
University of New Mexico University of New Mexico

UNM Digital Repository UNM Digital Repository

Mathematics & Statistics ETDs Electronic Theses and Dissertations

1-28-2015

Performance Analysis and Optimization of Hermite Methods on Performance Analysis and Optimization of Hermite Methods on

NVIDIA GPUs Using CUDA NVIDIA GPUs Using CUDA

Evan T. Dye

Follow this and additional works at: https://digitalrepository.unm.edu/math_etds

Recommended Citation Recommended Citation
Dye, Evan T.. "Performance Analysis and Optimization of Hermite Methods on NVIDIA GPUs Using CUDA."
(2015). https://digitalrepository.unm.edu/math_etds/15

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital
Repository. It has been accepted for inclusion in Mathematics & Statistics ETDs by an authorized administrator of
UNM Digital Repository. For more information, please contact disc@unm.edu.

https://digitalrepository.unm.edu/
https://digitalrepository.unm.edu/math_etds
https://digitalrepository.unm.edu/etds
https://digitalrepository.unm.edu/math_etds?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/math_etds/15?utm_source=digitalrepository.unm.edu%2Fmath_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

 Candidate

Department

 This thesis is approved, and it is acceptable in quality and form for publication:

 Approved by the Thesis Committee:

 , Chairperson

Evan T. Dye

Mathematics and Statistics

Daniel Appelö

Stephen Lau

Jens Lorenz

Performance Analysis and Optimization
of Hermite Methods on NVIDIA GPUs

Using CUDA

by

Evan T. Dye

B.S., Mathematics, Oklahoma Panhandle State University, 2011

B.M., Music, Oklahoma Panhandle State University, 2011

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Mathematics

The University of New Mexico

Albuquerque, New Mexico

December, 2014

c©2014, Evan T. Dye

iii

Dedication

For all those who never give up on their dreams

“Learn from yesterday, live for today, hope for tomorrow.

The important thing is not to stop questioning.” – Albert Einstein

iv

Acknowledgments

I would like to thank Dr. Daniel Appelö for his support and expertise throughout my
graduate studies, for his seemingly infinite patience, for being my thesis advisor, and
for being the chair of my thesis committee. It is my honor to have Dr. Stephen Lau
and Dr. Jens Lorenz serve on my thesis committee, and to have had the opportunity
to learn from them. Special thanks to Dr. Daniel Teske and Dr. Matthew Saunders
for their instruction and advisement during my undergraduate study, and for pushing
me towards graduate studies. Gratitude is to be given to Ana Parra Lombard for
always being there to answer administrative questions, and making sure paperwork
was turned in on time. Thanks to the University of New Mexico Department of
Mathematics and Statistics for funding me in the form of a teaching assistantship,
and to all those within the department that I have had the pleasure of working with.
Thanks to Missy and Fabian for their invaluable friendship. Special thanks to my
mother Rachel, for educating me at home from preschool through high school; to my
sister Emily, for her support and assistance; to my sister Eva, for picking up the slack;
to my brother Eric and his family, for their continued support and encouragement
through difficult times; to my fiancée Bond, for her encouragement, love, and patience;
and to my son Aiden, for always smiling. To all those who have supported and
encouraged me, thank you.

Supported in part by NSF Grant DMS-1319054. Any conclusions or recommen-
dations expressed in this thesis are those of the author and do not necessarily reflect
the views of NSF.

v

Performance Analysis and Optimization
of Hermite Methods on NVIDIA GPUs

Using CUDA

by

Evan T. Dye

B.S., Mathematics, Oklahoma Panhandle State University, 2011

B.M., Music, Oklahoma Panhandle State University, 2011

M.S., Mathematics, University of New Mexico, 2014

Abstract

In this thesis we present the first, to our knowledge, implementation and perfor-

mance analysis of Hermite methods on GPU accelerated systems. We give analytic

background for Hermite methods; give implementations of the Hermite methods on

traditional CPU systems as well as on GPUs; give the reader background on basic

CUDA programming for GPUs; discuss performance characteristics of GPUs; we

give recommended design choices for GPU implementations of Hermite methods; and

present and discuss examples which illustrate the effect these design choices have on

performance. Lastly, we present areas of future research that may yield increased

performance for Hermite methods on GPUs.

vi

Contents

List of Figures x

List of Algorithms xii

List of Sample Code xiii

1 Introduction 1

2 Hermite Methods 6

2.1 1D Example . 6

2.2 Linear Constant Coefficient Systems of Hyperbolic Equations 9

2.3 2D Example . 10

3 Implementation of Hermite Methods 12

3.1 1D Serial Implementation . 12

3.2 2D Parallel Implementation . 18

vii

Contents

4 CUDA 25

4.1 Host, Device, and Kernel . 26

4.2 Threads, Blocks, and Grids . 26

4.3 Warps . 29

4.3.1 Divergence . 29

4.4 Memory Spaces . 31

4.5 Special Performance Metrics . 35

4.6 CUDA Implementation of Hermite Methods 36

5 Numerical Examples 40

5.1 Convergence Study . 41

5.2 Performance Studies . 44

5.2.1 Example 1: Performance at Maximal Number of

Threads Per Block . 44

5.2.2 Example 2: Performance at 64 Threads Per Block 47

5.2.3 Example 3: Performance with Maximal q 50

6 Summary and Outlook 52

Appendices 54

A Creation of Ã −1 55

viii

Contents

B Notes on Scaling 61

References 65

ix

List of Figures

1.1 Floating-point operations per second for CPUs and GPUs through

time, from [3]. 2

1.2 Memory bandwidth in GB/s for CPUs and GPUs through time, from

[3]. 3

1.3 Architectural differences between the cache and control heavy CPU

and the arithmetic logical unit heavy GPU, from [3]. 4

2.1 Time stepping process where I represents the interpolation, T repre-

sents the stepping in time, solid points represent the primal-grid, and

open points represent the dual-grid. 8

4.1 The CUDA thread hierarchy, from [3]. 28

4.2 The CUDA memeory hierarchy, from [3]. 34

5.1 Error convergence when m = 3, q = 4m+ 2, and a CFL of 0.9. . . . 42

5.2 Error convergence when m = 4, q = 4m+ 2, and a CFL of 0.9. . . . 43

5.3 Performance with a fixed block size of 1024, q = 2m+ 1, and a CFL

of 0.1. 45

x

List of Figures

5.4 Performance with a fixed block size of 1024, q = 2m+ 1, and a CFL

of 0.1. 46

5.5 Performance with a fixed block size of 64, q = 2m+ 1, and a CFL of

0.1. 48

5.6 Performance with a fixed block size of 64, q = 2m+ 1, and a CFL of

0.1. 49

5.7 Performance with a fixed block size of 64, q = 4m+ 2, and CFL of 0.9. 51

xi

List of Algorithms

3.1 1D Time Loop: First Half Time Step 14

3.2 1D Time Loop: Second Half Time Step 16

3.3 1D Time Loop: Boundary Conditions 17

3.4 2D Time Loop: Part 1 . 20

3.5 2D PDE: Method 1 . 21

3.6 2D PDE: Method 2 . 22

3.7 2D Time Loop: Part 2 . 23

4.1 CUDA: First Half Time Step . 38

xii

List of Sample Code

4.1 Example where divergence would likely occur. 29

A.1 Creation of the matrix Ã −1. 55

xiii

Chapter 1

Introduction

The Hermite method for numerically solving periodic hyperbolic partial differential

equations works well in parallel, due to its large number of computations per com-

munication. In addition, the Hermite method only requires data from neighboring

points, unlike some methods which require several points in each direction. So when

solving on a domain partitioned across processors, only the boundary data needs

to be communicated. These characteristics lead to a good surface to volume ratio.

Furthermore, between each communication, two half time steps and one interpolant

need to be computed; thus, there is a relatively long period of time between commu-

nications. This delay between communications means it is relatively easy to partition

the domain so that communication can start and finish while computations are carried

out. All of these characteristics combined means the algorithms have good weak

scaling on both distributed memory and shared memory systems.

The down side to the Hermite method is that it is not particularly easy to code, and

it requires a structured grid. There is no way around the complexity of code, as each

problem will require a certain amount of new code for the partial differential equation

being solved. Complex geometries, however, can be handled by using the Hermite

1

Chapter 1. Introduction

method on the interior of the grid, while using another method for the boundaries. A

common way of dealing with complex geometries is to use the discontinuous Galerkin

method on the boundary, where these complex geometries exist, and then interface

the discontinuous Galerkin method with the Hermite method; using, the Hermite

method on the interior of the computational domain [1].

Due to the nature of real-time, high-definition 3D graphics, the programmable

Graphics Processor Unit (GPU) has become a hugely parallel, multi-threaded, many-

core processor with high computational horsepower with high memory bandwidth.

Figure 1.1 shows the large discrepancy between a standard CPU and the GPU in

terms of FLOPs, while Figure 1.2 shows the discrepancy in memory bandwidth.

These figures show why it is important to consider the implementation of numerical

methods on GPUs.

CPU vs GPU GFLOPS

Figure 1.1: Floating-point operations per second for CPUs and GPUs through time,
from [3].

