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Abstract

The basis functions of thecontinuous fractional Fourier transform(FRFT) are linear chirp signals that are suit-
able for time-frequency analysis of signals with chirping time-frequency content. In the continuous–time case,
analytical results linking the chirp rate of the signal to a specific angle where the FRET of the chirp signal is an
impulse exist. Recent efforts towards developing a discrete and computable version of the fractional Fourier trans-
form (DFRFT) have focussed on furnishing a orthogonal set of eigenvectors for the DFT that serve as discrete
versions of the Gauss–Hermite functions in the hope of replicating this property. In the discrete case, however,
no analytical results connecting the chirp rate of the signal to the angle at which we obtain an impulse exist. De-
fined via the fractional matrix power of the centered version of the DFT, computation of this transform has been
constrained due to the need for computing an eigenvalue decomposition. Analysis of the centered version of the
DFRFT obtained from Grunbaum’s tridiagonal commuter and the kernel associated with it reveals the presence
of both amplitude and frequency modulation in contrast to just frequency modulation seen in the continuous case.
Furthermore, the instantaneous frequency of the basis functions of the DFRFT are sigmoidal rather than linear. In
this report, we define a centered version of the DFRFT based on the Grunbaum commutor and investigate its ca-
pabilities towards representing and concentrating chirp signals in a few transform coefficients. We then propose a
fast algorithm using the FFT for efficient computation of the multiangle version of the CDFRFT (MA-CDFRFT)
using symmetries in the computed eigenvectors to reduce the size of the eigenvalue problem. We further develop
approximate empirical relations that will enable us to estimate the chirp rate of the multicomponent chirp signals
from the peaks of the computed MA-CDFRFT. This MA-CDFRFT also lays the ground work for a novel chirp
rate Vs. frequency signal representation that is more suitable for the time-frequency analysis of multicomponent
chirp signals.

Keywords
Discrete fractional Fourier transform, linear chirp signals, chirp rate estimation, discrete Fourier transform, chirp

rate/frequency representation.
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1 Introduction

The continuous–time Fractional Fourier transform of a signalx(t) is defined via the integral [9]:

Xα(t,u) = Fα(x(t)) =
∫ ∞

−∞
x(t)Kα(t,u)dt,

where the Kernel of the transform is given by:

Kα(t,u) =

√
1− j cotα

2π
exp

(
j
t2 +u2

2
cotα− jtucscα

)
.

This integral operator constitutes a involution operator [18] of order 4 on the space of square integrable signals
and constitutes a rotation operation in time-frequency space:

F0 = I , F4 = I ,

and the operatorF denotes the conventional Fourier transformation given by:

F(x(t)) = X(ω) =
1√
2π

∫ ∞

−∞
x(t)exp(− jωt)dt.

The kernel of the FRET can be expanded via Mercer’s theorem as:

Kα(t,u) =
∞

∑
p=−∞

e− jpαHp(t)Hp(u),

whereHp(t) corresponds to thek-th order Gauss Hermite function,

Hk(t) =
21/4
√

2kk!
e−πt2hk(t),

wherehk(t) is the k-th order Hermite polynomial. The FRET basis functions are linear chirp signals which
provides a framework for analysis of signals with linear-FM type time-frequency content and is the driving force
behind the quest for a discrete fractional Fourier transform. A DFRFT preserving the rotation aspect of the
continuous–time FRET was defined via the fractional power of the DFT matrix [8]:

Aα(x) = W
2α
π (x) =

N−1

∑
p=0

e− jpαvpvH
p (x). (1)

Properties of this DFRFT were analyzed in [8], where it was shown to be a rotation in discrete time–frequency
space. Specifically using a Taylor series expansion of the fractional power, the discrete fractional Fourier trans-
form operator can be expanded as:

