and (6).

2.1. Time integration scheme. The presence of both nonlinear and linear
terms in (7) suggests the use of an implicit-explicit time integration scheme. The
diffusive term is treated implicitly for stability reasons, while the nonlinear term is
treated explicitly for simplicity. Following Ascher et al. [2], we employ a third order
semi-implicit backward differentiation formula time integration scheme (a stiffly stable
scheme). At each time step, the following equations are solved (the superscript denotes
the time level):

∇2ψk = −ωk,(11)

(1− νδt∇2)ωk+1 =
6

11

{
3ωk − 3

2
ωk−1 +

1

3
ωk−2 + δt(3F k − 3F k−1 + F k−2)

}
,(12)

where F k = −J(ωk, ψk) and δt is the time step. Thus one Poisson and one Helmholtz
equation are solved at each time step.

2.2. Fourier–Chebyshev expansion. The spatial (r, θ) dependence of ω and
ψ is treated spectrally. Due to the periodicity in the θ direction, ψ and ω are expanded
in a Fourier series,

ψ(r, θ) =

N
2∑

n=0

ψcn(r) cosnθ +

N
2 −1∑
n=1

ψsn(r) sinnθ,(13)

ω(r, θ) =

N
2∑

n=0

ωcn(r) cosnθ +

N
2 −1∑
n=1

ωsn(r) sinnθ.(14)

The term ψn will be used to denote either ψcn or ψsn and similarly for ωn.
A choice for the orthogonal polynomial basis must be made for the radial ex-

pansion. The Chebyshev polynomials prove useful in this regard. The Chebyshev
expansion coefficients for a function of one variable can be generated efficiently in
O(Mlog(M)) operations using a fast cosine transform, M being the number of ex-
pansion coefficients. The functions ψn and ωn are expanded in a Chebyshev series
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defined on the entire interval −R ≤ r ≤ R, as opposed to the half-interval 0 ≤ r ≤ R.
For Guass–Lobatto quadrature points, the grid is ri = Rcos( πiM ), 0 ≤ i ≤ M . Note
that only the half-interval [0, R] is used in computing with fields in point space. This
grid is resolved near r = R, where the grid spacing is O( 1

M2 ), and sparse near r = 0,
where the grid spacing is O( 1

M ). The grid spacing near the origin does not overcon-
strain the time step by the Courant–Friedrichs–Lewy condition. Also, it is observed
that the condition numbers for the spectral matrices that arise improve if ψn and ωn
are expanded over the entire interval [−R,R], compared to the half interval [0, R]. We
radially expand ψn and ωn on [−R,R], following Eisen et al. [9] and using equation
(3) to arrive at the following expressions:

ψn(r) = ψn(Rx) =
m=M∑
m=0

n+m=even

ψnmTm(x), ωn(r) =
m=M∑
m=0

n+m=even

ωnmTm(x).(15)

Here Tm(x) represents the Chebyshev polynomial of order m, −1 ≤ x ≤ 1.

2.3. Poisson and Helmholtz equations. Advancing the Navier–Stokes equa-
tions in time requires the solution of a Poisson (11) and a Helmholtz (12) equation.
In cylindrical coordinates, Poisson’s equation ∇2ψ = −ω assumes the form[

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2

]
= −ω(r, θ),

0 ≤ r ≤ R, 0 ≤ θ < 2π.

Multiplying by r2, substituting the Fourier expansions for ψ and ω, and using the
orthogonality of the sine and cosine functions, one arrives at the following ODEs,

r2 d
2ψn
dr2

+ r
dψn
dr
− n2ψn = −r2ωn, 0 ≤ n ≤ N

2
.(16)

In cylindrical coordinates, the Helmholtz equation assumes the form

ω(r, θ)− ε
[
∂2ω

∂r2
+

1

r

∂ω

∂r
+

1

r2

∂2ω

∂θ2

]
= f(r, θ),(17)

where ε ≡ ν∗δt and f(r, θ) denotes the right hand side of (12). Again, as with Poisson’s
equation, one generates a set of ODEs similar to those of Poisson’s equation,

r2ωn − ε
[
r2 d

2ωn
dr2

+ r
dωn
dr
− n2ωn

]
= r2fn, 0 ≤ n ≤ N

2
.(18)

2.4. Boundary conditions. No-slip boundary conditions are imposed. A ve-
locity field ~u is composed of a radial and tangential component,

~u = (uêr + vêθ) =

(
1

r

∂ψ

∂θ
êr − ∂ψ

∂r
êθ

)
.

The no-slip constraint is v|r=R = U, which translates (in terms of the stream function)
into

∂ψ

∂r

∣∣∣∣
r=R

= −U.(19)
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In addition, the normal component of the velocity should be zero at the boundary
(u|r=R = 0), which translates into

∂ψ

∂θ

∣∣∣∣
r=R

= 0.(20)

In terms of the individual Fourier components, the no-slip constraints (19) are

dψn
dr

∣∣∣∣
r=R

= 0 n > 0,
dψ0

dr

∣∣∣∣
r=R

= −U(21)

and the normal constraints (20) are

ψn|r=R = 0 n > 0.(22)

Two sets of boundary conditions on ψn, n > 0, (21)–(22), cause the Poisson
equation to be overdetermined. This difficulty is resolved in section 4.

2.5. Evolution diagnostics. The temporal evolution of the energy (E), enstro-
phy (Ω), circulation (C), and angular momentum (L) in a disk with no-slip boundary
conditions can be derived from (5)–(7):

dE

dt
= νCω0|r=R − νΩ,(23)

dΩ

dt
= 2πRν

∂(ω2)0

∂r

∣∣∣∣
r=R

− 2ν

∫ 2π

0

∫ R

0

[ (
∂ω

∂r

)2

+

(
1

r

∂ω

∂θ

)2 ]
rdrdθ,(24)

dC

dt
= 2πν

dω0

dr

∣∣∣∣
r=R

,(25)

dL

dt
= 2πR2νω0|r=R − 2νC,(26)

where

E =
1

2

∫ ∫
r≤R

~u · ~u dS, Ω =

∫ ∫
r≤R

ω2dS

and

C =

∮
r=R

~u · ~dl, L = êz ·
∫ ∫

r≤R
rêr × ~u dS.