The reason why the GPU is so much faster than the CPU, is that the GPU is

specialized for computationally intensive, parallel computations. Unlike the CPU

2

Chapter 1. Introduction

CPU vs GPU Memory Bandwidth

Figure 1.2: Memory bandwidth in GB/s for CPUs and GPUs through time, from [3].

which must run general purpose code. The GPU design is one of a much higher

transistor count, of which the majority are devoted to data processing rather than

the more standard data caching and flow control of a CPU. Figure 1.3 illustrates

these architectural differences.

So in general, the GPU is well-suited to address problems which require large

parallel computations. The GPU is designed to make the same computations on

many data elements simultaneously, which is to say a high arithmetic to memory

operation ratio. Because the same operations are carried out on each data element,

3

Chapter 1. Introduction

Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

CPU vs GPU Architecture

Figure 1.3: Architectural differences between the cache and control heavy CPU and
the arithmetic logical unit heavy GPU, from [3].

there is a much lower need for advanced flow control. This is in contrast to the CPU,

which makes heavy utilization of advanced flow control. In addition, memory access

latency on the GPU can be hidden with calculations instead of the large data caches

used on the CPU.

In order to take advantage of the computational power of GPUs for computations

beyond graphics, NVIDIA introduced CUDA R© in November of 2006. CUDA is a

general purpose parallel computing platform and programming model for NVIDIA

GPUS. An alternative to CUDA is OpenCL, which was initially developed by Apple

Inc.; however, it is now developed by the Khronos Compute Working Group. The

technical details of the the OpenCL 1.0 specification were finished in November of

2008.1 OpenCL is able to run on various GPUs, FPGAs and CPUs, and is based

on C99. Most of the discussions and conclusions in this paper can be translated to

OpenCL.

Because of the way GPUs perform computational tasks, the Hermite method

is an excellent candidate for implementation on GPUs. We began by developing a

naive GPU implementation of the Hermite method, which yielded relatively meager

1http://www.khronos.org/opencl/

4

Chapter 1. Introduction

performance gains over the CPU implementation. However, we have found some

simple design patterns for coding Hermite methods on the GPU, specifically regarding

memory usage and block size, which increased performance significantly from the

naive GPU implementation. These results show that significant performance gains

can be attained on GPUs, without the need of designing highly complex code. This

is particularly important when working with heterogeneous systems where many

performance considerations must be made during code design.

To our knowledge, this thesis presents the first implementation and performance

analysis of Hermite methods on GPU accelerated systems. To better understand

Hermite methods, the method will be discussed from an analytic perspective in

Chapter 2. Implementation of the Hermite methods on traditional CPU systems will

be discussed in Chapter 3. Chapter 4 introduces CUDA programming on GPUs, the

performance characteristics of GPUs, and an implementation of the Hermite method

on GPUs. Performance examples are presented and discussed in Chapter 5. Lastly,

Chapter 6 closes this thesis with summary and outlook.

5

Chapter 2

Hermite Methods

In this chapter we will introduce arbitrary-order Hermite methods for the numerical so-

lution of periodic hyperbolic partial differential equations, given initial data. Hermite

methods differ from standard difference methods because derivative data is carried at

each grid point, in addition to the values of the solution. It has been proved in [2]

that these methods, using all derivatives up to order m in each coordinate direction,

are stable with m-independent CFL condition; furthermore, the method converges at

order 2m+1. To explain the Hermite method, one-dimensional scalar, linear constant

coefficient system, and two-dimensional scalar examples will be explored.

2.1 1D Example

We begin to illustrate the Hermite method with the following simple problem:

ut = aux, u (x, 0) = f (x) , x ∈ [xL, xR] , u (xL, t) = u (xR, t) , t ≥ 0, (2.1)

where f (x) is a smooth function, and a is a real constant. For the initial data, f (x), to

be compatible with the periodic boundary conditions, it must be (xR − xL)-periodic.

6

Chapter 2. Hermite Methods

Define the primal-grid as follows:

XP = {xi = xL + hi : i = 0, 1, . . . , N} , h =
xR − xL

N
. (2.2)

Similarly, the dual-grid is defined as follows:

XD =

{
xi+ 1

2
= xL +

h (2i+ 1)

2
: i = 0, 1, . . . , (N − 1)

}
. (2.3)

We begin by constructing polynomial approximations to the solution, one for each

point on the dual-grid. These polynomials are centered at the points on the dual-grid,

and satisfy the initial data upto m derivatives at their neighboring primal-grid points;

thus, they are Hermite interpolants. At time t = 0, the resulting spacial polynomials

are denoted as follows:

pi+ 1

2
(x, 0) =

2m+1∑

j=0

cj0

(
x− xi+ 1

2

)j

, i = 0, 1, . . . , (N − 1) (2.4)

Now that the data has been interpolated, the coefficients cj0 are expanded as a

temporal polynomial in order to step forward in time. Precisely, we expand pi+ 1

2
(x, 0)

in a Taylor series in time centered around t0 = 0, which we write in the following

manner:

p0
i+ 1

2

(x, t) =
2m+1∑

j=0

2m+1−j∑

k=0

cjk

(
x− xi+ 1

2

)j

(t− t0)
k
, i = 0, 1, . . . , (N − 1) .

(2.5)

From the spatial and temporal derivatives of the PDE, we know that the following

relations hold for the exact solution:

∂ku

∂tk−j∂xj
= a

∂ku

∂tk−j−1∂xj+1
. (2.6)

Enforcing these relations on p0
i+ 1

2

(x, t) at time t = 0 yields the following recursion

relation for cjk:

cjk = a
(j + 1)

k
cj+1,k−1, k = 1, 2, . . . , 2m+ 1− j, j = 0, 1, . . . , 2m. (2.7)

7

Chapter 2. Hermite Methods

We then use this recursion relation to compute all cjk directly from cj0, j =

0, 1, . . . , 2m+ 1.

Next, we evaluate p0
i+ 1

2

(x, t) and its derivatives at the half time-step t 1

2
= ∆t

2
and

dual-grid point xi+ 1

2
. This yields the following approximation:

1

j!

∂ju

∂xj

(
xi+ 1

2
, t 1

2

)
≈

2m+1−j∑

k=0

cjk

(
∆t

2

)k

, j = 0, . . . ,m. (2.8)

Now that there is data for the function and m derivatives on the dual-grid at

time t = t 1

2
, the above process can be repeated in order to the produce the data on

the primal-grid at a time t1 = ∆t. Note that at the edges of the domain, we use

the periodic boundary conditions in order to construct the interpolant. This entire

process can be repeated until we reach the final time tn = n∆t. Figure 2.1 illustrates

the full time stepping process.

→ →

→ →

← ←

← ←

↑ ↑

↑ ↑ ↑

tn+1

t
n+

1

2

tn

xi−1
x
i−

1

2
xi

x
i+

1

2
xi+1

TTT

TT

II

II

II

II

Figure 2.1: Time stepping process where I represents the interpolation, T represents
the stepping in time, solid points represent the primal-grid, and open points represent
the dual-grid.

8

Chapter 2. Hermite Methods

2.2 Linear Constant Coefficient Systems of Hyper-

bolic Equations

We next describe the case of linear constant coefficient systems of hyperbolic equations.

For these systems, the interpolation process is unchanged from the scalar example

in Section 2.1; although, it is applied to each field. The only change occurs in the

recursion relation, which is based on the partial differential equation.

Again, consider a simple example with a constant coefficient system in r-equations:

ut = Aux, A = AT ∈ R
r×r,

u (x, 0) = f (x) , x ∈ [xL, xR] , u (xL, t) = u (xR, t) , t ≥ 0. (2.9)

For this case, data consists of approximate scaled derivative and function values for

each component of the r components. The interpolation, recursion relation, and

time stepping are carried out component wise, thus solving linear constant coefficient

systems of hyperbolic equations with initial data is almost identical to the scalar case.

The polynomial p, is now a R
r-valued function with each component consisting of

a polynomial of degree 2m+ 1 as before. Furthermore, the polynomial coefficients

cjk ∈ R
r, are computed by requiring that p satisfies the following relation:

∂ku

∂tk−j∂xj
= A

∂ku

∂tk−j−1∂xj+1
. (2.10)

This in term gives the vector recursion relation:

cjk =
(j + 1)

k
Acj+1,k−1. (2.11)

Again, the entire process can be repeated until tn = n∆t.

9

Chapter 2. Hermite Methods

2.3 2D Example

For the two-dimensional case, consider the following problem:

ut = a (ux + uy) , u (x, y, 0) = f (x, y) , x ∈ [xL, xR] , y ∈ [yL, yR] ,

u (xL, y, t) = u (xR, y, t) , u (x, yL, t) = u (x, yR, t) , t ≥ 0, (2.12)

where f (x, y) is a smooth function, and a is a real constant. For the initial data,

f (x, y), to be compatible with the periodic boundary conditions, it must be (xR − xL)-

periodic in x and (yR − yL)-periodic in y. Defining XP , YP and XD, YD as in (2.2)

and (2.3), but with hx = xR−xL

Nx
and hy =

yR−yL
Ny

; then the points on the primal-grid

and dual-grid can be denoted by (xi, yj) and
(
xi+ 1

2
, yj+ 1

2

)
respectively.

In a similar manner to the one-dimensional case, we can construct the following

polynomial:

pi+ 1

2
,j+ 1

2
(x, y, 0) =

2m+1∑

k=0

2m+1∑

l=0

ckl0

(
x− xi+ 1

2

)k (
y − yj+ 1

2

)l

, (2.13)

i = 0, 1, . . . , (Nx − 1) , j = 0, 1, . . . , (Ny − 1) .