Aα = a0(α)I +a1(α)W +a2(α)W2 +a3(α)W3, (2)

where the coefficientsai(α), i = 0,1,2,3 are constants defined in [8]. The expansion in [8], however, is based on
eigenvectors of the DFT that are linearly independent but non orthogonal set. Specifically the DFT has 4 distinct
eigenvalues and only those that belong to distinct eigenvalues are orthogonal. Since the basis functions of
the continuous FRET are not bandlimited, directly sampling of the kernel will result in aliasing and approaches
based on oversampling will result in a non orthogonal basis [13, 15]. Other approaches such as the chirp Fourier
transform that directly use discrete–time chirp functions in the kernel have also been proposed but here again
the basis functions are not orthogonal [15]. Earlier work in [1] furnishes an expression for orthogonal DFT
eigenvectors based on sampling and aliasing of the Gauss–Hermite functions but does not yield a computable
version. Recent efforts towards finding a discrete FRET have focussed on the problem of furnishing orthogonal
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Figure 1: Eigenvectors of the Grunbaum tridiagonal commuting matrixT for N = 201,α = 22.5◦,b= 1. Note that
thekth eigenvector hask−1 zero crossings, (b) asymptotic solution for the eigenvectorsvk[n],k = 1,2,3,4,5,6.

eigenvectors for the DFT, that are discrete versions of the Hermite–Gauss functions. One of these approaches
based on the work by Dickinson and Steiglitz and the Harper matrixShas been used for constructing a complete
orthogonal set of eigenvectors for DFT eigenvectors [4, 16].

v[n+1]−2v[n]+v[n−1]+2

(
cos

(
2π
N

n

)
−1

)
v[n] = λv[n].

ForN that is a multiple of 4, the Harper matrix has a single zero eigenvalue and the problems associated with this
were resolved in [16]. Another discrete version of the FRET based on Kravchuk functions has been explored in
[2].

Φn[m] =
1

2l−m

√(
2l

l +m

)
/

(
2l
n

)
kn(l +m,2l),

wherekn(r,2s) = (−1)n

2n 2F1(−n,−r;−2s;2) is the symmetric Kravchuk polynomial.

The particular approach towards obtaining the DFT eigenvectors adopted in this report uses the tridiagonal
commuting matrix introduced by Grunbaum [14]. The motivation behind using this particular approach is that:

1. it furnishes a complete basis for the DFT for anyN. This is not the case for approaches based on the Harper
matrix where a degeneracy still exists whenN is a multiple of4.

2. the Grunbaum tridiagonal commuting matrix in the limit approaches the second-order differential Hermite-
Gauss operator [14].

3. the Grunbaum eigenvectors are better approximations to the continuous Gauss–Hermite functions than the
eigenvectors obtained through the Harper matrix approach.

Recently Mugler and Clary modified the Grunbaum tridiagonal incorporating a scaling factor and the resultant
eigenvectors very closely resemble the Gauss-Hermite functions [11]. In this report, we will focus our analysis
on the latter and analyze the discrete FRET obtained from this commutor, study the properties of the transform
and the associated basis functions. Specifically we will see that the basis functions contain both amplitude and
frequency modulation to preserve orthogonality.

2
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2 On the Grunbaum DFRFT

The motivation behind the commutor matrix approach towards finding the DFT eigenvectors lies in the fact that
if two unitary–symmetric matricesA andB commute then they share a basis of eigenvectors. If the eigenvalues
of the commuting matrixB are distinct the eigenvectors of the commutor without degeneracy furnish the sought
eigenvectors. The tridiagonal commutor of Grunbaum is defined via its diagonal, off-diagonal elements [11]

Tmn =





−2cos(πNτ)sin(πnτ)sin(π(N−n−1)τ)
if m= n, 0≤ n≤ N−1,
sin(πnτ)sin(π(N−n)τ)
if m= n+1,n−1, 1≤ n≤ N−1,
0, otherwise

where0≤ µ≤ N−1 andτ = 1/Nb2. Next we focus our attention on the centered version of the DFT matrix
operator defined via [11]:

{Wa,b}mn =
1√
N

exp

(
− j

2π
N

(m−a)(n−a)/b2
)