Following Coutsias and Lynov [5], these equations are used to track the temporal
accuracy of the code.

3. Banding Poisson and Helmholtz operators. We will now apply the tech-
niques of Appendix A to solve the Poisson (16) and Helmholtz ODEs (18). Applying
the spectral τ -method to the Poisson equations in the standard way, one forms the
system of equations (59)

1

R2

[−x2D2 − xD + n2I
]
~ψn = x2~ωn,(27)
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where the convolution and differentiation matrices, x and D, transform the vector of
coefficients for f(x) into the vector of coefficients for xf(x) and df

dx , respectively. Here
(16) has been transformed to use the independent variable, x = r

R , −1 ≤ x ≤ 1.
Letting

~ψn = P2 ~ψ∗n,(28)

where P is the postconditioner introduced in Appendix A, one obtains the banded
system

1

R2

[−x2D2P2 − xDP2 + n2P2
]
~ψ∗n = x2~ωn.(29)

For the Chebyshev polynomials,

P2 =



1 0 0 0 · · · 0
0 1 0 −1

2 · · · 0
0 0 1

2i 0 − 1
2i 0

...
... 0

. . . 0 −1
2M−4

0 0 0 0 1
2M−2 0

0 0 0 0 0 1
2M





1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0
0 0 1 0 − 1

2 · · · 0
0 0 0 + 1

2i 0 − 1
2i 0

...
... 0 0

. . . 0 −1
2M−6

0 0 0 0 0 1
2M−4 0

0 0 0 0 0 0 1
2M−2


,

DP2 =



0 1 0 0 0 0 · · · 0
0 0 1 0 −1

2 0 · · · 0
0 0 0 + 1

4 0 −1
4 0 0

0 0 0 0 + 1
2i 0 − 1

2i 0

0 0 0 0 0
. . . 0 −1

2M−6
...

... 0 0 0 0 1
2M−4 0

0 0 0 0 0 0 0 1
2M−2

0 0 0 0 0 0 0 0


,

D2P2 =



0 0 1 0 0 0

0
... 0 1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 1
0 0 0 0 0 0
0 · · · 0 0 0 0


, x =



0 .5 0 0 0 0
1 0 .5 0 0 0
0 .5 0 .5 0 0

0 0
. . . 0

. . . 0
0 0 0 .5 0 .5
0 · · · 0 0 .5 0


.

We found that our postconditioned method required no special treatment for Pois-
son’s equation. Spectrally accurate solutions for this singular problem were obtained
at large truncations M by solving the system (29) with boundary conditions.

However, the spectral accuracy of the postconditioned method solution was de-
graded for the Helmholtz equation

u− ε∇2u = f
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Table 2
Errors in a postconditioned solution of Helmholtz equation (17) with Dirichlet boundary condi-

tions without regularity where f(r, θ) was generated by letting ω be the exact solution, ε = 1× 10−9,
Fourier modes = 256, and a varying number of Chebyshev modes −1 ≤ x ≤ 1, R = 1.

ω(x, y) 32 64 128 256 512 1024 2048

sin(x2y) 9(−15) 3(−14) 2(−13) 1(−12) 2(−12) 2(−11) 2(−11)

e−5r2 1(−11) 6(−15) 2(−13) 3(−14) 1(−12) 8(−12) 2(−12)

cos(cos(x+ y)) 6(−14) 2(−13) 2(−13) 3(−12) 9(−12) 5(−11) 1(−10)

r7sin(7θ) 3(−14) 8(−14) 1(−12) 3(−12) 2(−11) 8(−11) 2(−10)

ex+y+y2
2(−13) 8(−13) 2(−12) 2(−11) 6(−11) 3(−10) 2(−9)

sin(πr2) 9(−14) 3(−13) 5(−13) 5(−12) 1(−11) 5(−11) 1(−10)

cos(5r) 4(−14) 2(−13) 1(−12) 2(−13) 1(−11) 3(−11) 2(−10)

J0(r) 5(−14) 1(−13) 9(−14) 1(−12) 7(−12) 9(−11) 5(−11)

Table 3
Errors in postconditioned solution of Helmholtz equation (17) with Dirichlet boundary condi-

tions with regularity where f(r, θ) was generated by letting ω be the exact solution: ε = 1 × 10−9,
Fourier modes = 256, and a varying number of Chebyshev modes −1 ≤ x ≤ 1, R = 1.

ω(x, y) 32 64 128 256 512 1024 2048

sin(x2y) 2(−15) 1(−15) 5(−15) 7(−15) 1(−14) 1(−14) 2(−14)

e−5r2 9(−13) 2(−13) 9(−15) 1(−14) 2(−14) 3(−14) 8(−14)

cos(cos(x+ y)) 2(−12) 7(−13) 9(−14) 2(−14) 6(−15) 4(−14) 5(−14)

r7sin(7θ) 6(−15) 6(−15) 8(−15) 4(−14) 5(−14) 2(−13) 1(−13)

ex+y+y2
1(−11) 2(−12) 5(−14) 1(−13) 1(−13) 5(−13) 5(−13)

sin(πr2) 4(−12) 4(−13) 7(−14) 9(−15) 1(−14) 5(−14) 4(−14)

cos(5r) 2(−12) 3(−14) 3(−14) 1(−14) 2(−14) 1(−13) 4(−14)

J0(r) 8(−12) 2(−14) 3(−15) 1(−14) 8(−15) 1(−14) 2(−14)

on either −1 ≤ x ≤ 1 or 0 ≤ x ≤ 1 for small ε� 1, and large truncations. See Table
2 for the expansion interval −1 ≤ x ≤ 1. The degradation of accuracy is even more
dramatic for 0 ≤ x ≤ 1.

