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Abstract

I describe the role of symmetry in two quantum algorithms, with a focus on how that

symmetry is made manifest by the Fourier transform. The Fourier transform can

be considered in a wider context than the familiar one of functions on Rn or Z/nZ;

instead it can be defined for an arbitrary group where it is known as representation

theory.

The first quantum algorithm solves an instance of the hidden subgroup problem—

distinguishing conjugates of the Borel subgroup from each other in groups related

to PSL(2; q). I use the symmetry of the subgroups under consideration to reduce

the problem to a mild extension of a previously solved problem. This generalizes a

result of Moore, Rockmore, Russel and Schulman[33] by switching to a more natural

measurement that also applies to prime powers.

In contrast to the first algorithm, the second quantum algorithm is an attempt

to use naturally continuous spaces. Quantum walks have proved to be a useful

tool for designing quantum algorithms. The natural equivalent to continuous time

quantum walks is evolution with the Schrödinger equation, under the kinetic energy

Hamiltonian for a massive particle. I take advantage of quantum interference to find



vi

the center of spherical shells in high dimensions. Any implementation would be likely

to take place on a discrete grid, using the ability of a digital quantum computer to

simulate the evolution of a quantum system.

In addition, I use ideas from the second algorithm on a different set of starting

states, and find that quantum evolution can be used to sample from the evolute of a

plane curve. The method of stationary phase is used to determine scaling exponents

characterizing the precision and probability of success for this procedure.
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Chapter 1

Introduction

The idea of computations and of algorithms as an abstract class has caused an

amazing revolution through the twentieth century by allowing mechanized data pro-

cessing. The word “computer” has ceased to refer to an occupation and now refers

to a machine.

When this abstraction was introduced, it missed a point. Computation is a

physical process, and the physical universe in which we live is quantum mechanical

in nature. Quantum mechanics was only just being developed at the same time as

this notion—and quantum mechanics imposes a different set of restrictions on how

it is possible to compute than classical mechanics does.

Because computation is a physical process, it is necessary to apply our knowl-

edge of physics to capture what is relevant in constructing a relevant abstraction.

From this necessity has arisen the fields of quantum information and computation.

Even once this abstraction is constructed, further use and analysis can be greatly

aided by applying tools of physics to these more abstract problems. In this thesis I

attempt to demonstrate the utility of a key tool in physics— systematic exploitation

of symmetries—to analysis of two quantum algorithms.

The first algorithm, presented and analyzed in chapter 3, has been published as

[12] and is a restricted case of the hidden subgroup problem. The hidden subgroup
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problem has been a standard framework for expressing the bulk of quantum algo-

rithms in a unified framework. Given a function f on a group G, the general problem

is to identify the maximal subgroup H that leaves the function unchanged. In order

for this to be well posed, we require that there in fact is some group H such that the

function is constant and distinct on (left) cosets of H. That is:

f(c) = f(b) if and only if c−1b ∈ H.

In addition, to be able to use this function in a quantum algorithm, we must be

able to apply it in a quantum coherent manner. This requirement is usually phrased

in terms of an “oracle function”, and part of the computational cost is actually

evaluating such a function. Implicitly lurking behind many applications is running a

classical algorithm to compute this on a general purpose quantum computer (such as

fast exponentiation with Shor’s factoring algorithm, or testing if an item is the desired

one in Grover’s search algorithm). In more abstract cases, the implementation of the

oracle is ignored.

The groups under consideration here are PSL(2; q) and some other families with

similar structure. I call it a restricted case, because in addition I require that the

subgroup H belong to a particular family of subgroups: conjugates of the subgroup

of upper triangular matrices, B. All subgroups of a given group come in families

of mutually conjugate subgroups. Telling which family a given subgroup is in is

straightforward given the ability to efficiently Fourier transform. The hard part is

telling conjugates apart. PSL(2; q) is an interesting family in that they are one

of the relatively small number of families of simple groups. These are the atomic

building blocks by which other, larger groups can be built from semi-direct products

of smaller groups. Simple groups cannot be decomposed into smaller groups in this

way. This suggests that it would be a fruitful family to have a working algorithm

for. The central insight is that PSL(2; q) acts multiply transitively on elements

of the projective field PFq. B and its conjugates stabilize elements of PFq. This

allows a classical reduction to a hidden subgroup problem in B ∼= AGL(1; q). A

moderate fix-up of a previously published measurement for solving AGL(1; p) [33]