,

where the shift parametera = N−1
2 . Note that this corresponds to a shifted version of the DFRFT only whenN is

odd. This focus is due to the fact that the eigenvalues of the commutor matrixT for the centered DFRFT case are
both real and unique and furnish the complete orthogonal set of DFT eigenvectorsVG via [11]: T = VGΛGVT

G. It
is also instructive to look at some specific observations regarding the DFRFT that arise out of this expansion in
Eq. (1). First, the DFRFT matrix operator is an involution operator of orderm= floor(2π

α ) : Am
α = I . Specifically

whenα = π
2 it reduces to the DFT matrix which ism= 4-th order involution. The involution property is derived

from the eigenvalues of the DFRFT operator and is independent of the eigenvectors. It is also an indicator of
the fact that this operator represents a rotation in time–frequency space. The eigenvalues of the DFRFT matrix
operator are the roots of unity and when the angleα takes on discrete valuesα = 2π

N p, p = 0,1, . . . ,N−1, the
trace of the operator vanishes at the zeroes of the Dirichlet kernel:

Trace(Aα) = DN(α) = e− jα(N−1)/2
(

sin(Nα/2)
sin(α/2)

)
. (3)

When the trace of the DFRFT is actually zero, i.e.,α = αr = 2πr
N the determinant of the DFRFT operator becomes:

det(Aα) =
N

∏
p=1

exp(− jpαr) =±1, αr =
2πr
N

(4)

This fact is important from the perspective of development of fast algorithms for computing the DFRFT because
the DFRFT can now be interpreted as a DFT:

Ar(x) =
N−1

∑
p=0

vpvH
p (x)exp

(
− j

2π
N

rp

)
.

Specifically on an element by element basis the DFRFT reduces to:

Xr [k] =
N−1

∑
p=0

{
vkp

N−1

∑
n=0

vnpx[n]

}
Wpr

N , (5)

wherevi j refers to the(i, j)-th element of the matrix of eigenvectorsVG of the Grunbaum tridiagonal commutor.
This relation specifies the DFRFT as an angular DFT that which can be computed using the computationally
efficient FFT algorithm. Since the Grunbaum commutor matrix is real, symmetric and tridiagonal methods such
as the Lancoz algorithm [20] can be used to compute the eigenvectors needed for the DFT. The four term power

3
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series expansion of [8] is not valid for the DFRFT based on the Grunbaum commutor. However, the DFRFT
operator can still be expanded as a power series of the form:

Aα =
N−1

∑
i=0

ai(α) [log(W)]i .

The eigenvectors of the Grunbaum tridiagonal commutorv(b)
k [n] for N = 201,b = 1,α = 22.5◦ are described in

Fig. (1)(a). Note that the eigenvector of orderk exhibitsk− 1 zero crossings as in the case of the continuous
Gauss-Hermite functions. The effect of the dilation parameter on the eigenvectors ofT is illustrated in Fig. (1)(b)
for different values of the dilation parameterb. Note that the dilation parameter only affects the eigenvectors and
not the eigenvalues of the DFRFT. As the dilation parameter value increases, the spread of the eigenvectorv1[n]
increases. Furthermore negative values of dilation parameterb produce the same results as the corresponding

positive dilation parameter, i.e.,v(b)
k [n] = v(−b)

k [n], indicating a dependence on just|b|. These eigenvectorsv(b)
k [n]

exhibit even or odd symmetry:v(b)
k [n] =±v(b)

k [−n] depending on the orderk requiring the storage of just half of
theN samples for each eigenvector. It has been shown by Grunbaum [14] that the tridiagonal commutor matrix
T commutes with the centered version of the DFT. The eigenvectors of the Grunbaum tridiagonal commutor in
particular satisfy a second order difference equation of the form:

vk[1] =
λk−a0

b1
vk[0]

bn+1v(b)
k [n]+ (an+2−λk)v

(b)
k [n+1] + bn+2v(b)

k [n+2] = 0,

wherean = Tnn, 0≤ n≤ N− 1 andbn = Tn,n−1, 1≤ n≤ N− 1. Fig. (1)(b) describes the effect of a very
large dilation parameterb on the eigenvectorsv2[n],v3[n] andv4[n] of the Grunbaum tridiagonal commutorT.
An important observation that one derives from Fig. (1)(b) is that in the limit of a large dilation parameter the

solution to this second-order difference equationv(b)
k [n] approaches a polynomial similar to the way in which the