As before, ckl0 for i = 0, 1, . . . , (Nx − 1) and j = 0, 1, . . . , (Ny − 1) are computed from

the initial data on the primal grid. Here we insist that the derivatives

∂k+lpi+ 1

2
,j+ 1

2
(x, y, 0)

∂xk∂yl
, k = 0, 1 . . . ,m, l = 0, 1, . . . ,m

agree with the initial data at the four adjacent nodes on the primal grid.

Now pi+ 1

2
,j+ 1

2
can be expanded into a Taylor series in time, which for exact

evolution need to be of degree 2 (2m+ 1). However, this is of a higher degree than

needed to attain 2m+ 1 order accuracy. Consequently, we can choose the order q, in

10

Chapter 2. Hermite Methods

time, such that 2m+ 1 ≤ q ≤ 2 (2m+ 1), noting that no additional spatial data is

required. This brings about the following polynomial:

p0
i+ 1

2
,j+ 1

2

(x, y, t) =
2m+1∑

k=0

2m+1∑

l=0

q∑

s=0

ckls

(
x− xi+ 1

2

)k (
y − yj+ 1

2

)l

(t− 0)s , (2.14)

i = 0, 1, . . . , (Nx − 1) , j = 0, 1, . . . , (Ny − 1) .

Recall that for the solution u, the following must hold:

∂k+l+su

∂ts∂xk∂yl
= a

(
∂k+l+su

∂ts−1∂xk+1∂yl
+

∂k+l+su

∂ts−1∂xk∂yl+1

)
. (2.15)

Thus by imposing the relations on p0
i+ 1

2
,j+ 1

2

(x, y, t) at
(
xi+ 1

2
, yj+ 1

2
, 0
)
, we arrive

at the following recursion relation for ckls

ckls =
a

s
((k + 1) ck+1,l,s−1 + (l + 1) ck,l+1,s−1) . (2.16)

k = 0, 1, . . . , 2m, j = 0, 1, . . . , 2m, s = 1, 2, . . . , q.

Using (2.16) we can evaluate p0
i+ 1

2
,j+ 1

2

(x, y, t) and its derivatives at the half time-

step t 1

2
= ∆t

2
and dual-grid point

(
xi+ 1

2
, yj+ 1

2

)
, yielding the following approximation:

1

(k!) (l!)

∂k+lu

∂xk∂yl

(
xi+ 1

2
, yj+ 1

2
, t 1

2

)
≈

q∑

s=0

ckls

(
∆t

2

)s

, k = 0, . . . ,m, (2.17)

l = 0, . . . ,m i = 0, 1, . . . , (Nx − 1) , j = 0, 1, . . . , (Ny − 1) .

Since there is now data for the function and m derivatives on the dual-grid at

time t = t 1

2
, the above process can be repeated in order to the produce the data on

the primal-grid at a time t1 = ∆t. As before, we use the periodic boundary conditions

to construct the interpolant at the edges of the domain. As in the previous examples,

the entire process can be repeated until tn = n∆t.

11

Chapter 3

Implementation of Hermite

Methods

In this chapter we will discuss a one-dimensional serial implementation, and a two-

dimensional parallel implementation of the Hermite method. The Hermite method

can be broken down into three main sections: computation of coefficients of a Hermite

interpolating polynomial from initial data, computation of remaining coefficients

using a recursion relation, and evolution in time via Taylor time stepping. Pseudocode

is presented for all three of these steps.

3.1 1D Serial Implementation

Consider the following problem:

ut = ux, u (x, 0) = f (x) , x ∈ [xL, xR] , u (xL, t) = u (xR, t) , t ≥ 0, (3.1)

12

Chapter 3. Implementation of Hermite Methods

where f (x) is a smooth function. For better numerical conditioning, the imple-

mentation differs from Section 2.1 in that the initial data, along with the approximate

solution, is scaled in the following way (see Appendix B for more details.) We store

the coefficients of pi (x, 0) in an array u, of dimension (m+ 1)×N , such that:

pi (x, t) =
2m+1∑

j=0

2m+1−j∑

k=0

cjk

(
x− xi

h

)j (
t− 0

∆t

)k

, i = 0, 1, . . . , (N − 1) (3.2)

u[j, i] =
hj

j!

∂jf (xi)

∂xj
, j = 0, 1, . . . ,m, i = 0, 1, . . . , (N − 1) . (3.3)

Finding the coefficients of the Hermite interpolating polynomial on the dual-grid

amounts to solving a linear system Ã~̃c = neighborData. In our implementations, Ã −1

is computed explicitly and stored for later use (see Appendix B for an explanation,

or Appendix A for an implementation for computing Ã −1.)

In Algorithm 3.1, the approximate solution on the dual-grid at a half time step is

computed. Then in Algorithm 3.2 the approximate solution on the interior of the

primal-grid at a full time step is computed. Lastly, the approximate solution is found

on the boundary of the primal-grid at a full time step in Algorithm 3.3.

13

Chapter 3. Implementation of Hermite Methods

Algorithm 3.1 1D Time Loop: First Half Time Step

1: for i← 1 to N − 1

2: Compute ~̃c:

3: tcofs← 0

4: neighborData[0 : m]← u[:, i− 1]

5: neighborData[m+ 1 : 2m+ 1]← u[:, i]

6: tcofs[:, 0]← Ã −1 neighborData

7: Recursion Relation:

8: for idt← 1 to 2m+ 2

9: for idx← 0 to 2m+ 1− idt

10: tcofs[idx, idt]← ∆t
h∗idt

(idx+ 1) tcofs[idx+ 1, idt− 1]

11: end for

12: end for

13: Taylor Stepping :

14: for idx← 0 to m

15: uh[idx, i− 1]← tcofs[idx, 0]

16: for l ← 1 to 2m+ 2

17: uh[idx, i− 1]← uh[idx, i− 1] + 2−l ∗ tcofs[idx, l]

18: end for

19: end for

20: end for

In Algorithm 3.1, at each dual-grid point all coefficients of the approximating

polynomial are found through the recursion relation and then the solution at the next

half step is found via Taylor time stepping. For each grid point, the initial coefficients

are computed on lines 3 though 6. Then the remaining coefficients are computed via

the recursion relation on lines 8 through 12. Because of the scaling of the initial data,

an additional factor of 1
h
is needed in the recursion relation on line 10; see Appendix

14

Chapter 3. Implementation of Hermite Methods

B. Finally the Taylor stepping is done in lines 14 though 19. Since there is a factor

of ∆t applied at line 10, no such multiplication is need on line 17; thus, only powers

of 2 need to be computed here. After stepping through each grid point, similarly to

equation (3.3), uh now stores scaled data such that:

uh[j, i] ≈
hj

j!

∂j

∂xj
u
(
xi+ 1

2
, t 1

2

)
, (3.4)

j = 0, 1, . . . , 2, i = 0, 1, . . . , N − 1.

15

Chapter 3. Implementation of Hermite Methods

Algorithm 3.2 1D Time Loop: Second Half Time Step

21: t← t+ ∆t
2

22: for i← 1 to N − 2

23: Compute ~̃c:

24: tcofs← 0

25: neighborData[0 : m]← uh[:, i− 1]

26: neighborData[m+ 1 : 2m+ 1]← uh[:, i]

27: tcofs[:, 0]← Ã −1 neighborData

28: Recursion Relation:

29: for idt← 1 to 2m+ 2

30: for idx← 0 to 2m+ 1− idt

31: tcofs[idx, idt]← ∆t
h∗idt

(idx+ 1) tcofs[idx+ 1, idt− 1]

32: end for

33: end for

34: Taylor Stepping :

35: for idx← 0 to m

36: u[idx, i]← tcofs[idx, 0]

37: for l ← 1 to 2m+ 2

38: u[idx, i]← u[idx, i] + 2−l ∗ tcofs[idx, l]

39: end for

40: end for

41: end for

In Algorithm 3.1, the solution at the interior points of the primal-grid are advanced.

For each point, we again compute the initial coefficients, lines 24 through 27, then

apply the recursion relation, lines 29 through 33, and do the Taylor time stepping,

lines 35 through 41.

16

Chapter 3. Implementation of Hermite Methods

Algorithm 3.3 1D Time Loop: Boundary Conditions

42: Compute ~̃c:

43: tcofs← 0

44: neighborData[0 : m]← uh[:, N − 2]

45: neighborData[m+ 1 : 2m+ 1]← uh[:, 0]

46: tcofs[:, 0]← Ã −1 neighborData

47: Recursion Relation:

48: for idt← 1 to 2m+ 2

49: for idx← 0 to 2m+ 1− idt

50: tcofs[idx, idt]← ∆t
h∗idt

(idx+ 1) tcofs[idx+ 1, idt− 1]

51: end for

52: end for

53: Taylor Stepping :

54: for idx← 0 to m

55: u[idx, 0]← tcofs[idx, 0]

56: for l ← 1 to 2m+ 2

57: u[idx, 0]← u[idx, 0] + 2−l ∗ tcofs[idx, l]

58: end for

59: end for

60: u[:, N − 1]← u[:, 0]

61: t← t+ ∆t
2

In Algorithm 3.3 the periodic boundary conditions are used to compute u[:, 0]

and u[:, N − 1]. We begin by computing the initial coefficients for the grid point x0

on lines 43 through 46. Then apply the recursion relation for this point on lines 48

through 52, and Taylor stepping on lines 54 through 59. Finally we copy the results

into u[:, N − 1]. Note that u[:, N − 1] could be directly computed instead of u[:, 0].