allows generalizing to AGL(1; q).
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The second algorithm, considered in chapter 4 has not been previously published,

and is an attempt to generalize the use of quantum walks on discrete systems to a

continuous setting. A continuous-time quantum walk generalizes to evolution under

the Schrödinger equation with a free-particle Hamiltonian. To attempt to do interest-

ing computation, I essentially construct a problem to take advantage of interference

effects. Constructive interference is realized when there are equal propagation dis-

tances to a given point. A set of points equidistant from a given point is, of course, a

sphere, having a huge deal of symmetry. I show that for a reasonable family of states

concentrated on the surface of a sphere, time evolution concentrates the resulting

states near the center.

I further explore these ideas on less symmetric figures in chapter 5. For a plane

curve, evolution leads to concentration not at the center, but at the evolute of the

plane curve, the curve’s set of centers of curvature. While the center of a sphere

is a global property corresponding to rotational symmetry, the evolute of a curve is

a more local property corresponding to neighborhoods of points, which weaken the

interference effects. I hope to extend the analysis to higher dimensions and figures

with symmetries weaker than a sphere, but stronger than arbitrary plane curves.
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Chapter 2

Background

2.1 Classical and Quantum algorithms

There are many formal definitions of algorithms. They are all roughly equivalent in

capturing the same class of processes, though some formulations are more fruitful

for certain purposes than others. Rather than reiterating, we point the interested

reader to discussion such as [31].

Algorithms take in some input data, process it in some manner, and then deliver

an output. A classical algorithm, by definition, works with classical data, usually

considered as bit strings. Though for many purposes classical approximations can

be excellent, we do not live in a classical world. Computation is a physical process,

and in certain circumstances it is more appropriate to consider quantum algorithms.

This matters not just for abstract intellectual rigor, but because it appears that

quantum computation offers the ability to fundamentally solve some processes faster

than equivalent classical computers.

A quantum algorithm is one that works with quantum data, expressed as quantum

states. Many common models restrict these to “quantum bit strings”—Hilbert spaces

endowed with the structure (C2)⊗n (though a physically irrelevant phase is “modded

out” by identifying all rays—complex multiples of a given vector). There is no real
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loss to doing so, as other quantum systems can be effectively simulated using such

states. Because we ourselves are effectively classical, we can only consider as inputs

those states that we can efficiently construct. This can be tightened slightly to

requiring the input state be “0” without any loss (by moving initialization into the

quantum computer). Our interaction with output states is restricted to collecting

measurement statistics in an efficiently implementable basis. This usually means

“local” measurements for qubits.

Many quantum algorithms depend crucially on symmetry. Our experience with

physics has taught us that for problems with symmetry, it is useful to express our

problem (e.g., states and operators) in bases adapted to that symmetry. The Fourier

transform is one of the key ways of doing so.

2.2 Symmetry and the Fourier transform

A system is described as symmetric if some action leaves it the same. This notion of

symmetry naturally leads to the notion of a group.

Two operations on a system can be composed. Performing one operation after

the other is itself an operation. If both initial operations leave the system invariant,

then the the composition must as well.

Definition 1. A group is a set G and a binary operation · such that:

1. The set G is closed under the operation ·: for all elements x and y in G, x · y

is also in G;

2. The operation is associative, so that for all elements x, y, and z: x · (y · z) =

(x · y) · z;

3. There is an identity element e such that for all x ∈ G, e · x = x · e = x;

4. Each element x has an inverse x−1 such that x · x−1 = x−1 · x = e.



Chapter 2. Background 6

Two symmetry groups common in physics are the group of translations, and

the group of rotations. The natural basis to work with translationally-invariant

systems is the Fourier basis. The Fourier basis functions are of the form exp(−ik ·x).

Translations of these basis functions reduce to scalar multiplication (depending on

both the basis function and the translation δx).

For most groups beyond this, we must generalize to “representation theory”. Take

rotations, for example: because they are non-abelian, there is no “perfect” basis. If

rotations caused all basis functions to be multiplied by a scalar, they would commute.

Instead, we choose basis functions that commute as much as possible. The natural

basis functions that make rotations have as simple a form as possible are the spherical

harmonics. Instead of all rotations acting trivially by scalar multiplications, only

some do: those rotations about some picked z-axis. Other rotations can no longer

act simply. They can intermix two different basis functions, but only ones that have

the same ` value. Each ` value defines a separate irreducible representation that

can largely be dealt with separately from the other irreducible representations, even

though the entries within a given representation (i.e., the coefficients in a spherical

harmonic transform with the same angular momentum `) cannot be.