Hermite Gauss functions asymptotically tend to Hermite polynomials:

v(b)
k [n] = pk[n]ψ(b)

k [n], lim
b→∞

ψ(b)
k [n] = 1. (6)

3 Analysis of the Grunbaum DFRFT

Specifically the kernel of the DFRFT based on the Grunbaum tridiagonal commutor contains both amplitude
modulation and frequency modulation in an effort to preserve orthogonality:

Kα[n,k] = Aα[n,k]exp( jΦα[n,k]) , (7)

whereAα[n,k] is the instantaneous envelope of the kernel andΦα[n,k] is the instantaneous phase of the kernel.
As a consequence of this information the DFRFT can be interpreted as an AM–FM transform of the form:

Xα[k] =
N−1

∑
n=0

Aα[n,k]exp( jΦα[n,k])x[n] (8)

The AM and FM modulation parts in particular satisfy:

lim
α→90◦

Aα[n,k] =
1√
N

, lim
α→90◦

Φα[n,k] =
2πnk

N

lim
α→0◦

Aα[n,k] = δ[n−k].

4
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Fig. (4)(a) describes the instantaneous envelope of the DFRFT kernel forα = 22.5◦,b = 1,N = 201. Fig. (4)(b)
describes the instantaneous envelope of a specific column of the DFRFT matrix for different angular parameters
describing the increasing spread of the envelope from a impulse to a constant. Fig. (2) describes the instantaneous
frequency of the columns of the DFRFT where we note that Fig. (3) describes the instantaneous unwrapped phase
associated with the kernel of the DFRFT forN = 101,b = 1. the IF of the kernel is not linear as in the case of the
continuous FRET kernel but rather sigmoidal. Also note that as the angular parameterα approaches90◦ the IF
starts to approach a constant corresponding to the sinusoidal basis functions of the DFT kernel.

4 Grunbaum DFRFT : N = 2 case

In general the DFRFT matrix operator is defined via the fractional matrix power of the DFT matrix:

Aα = VcΛ
2α
π VT

c ,

whereVc is the matrix eigenvectors obtained from Grunbaum’s tridiagonal commutor matrixT. The DFRFT
operator for the case whereN = 2 is given by:

Aα =
1√
2

(
1 1
1 −1

)(
1 0
0 e− jα

)
1√
2

(
1 1
1 −1

)T

Simplifying this expression yields:

Aα = e− j α
2

(
cosα

2 j sin α
2

j sin α
2 cosα

2

)

︸ ︷︷ ︸
M

Note that in this specific case, the matrix of eigenvectors is also identical to the DFT matrix operator of dimension
N = 2, i.e.,W2, and consequently:

Aα = W2

(
1 0
0 e− jα

)
W2.

Multiplication by the diagonal matrix corresponds to twiddle factor multiplication in between the two DFT op-
erations. However, the matrix of eigenvectorsVc is not in general a symmetric matrix. A second interesting
observation is that the matrixM is the complex equivalent of the2×2 rotation matrix that is given by:

Rθ =
(

cosθ −sinθ
sinθ cosθ

)
,

with the observation that the−1 along the off-diagonals ofRθ has been distributed asj× j along the off-diagonal
of M .

5 Grunbaum DFRFT: N = 3 case

For the case whereN = 3, however, the matrix of eigenvectorVc is more complex:

Vc =




1√
6+2

√
3

−1√
2

1√
6−2

√
3√

3+1√
6+2

√
3

0 −
√

3−1√
6−2

√
3

1√
6+2

√
3

1√
2

1√
6−2

√
3




5
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Note that in this case the matrix of eigenvectorsVc is not symmetric and is not the same as the DFT matrixW3.
The DFRFT matrix operator in this case then becomes:

Aα = Vc




1 0 0
0 e− jα 0
0 0 e− j2α


VT

c .