All these steps are repeated until final time has been reached.

17

Chapter 3. Implementation of Hermite Methods

The above pseudocode does not represent the strict way in which the algorithms

should be programmed. For instance, line 57 in Algorithm 3.3 would not evaluate 2−l

at each step, but rather a variable, initially set to 1.0 would be multiplied by 0.5 at

the beginning of the for loop in line 54; then, this variable would be multiplied by

tcofs[idx, l] in line 57. This method of computing 2−l is much faster, and will result

in less round-off.

3.2 2D Parallel Implementation

There is little change from the serial implementation to this parallel implementation,

which uses parallel for loops; furthermore, it is a straight forward change from the

one- to two-dimensional implementations discussed. Thus, we skip any intermediate

implementations and will discuss a two-dimensional parallel implementation in this

section.

Consider the following problem:

ut = ux + uy, u (x, y, 0) = f (x, y) , x ∈ [xL, xR] , y ∈ [yL, yR] ,

u (xL, y, t) = u (xR, y, t) , u (x, yL, t) = u (x, yR, t) , t ≥ 0, (3.5)

where f (x, y) is a smooth function.

For the two-dimensional case, the scaling is done in each direction. The resulting

scaled data is stored in an array u, of dimension (2m+ 2)× (2m+ 2)×Nx ×Ny:

u[k, l, i, j] =
hk
xh

l
y

(k!) (l!)

∂k+lf

∂xk∂yl
(xi, yj) . (3.6)

We create matrices Ãx

−1
and Ãy

−1
using the same method as in the one-

dimensional case; thus, there is a matrix created for each coordinate direction.

18

Chapter 3. Implementation of Hermite Methods

These matrices will later be used to compute the initial coefficients, just as in the

one-dimensional case. See appendix A for an implementation for computing these

matrices.

In Algorithm 3.4 the initial coefficients are computed. Then the recursion relation

is evaluated by using either Algorithm 3.5 or Algorithm 3.6. Finally, Taylor time

stepping is done in Algorithm 3.7.

For this example, assume that uh, u, Ãx, Ãy, m, q, and ∆t are known globally

across CPU cores, while all other variables are local to each CPU core.

19

Chapter 3. Implementation of Hermite Methods

Algorithm 3.4 2D Time Loop: Part 1

1: parallel for j ← 1 to Ny − 1

2: for i← 1 to Nx − 1

3: Compute Coefficients for Hermite Interpolation:

4: tcofs← 0

5: for idy ← 0 to m

6: neighborData[0 : m]← u[:, idy, i− 1, j − 1]

7: neighborData[m+ 1 : 2m+ 1]← u[:, idy, i, j − 1]

8: smcofs[:, idy]← Ãx

−1
neighborData

9: end for

10: for idy ← 0 to m

11: neighborData[0 : m]← u[:, idy, i− 1, j]

12: neighborData[m+ 1 : 2m+ 1]← u[:, idy, i, j]

13: smcofs[:,m+ 1 + idy]← Ãx

−1
neighborData

14: end for

15: for idx← 0 to 2m+ 1

16: scofs[idx, :]← Ãy

−1
(smcofs[idx, :])T

17: end for

18: tcofs[:, :, 0]← scofs

19: Recursion Relation:

20: PDE(tcofs,m, q, hx, hy,∆t)

For Algorithm 3.4 a parallel for loop is used for each point on the dual-grid in

the y direction. With y fixed, then a loop through the dual grid in the x direction

is performed. This is one example of many possible domain decompositions for a

shared memory implementation. For each grid point, lines 4 through 18 compute the

initial coefficients. This is done by first fixing the derivative in y and computing the

coefficients from the neighboring grid points in the x direction for the lower y neighbor

20

Chapter 3. Implementation of Hermite Methods

in lines 6 through 8. Once the y derivative is fixed, the coefficients are calculated as

in the one-dimensional case. Once this has been done for all y derivatives, then the

procedure is repeated for the neighbor data in x for the upper y neighbor in lines

11 through 13. Next we fix the x derivative and compute through all y derivatives

in line 17. Once we have looped through all the x derivatives in this manner, the

recursion relation can be computed in line 20.

Now there are multiple ways to approximate the PDE yielding an order of accuracy

of 2m+1. The first method, where q = 2m+1 but must take CFL= ∆t
h

< 1, requires

fewer floating point operations for the recursion relation. Then the second method

which uses q = 4m+ 2, but allows a CFL condition of 1.

Algorithm 3.5 2D PDE: Method 1

1: function PDE(tcofs,m, q, hx, hy,∆t)

2: for idt← 1 to q

3: for idy ← 0 to 2m+ 1− idt− 1

4: for idx← 0 to 2m+ 1− idt− 1

5: tcofs[idx, idy, idt]← ∆t
hx∗idt

(idx+ 1) tcofs[idx+ 1, idy, idt− 1]

6: + ∆t
hy∗idt

(idy + 1) tcofs[idx, idy + 1, idt− 1]

7: end for

8: end for

9: end for

10: end function

Algorithm 3.5, describing the first method, is analogous to the one-dimensional

case in that the higher order terms are dropped as the number of derivatives in t are

increased; thus, decreasing the number of floating point operations required. Since

these terms are so small, an order of accuracy of 2m+ 1 is still attained under the

correct CFL condition.

21

Chapter 3. Implementation of Hermite Methods

Algorithm 3.6 2D PDE: Method 2

1: function PDE(tcofs,m, q, hx, hy,∆t)

2: for idt← 1 to q

3: for idy ← 0 to 2m+ 1

4: for idx← 0 to 2m

5: tcofs[idx, idy, idt]← ∆t
hx∗idt

(idx+ 1) tcofs[idx+ 1, idy, idt− 1]

6: end for

7: end for

8: for idy ← 0 to 2m

9: for idx← 0 to 2m+ 1

10: tcofs[idx, idy, idt]← tcofs[idx, idy, idt]

11: + ∆t
hy∗idt

(idy + 1) tcofs[idx, idy + 1, idt− 1]

12: end for

13: end for

14: end for

15: end function

For Algorithm 3.6, describing the second method, we include these higher order

terms at the cost of a higher floating point operation count. If we choose to have

the resulting polynomial, computed in lines 22 through 30, to have temporal order

q = 4m+ 2, then a CFL condition of 1 can be used.

22

Chapter 3. Implementation of Hermite Methods

Algorithm 3.7 2D Time Loop: Part 2

21: Taylor Stepping :

22: uh[:, :, i− 1, j − 1]← tcofs[0 : m, 0 : m, 0]

23: for l ← 1 to q

24: for idx← 0 to m

25: for idy ← 0 to m

26: uh[idx, idy, i− 1, j − 1]← uh[idx, idy, i− 1, j − 1]

27: +2−l ∗ tcofs[idx, idy, l]

28: end for

29: end for

30: end for

31: end for

32: end parallel for

Once either process is completed for the entire dual-grid, then uh stores scaled

data such that:

uh[k, l, i− 1, j − 1] =
hk
xh

l
y

(k!) (l!)

∂k+lf

∂xk∂yl

(
xi− 1

2
, yj− 1

2

)
. (3.7)

As in the one-dimensional case, this process is repeated for the interior of the

primal-grid, and then periodic conditions are enforced at the boundaries in order to

compute the approximation for the boundary points of the primal-grid. All the steps

are then repeated until final time as been reached.

In this implementation, each processor works on a set of the spatial domain. In

this case, working along the x−direction given a fixed y coordinate. This can be

reversed, with each processor working with x fixed. Based on the specific domain at

hand, this can be chosen to give optimal performance. For the case of distributed

23

Chapter 3. Implementation of Hermite Methods

memory, the domain should be broken down so that each node works on a rectangular

section of the domain. These rectangles should be structured to reduce the amount

of communication, so that latency can be negated. Computing the edges of each

sub-domain can be done first, followed by the interior. If this is done, then the edge

data can be sent to the neighboring nodes while the interior is computed. Furthermore,

Ãx, Ãy, m, q, and ∆t will reside locally on each CPU node, while u and uh should be

distributed across the CPU nodes with some overlap. In the case of our single GPU

implementation, each thread will work on a single grid point. Unless the number of

grid points is large enough to be prohibitive, however, this is unlikely.

24

Chapter 4

CUDA

The CUDA parallel programming model is designed to be highly scalable because

of the large range of GPUs available; of which, have varying number of multiproces-

sors, memory sizes, and memory partitions. The core of the model exposes three

key abstractions to the programmer, thread groups, shared memories, and barrier

synchronization. The programmer can then partition the problem into varying sub-

problems that can be computed independently in parallel by blocks of threads. Each

block of threads has its own shared memory, and threads within these a block of

threads can have barrier synchronizations. The usage of blocks of threads allows for

automatic scalability because each block of threads can be scheduled on any available

streaming multiprocessors on the GPU, so only the runtime system needs to know the

number of streaming multiprocessors. This is quite the contrast to programming SSE

instructions on the CPU by use of intrinsic functions, where the number of parallel

instructions is fixed for each intrinsic function.

The CUDA programming model allows the programmer to write the code once

and deploy it on a wide range of hardware, ranging from consumer level graphics

cards found in laptops all the way up to the Tesla line of compute cards found in

25

Chapter 4. CUDA

supercomputers.