The types of subsymmetry a function may have are well-captured by viewing

in this basis. Continuing the rotation example, a function that only has non-zero

spin-0 components is completely symmetric under rotations, while one that only has

spin-1 components is not invariant under arbitrary rotations, but is invariant under

rotations for some well-defined axis. Extracting the exact axis of symmetry requires

knowing the values of the coefficients.

This picture is essentially the same for other non-abelian groups. There are a set

of irreducible representations that are the fundamental building blocks for dealing

with symmetries relative to that group. Each representation has a set of coefficients

that intermix under action of the group, and capture a portion of the symmetries of

states under the group and its subgroups.
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Chapter 3

Symmetries of discrete spaces: a

non-Abelian hidden subgroup

problem

In this chapter, we reduce a case of the hidden subgroup problem (HSP) in SL(2; q),

PSL(2; q), and PGL(2; q), three related families of finite groups of Lie type, to effi-

ciently solvable HSPs in the affine group AGL(1; q). These groups act on projective

space in an “almost” 3-transitive way, and we use this fact in each group to distinguish

conjugates of its Borel (upper triangular) subgroup, which is also the stabilizer sub-

group of an element of projective space. Our observation is mainly group-theoretic,

and as such breaks little new ground in quantum algorithms. Nonetheless, these

appear to be the first positive results on the HSP in finite simple groups such as

PSL(2; q).

3.1 Introduction: hidden subgroup problems

One of the key tricks of Shor’s factoring algorithm is the construction of a function

on Z/nZ with periodicities that when recovered allow factoring n. These periodici-
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ties are extracted from the global behavior of the function by the quantum Fourier

transform.

This generalizes to one of the principal quantum algorithmic paradigms: handed

a function f on some group G that is periodic in some way, our task is to characterize

how it is periodic. This is a “black-box” function; we are not told anything about it

beyond the restriction that it is suitably periodic. To actually compute values, we

are given access to it via an “oracle” that we can query by giving it a quantum state

representing a group element, and have it return a state representing its answer. Not

only can we give it a state representing a group elements, but states representing

coherent superpositions of group elements. The answers must then be returned as

coherent superpositions. The symmetry of the function will also be a group—some

“hidden” subgroup H of G such that f is precisely invariant under translation by H

or, equivalently, f is constant on the cosets of H and takes distinct values on distinct

cosets. The hidden subgroup problem is the problem of determining the subgroup H

(or, more generally, a short description of it, such as a generating set) from such a

function.

The standard approach[8] is to use the oracle function f to create coset states

ρH =
1

|G|
∑
c∈G

|cH〉 〈cH|

where

|cH〉 =
1√
|H|

∑
h∈H

|ch〉 .

Different subgroups yield different coset states, which must then be distinguished by

some series of quantum measurements.

For abelian subgroups, sampling these states in the Fourier basis of the group

G is sufficient to completely determine a hidden subgroup in an efficient manner.

For nonabelian subgroups, the Fourier basis takes the form {|ρ, i, j〉} where ρ is the

name of an irreducible representation and i and j index a row and column in a

chosen basis. Although a number of interesting results have been obtained on the
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nonabelian HSP, the groups for which efficient solutions are known remain woefully

few. Friedl, Ivanyos, Magniez, Santha, and Sen solve a problem they call the Hidden

Translation Problem, and thus generalize this further to what they call “smoothly

solvable” groups: these are solvable groups whose derived series is of constant length

and whose abelian factors are each the direct product of an abelian group of bounded

exponent and one of polynomial size [17]. Moore, Rockmore, Russell, and Schulman

give an efficient algorithm for the affine groups AGL(1; p) = Zp o Z∗p, and more

generally ZpoZq where q = (p− 1)/polylog(p). Bacon, Childs, and van Dam derive

algorithms for the Heisenberg group and other “nearly abelian” groups of the form

AoZp, where A is abelian, by showing that the “Pretty Good Measurement” is the

optimal measurement for distinguishing the corresponding coset states [2]. Recently,

Ivanyos, Sanselme, and Santha [23, 24] give an efficient algorithm for the HSP in

nilpotent groups of class 2.