As epsilon becomes small, the Helmholtz ODEs (18) start to resemble

r2ωn = r2fn(r).

Not surprisingly, the spectral operator r2, supplemented with tau constraints, becomes
ill-conditioned as the truncation M increases. One would similarly find numerical
inaccuracies if r2fn(r) was divided by r2 in point space as r → 0.

However, one can improve the situation by building regularity into the solution
ωn(r). See Table 3. Consider the equations (18). Different strategies are employed for
different Fourier modes, n.
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3.1. Fourier mode = 1. If n = 1, set ω1(r) = rs1(r). This is valid since ω1(r)
should decay like r near the origin. The equation now assumes the form

r2(rs1)− ε
[
r2 d

2(rs1)

dr2
+ r

d(rs1)

dr
− rs1

]
= r2f1,

or, after cancellation of r2,

rs1 − ε
[
r
d2s1

dr2
+ 3

ds1

dr

]
= f1.(30)

Truncating the spectral expansions, one obtains the linear system

Rx~s1 − ε

R

[
xD2 + 3D

]
~s1 = ~f1,(31)

where x = r
R , −1 ≤ x ≤ 1. Finally, letting ~s1 = P2 ~s∗1 yields the system of equations

RxP2 ~s∗1 −
ε

R

[
xD2P2 + 3DP2

]
~s∗1 = ~f1,(32)

which is supplemented with a tau constraint arising from a boundary condition at
x = 1. After solving for ~s∗1, ~ω1 is recovered through

~ω1 = RxP2 ~s∗1.(33)

If ε is small, spurious modes present in ~s∗1, due to the near inversion of xP2, are almost
eliminated upon multiplication by xP2.

3.2. Fourier mode ≥ 2. If n ≥ 2, set ωn(r) = r2sn(r). This is valid since ωn(r)
should decay as rn near the origin. Upon substituting this form of ωn(r) into (18) and
cancelling r2, one obtains

r2sn − ε
[
r2 d

2sn
dr2

+ 5r
dsn
dr

+ (4− n2)sn

]
= fn.(34)

Letting ~sn = P2 ~s∗n yields the linear system

R2x2P2 ~s∗n − ε
[
x2D2P2 + 5xDP2 + (4− n2)P2

]
~s∗n = ~fn.(35)

The expansion ~ωn is recovered via

~ωn = R2x2P2 ~s∗n.(36)

If ε is small, spurious modes present in ~s∗n, due to the near inversion of x2P2, are
almost eliminated upon multiplication by x2P2.

3.3. Fourier mode = 0. Fourier mode n = 0 requires more care. While no
immediate regularity can be built into ω0(r), regularity can be built into the derivative
of ω0(r). Start by dividing (18) by r2,

ω0 − ε
[
d2ω0

dr2
+

1

r

dω0

dr

]
= f0.(37)
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Differentiating and multiplying by r2, one forms an ODE in dω0

dr ,

r2 dω0

dr
− ε
[
r2 d

3ω0

dr3
+ r

d2ω0

dr2
− dω0

dr

]
= r2 df0

dr
.

Now set

dω0

dr
= rs0.(38)

This assignment is valid since ω0 will have an expansion of the form

ω0 = a0 + a2r
2 + a4r

4 + · · · .
Form (38) is dictated by the Neumann boundary conditions (63) on ωo. Substituting
and simplifying, it follows that

rs0 − ε
[
r
d2s0

dr2
+ 3

ds0

dr

]
=
df0

dr
.(39)

This operator is the same operator used with Fourier mode, n = 1,

RxP2 ~s∗0 −
ε

R

[
xD2P2 + 3DP2

]
~s∗0 =

D~f0

R
,(40)

where ~s0 = P2 ~s∗0. The term ~dω0

dx is recovered via

~dω0

dx
= R2xP2 ~s∗0(41)

and ~ω0 is recovered via

~ω0 = B
~dω0

dx
(42)

by (68). The first component of ~ω0 can be determined using (37). Equation (37) can
be written in the form

ω0 − ε
[
r
ds0

dr
+ 2s0

]
= f0

using (38). Now evaluate at r = R or x = 1,

ω0|x=1 = f0|x=1 + ε

[
ds0

dx
+ 2s0

] ∣∣∣∣∣
x=1

.(43)

3.4. Conditioning. In this section, we discuss the conditioning of the matrices
arising from the Helmholtz ODE (18) matrices using the substitutions (33), (36), and
(41). All linear systems (32), (35), and (40) involve the solution of a banded system

A~s∗ = ~f(44)

for ~s∗, followed by multiplication by xlP2, l = 1, 2,

~u = xlP2 ~s∗.(45)
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Table 4
Condition numbers using l2 norm, n = 3 or n = 10, for ε = 1 × 10−9 for varying Chebyshev

truncations. A = x2P2 − ε[x2D2P2 + 5xDP2 + (4 − n2)P2] with Dirichlet boundary condition,
τ1 · x2P2 Ã = x2P2 − ε[x2D2P2 + xDP2 − n2P2] with Dirichlet boundary condition, τ1 ·P2.

Truncation ‖A‖ ‖x2P2A−1‖ ‖Ã‖ ‖Ã−1‖
8 2.8, 2.4 1.8× 103, 3.0 ×103

16 3.9, 3.8 2.8× 104, 3.6 ×104

32 5.3, 5.3 4.3× 105, 4.8 ×105

64 7.3, 7.4 6.7× 106, 7.0 ×106

128 9.0, 10.3 9.8× 107, 1.0 ×108

256 5.8, 14.5 7.3× 108, 7.3 ×108

512 6.6, 20.2 3.1× 109, 7.4 ×109

1024 8.7, 27.8 5.0× 1010, 1.1 ×1011

Reciprocal of alpha for sin(x*x*y)
1/alpha
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Fig. 1. Reciprocal of α, α =
‖x2P2 ~s∗n‖
‖ ~s∗n‖

, n ≥ 2, where s∗n is generated by solving (35) with

Dirichlet boundary conditions with right hand side corresponding to exact solution ω = sin(x2y),
−1 ≤ r ≤ 1 using 1024 Chebyshev modes.