4.1 Host, Device, and Kernel

CUDA programming has its own terminology to identify hardware and software

abstractions. The CPU in control of a GPU is called the host, and the GPU is called

the device. A function which is called from the host, but runs on the device is called

a kernel.

4.2 Threads, Blocks, and Grids

Execution of a specific kernel is performed by threads. A thread on a GPU is

basically the same as a thread on a multi-core CPU, but there are generally many

more of them. When calling a kernel, it must be specified how many threads will

execute that kernel. This is done by specifying the number of threads in a block,

and the number of blocks to be executed. Thread blocks allow threads within them

to synchronize and use a shared memory space.

When a Cartesian topology is suitable for subdividing the computations, built-in

functions that specify the number of blocks and threads in up to three dimensions can

be used. This partitioning of blocks of threads is called a grid; Figure 4.1 illustrates

this hierarchy. In this manner, a two-dimensional Cartesian nodal grid can be broken

down so that each thread handles tasks on a single grid-point; for example, in our

implementation of the Hermite method such a task could be stepping in time the

approximate solution of a PDE. As a concrete example, assume a 120 × 120 node

discretisation of a Cartesian spatial domain, where each thread time steps the solution

on a single node. First, the number of threads in a block is typically chosen to be a

26

Chapter 4. CUDA

multiple of 32 (the size of a warp, see below), say 64, then a block of threads could

work on, say, 8×8 = 64 nodal points (again, this type of decomposition is described in

Figure 4.1.) Thus to cover the 120×120 nodes, the grid will be a 15×15 set of blocks.

Note that if this example instead was using a 119 × 119 node discretisation, then

all block and grid dimensions would remain the same; but more threads than there

are nodes would be created. Thus, a conditional statement will need to be placed at

the beginning of a kernel telling the threads not associated with a demonetization

grid-point, to finish prior to modifying any data. Also note that other choices of the

size of the blocks and grid can be made. This may impact the performance, and will

be discussed in Chapter 5.

27

Chapter 4. CUDA

Gr✐❞

❇loc❦ ✭✶✱ ✶✮

❚hrea❞ ✭✵✱ ✵✮ ❚hrea❞ ✭✶✱ ✵✮ ❚hrea❞ ✭2✱ ✵✮ ❚hrea❞ ✭3✱ ✵✮

❚hrea❞ ✭✵✱ ✶✮ ❚hrea❞ ✭✶✱ ✶✮ ❚hrea❞ ✭2✱ ✶✮ ❚hrea❞ ✭3✱ ✶✮

❚hrea❞ ✭✵✱ 2✮ ❚hrea❞ ✭✶✱ 2✮ ❚hrea❞ ✭2✱ 2✮ ❚hrea❞ ✭3✱ 2✮

❇loc❦ ✭2✱ ✶✮❇loc❦ ✭✶✱ ✶✮❇loc❦ ✭✵✱ ✶✮

❇loc❦ ✭2✱ ✵✮❇loc❦ ✭✶✱ ✵✮❇loc❦ ✭✵✱ ✵✮

Thread Hierarchy

Figure 4.1: The CUDA thread hierarchy, from [3].

28

Chapter 4. CUDA

4.3 Warps

A block of threads is executed on only a single streaming multiprocessor, which

means a sufficient number of blocks must be used in order to utilize all the streaming

multiprocessors on a particular GPU (typically there are 1 to 15). At the hardware

level, the streaming multiprocessor breaks the block of threads down into smaller

chunks. These chunks of threads are called a warp. In the example with a block of

size 8 × 8 threads, assuming that the warp size is 32, this would mean that there

are two warps each with 32 threads. Each streaming multiprocessor has at least one

warp scheduler, which is the hardware that decides when and how a warp will be

executed. For example, in order to hide memory latency, the warp scheduler may

switch execution to a different warp while waiting for a memory fetch.

4.3.1 Divergence

Each warp is executed in the manner of single instruction multiple thread (SIMT.)

Because of the nature of SIMT, divergence within a warp, due to conditionals, can

occur. Sample Code 4.3.1 illustrates the concept of divergence.

Sample Code 4.1: Example where divergence would likely occur.

1 if(var > 0)

2 {

3 var = -1.0*var + PI;

4 }

5 else if(var < 0)

6 {

7 var = var + PI;

8 }

9 else

29

Chapter 4. CUDA

10 {

11 var = 2*PI;

12 }

13

14 var = var*var;

Sample Code 4.1: Example where divergence would likely occur.

Assuming that Sample Code 4.3.1 has been translated into machine code and

represents a segment of a kernel where the variable var would be different for each

thread, then the following would occur within a warp. The threads within the warp

that evaluate to true at line 1 execute line 3 while the remaining threads are idle;

then, those that evaluated to true wait at line 13 to proceed. The remaining threads

evaluate the conditional statement at line 5, those that return true would execute

line 7; and then jump to line 13 to wait; all while the other threads are idle. The

remaining threads, having evaluated the first two conditionals to false, execute line

11, and jump to line 13 to wait while the other threads are idle. The ordering of

the execution of conditional statements, however, is not guaranteed by the current

specification; thus, execution of line 11 could occur prior to execution of line 7. It is,

however, guaranteed that once all threads have been rejoined at line 13, the warp

continues synchronously; that is, line 14 is executed simultaneously by all threads in

the warp.

Note that thread blocks are partitioned into warps in the block’s x, then y, and then

z direction; thus, the ordering is (0, 0, 0) , (1, 0, 0) , . . . , (0, 1, 0) , (1, 1, 0) , . . . , (0, 0, 1) ,

(1, 0, 1) , Using this dimensional partitioning, performance can be gained by

having warps access contiguous memory, or so that conditionals evaluate in a manner

which reduces divergence within warps.

30

Chapter 4. CUDA

The order of warp execution within a block of threads can only be controlled

with a barrier call. Such a barrier call guarantees that all warps within a block of

threads have reached the barrier prior to proceeding. If synchronization is needed

across multiple blocks, then multiple kernels will be needed. For example, in Hermite

methods data dependency between the primal-grid and dual-grid necessitates the

use of two kernels, one for the first half step and one for the second. By using

multiple kernels, it is guaranteed that the first kernel will finish executing before the

second begins. These two types of barriers are currently the only built-in methods

for combating race conditions.

4.4 Memory Spaces

CUDA threads can access data from various memory spaces. All threads have access

to the same global memory, even if the threads execute different kernels. On current

GPUS, global memory is analogous to RAM on the CPU, and is located off chip.

Global memory has high latency, so it may take 200 to 800 clock cycles to access data

located in this memory space. Global memory accesses can be sped up in the case of

read-only memory by using either constant memory, read-only data cache, or

texture memory.

Typically, constant memory resides in a 64KB partition of device memory, and is

accessed through an 8KB cache on each streaming multiprocessor. Data stored in

constant memory is intended to be broadcast to all threads in a warp. Data residing

in constant memory has the same scope as global memory.

Read-only data cache is used when the compiler can guarantee that the data is read-

only for the lifetime of the kernel, for example when the const and __restrict__

qualifiers are used. The hardware for read-only cache exists only on hardware with

31

Chapter 4. CUDA

compute capability1 of 3.5 or newer. Since the data is guaranteed to only be read,

the read-only cache does not need to check for coherency; thus, making it faster than

a regular data cache. On devices which lack the hardware for read-only cache, using

the qualifiers, const and __restrict__, still allows for compiler optimizations

which can significantly improve performance.

Texture memory supports features, such as periodic boundaries, to make program-

ming easier; unfortunately, it does not support double precision and can thus not be

used for computations. The texture memory is, however, useful for lower precision

real-time visualization of a solution. At this time, texture memory does not have a

separate physical memory location, but rather allows the compiler to make specialized

optimization. In particular, texture memory optimizes for two-dimensional spatial

locality; such as accessing neighboring points on a two-dimensional grid.

In order to help combat latency, CUDA supports shared memory spaces. Shared

memory is accessible by threads within a single block, and has the same lifetime as the

thread block. The size of this shared memory is dependent on the compute capability

of the GPU, but is always stored sequentially in 32 memory banks; one for each thread

in a warp. Shared memory resides on chip, and is separate from global memory. Due

to this locality, data in shared memory takes as little as 1 clock cycle to access when

no memory bank conflicts occur. A bank conflict occurs if multiple threads in a warp

access different memory addresses within the same bank; thus, no bank conflict would

occur if all threads in a warp accessed the same memory address. If bank conflicts do

occur, then the worst case scenario is Warp Size×Number of V ariables Accessed

clock cycles to access all data for the warp. However, this is extremely unlikely

to occur, as this scenario corresponds to when all threads in a warp are accessing

different memory addresses within the same bank. Under normal circumstances, it

generally only takes 1-4 clock cycles for accesses to shared memory.

1Compute capability is the hardware versioning used for CUDA capable devices to
identify available feature sets.

32

Chapter 4. CUDA

The programmer has direct access to manage shared memeory, and may pro-

grammatically move data into this space. On GPUs with compute capability 2.0

or newer, the shared memory hardware can also be used as an L1 cache via either

the cudaDeviceSetCacheConfig or cudaFuncSetCacheConfig commands.

Using the shared memory as an L1 cache allows for increased performance, without

the need for designing and programming complex memory topologies.