However, for groups of the greatest algorithmic interest, such as the symmetric

group Sn for which solving the HSP would solve Graph Isomorphism, the hidden sub-

group problem appears to be quite hard. Moore, Russell, and Schulman showed that

the standard approach of Fourier sampling individual coset states fails [34]. Hallgren

et al. showed under very general assumptions that highly-entangled measurements

over many coset states are necessary in any sufficiently nonabelian group [20]. For

Sn in particular, Moore, Russell and Śniady showed that the main proposal for an

algorithm of this kind, a sieve approach due to Kuperberg [26], cannot succeed [35].

It is tempting to think that the difficulty of the HSP on the symmetric group

is partly due to the appearance of the alternating group An as a subgroup. For

n ≥ 5, An forms one of the families of nonabelian finite simple groups. All known

algorithmic techniques for the HSP work by breaking the group down into abelian

pieces, as a semidirect product or through its derived series. Since simple groups

cannot be broken down this way, it seems that any positive results on the HSP for

simple groups is potentially valuable.

We offer a small advance in this direction. We show how to efficiently solve a

restricted case of HSP for the family of finite simple groups PSL(2; q), and for two
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related finite groups of Lie type. No new quantum techniques are introduced; instead,

we point out a group-theoretic reduction to a mild extension of a previously solved

case of the HSP. Unfortunately, this reduction only applies to one set of subgroups,

and there is no obvious generalization that covers the other subgroups. On the other

hand, we show that a similar reduction works in any group which acts on some set

in a sufficiently transitive way, though this is unhelpful in many obvious cases.

3.2 Reduction

We start with a trivial observation: suppose we have a restricted case of the hid-

den subgroup problem where we need to distinguish among a family of subgroups

H1, ..., Ht ⊂ G. If there is a subgroup F whose intersections Ki = Hi∩F are distinct,

then we can reduce the original hidden subgroup problem to the corresponding one

on F , consisting of distinguishing among the Ki, by restricting the oracle to F , rather

than the original domain G.

The subgroups in question will be the stabilizers of one or more elements under

a suitably transitive group action. Recall the following definitions:

Definition 2. A group action of a group G on a set Ω is a homomorphism φ from

G to the group of permutations on Ω. In other words,

φ(g1g2)(x) = φ(g1)(φ(g2)(x)) .

When the group action is understood, we will often write just g1(x) for φ(g1)(x).

Definition 3. A transitive group action on a set Ω is one such that for any α, β ∈ Ω

there is at least one g ∈ G such that g(α) = β. A k-transitive group action is one

such that any k-tuple of distinct elements (α1, . . . , αk) can be mapped to any k-tuple

of distinct elements (β1, . . . , βk). That is, given that αi = αj and βi = βj only when

i = j, there is at least one g such that g(αi) = βi for all i = 1, . . . , k A group is

called k-transitive if it has a k-transitive group action on some set.
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Definition 4. Given an element α ∈ Ω, the stabilizer of α with respect to a given

action by a group G is the subgroup Gα = {g ∈ G | g(α) = α}. Given a subset

S ⊆ Ω, the pointwise stabilizer is

GS = {g ∈ G | ∀α ∈ S : g(α) = α} =
⋂
α∈S

Gα .

When S is small we will abuse notation by writing, for instance, Gα or Gα,β.

Let’s consider the case of the HSP where we wish to distinguish the one-point

stabilizers Gα from each other. If G is transitive, these are conjugates of each other,

since Gβ = gGαg
−1 for any g such that g(α) = β. Conversely, gGαg

−1 = Gg(α),

so any conjugate of a stabilizer is a stabilizer. Similarly, for each α, the two-point

stabilizers Gα,β labeled by β are conjugate subgroups in Gα.

Now suppose we restrict our queries to the oracle to Gα. We then get a coset

state corresponding to Gα ∩Gβ = Gα,β:

ρGαβ =
1

|Gα|
∑
c∈Gα

|cGα,β〉 〈cGα,β| .

This reduces the problem of distinguishing the one-point stabilizers Gβ, as subgroups

of G, to that of distinguishing the two-point stabilizers Gα,β as subgroups of Gα—a

potentially easier problem. Note that we can test for the possibility that α = β with

a polynomial number of classical queries, since we just need to check that f(1) = f(g)

for a set of O(log |G|) generators of Gα.