Neglecting higher order errors, the effective condition number is

‖ ~4u‖
‖~u‖ ≤

1

α
‖xlP2A−1‖ ‖A‖

(
δf + 2δA

)
,

where δf and δA represent the relative errors in ~f and A. Appendix B supplies the
details.

Table 4 shows the condition numbers of the relevant matrices for systems with
and without regularity on −1 ≤ x ≤ 1, with Dirichlet boundary conditions for small
ε. Values (for both the sine and cosine) of 1

α are graphed versus the Fourier mode

in Figures 1 and 2 for exact solutions, ω = sin(x2y) and ω = ex+y+y2

. Compare the
product of column 2 of Table 4 with 1

α from Figures 1 and 2 with column 3 of Table
4. Obviously we cannot generate α for all solutions, but for these exact solutions, one
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Reciprocal of alpha for exp(x+y+y*y)
1/alpha

Fourier mode
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Fig. 2. Reciprocal of α, α =
‖x2P2 ~s∗n‖
‖ ~s∗n‖

, n ≥ 2, where s∗n is generated by solving (35) with

Dirichlet boundary conditions with right hand side corresponding to exact solution ω = ex+y+y2
,

−1 ≤ r ≤ 1 using 1024 Chebyshev modes.

has solved the Helmholtz equation with regularity, with condition numbers that are
four orders of magnitude better for a Chebyshev truncation of 1024 for the majority
of Fourier modes. Tables 2 and 3 show that we have improved the accuracy of other
smooth solutions. The accuracy without regularity would suffer even more dramati-
cally if an expansion interval of 0 ≤ r ≤ 1 was used. The condition numbers in Table
4 do not seem to vary much between Fourier modes of the same parity since ε << 1.

4. Boundary conditions. Two sets of boundary conditions on ψ ((21)–(22))
n > 0, cause the Poisson equation to be overdetermined.

In addition, no boundary conditions are imposed on the vorticity, ω. One can
resolve this dilemma by transferring one set of boundary constraints on ψ onto ω.
This scheme uses a matrix approach and differs from the no-slip boundary schemes
used by Dennis and Quartapelle [8] and Coutsias and Lynov [5].

It is efficient in that only O(M) operations are required to compute the boundary
constraint on ~ωn for each Fourier mode. Since the boundary constraints on ~ωn will
not be Dirichlet constraints, the condition numbers shown in Table 4 will change.
However, benefits of the partial regularity built into ~ωn should continue to improve
the accuracy of solutions.

Let ~τ1 denote the row vector which evaluates a vector of expansion coefficients at
x = 1 upon multiplication (i.e., ~τ1 · ~f = f(x)|x=1). Let ~τ2 denote the row vector which
evaluates the derivative of a Chebyshev expansion at x = 1 upon multiplication (i.e.,

~τ2 · ~f = f ′(x)|x=1). For Chebyshev polynomials,

~τ1 = (1, 1, 1, . . . , 1, 1), ~τ2 = (0, 1, 4, 9, . . . , i2, . . . ,M2),(46)

if M + 1 is the length of the expansion.
First consider Fourier modes, n > 0. When Poisson’s equation is solved, we choose

to enforce Dirichlet boundary conditions on ~ψn. The Neumann conditions on ~ψn will
not be satisfied unless the right hand side (~ωn) is forced to be orthogonal to a certain
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vector (solvability constraint). These solvability constraints enter the solution process
when they are inserted as tau constraints in the Helmholtz operator.

One can generate these solvability constraints by replacing the last two rows of
the operator (27) with Dirichlet tau conditions. Denote this M + 1 by M + 1 matrix
by ∇2

D,n,

∇2
D,n

~ψn = x2~ωn,(47)

where x2~ωn now denotes a vector whose last two components hold the boundary
values ψn(r)|r=1 and ψn(r)|r=−1. By (22), these values are zero. Continuing,

~ψn = (∇2
D,n)(−1)

(
x2~ωn

)
.

One must require that

~τ2 · ~ψn = ~τ2 · (∇2
D,n)(−1)x2~ωn = 0.

Defining the row vector ~bn ≡ ~τ2 · (∇2
D,n)(−1) to be the solvability constraint on x2~ωn,

one has

~bn · x2~ωn = 0, n > 0,(48)

which must be satisfied for the no-slip condition to be enforced. Take the definition
of ~bn and multiply on the right by ∇2

D,n to obtain

~τ2 = ~bn · ∇2
D,n

or

(∇2
D,n)T~bTn = ~τT2 .(49)

Thus, one can generate the solvability constraints by driving the transpose of the
Dirichlet Poisson operator with a Neumann tau vector. Multiply (49) on the left by
(P2)T to generate a banded system

(∇2
D,nP2)T~bTn = (~τ2 ·P2)T

for each Fourier mode n > 0. The bandwidth can again be reduced in half using the
fact that ~bn will only act on vectors representing even functions for n even and vectors
representing odd functions for n odd.

By (33) and (36), one has

~ω1 = RxP2 ~s∗1, ~ωn = R2x2P2 ~s∗n, n ≥ 2.