Additionally, each thread has its own private local memory space, which lasts the

life of the thread. The programmer does not have access directly to how this memory

is handled; however, the run-time driver will attempt to keep data in private local

memory stored in registers. Thus, local thread level memory is very fast. Figure 4.2

illustrates the memory hierarchy of all the memory spaces discussed.

Due to widely varying attributes of the memory spaces available, efficient use of

the different memory spaces are critical for the performance of the numerical solver.

This will be discussed in the context of Hermite methods later in this chapter.

33

Chapter 4. CUDA

Global memory

Gr id 0

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Gr id 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Thread Block

Per-block shared

mem ory

Thread

Per-t hread local

mem ory

Memory Hierarchy

Figure 4.2: The CUDA memeory hierarchy, from [3].

34

Chapter 4. CUDA

4.5 Special Performance Metrics

Beyond the standard performance metrics of memory bandwidth, compute time,

and floating-point operations per second, CUDA also has the metric occupancy.

Occupancy is the ratio of active warps on a single streaming multiprocessor to the

maximum number of warps supported. When occupancy is high, the warp scheduler

is able to switch between more warps in order to hide memory access latency. This

metric is so important that NVIDIA has an occupancy calculator available on their

website, see [3]. However, maximizing theoretical occupancy does not always increase

performance.

For memory optimization, the compiler flag -Xptxas -v allows the programmer

to determine how many registers are used per thread. This means a judgment can be

made as to if the number registers per thread is too high. Note that using too many

registers can cause some cores to idle. Checking the specification for the compute

capability of the hardware may help to determine the number of register to be used.

Additionally, running the CUDA profiler can help determine if too many registers are

being used. If this is the case, then the number of registers used per thread can be

limited with the -maxrregcount compiler flag. Reducing the number of threads

per block can also lower the total number of registers in use.

In addition to these special metrics, the CUDA profiler allows for detailed perfor-

mance analysis of all standard metrics. Since performance metrics are important for

optimizing kernels, accuracy of these build-in performance metrics can be increased by

using special calls within kernels. For more information on the performance metrics

available, and how to use them, see [3].

35

Chapter 4. CUDA

4.6 CUDA Implementation of Hermite Methods

The CUDA implementation, used here, changes little from the two-dimensional

parallel implementation discussed in Section 3.2. The primary difference being that

instead of using parallel loops over coordinate directions, we parallelize the method in

a domain decomposition fashion where each thread updates the approximate solution

at a single nodal point. A main concern when designing a CUDA implementation, is

what memory space to use for different variables in order to maximize performance.

The below choices were made from theoretical considerations based on existing CUDA

literature, together with empirical experience gained during the project.

As in Section 3.2, the method is broken down into a first and second half time step.

In all kernels, u and uh are stored in global memory. The arrays for the coefficients,

smcofs, scofs, and tcofs, are also stored in global memory as they are generally to

large to be stored in registers for each thread. In Section 3.2 smcofs, scofs, and

tcofs where stored locally for each CPU core, so smcofs and scofs were of size

(2m+ 2) × (2m+ 2) and tcofs was of size (2m+ 2) × (2m+ 2) × (q + 1). For the

GPU implementation each thread needs its own space, so smcofs and scofs are

of size (2m+ 2) × (2m+ 2) × Nx × Ny with scofs of size (2m+ 2) × (2m+ 2) ×

(q + 1)×Nx ×Ny. No substantial changes are made to the remaining variables.

Both Ãx

−1
and Ãy

−1
are stored in global memory, as it is sub-optimal to recreate

these matrices at each half time step. And since these matrices do not change, they

can make use of the read-only data cache. For the first half time step, u is not altered

in any way; thus, u can use the read-only data cache. Similarly for the second half

time step, uh can use the read-only data cache.

The constants m, q, hx, hy, and ∆t are all stored in constant memory, this way

each streaming multiprocessor has a copy stored locally; furthermore, accesses to

these constants occur at the same time within a warp. Thus, these constants are

36

Chapter 4. CUDA

broadcast throughout a warp.

Variables for looping are stored locally for each thread in registers. Similarly, the

node identifier (i, j) is also stored in registers on a per thread basis.

Algorithm 4.1 uses colored pseudocode to illustrate the above implementation

concepts. Note that neighborData, lines 5 through 7, is not actually created and

stored, as the array u is operated on directly. The color coding used in Algorithm 4.1

is as follows: Global Memory, Read-Only Cache, Constant Memory, and Register.

37

Chapter 4. CUDA

Algorithm 4.1 CUDA: First Half Time Step

1: for each i← 1 to Nx − 1 and j ← 1 to Ny − 1

2: Compute Coefficients for Hermite Interpolation:

3: tcofs[:, :, i, j]← 0

4: for idy ← 0 to m

5: neighborData[0 : m]← u[:, idy, i− 1, j − 1]

6: neighborData[m+ 1 : 2m+ 1]← u[:, idy, i, j − 1]

7: smcofs[:, idy, i, j]← Ãx

−1
neighborData

8: end for

9: for idy ← 0 to m

10: neighborData[0 : m]← u[:, idy, i− 1, j]

11: neighborData[m+ 1 : 2m+ 1]← u[:, idy, i, j]

12: smcofs[:,m+ 1 + idy, i, j]← Ãx

−1
neighborData

13: end for

14: for idx← 0 to 2m+ 1

15: scofs[idx, :, i, j]← Ãy

−1
(smcofs[idx, :])T

16: end for

17: tcofs[:, :, 0, i, j]← scofs

18: Recursion Relation:

19: PDE(tcofs[:, :, :, i, j],m, q, hx, hy,∆t)

20: Taylor Stepping :

21: uh[:, :, i− 1, j − 1]← tcofs[0 : m, 0 : m, 0, i, j]

22: for l ← 1 to q

23: for idx← 0 to m

24: for idy ← 0 to m

25: uh[idx, idy, i− 1, j − 1]← uh[idx, idy, i− 1, j − 1]

26: +2−l ∗ tcofs[idx, idy, l, i, j]

27: end for

28: end for

29: end for

38

Chapter 4. CUDA

While some of the variables stored in global memory can be transferred into

shared memory to boost performance, the recursion relation, which operates on

tcofs, does take the vast majority of computational time. Since accesses to tcofs are

dependent on the specific PDE being solved, shared memory is used as an L1 cache.

Alternatively, although not explored here, performance can be boosted by designing

a shared memory topology which takes advantage of the memory access pattern to

tcofs for a specific PDE.

It can be seen from the pseudocode in Section 3.2 that the Hermite method

exhibits very little divergence, as there is only one conditional required for the core

algorithm. Updates on the dual-grid do not have divergence, and updates on the

primal-grid have no divergence on the interior of the grid. The only conditional is for

the periodic boundaries, which could be handled by a separate kernel. In general, if

the PDE being solved requires conditionals, then it is best to decompose the problem

and spatial domain in a manner that reduces or eliminates warp divergence.

39

Chapter 5

Numerical Examples

In this chapter we will use numerical experiments to illustrate some of the concepts

from Chapter 4, and study the performance of our CUDA implementation of the

Hermite method on a NVIDIA GPU. For these examples, the code was run on an

NVIDIA GTX 560 Ti (compute capability 2.1) with CUDA driver version of 6.0

and run-time version 5.5. The card has 1,024MB of global memory, 65,536 bytes

of constant memory, 49,152 bytes of shared memory per block, 524,288 bytes of

L2 Cache, and supports 32,768 registers per block. There are 384 CUDA Cores

distributed across 8 streaming multiprocessors, for a total of 48 cores per streaming

multiprocessor. The GPU is clocked at 1800 Mhz, and the memory is clocked at 2106

Mhz with a bus width of 256 bits. The maximum number of threads per block is

1024, while the maximum number of threads per streaming multiprocessor is 1536.

The NVIDIA GTX 560 Ti was parred with an Intel Core i7-2600k clocked at 3.4 GHz,

with 8GB of RAM clocked at 1600 Mhz. All utilizing a motherboard with the Intel

P67 chipset.

40

Chapter 5. Numerical Examples

All of the examples in this chapter solve the following problem:

ut = ux + uy, u (x, y, 0) = f (x, y) , x ∈ [−8, 8] , y ∈ [−8, 8] ,

u (−8, y, t) = u (8, y, t) , u (x,−8, t) = u (x, 8, t) , t ≥ 0, (5.1)

f (x, y) = e
−(x2+y2)

2 .

The approximate solution was advanced to time t = 16. Since this is one time

period, error is calculated by taking the maximum norm of the difference between

the initial data, f (x, y), and the computed solution at end time (numerical round

off will generally begin to take over once the error is of approximately 10−14.) The

nodal discretization of the spatial domain varies from a 5× 5 node Cartesian grid to

a 160× 160 node Cartesian grid. Unless otherwise noted, a CFL condition of 0.1 is

used. Compute time is taken as the start of the time stepping process to the end of

the time stepping process, as the remaining time is spent on initialization; which will

remain approximately constant. Times were taken with CUDA’s build-in event timer,

which gives results at a resolution of 0.5µs.

5.1 Convergence Study

To ensure that the implementation is correct we performed a convergence study for

m = 3 and m = 4, using q = 4m+2 which allows for a CFL of 0.9. In Figures 5.1 and

5.2 the maximum error at time t = 16 is plotted as a function of the grid-spacing. It

can be seen from these figures that convergence occurs at the expected rate of 2m+1.