Of course, this whole procedure is only useful if Gα,β are distinct when Gβ are

distinct, or if there are only a (polynomially) small number of one-point stabilizers

corresponding to each two-point stabilizer. Below we give sufficient conditions for

this to be true, and use this reduction to give an explicit algorithm for distinguishing

conjugates of the Borel subgroups in some finite groups of Lie type, including the

finite simple groups PSL(2; q). Using the transitivity of the group action we can

bound the size of these stabilizers relative to each other and to the original group,

and hence show that they are distinct.
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Lemma 1. Suppose G has a k-transitive group action on a set Ω where |Ω| = s.

Then for any j ≤ k, if S ⊆ Ω and |S| = j, we have

|G|
|GS|

=
s!

(s− j)!
.

In particular,

|Gα| =
|G|
s
, |Gα,β| =

|G|
s(s− 1)

, |Gα,β,γ| =
|G|

s(s− 1)(s− 2)
.

Proof. The index of GS in G is the number of cosets. There is one coset for each

j-tuple to which we can map S, and since G is j-transitive this includes all s!/(s−j)!

ordered j-tuples.

For groups that are at least 3-transitive, the following then holds: the intersection

of two subgroups that are single-point stabilizers of Ω has size 1/(s − 1) of both of

the subgroups. The intersection with a third stabilizer subgroup is 1/(s−2) this size

again. In particular, this means that when subgroups Gβ and Gγ are distinct, then

their intersections Gα ∩ Gβ = Gα,β and Gα ∩ Gγ = Gα,γ are distinct, because their

intersection Gα,β ∩Gα,γ = Gα,β,γ is smaller than either.

In fact, we don’t need full 3-transitivity for this argument to hold. The crucial

fact we used was that the number of cosets of Gα,β,γ was greater than Gα,β or Gα,γ.

Consider the following definition:

Definition 5. A group is almost k-transitive if there is a constant b such that G

has an action on a set Ω which is (k − 1)-transitive, and such that we can map any

k-tuple of distinct elements (α1, . . . , αk) to at least a fraction b of all ordered k-tuples

(β1, . . . , βk) of distinct elements.

Strictly speaking, there is a different notion of “almost” for different values of

b. Obviously, for any group there is some value of b low enough that this definition

applies. However, by fixing b and considering a family of groups we still have a useful

concept.



Chapter 3. HSP example 13

As an example, a group action is k-homogeneous if any set of points of size k can

be mapped (setwise) to any other set of the same size. Since this means that any

ordered k-tuple can be mapped to at least 1/k! of the ordered k-tuples, and since all

k-homogeneous group actions are (k−1)-transitive [13], a group with such an action

is almost k-transitive with b = 1/k! (in fact, with b = 1/k).

Applying the above argument to almost 3-transitive groups shows that the sta-

bilizer of 3 distinct elements is smaller than the stabilizer of 2 distinct elements by a

factor of (s− 2)b. So long as b ≥ 1/(s− 2), two-point stabilizers of distinct elements

will be distinct. In the group families we cover, b = 1/2, and s grows.

3.3 Families of transitive groups

Which families of groups and subgroups have the kind of transitivity that let us take

advantage of this idea?

Unfortunately, not many do. We can categorize based on faithful group actions,

i.e., those that do not map any group element other than the identity to the trivial

action. Any non-faithful group action corresponds to a faithful action of a quotient of

the group. Even the requirement of 2-transitivity in faithful group actions restricts

the choices to a few sporadic groups, or one of eight infinite families [13]: The

symmetric group Sn, the alternating group An, and six different families of groups

of Lie type.

Obviously the symmetric group Sn is n-transitive, and the alternating group

An is almost n-transitive. However, the size n of the set these groups act on is

only polynomially large (i.e., polylogarithmic in the size of the groups) so we can

distinguish the one-point stabilizers with a polynomial number of classical queries.

The other infinite families are finite groups of Lie type which are defined in

terms of matrices over finite fields Fq subject to some conditions. These groups have

natural actions by matrix multiplication on column vectors, or on equivalence classes
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of column vectors. The actions of most of these groups are rather complicated to

describe; for more details, see [13, §7.7]. Of these, two are 3-transitive: PSL(2; q),

and AGL(d; 2).

There are also a number of sporadic finite groups that are up to 5-transitive,

such as the Matthieu groups M11, M12, M22, M23, M24, built on finite geometries.

However, an interesting fact is that if a group action has a threshold of transitivity,

then it contains all permutations, or at least all even ones: for k > 5, all finite groups

with a k-transitive action on a set of size n must contain An [13].