Since one actually solves for ~s∗n in equations (32) and (35), one must cast the
solvability constraints so they act on ~s∗n. From (48) and the above equations, it is
evident that

~b1 · x3P2 ~s∗1 = 0, ~bn · x4P2 ~s∗n = 0, n ≥ 2(50)

must be satisfied. Row vectors ~b1 ·x3P2 and~bn ·x4P2 are inserted as tau constraints in
the matrices (32) and (35). Now consider Fourier mode, n = 0. By (21), dψ0

dr |r=R = −U
should be enforced.
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Equation (16), n = 0, can be written in the form

d

dr

[
r
dψ0

dr

]
= −rω0.(51)

Integrating over the disk
∫ 2π

0

∫ R
0
, one has

2πR
dψ0

dr

∣∣∣
r=R

= −
∫ 2π

0

∫ R

0

ω0rdrdθ = −
∫ 2π

0

∫ R

0

ωrdrdθ = −C = −2πRU.(52)

Recall that C is used to denote the circulation, C =
∮
r=R

~u · dl. By the first and
the last term in (52) , it is evident that the boundary condition (21), n = 0, will be
enforced automatically upon solving (16) for n = 0.

However, since U = u(r=R,t=0) is a constant, the circulation C(t) = 2πRU must
also be held constant, which in turn imposes a constraint on ω0. The circulation is
related to the zero Fourier mode of the vorticity by (25),

dC

dt
= 2πν

dω0

dr

∣∣∣∣
r=R

.

Since C must remain constant, dC
dt = 0. Hence,

dω0

dr

∣∣∣∣
r=R

=
1

R

dω0

dx

∣∣∣∣
x=1

= 0.(53)

Forcing the Neumann boundary condition on ω0(r) imposes a corresponding

boundary condition on ~s∗0. Enforcing dω0

dr

∣∣∣
r=R

= 0 is equivalent to enforcing ~τ1· 1R ~dω0

dx =

0. By (41), one has

~τ1 · xP2 ~s∗0 = 0.(54)

We choose not to enforce boundary constraints by splitting the solution into a
homogenous and particular part since the bounded homogenous solutions of (18) are
ωn = In( r√

ε
), where In is the modified Bessel function of the first kind, and thus

grows approximately like ε.25(2πr)−.5exp( r√
ε
) to first order, which is extremely fast

for ε� 1.
Additional boundary conditions at r = 0 in both the Poisson and Helmholtz

equations arise from the differential equations themselves and the fact that the func-
tions ψn and ωn and their derivatives are assumed bounded at r = 0. In the code,
regularity boundary conditions are not enforced since the expansion interval ranges
from [−R,R]. Regularity boundary conditions should be satisfied automatically if the
ODEs are satisfied.

4.1. Projecting initial vorticity distribution. If no-slip boundary condi-
tions are imposed, an arbitrary vorticity distribution may not satisfy the solvability
constraints, (48) and (53).

One could proceed without changing the initial vorticity. After the first iteration,
the Helmholtz equation would be solved and the initial vorticity distribution would
be modified to satisfy these solvability constraints. However, this approach could lead
to a subsequent vorticity distribution significantly different from the intended initial
distribution.
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Another approach is to change the initial vorticity distribution prior to beginning
the first iteration and thus exercise more control over how the initial distribution is to
be modified. We choose to add sharp boundary layers to the initial distribution and
thus leave the interior distribution intact.

The code takes an initial vorticity distribution ω(r, θ), and decomposes it into its
Fourier components (14). Each component of ωcn(r) and ωsn(r) is modified by adding
a power of x in such a way that the solvability constraints are satisfied,

ωn(x) = ωn(x) + λnx
p.

Specifically, for n > 0,

λn = −
~bn · x2~ωn
~bn · x2 ~xp

.

If n is even, p should be even. If n is odd, p should be odd. Typically, p is chosen
to be a large number. Here ~xp is used to denote the vector of Chebyshev expansion
coefficients for r

R .
For n = 0, λ0 is chosen to enforce (53) and is

λ0 =
−~τ2 · ~ωc0
~τ2 · ~xp = p

.

5. Conclusion. In the time integration, a Poisson equation (11) and a Helmholtz
equation (12) are solved each time step.

The stream function ψ and vorticity ω are expanded in a Fourier–Chebyshev
series, as shown by equations (13), (14), and (15). Due to the orthogonality of the
sine and cosine functions, the 2D Poisson and Helmholtz equations can be decomposed
into independent ordinary differential equations given by (16) for Poisson and (18)
for Helmholtz.

For Poisson, one solves the ODEs (16) numerically by solving the system of equa-
tions (29) with the boundary conditions ψsn|r=R = ψcn|r=R = 0. These are enforced
by requiring

~τ1 · ~ψsn = ~τ1 · ~ψcn = 0.(55)

Since the system of equations (29) operates on ~(ψcn)∗ and ~(ψsb)
∗, the boundary con-

straints (55) are recast. By (28),(
~τ1 ·P2

) · ~(ψsn)∗ =
(
~τ1 ·P2

) · ~(ψcn)∗ = 0(56)

must be enforced on ~(ψcn)∗ and ~(ψsn)∗.
One solves (29) with the boundary constraints (56), by replacing the last row of

(29) with the boundary constraint (56). The resulting linear systems are banded with
a bandwidth of 5. Using the fact that ψ?n and ω?n will have an even expansion if n is
even, and an odd expansion if n is odd, one can further reduce the bandwidth of the
matrix to 3 (with the exception of the tau constraint) and cut the size of the matrix
in half.

For Helmholtz, one solves the ODEs (18) numerically by solving the systems of
equations given by equations (32), (35), and (40) with the boundary constraints (50)
and (54). The bandwidth of the matrices are reduced as with Poisson’s equation. The
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Fig. 3. Dipole collision with cylindrical wall. Eleven levels of vorticity ranging from “red” (2.0)
to “blue” (−2.0) are displayed.

resulting systems have a bandwidth of 5 for (35) and 4 for (32) and (40), with the
exception of the tau constraint. The vorticity is recovered using equations (33), (36),
and (41), (42), and (43). These equations improve the solution of Helmholtz equation
when ε � 1. In computing the Jacobian, the differentiation of ψ and ω with respect
to the radial coordinate can be eliminated through the use of the postconditioned
method. Although the present version of the code does differentiate, the inaccuracies
caused by differentiation in the Jacobian could be eliminated in a future version of
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Fig. 4. Top: Evolution of energy and enstrophy for Figure 3. Bottom: Relative errors in dE
dt

and dΩ
dt

for Figure 3, where the exact solution was calculated using right hand sides of (23) and (24)
and the approximate solution was computed by using a leapfrog scheme after calculating E and Ω at
t− δt and t+ δt.

the code.