Upon simplification this yields the expression:

Aα =
1
2

e− jα




1+cosα− j√
3

sinα 2 j√
3

sinα cosα−1− j√
3

sinα
2 j√

3
sinα 2cosα+ 2 j√

3
sinα 2 j√

3
sinα

cosα−1− j√
3

sinα 2 j√
3

sinα cosα+1− j√
3

sinα




6 Generalization from theN = 2 case

We can generate a generalization of the DFRFT for the general case from the case whereN = 2 via:

Ãα = WNΛ
2α
π WH

N

This corresponds to a transform of the form:

Xα[k] =
1
N

N−1

∑
n=0

N−1

∑
p=0

x[n]exp

(
− j

2π
N

(
n−k+

Nα
2π

)
p

)
= x

[((
k− Nα

2π

))

N

]
.

Ofcourse intuitively this corresponds to just a phase modification in the DFT of the signalx[n].

7 The Multi–Angle CDFRFT Representation

Using the definition of the CDFRFT, we now develop a fast algorithm for computing the multiple angle version
of the CDFRFT. The elements of the CDFRFT matrix can be expressed as

{Aα}kn =
N−1

∑
p=0

vkpvnpe
− jpα, (9)

wherevkp is thek-th element ofp-th eigenvector . MultiplyingAα by the signalx[n] we obtain the transform:

Xα[k] =
N−1

∑
n=0

x[n]
N−1

∑
p=0

vkpvnpe
− jpα, (10)

and after rearranging the two sums we obtain:

Xα[k] =
N−1

∑
p=0

vkp

N−1

∑
n=0

x[n]vnpe
− jpα. (11)

If we use a discrete set of angles given by

α = αr =
2πr
N

, r = 0,1, . . . ,N−1, (12)

we obtain

Xr [k] =
N−1

∑
p=0

vkp

N−1

∑
n=0

x[n]vnpe
− j 2π

N pr. (13)

6
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Definingzk[p] as

zk[p] = vkp

N−1

∑
n=0

x[n]vnp, (14)

we observe that the transform can be expressed as the DFT ofzk[p], that is

Xk[r] =
N−1

∑
p=0

zk[p]Wpr
N , 0≤ r,k≤ N−1. (15)

Expressing the transform as a DFT allows us to use the regular FFT algorithm for computing the CDFRFT.
The resulting transformXk[r] containing the CDFRFT for these discrete angles is called themulti–angleDFRFT
(MA-DFRFT).

Further simplifications in the algorithm are obtained by:

1. incorporating the even and odd symmetries of the Grunbaum eigenvectors to reduce the number of multi-
plications needed [19].

2. exploiting the observation that a lot of the entries in the matrix of eigenvectors are very close to zero and can
effectively be approximated by zero thereby reducing the number of multiplications required even further
without introducing significant error [19].

3. Exploiting symmetries in the signal under analysis so that the MA-CDFRFT for a certain number of angles
are needed.

The MA-CDFRFT is a matrix,Xk[r], that contains a representation of the signal in which time and frequency
share the same axis (indexk), and depending on the value ofα we interpret the index as time or frequency.
There is a diamond shaped region in the spacecr –ω0 where for a signal with constant chirp rate we have a
good localization of the chirp rate and the average frequency of a signal, and where indexk is interpreted as
frequency [19]. Figure 9 shows a representation of the matrix that indicates where the region is located in matrix
Xk[r]. When we compute the MA-CDFRFT of a complex sinusoidal signal we obtain always two peaks, one
in the lower half and other in the upper half ofXk[r], and if the signal has a constant frequency, the peaks will
be located exactly at the rows corresponding to anglesα=90 andα=270 that correspond to the centered DFT
(CDFT), and its inverse respectively. With a real signal we obtain four peaks due to the fact that it has negative
and positive frequencies. A signal with a chirp rate different than zero will produce peaks at angles different than
90 and 270, and they will be above or below those values depending on the sign of the chirp rate.