3.4 PSL(2; q) and some relatives

The most interesting family of simple groups with a faithful almost 3-transitive group

action is PSL(2; q). To discuss it, consider instead GL(2; q), the group of invertible

2× 2 matrices with entries in the finite field Fq, where q = pn is the power of some

prime p. Its elements are of the formα β

γ δ


where α, β, γ, δ ∈ Fq, and αδ − βγ 6= 0. We will assume that q is odd; some details

change when it is a power of 2, but the basic results still hold.

A little thought reveals that |GL(2; q)| = (q2 − 1)(q2 − q) = (q + 1)q(q − 1)2.

The subgroup SL(2; q) consists of the matrices with determinant 1, so |SL(2; q)| =

(q + 1)q(q − 1). If we take the quotient of these groups by the normal subgroup

consisting of the scalar matrices, we obtain PGL(2; q) and PSL(2; q) respectively.

For SL(2; q) the only scalar matrices are ±1, so |PSL(2; q)| = (q + 1)q(q − 1)/2.

GL(2; q) and SL(2; q) act naturally on nonzero 2-dimensional vectors. However,

for PGL(2; q) and PSL(2; q), we must identify vectors which are scalar multiples.

This identification turns F2
q − {0, 0} into the projective line PFq. Each element of

PFq corresponds to a “slope” of a vector: the vector

x
y

 has slope x/y, i.e., xy−1
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if y 6= 0 and ∞ if y = 0. Thus we can think of PFq as Fq ∪ {∞}, and it has q + 1

elements.

The action of PGL(2; q) and PSL(2; q) on PFq is given by

α β

γ δ

x
y

 =

αx+ βy

γx+ δy

 .

This fractional linear transformation is analogous to the Möbius transformation de-

fined by PGL2(C):

α β

γ δ

(x
y

)
=
αx+ βy

γx+ δy
,

which can map any 3 points in the complex projective line PC (i.e., the complex

plane augmented by the point at infinity, or the Riemann sphere) to any other 3

points. When we replace C with the finite field Fq, the action of PGL(2; q) remains

3-transitive. The action of PSL(2; q) is 2-transitive, but cannot be 3-transitive, since

there are half as many elements as there are 3-tuples. However, PSL(2; q) is almost

3-transitive in the sense defined above with b = 1/2, since 1/2 of all 3-tuples can be

reached. SL(2; q) is also almost 3-transitive: from a given tuple, it reaches the same

set of tuples as PSL(2; q), with each tuple being hit twice. As a result, this action is

obviously not faithful, for the kernel is ±1.

Let G = PGL(2; q), and consider the one-point stabilizer subgroups of its action

on PFq. A natural one is the Borel subgroup B of upper-triangular matrices. Such

matrices preserve the set of vectors of the form

x
0

, so we can write B = G∞.

There are q + 1 conjugates of B, including itself, one for each element of PFq. For

instance, if we conjugate by the Weyl element w =

0 −1

1 0

, we get wBw−1 = G0,

the subgroup of lower-triangular matrices, which preserves the set of vectors of the

form

0

y

.



Chapter 3. HSP example 16

3.5 An efficient algorithm for distinguishing the

conjugates of the Borel subgroup

Now consider the case of the HSP on these groups where the hidden subgroup is one

of B’s conjugates, or equivalently, one of the one-point stabilizers Gs. As discussed

above, we solve this by restricting the oracle to B, and distinguishing the two-point

stabilizer subgroups B ∩ Gs = Gs,∞ as subgroups of B. To do this, we need to

describe the structure of B explicitly. For all three families of matrix groups we

discuss, namely SL(2; q), PSL(2; q), and PGL(2; q), B is closely related to the affine

group.

In PGL(2; q) a generic representative of B can be written

α β

0 1

, α 6= 0, so

|B| = q(q−1). This is exactly the affine group AGL(1; q) ∼= FqoF∗q. To see this, recall

that AGL(1; q) consists of the set of affine functions on Fq of the form x 7→ αx + β

under composition. Now consider B’s action on PFq − {∞}, which we (re)identify

with Fq. For PGL(2; q), we haveα β

0 1

x
1

 =

αx+ β

1

 .

Obviously these elements compose as AGL(1; q), so B ∼= AGL(1; q).

The cases of SL(2; q) and PSL(2; q) are more complicated. The unit determinant

requirement limits B to elements of the form

α β

0 α−1

. Thus |B| = q(q− 1) again

in SL(2; q). For PSL(2; q) we identify α with −α, so |B| = q(q − 1)/2.