Runs were performed in double precision. Due to the FFT-FCT and the efficient
Poisson and Helmholtz solvers, O(NMlog(NM)) operations are required to advance
the solution one time step, where N is the number of Fourier modes and M is the
number of Chebyshev modes.

We conclude with a simulation of a dipole colliding with a circular wall at Reynolds
number (≈ 1250). The simulation was run on 4 nodes of the 32 node SP2 situated at
the Albuquerque High Performance Computing Center in Albuquerque, New Mexico.

Figure 3 shows a filled-contour plot of vorticity calculated with our solution
method. “Red” is positive vorticity and “blue” is negative vorticity. The radius of
the disk is 1. Eleven levels of vorticity (ranging from −2.0 to 2.0) are shown. The
Reynolds number Re = R0U0

ν is calculated by setting U0 to be the dipole veloc-
ity, and R0 to be the distance from the center of the dipole to the location where
the vorticity decays to 10 % of its maximum value. The calculation was performed
with a time step of 3. × 10−4, a viscosity of 2. × 10−5, and a dealiased 512 × 512
Chebyshev–Fourier expansion under no-slip conditions. The initial maximum radial
and tangential velocities are .169 and −.169 respectively. The initial vorticity distri-
bution is 1.5e−20((x−x1)2+y2)−1.5e−20((x−x2)2+y2), modified by the projection scheme
to fit the no-slip boundary conditions, where x1 = .15, x2 = −.15. The average tan-
gential velocity at the wall, r = 1, never exceeded 1× 10−7, when sampled every 1000
iterations. Thus the no-slip boundary conditions were enforced.
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The dipole collides with the wall and splits, each lobe generating vorticity of the
opposite sign. Each lobe pairs up with the wall vorticity it induces and two new un-
symmetric vortex dipoles form which rebound from the wall in curved trajectories.
These subsequently collide with each other, exchanging partners to form two symmet-
ric almost-dipoles. The smallest moves backwards along the original path, heading for
the diametrically opposed point to the first collision. The larger repeats the collision
process. Three separate collision events were seen, with the secondary dipoles showing
complicated interactions of their own.

The code is currently used in studies of turbulence, decaying or forced, in a circular
geometry. Premilinary results were reported by Nielsen et al. [15].

Figure 4 shows the evolution of energy and enstrophy as well as relative errors in
dE
dt and dΩ

dt . The large variations in the relative error in dΩ
dt suggest the use of a variable

time step but also may be due to the use of a leapfrog scheme in the diagnostics. The
collision events are best witnessed by the sequence of (decreasing) local maxima in
the total enstrophy evolution plot.

Appendix A. Efficient solution of ODEs. Consider the ODE

Lu(x) ≡
n∑
i=0

pi(x)
diu

dxi
= f(x).(57)

Expanding u(x) and f(x) in the orthogonal polynomial family of choice

u(x) ∼=
M∑
i=0

uiQi(x), f(x) ∼=
M∑
i=0

fiQi(x)(58)

and employing the residual condition of the spectral τ− method yields the linear
system

L~u =

n∑
i=0

pi(A)Di~u = ~f.(59)

Boundary conditions are inserted by replacing the last rows of the matrix L with row
vectors. Let L denote this matrix. D is the differentiation matrix, defined by

D~u = ~u′, where
d

dx

M∑
i=0

uiQi(x) =
M∑
i=0

u′iQi(x),(60)

and A is the convolution matrix, defined by

A~u = ~ux, where x
M∑
i=0

uiQi(x) =
M+1∑
i=0

uxiQi(x).(61)

One could potentially solve L~u = ~b. However, the number of operations is an
expensive O(M2) and, moreover, the matrices in this form tend to be extremely ill-
conditioned. However this matrix can be banded, independent of the truncation M ,
allowing one to solve the system in a total of O(M) operations. The method relies on
two recurrence relations.

It is well-known that all orthogonal polynomial families share a three-term recur-
rence (Abramowitz and Stegun [1]) and the three-term recurrence guarantees that A
is tridiagonal.
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In many important cases, including the classical orthogonal polynomials (i.e.,
Jacobi, Chebyshev, Legendre, Gegenbauer, Hermite, and Laguerre polynomials) there
also holds a relation of the form,

1∑
l=−1

Q′k+lbk+l,k = Qk, k = 0, 1, . . . ,(62)

Coutsias et al. [7]. Let B = [bi,j ] be the tridiagonal coefficient matrix in (62) and
define the vectors

~qx = (Q0(x), Q1(x), . . . , QM (x)) ,

~q′x = (Q′0(x), Q′1(x), . . . , Q′M (x)) .

In matrix form, (62) can be written

~q′x ·B = (Q0, Q1, Q2, . . . , QM−1, •) .(63)

Note that an unknown term, denoted by the •, is lodged in the (M +1)th column
of (63). This is due to the fact that QM (x) needs to be constructed from Q

′
M−1(x),

Q
′
M (x), and Q

′
M+1(x). In addition, the basic recursion (62) remains unchanged re-

gardless of how the first row of B is defined since Q′0(x) = 0 for polynomial families.
Thus the very first row of B will always be set to zero. For Chebyshev polynomials,
bi−1,i = − 1

2(i−1) and bi+1,i = 1
2(i+1) .

