Effects of neuronal activation and psychiatric treatment on circHomer1 Biogenesis

Grigorios Papageorgiou
Nikolaos Mellios

Follow this and additional works at: https://digitalrepository.unm.edu/hsc-bbhrd
Schizophrenia (SCZ) and Bipolar disorder (BD) are heterogeneous psychiatric disorders that together affect more than 3.5% of the US population. Non-coding RNAs have been shown to play a role in regulating gene expression at the transcriptional and post-transcriptional level and having implications on psychiatric diseases. Circular RNAs are a category of ncRNAs, formed after back-splicing of exons/introns. Homer protein homolog 1 is important for brain functions via regulating glutamatergic synapses, affecting spatial learning and memory and it has been abnormally expressed in psychiatric disorders. CircHomer1, is a neuronal-enriched circRNA, derived from exons 2 and 5 of the precursor of the Homer1B mRNA isoform, abundantly expressed in adult frontal cortex, significantly altered in postmortem brains of SCZ/BD patients and circHomer1 KD is associated with cognitive disturbances. In my research project, I intend to examine the mechanisms that control circHomer1 biogenesis within neurons and elucidating the molecular mechanisms that may underlie psychiatric disorders by studying circHomer1. I hypothesize that RNA binding proteins that could bind to the circHomer1 splice junction or in the nearby complementary intronic regions, such as EIF4A3 and GW182, could regulate neuronal circHomer1 biogenesis and that also pharmacological intervention for psychiatric disorders can change circHomer1 expression profile. Should that be verified, I will test the molecular cascades that underlie its’ response to psychiatric treatment.

SIGNIFICANCE-INNOVATION

This study would be the first to attempt to identify the mechanisms that underlie the biogenesis and role of a neuronal circRNA in brain function and psychiatric disorders.

HYPOTHESIS

Figure 1: Altered circHomer1 expression in the frontal cortex of subjects with psychiatric disorders (2 different cohorts)

RESULTS

Figure 2: Pharmacological inhibition of eif4a3 decreases circHomer1 biogenesis (human and mice conserved)

Figure 3: Treatment of neuropsychiatric disorders modulate mouse circHomer1 levels

Figure 4: Proposed model of antipsychotics action on circHomer1 levels

CONCLUSIONS

• eIF4A3 pharmacological inhibition decreases circHomer1 biogenesis in HEK293 and Neuro2a differentiated cells.
• Pharmacological treatment of neuropsychiatric disorders can modulate mouse circHomer1 levels in brain regions connected to SCZ/BD pathogenesis

FUTURE DIRECTIONS

1. RNAi and small molecule inhibitor screen to uncover additional RBPs and drugs that could regulate circHomer1 biogenesis.
2. Test the molecular cascades that underlie the response of circHomer1 to psychiatric treatment.
3. Study of rodent behavior following antipsychotic treatment

ACKNOWLEDGEMENTS

UNM, School of Medicine, BSGP
PI: Nikolaos Mellios, MD, PhD
Funding: R01AA026583-02 (NIAAA), R56MH119150-01 P20GM121176 (NIGMS)