8 Relating Chirp Rate & Angle

The approach used here is to find the chirp rate of the signal that results in the largest peak in the magnitude of
the MA-DFRFT for a the discrete set of angles defined before. We first look at complex chirps with zero average
frequency of the form

x[n] = ejcr (n−N−1
2 )2

, 0≤ n≤ N−1,

wherecr is the chirp rate. After performing the computation for different sizes transform sizes, the results show
that the relation between the chirp ratecr and angleα can be described approximately by the relation

cr = π
tan(α−π/2)

N
. (16)

This relation is not exact and has an error slightly larger than 10% for some angles. A plot of the results for
N = 128is given in Fig. 8.

7



UNM Technical Report: EECE-TR-04-22

The other aspect of this approximation that we wish to determine is how good the concentration of the chirp
function for the values obtained before is. For this purpose we computed the number of coefficients of the
transformed signal that captured 50% of the total energy. The result of this computation reveals that we only
get good concentration of the chirp signal in the interval of angles from 45 to 135, and in this range, 50% of the
energy is concentrated in at most two coefficients. Outside the interval the number of coefficients grows rapidly,
as it can be seen in Fig. 10(a).

Let us now consider the case of chirp signals having an average frequency different than zero, i.e.,

x[n] = ej(cr (n−(N−1)/2)2+ω0(n−(N−1)/2)), 0≤ n≤ N−1.

whereω0 is the average frequency. The other point of interest is where the maximum concentration occurs and
is a measure of how well the CDFRFT can localize the average frequency of this chirp signal. In addition to the
computation of the chirp rate and the number of coefficients needed for capturing 50% of the energy, we also
compute the coefficient at which the maximum value occurs. The results show little difference in the relation of
the chirp rate with the angleα compared with the case of zero average frequency. The number of coefficients
that concentrate 50% of the energy of the signal is also similar to the zero average frequency case, but as the
average frequency increases, the interval for which we concentrate the signal in two coefficients decreases slightly.
Fig. 10(b) shows the case forω0 = 1.57. The error in the localization of the average frequency, measured as the
difference between the coefficient of the average frequency and the coefficient at which the peak occurs, shows
that as the average frequency increases, the error also increases. Fig. 10(c) shows this difference for positive
frequencies. The larger deviations correspond to larger frequencies. This result is also affected by aliasing and
consequently we ignore combination of large chirp rate and large average frequency.

From the results in previous sections, we see that for alpha between 45 to 135 we obtain better concentration of
signal energy when analyzing linear chirps. For this interval, we have found empirically that the relation between
the angle of the transform and the chirp rate can be approximated better if we add a linear term to Eq.(16) and the
corresponding error is reduced to less than 2% :

cr = 2
tan(α−π/2)

N
+1.41

(α−π/2)
N

. (17)

This relation is useful for determining the chirp rate from the angle at which we have more concentration, partic-
ularly when we the MA-CDFRFT algorithm described before is used.

9 Examples: Chirp Rate Estimation

Our goal in this section, is to study the utility of the two approximate expressions relating the chirp rate to the
transform angle. The first example pertains to the application of the MA-DFRFT to a single linear chirp signal:

x[n] = ej(0.005(n− 127
2 )2), 0≤ n≤ 127

Fig. 11(a) shows the complex chirp signal, Fig. 11(b) describes the magnitude of the MA-DFRFT of this signal.
Specifically we observe that we actually have two maxima because the CDFRFT atα + π is reversed version of
the CDFRFT atα. The location of the maximum is atr = 36which corresponds to an angleα = 2π 36

128 = 1.7671.
Upon application of Eq. (16) the corresponding chirp rate estimate is 0.0049, while application of Eq. (17) yields
a chirp rate of 0.0053. Fig. 11(c) is the slice of the MA-DFRFT at this particular angle, where the magnitude of
the MA-DFRFT is a maximum.