One can solve the set of linear equations (59) in O(M) operations through the
use of the operator B. Note that it is applicable to polynomial coefficient ODEs. This
method is essentially a variation of the preconditioned approach presented in Coutsias
et al. [7]. The main difference is that this implementation bands the system (59) by
multiplication on the right (hence the term post-conditioned). In addition, solving
the new banded system of equations is exactly equivalent to solving (59) with tau
constraints, neglecting round-off error.

A.1. Building the postconditioner for D. Assume f(x) is a sum of orthog-

onal polynomials (f(x) = ~qx · ~f) whose degrees range from 0 to M . Recall the two
ways in which f ′(x) can be represented

f ′(x) = ~q′x · ~f = ~qx · ~f ′,(64)

defining f ′ to be D~f = ~f ′. Note that the last element of ~f ′ is zero since the highest
degree present in the function f ′(x) is M − 1.

Since the last entry of the vector ~f ′ is zero, one has (by multiplying (63) on the

right by ~f ′)

~q′x ·B~f ′ = ~qx · ~f ′.(65)

Combining (64) with (65), one obtains

~q′x ·B~f ′ = ~q′x · ~f(66)

or

~q′x · (B~f ′ − ~f) = 0.(67)
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Now ~q′x is composed of orthogonal and therefore independent functions Q′i (with
the exception of Q′0 = 0). As a result, one has from (67)

B~f ′ = ~f + ~c,(68)

where ~c is a column vector of the form ~cT = (•, 0, 0, 0, . . . , 0). The superscript T
denotes the transpose. Hence B acts as an “integration operator”.

The first column of all differentiation matrices is full of zeroes (since Q0 becomes
0 upon differentiation). By multiplying (68) by D, one obtains

D~f = DB~f ′.(69)

Upon substituting ~f ′ for D~f , (69) assumes the form

~f ′ = DB~f ′.(70)

Since ~f ′ is any arbitrary vector, except for a zero in its last entry, (70) implies that

(DB)〈1〉 = I〈1〉(71)

where I denotes the identity matrix and G<k> denotes any matrix with its last k
columns set to zero.

Define the following M+1 by M+1 matrices S1 and S1− . S1 is the M+1 Jordan
block (i.e., a matrix whose superdiagonal is filled with ones),

(S1)ij ≡
{

1, j = i+ 1,
0 otherwise,

(72)

while S1− is a matrix whose subdiagonal is filled with ones, S1− = ST1 .
From (71) and the definition of S1, one can verify that

DBS1 = S1.(73)

Recall that the first column of D is full of zeroes. Thus, the equation (73) will not be
affected if the first row of BS1 is modified. Substitute 1 in the (1,1) location of BS1

and zero out any other nonzero entries present in the first row. Call this new matrix
B?

1. Thus, one can state

DB?
1 = S1,(74)

where the M + 1 by M + 1 matrix

B?
1 =



1 0 0 0 0 0
0 b1,0 b1,1 b1,2 0 0
0 0 b2,1 b2,2 b2,3 0

0 0 0 b3,2 b3,3
. . .

0 0 0 0
. . .

. . .

 .

Note that B?
1 will be nonsingular as the bk,k−1’s are nonzero for the Jacobi, Her-

mite, and Laguerre polynomials by Coutsias et al. [7]. Thus one now has a nonsingular
matrix (B?

1) that transforms the upper triangular matrix D into the simple matrix
S1.
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A.2. Building the postconditioner for D2. Now, this process is extended to
higher powers of D. Start with D2. One can show that Sk1Sk1− = I〈k〉.

Multiplying DB?
1 = S1 by S1− and using the equation S1S1− = I〈1〉, one obtains

DB?
1S1− = I〈1〉.(75)

Multiplying (75) on the left by D, one obtains

D2B?
1S1− = D〈1〉.(76)

Multiplying (76) on the right by B?
1 yields (via equation (74) and the fact that

B?
1 is upper triangular)

(D2B?
1S1−B?

1)〈1〉 = (S1)〈1〉.(77)

Multiplying (77) by S1 leads to

D2B?
1 (S1−B?

1S1) = S2
1.(78)

Note that D2 will have its first two columns full of zeros. Since B?
1 is upper

triangular, D2B?
1 will also have its first two columns full of zeros. Thus (78) will not

be affected if the first two rows of S1−B?
1S1 are modified. Only the (1,1) element of

S1−B?
1S1 will actually be changed from 0 to 1. Call the new M + 1 by M + 1 matrix

B?
2,

B?
2 ≡



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 b1,0 b1,1 b1,2 0 0

0 0 0 b2,1 b2,2
. . . 0

0 0 0 0
. . .

. . .
. . .

 ,

which is also a nonsingular upper triangular matrix. Thus

D2B?
1B?

2 = S2
1.(79)

A.3. Building the postconditioner for Di. The process can now propagate
itself through induction to higher powers of D. First define B?

j+1 to be the matrix

(S
j
1−B?

1S
j
1) with its (1, 1), (2, 2), (3, 3), . . . , (j, j) elements replaced by 1. Zeroes pre-

viously occupied these positions. More simply, B?
j+1 is B?

1 shifted j units diagonally
downward, leaving the first j columns and rows vacant. B?

j+1 fills the first j vacant
diagonal entries with ones. In general,

Di

 i∏
j=1

B?
j

 = Si1.(80)

Right multiplication by Si1−B?
1S

i
1 and left multiplication by D yields

Di+1

 i∏
j=1

B?
j

Si1−B?Si1 = Si+1
1 .(81)
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Now Di+1 has i + 1 zero first columns. In addition B?
j , j ≤ i are all upper trian-

gular matrices. Thus Di+1(
∏i
j=1 B?

j) will be a matrix with i+ 1 zero first columns.