Additonally for all the performance experiments below, we also checked that the rates

of convergence were as expected for all m. The errors, along with the approximate

solutions at end time, were also compared with other serial implementations. From

this data, it is reasonable to assume that the code used for these examples has yielded

valid results.

41

Chapter 5. Numerical Examples

10
−2

10
−1

10
0

10
1

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Convergence Study for m = 3

hx

E
rr
or

Measured Errors
2m+ 1 Convergence

Figure 5.1: Error convergence when m = 3, q = 4m+ 2, and a CFL of 0.9.

42

Chapter 5. Numerical Examples

10
−2

10
−1

10
0

10
1

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Convergence Study for m = 4

hx

E
rr
or

Measured Errors
2m+ 1 Convergence

Figure 5.2: Error convergence when m = 4, q = 4m+ 2, and a CFL of 0.9.

43

Chapter 5. Numerical Examples

5.2 Performance Studies

In the below examples, a comparison of error vs compute time is presented. Error

decreases due to a decrease in the spatial step size, that is, with increasing number of

nodes on which the approximation is computed.

5.2.1 Example 1: Performance at Maximal Number of

Threads Per Block

For this first example, a fixed block size of 1024 is used. This is the maximum block

size allowed by the hardware, and it is fairly common that new CUDA programmers

will select the maximal size. Such a choice is due to the fact that the more active

threads there are, the more memory access latency can be hidden. However for

smaller grids, this choice of maximal block size does not utilize all of the streaming

multiprocessors. Figure 5.3 shows how this causes little difference in the ratio of error

to compute time when m is changed. The use of only one streaming multiprocessor

also exacerbates the problem of latency, because as m becomes larger so does the

amount of memory used; thus, a smaller fraction of the data fits into cache while the

stride of memory accesses also becomes larger. Figure 5.4 depicts results for a much

higher sampling rate, in the number of nodes, in order to give a better understanding

of what is occurring. At an error of order 10−4 and compute time on the order

of 100, the number of streaming multiprocessors, for m = 3, increases from one to

four. Thus, compute time decreases substantially while the error also decreases. This

phenomena can also be seen for m = 4 at an error of order 10−6. These scaling

properties continue as the number of nodes increases, but becomes less prevalent as

more streaming multiprocessors are being used. Prior to utilizing a sufficient number

streaming multiprocessors, the scaling is analogous to weak scaling on the CPU. Once

all streaming multiprocessors are being used, however, the scaling becomes closer to

44

Chapter 5. Numerical Examples

that of strong scaling.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Timing Data

Compute Time (sec)

E
rr
or

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7

Figure 5.3: Performance with a fixed block size of 1024, q = 2m+ 1, and a CFL of
0.1.

45

Chapter 5. Numerical Examples

10
−1

10
0

10
1

10
2

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Timing Data

Compute Time (sec)

E
rr
or

m = 3
m = 4

Figure 5.4: Performance with a fixed block size of 1024, q = 2m+ 1, and a CFL of
0.1.

46

Chapter 5. Numerical Examples

5.2.2 Example 2: Performance at 64 Threads Per Block

In this example a block size of 64 is used. This block size yields a theoretical occupancy

of 33.3% for the NVIDIA GTX 560 Ti, but exhibits better scaling characteristics

than the previous example. Figure 5.5 illustrates how the scaling is much smoother

than before, this is due to the more even distribution of threads across the GPU’s

streaming multiprocessors. The switch from a weak to strong scaling now occurs at

an error of order 10−5 for m = 3, for m = 4 this occurs at an error on the order of

10−7. Figure 5.6 illustrates the effect of a smaller block size for m from 1 through 7.

While increasing m by 1 does not really increase performance when using very few

nodes, a performance difference can be seen for fewer nodes than in example 1.

47

Chapter 5. Numerical Examples

10
−1

10
0

10
1

10
2

10
3

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Timing Data

Compute Time (sec)

E
rr
or

m = 3
m = 4

Figure 5.5: Performance with a fixed block size of 64, q = 2m+ 1, and a CFL of 0.1.

48

Chapter 5. Numerical Examples

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Timing Data

Compute Time (sec)

E
rr
or

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7

Figure 5.6: Performance with a fixed block size of 64, q = 2m+ 1, and a CFL of 0.1.

49

Chapter 5. Numerical Examples

5.2.3 Example 3: Performance with Maximal q

In this example we examine the difference in performance when using the PDE

method from Algorithm 3.6 along with q = 4m+2. This allows for the CFL condition

to be set to 0.9, which reduces the number of time stepping calls needed. In turn

reducing the overhead of the host calling kernels on the device. These changes make

for a fairly significant speedup from the PDE method from Algorithm 3.5, q = 2m+1,

and a CFL condition of 0.1 used in the previous examples. In fact, the change is large

enough that m = 6 gives better performance than m = 7; since for m = 7 round-off

takes over so quickly. These results are in contrast to the CPU, where it actually

takes longer to execute using this method. These results, in particular, show that

the architectural differences between the CPU and GPU must be accounted for when

implementing numerical methods on the GPU.

50

Chapter 5. Numerical Examples

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Timing Data

Compute Time (sec)

E
rr
or

m = 1
m = 2
m = 3
m = 4
m = 5
m = 6
m = 7

Figure 5.7: Performance with a fixed block size of 64, q = 4m+ 2, and CFL of 0.9.

51

Chapter 6

Summary and Outlook

To summarize, we have considered how scalar and systems of hyperbolic equations can

be approximated using Hermite methods in one- and two-dimensions. In particular

this thesis has investigated different implementations on traditional CPU based

architectures, as well as more modern GPU based accelerators.

It is very important to consider the architectural differences between CPUs and

GPUs, and how these differences affect performance. For instance, a GPU may see a

decrease in compute time in spite of an increase in floating point operations, which is

rare on the CPU. Furthermore, the GPU has many more memory spaces to consider

than the CPU, and in fact, perhaps the largest performance factor for computations

performed on a GPU is memory usage. Thus, it is important to make sure each

variable, or constant, is using the appropriate memory space on the GPU.

Choosing the correct number of threads in a block is important for utilizing all

of the streaming multiprocessors available on a GPU. A poor choice of block size

may limit the number active of streaming multiprocessors, which greatly reduces

parallelism; for instance, the NVIDIA GTX Titan Black has 192 cores on each of its

15 streaming multiprocessors. In addition to reducing the number of active streaming

52

Chapter 6. Summary and Outlook

multiprocessors, a poorly chosen block size can limit the size of a warp; which also

reduces the parallelism achieved.

There are many other attributes to explore, since this is the first implementation

of the Hermite method on GPUs, as far as we know. In the future we would like

to explore more memory topologies that are independent of the PDE in order to

find whether or not performance can be increased in this manner for the general

case; particularly, on GPUs with large memory buses. Additionally, exploration of

other domain decomposition may yield increased performance. I particular where

the spatial domain of each block of threads overlaps with its neighbors and that

sub-domain of the array u is stored in shared memory, so that each block can advance

several time steps before synchronization is needed; thus, reducing global memory

accesses.

In conclusion, Hermite methods do in fact work very well on GPUs, particularly

when the performance considerations discussed in thesis are implemented. But since

little is yet known, there is still much more to explore.

53

Appendices

A Creation of Ã −1 55

B Notes on Scaling 61

54

Appendix A

Creation of Ã −1

In order to create the matrix Ã −1, we need to know xi, xi+1, and xi+ 1

2
for some i.

This allows the case when xi+ 1

2
is not exactly halfway between xi and xi+1. Here

we denote xi by xl, xi+1 by xr, and xi+ 1

2
by xc. The variable bcofs is an array

containing the binomial coefficients up to m, while Ã −1 is stored in tmat.

Sample Code A.1: Creation of the matrix Ã −1.

1 void hermiteMatrix(double *tmat, const int &m, const double

&xl, const double &xr, const double &xc, const double &

icase)

2 {

3 /*

4 icase < 0 => xc=xl (left boundary case)

5 icase = 0 => xl < xc < xr

6 icase > 0 => xc=xr (right boundary case)

7 */

8 int twoMplusTwo = 2*m+2;

9 int mPlusOne = m + 1;

10 double sign = 1.0;

55

Appendix A. Creation of Ã −1

11 double *bcofs = (double *)malloc(sizeof(double)*(m+2)*(m

+2));

12 int bcofsOffset = m+2;

13 double h = xr-xl;

14 double z = (xc-xl)/h;

15 double zc = z-1.0;

16

17 if (icase > 0)

18 {

19 z=1.0;

20 zc=0.0;

21 }

22 else if (icase < 0)

23 {

24 z=0.0;

25 zc=-1.0;

26 }

27

28 bcofs[0]=1.0;

29

30 for(int i = 1; i < bcofsOffset; i++)

31 {

32 bcofs[bcofsOffset*i]=1.0;

33 for(int j = 1; j < (i+1); j++)

34 {

35 bcofs[bcofsOffset*i + j]=bcofs[bcofsOffset*i + (j-1)

]*(i-j+1)/(j);

36 }

37 }

38

56

Appendix A. Creation of Ã −1

39 double adl, adr, c1l, c1r, c2l, c2r;

40 int jStart, jBound;

41 for(int i=0; i < twoMplusTwo; i++)

42 {

43 adl=0.0;

44 adr=0.0;