Adding another chirp component with zero average frequency at a different chirp rate yields a two-component
chirp signal. The MA-DFRFT and the approximate relations are applied to estimate the two chirp rates associated
with the two-component chirp signal. The second chirp component has a negative chirp rate of 0.007. For this
case the maxima occur atr = 36 andr = 27 and the corresponding chirp rates from application of Eq. (16) are

8
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0.0049 and -0.0062. The corresponding chirp rates obtained via Eq. (17) are 0.0053 and -0.0066. The chirp
signal, its MA-DFRFT and its slice at the angle where the magnitude of the MA-DFRFT is a maximum are
shown in Fig. (11). In both cases, we can see that the MA-DFRFT is able to concentrate chirp signals into a few
coefficients and that Eq. (16) and Eq. (17) can be used to estimate the chirp rate(s) of the signal.

10 Conclusion

In this report, we have studied the capability of the centered DFRFT obtained from the Grnbaum commuting
matrix to concentrate a chirp signal in a few transform coefficients. We presented an FFT based algorithm for
computing the multi-angle version of the CDFRFT. We then furnished two empirical relations that related the
chirp rate and the angle that produced a impulse-like transform. We evaluated the efficacy of these expressions
by applying these relations to the analysis of single and two component chirps signals and demonstrated that the
CDFRFT and its multi-angle version are powerful time-frequency tools for the analysis of both monocomponent
and multicomponent chirp signals.
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Figure 2: Normalized instantaneous frequency associated with different columns of the DFRFT operator for
different angles. The IF of the DFRFT kernel is noticeably sigmoidal rather than linear.
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Figure 3: Normalized instantaneous unwrapped phase associated with the kernel of the DFRFT based on the
Grunbaum commutor matrix.
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Figure 6: Eigenvectorsv2[n], v3[n], v4[n] of the Grunbaum tridiagonal commuting matrix forN = 201,α = 22.5◦
for different values of the dilation parameter.

15



UNM Technical Report: EECE-TR-04-22 References

0.1

0.2

0.3

0.4

0.5

0.6

0.7

COLUMN      INDEX

R
O

W
  

  
 I

N
D

E
X

N = 201, α = 22.5, b = 1

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

(a)

−3

−2

−1

0 

1 

2 

3 

COLUMN      INDEX

R
O

W
  

  
 I

N
D

E
X

N = 201, α = 22.5, b = 1

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

(b)

COLUMN      INDEX

R
O

W
  
  
 I
N

D
E

X

N = 201, b = 1, α = 45°,  CENTERED

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

(c) COLUMN      INDEX

R
O

W
  

  
 I

N
D

E
X

N = 201, b = 1, α = 45°,  CENTERED

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

(d)
Figure 7: (a) Magnitude and (b) unwrapped phase of the elements of the DFRFT forN = 201,α = 22.5◦,b = 1,
(c) magnitude and (d) unwrapped phase of the elements of the DFRFT forN = 201,α = 45◦,b = 1.
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Figure 10: (a) Number of coefficients capturing 50% of chirp signal energy as a function ofα with w0 = 0,
(b) with w0 = 1.57, (c) number of coefficients of error in the localization of the average frequency with respect to
α.

18



UNM Technical Report: EECE-TR-04-22 References

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1
REAL PART

0 20 40 60 80 100 120 140
−1

−0.5

0

0.5

1
IMAGINARY PART

(a)

INDEX k (FREQUENCY)

IN
D

E
X

 r
 (

A
N

G
L

E
)

MA−DFRFT OF THE SIGNAL

0 20 40 60 80 100 120
0

20

40

60

80

100

120

(b)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

INDEX k (FREQUENCY)

M
A

G
N

IT
U

D
E

SLICE OF THE MA−DFRFT AT r = 36

(c)
Figure 11: Monocomponent chirp: (a) chirp signal with a chirp rate, (b) magnitude of the corresponding MA-
DFRFT, and (c) slices of the MA-DFRFT atr = 36.
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Figure 12: Two component chirp: (a) composite signal, (b) magnitude of the corresponding MA-DFRFT, and
(c) slices of the MA-DFRFT atr = 36andr = 27.
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