Therefore, (81) will not be affected if (S
i
1−B?Si1) is replaced by B?

i+1. Equation (81)
can now be restated in the form

Di+1

i+1∏
j=1

B?
j

 = Si+1
1 ,(82)

where

B?
j ≡



1 0 0 0 0 0 · · · 0

0
. . . 0 0 0 0 · · · 0

0 0 1 0 0 0 · · · 0
0 0 0 b1,0 b1,1 b1,2 0 · · ·
0 0 0 0 b2,1 b2,2 b2,3 · · ·
0 0 0 0 0

. . .
. . .

. . .


.(83)

The row vector (0, 0, 0, b1,0, b1,1, b1,2, 0, . . .) is the (j + 1)th row of B?
j . Thus, by

induction, a nonsingular banded matrix (which we will denote Pi)

Pi ≡
i∏

j=1

B?
j

has been constructed, which transforms Di into Si1 for any i upon right multiplication.
The entries bi,j are determined by the recurrence relation (62), the values of which are
given in [7] for many classical orthogonal polynomials. Pi is upper triangular with a
bandwidth of 2i+ 1.

A.4. Pi bands lower powers of D. Note that Pi also bands Dj for j < i,
since

DjPi = Dj
i∏

k=1

B?
k =

(
Dj

j∏
k=1

B?
k

)  i∏
k=j+1

B?
k

 = Sj1

 i∏
k=j+1

B?
k

 .(84)

All matrices in the right hand side of the last equality are banded. Thus DjPi is a
banded matrix.

A.5. Summary. Equation (59) represents the standard matrix that arises (with
tau constraints in the last n− rows) when the ODE (57) is solved using a spectral
expansion. Begin by making the substitution

~u = Pn~z,(85)

where Pn is the nonsingular matrix (from the previous subsection) that reduces Dn to
the simple matrix Sn1 upon right multiplication. Pn also bands all lower order powers
of Di, i < n by (84). Equation (59) now assumes the form

LPn~z = ~b.

Now LPn is a banded matrix (except for the tau conditions) for the following reasons:
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(i) The 1 row to the M + 1 − n row are essentially the first through M + 1 − n
rows of the matrix (

∑i=n
i=0 pi(A)Di)Pn. The tau constraints are mapped into new row

vectors in the last n rows.
(ii) The matrices DiPn are all banded matrices.
(iii) The matrices pi(A) are banded matrices since A is a banded matrix. After

~z has been solved, ~u is recovered via the banded multiplication ~u = Pn~z, which is
another O(M) operation.

Appendix B. Conditioning. This appendix supplies the details in deriving the
condition numbers in section 3.4. Begin with equations (44) and (45). Consider the
perturbed system,

(A +4A)(~s∗ + ~4s∗) = ~f + ~4f(86)

and

~u+ ~4u = (xl +4xl)(P2 +4P2)(~s∗ + ~4s∗).(87)

Using (44) and (86), and assuming ‖A−1‖ ‖ 4A‖ < 1, one can show

~4s∗ = A−1 ~4f +

∞∑
k=1

(−1)k(A−1 4A)kA−1(~f + ~4f).(88)

Subtracting (45) from (87), and combining the result with (88), yields

~4u =
(
xl 4P2 +4xlP2 +4xl 4P2

)
~s∗(89)

+
(
xlP2 + xl 4P2 +4xlP2 +4xl 4P2

)
A−1 ~4f

+
(
xlP2 + xl 4P2 +4xlP2 +4xl 4P2

) ∞∑
k=1

(−1)k(A−1 4A)kA−1(~f + ~4f).

Let Λ denote the third term in the sum on the right hand side. Using (44), one can
write

Λ = xlP2A−1

( ∞∑
k=1

(−1)k(4AA−1)k−1

)
4A

(
~s? + A−1 ~4f

)
+
(
xl 4P2 +4xlP2 +4xl 4P2

)( ∞∑
k=1

(−1)k(A−1 4A)k

)(
~s? + A−1 ~4f

)
.

Taking norms one has

‖Λ‖ ≤ ‖ 4A‖
(
‖~s?‖+ ‖A−1‖ ‖ ~4f‖

)
∗(

‖xlP2A−1‖+ ‖A−1‖
[
‖xl‖ ‖ 4P2‖+ ‖ 4 xl‖ ‖P2‖+ ‖ 4 xl‖ ‖ 4P2‖

])
B,

where

B =
1

1− ‖4A‖ ‖A−1‖ .
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Taking the norm of (89), dividing by ‖~s?‖, and using the norm inequality from (44),

1

‖~s?‖ ≤
‖A‖
‖f‖ ,

one can show after some algebra,

‖ ~4u‖
‖~s∗‖ ≤ ‖x

l‖ ‖P2‖
(
δP + δx+ δxδP

)
+
(
‖xlP2A−1‖ ‖A‖+ CA‖xl‖ ‖P2‖ (δx+ δP + δxδP )

) (
δf +B[1 + CAδf ]δA

)
,

where

δA =
‖ 4A‖
‖A‖ , δP =

‖ 4P2‖
‖P2‖ , δx =

‖ 4 xl‖
‖xl‖ , δf =

‖ ~4f‖
‖~f‖

,

and CA = ‖A‖ ‖A−1‖. Now assume

‖~u = xlP2 ~s∗‖
‖~s∗‖ ≥ α,(90)

where α is a positive constant. Using (90) generates

‖ ~4u‖
‖~u‖ ≤

1

α
‖xl‖ ‖P2‖ δ(xP )

+
1

α

(
‖xlP2A−1‖ ‖A‖+ CA‖xl‖ ‖P2‖ δ(xP )

) (
δf +B[1 + CAδf ]δA

)
(91)

where

δ(xP ) = (δx+ δP + δxδP ).

Neglecting higher order errors and δx and δP, the effective condition number is

‖ ~4u‖
‖~u‖ ≤

1

α
‖xlP2A−1‖ ‖A‖

(
δf + 2δA

)
.
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