45 jStart = std::max(0,i-m);

46 jBound = std::min(i+1, m+2);

47 for(int j = jStart; j < jBound; j++)

48 {

49 if((m-i+j) == 0)

50 {

51 c2l = 1.0;

52 c2r = 1.0;

53 }

54 else

55 {

56 c2l = pow(z, (m-i+j));

57 c2r = pow(zc, (m-i+j));

58 }

59

60 if((m+1-j) == 0)

61 {

62 c1l = 1.0;

63 c1r = 1.0;

64 }

65 else

66 {

67 c1l = pow(zc, (mPlusOne-j));

68 c1r = pow(z, (mPlusOne-j));

57

Appendix A. Creation of Ã −1

69 }

70

71 adr=adr+bcofs[bcofsOffset*(m+1) + j]*bcofs[bcofsOffset

*m + (i-j)]*c1r*c2r;

72 adl=adl+bcofs[bcofsOffset*(m+1) + j]*bcofs[bcofsOffset

*m + (i-j)]*c1l*c2l;

73 }

74 tmat[i + (2*m+1)*twoMplusTwo]=adr;

75 tmat[i + m*twoMplusTwo]=(pow((-1.0), (m+1)))*adl;

76 }

77

78 // Now loop over the other columns backwards

79

80 for(int k = m-1; k > -1; k--)

81 {

82 for(int i = 0; i < twoMplusTwo; i++)

83 {

84 adl=0.0;

85 adr=0.0;

86 jStart = std::max(0,i-k);

87 jBound = std::min(i+1, m+2);

88 for(int j = jStart; j < jBound; j++)

89 {

90 if((k-i+j) == 0)

91 {

92 c2l = 1.0;

93 c2r = 1.0;

94 }

95 else

96 {

58

Appendix A. Creation of Ã −1

97 c2l = pow(z, (k-i+j));

98 c2r = pow(zc, (k-i+j));

99 }

100

101 if((m+1-j) == 0)

102 {

103 c1l = 1.0;

104 c1r = 1.0;

105 }

106 else

107 {

108 c1l = pow(zc, (mPlusOne-j));

109 c1r = pow(z, (mPlusOne-j));

110 }

111

112 adr=adr+bcofs[bcofsOffset*(m+1) + j]*bcofs[

bcofsOffset*k + (i-j)]*c1r*c2r;

113 adl=adl+bcofs[bcofsOffset*(m+1) + j]*bcofs[

bcofsOffset*k + (i-j)]*c1l*c2l;

114 }

115

116 tmat[i + (k+m+1)*twoMplusTwo]=adr;

117 tmat[i + k*twoMplusTwo]=(pow((-1.0), (m+1)))*adl;

118 sign=1.0;

119 for(int j = k+1; j < mPlusOne; j++)

120 {

121 sign=-sign;

122 tmat[i + k*twoMplusTwo]=tmat[i + k*twoMplusTwo]-sign

bcofs[bcofsOffset(m+1) + (j-k)]*tmat[i + j*

twoMplusTwo];

59

Appendix A. Creation of Ã −1

123 tmat[i + (k+m+1)*twoMplusTwo]=tmat[i + (k+m+1)*

twoMplusTwo]-bcofs[bcofsOffset*(m+1) + (j-k)]*

tmat[i + (j+m+1)*twoMplusTwo];

124 }

125 }

126 }

127

128 free(bcofs);

129 }

Sample Code A.1: Creation of the matrix Ã −1.

60

Appendix B

Notes on Scaling

Let us examine the computation of coefficients from the initial data, which breaks

down into the following set of equations:

∂kpi+ 1

2
(xi, 0)

∂xk
=

∂kf (xi)

∂xk
, (B.1)

∂kpi+ 1

2
(xi+1, 0)

∂xk
=

∂kf (xi+1)

∂xk
, (B.2)

k = 0, 1, . . . ,m,

where

∂kpi+ 1

2
(xi, 0)

∂xk
=

∂k

∂xk

2m+1∑

j=0

cj0

(
xi − xi+ 1

2

)j

, (B.3)

∂kpi+ 1

2
(xi+1, 0)

∂xk
=

∂k

∂xk

2m+1∑

j=0

cj0

(
xi+1 − xi+ 1

2

)j

. (B.4)

To further understand this, let us first make the following definitions where

A ∈ R
(2m+2)×(2m+2), ~c ∈ R

2m+2, and ~f ∈ R
2m+2:

61

Appendix B. Notes on Scaling

A =




0! −h
2

h2

22
−h3

23
h4

24
· · · −h2m+1

22m+1

0 1! −2h
2

3h2

22
−4h3

23
· · · (2m+1)h2m

22m

...
. · · · · · ·

...

0 · · · 0 m! −(m+1)!h
2

· · · −(2m+1)!hm+1

(m+1)! 2m+1

0! h
2

h2

22
h3

23
h4

24
· · · h2m+1

22m+1

0 1! 2h
2

3h2

22
4h3

23
· · · (2m+1)h2m

22m

...
. · · · · · ·

...

0 · · · 0 m! (m+1)!h
2

· · · (2m+1)!hm+1

(m+1)! 2m+1




, (B.5)

~c =
[
c00 c10 c20 · · · c2m+1,0

]T
, (B.6)

~f =




f (xi)

∂f(xi)
∂x

∂2f(xi)
∂x2

...

∂mf(xi)
∂xm

f (xi+1)

∂f(xi+1)
∂x

∂2f(xi+1)
∂x2

...

∂mf(xi+1)
∂xm




. (B.7)

With these definitions, the problem amounts to solving A~c = ~f . However, even for

relatively simple cases, A is not well conditioned. Now let us apply the following

scaling to ~c and ~f :

62

Appendix B. Notes on Scaling

~̃c =
[
c00 hc10 h2c20 · · · h2m+1c2m+1,0

]T
, (B.8)

~̃
f =




f (xi)

h
1!

∂f(xi)
∂x

h2

2!
∂2f(xi)
∂x2

...

hm

(m)!
∂mf(xi)
∂xm

f (xi+1)

h
1!

∂f(xi+1)
∂x

h2

2!
∂2f(xi+1)

∂x2

...

hm

(m)!
∂mf(xi+1)

∂xm




. (B.9)

This implies that A must be scaled in the following manner:

Ã =




1 −1
2

1
22

−1
23

1
24

· · · −1
22m+1

0 1 −2
2

3
22

−4
23

· · · (2m+1)
22m

...
. · · · · · ·

...

0 · · · 0 1 −(m+1)
2

· · · (−1)m+1(2m+1)!
m! (m+1)! 2m+1

1 1
2

1
22

1
23

1
24

· · · 1
22m+1

0 1 2
2

3
22

4
23

· · · (2m+1)
22m

...
. · · · · · ·

...

0 · · · 0 1 (m+1)
2

· · · (2m+1)!
m! (m+1)! 2m+1




. (B.10)

The scaling yields a well-conditioned matrix for reasonable values of m. Note

that in practice, the inverse, Ã −1, is directly computed and stored in memory for

63

Appendix B. Notes on Scaling

use at each interpolation step. This scaling does, however, cause the recursion

relation to change some. By using ~̃c directly, cjk, when k = 1, 2, . . . , 2m + 1 and

j = 0, 1, . . . , 2m+ 1− k, in (2.7) becomes:

hjcjk = a
(j + 1)

kh
hj+1cj+1,k−1 = a

(j + 1)

k
hjcj+1,k−1. (B.11)

Now since we are working with everything scaled in this manner, equation (2.8)

changes in the following way:

hj

j!

∂ju

∂xj

(
xi+ 1

2
, t 1

2

)
≈

2m+1−j∑

k=0

hjcjk

(
∆t

2

)k

, j = 0, . . . ,m. (B.12)

This is the correctly scaled data for the next time step. Thus the scaling only needs

to be done initially, and the scaling propagates correctly throughout the remaining

time steps.

64

Bibliography

[1] X. Chen, D. Appelö, and T. Hagstrom. A hybrid Hermite–discontinuous Galerkin
method for hyperbolic systems with application to Maxwell’s equations. Journal
of Computational Physics, 257, Part A:501 – 520, 2014.

[2] J. Goodrich, T. Hagstrom, and J. Lorenz. Hermite methods for hyperbolic
initial-boundary value problems. Math. Comp., 75(254):595–630, 2005.

[3] NVIDIA Corporation. NVIDIA CUDA C Programming Guide, February 2014.

65

	Performance Analysis and Optimization of Hermite Methods on NVIDIA GPUs Using CUDA
	Recommended Citation

	Approval Page
	Title Page
	Dedication
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Algorithms
	List of Sample Code
	Introduction
	Hermite Methods
	1D Example
	Linear Constant Coefficient Systems of Hyperbolic Equations
	2D Example

	Implementation of Hermite Methods
	1D Serial Implementation
	2D Parallel Implementation

	CUDA
	Host, Device, and Kernel
	Threads, Blocks, and Grids
	Warps
	Divergence

	Memory Spaces
	Special Performance Metrics
	CUDA Implementation of Hermite Methods

	Numerical Examples
	Convergence Study
	Performance Studies
	Example 1: Performance at Maximal Number ofThreads Per Block
	Example 2: Performance at 64 Threads Per Block
	Example 3: Performance with Maximal q

	Summary and Outlook
	Appendices
	Creation of A"0365A -1
	Notes on Scaling
	References