For SL(2; q), we can enumerate the elements as:α α−1β

0 α−1

 .

Composing two such elements gives us:α α−1β

0 α−1

γ γ−1δ

0 γ−1

=

αγ α−1γ−1β + γ−1αδ

0 α−1γ−1

=

αγ (α−1γ−1)(β + α2δ)

0 α−1γ−1

 .
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Here, we still have a semidirect product of the groups Fq and F∗q. Unlike the

affine group, where the multiplicative group acts directly as an automorphism on

the additive group by multiplication, it instead acts “doubly” by multiplying twice,

analogous to the “q-hedral” groups in [33] (with q = p/2, in their notation). Finally,

PSL(2; q) merely forgets the difference between ±α. This quotient group of SL(2; q)

can also be seen as a subgroup of the affine group that can only multiply by the

square elements.

In all three cases the HSP on B can be solved efficiently using small generaliza-

tions of the algorithms of [33]. We need to generalize slightly as [33] deals only with

the case of Zn n Fp with p prime—not a prime power q = pn, as here. The basic

methods remain effective, though we construct and analyze a slightly different final

measurement. The number and size of the representations remains the same (with

q replacing p), and the methods for constructing Gelf’and-Tsetlin adapted bases are

similar. As this has not been published in the literature, we describe the details more

fully in the next section, though only what is necessary for our purposes.

3.6 Generalizing the affine group to prime powers

Although there can be more types of subgroups than the ones covered in [33], we

are only concerned about one particular type whose analog was covered there: H =

(a, 0) and its conjugates Hb = (1, b)H(1,−b), stabilizing the finite field element b.

The representation theory is analogous, with q − 1 one-dimensional representations

(characters) depending only on a. As in the prime case, we have q conjugacy classes:

the identity, all pure translations, and each multiplication by a different a, combined

with all translations. This leaves us with one (q − 1) dimensional representation, ρ.

In the prime case we had:

ρ((a, b))j,k =

ω
bj
p k = aj

0 otherwise
(j, k ∈ Fq, 6= 0) .

where ωp = exp(2πi/p). The roots of unity are the non-trivial additive characters of
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Fp, indexed by j, evaluated at b. We can extend this to the prime power case simply

by replacing bj with

b · j = Tr bj = TrFpn/Fp bj =
n∑

m=1

(bj)p
m

,

which as b varies, exactly covers the full set of non-trivial linear operators from Fpn

to Fp, and ωb·jp exactly covers the set of additive characters. Performing weak Fourier

sampling (measuring only the representation name) on the coset state yields ρ with

probability P (ρ) = 1 − 1/q. Conditioned on that outcome, we get the following

projection operator:

πHb(ρ)j,k =
1

q − 1
ωb·(j−k)p .

As in [33], we then perform a Fourier transform on the rows, and ignore the

columns. There they performed the Fourier transform over Zp−1, as there were p− 1

rows. However, the structure for general q is not Z∗q ≡ Zq−1, but F∗q. The interaction

we want to capture is the additive one, not the multiplicative one. We can still

perform the abelian transform over the additive group Fq ≡ Znp—the zero component

we lack is, of course, zero. The probability of observing a frequency ` ∈ Znp is then:

P (`) =

∣∣∣∣∣ 1√
q(q − 1)

∑
j 6=0

ωb·jp ω
−j·`
p

∣∣∣∣∣
2

=
1

q(q − 1)

∣∣∣∣∣−1 +
∑
j

ωb·jp ω
−j·`
p

∣∣∣∣∣
2

=
1

q(q − 1)
|−1 + qδ`b|2

=


1

q(q−1) ` 6= b

1− 1
q

` = b
.

For the case of B in PSL(2; q), we can analyze the equivalent measurements via

the embedding in the full affine group, just as in the prime case. Let a be a generator

of the “even” multiplicative subgroup of F∗q, consisting of elements that are squares.
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Hb
a is then elements of the form (at, (1 − at)b) stabilizing b. For these subgroups,

the trivial representation, a “sign” representation, and the large representation occur

with non-zero probability. The first two have vanishingly small probability, O(1/q).

In the following we use the notation G(m, a) =
∑

x∈F∗
q
m(x)a(x) for the Gauss

sum of a multiplicative and an additive character, where χk(j) = ωk·jp is the additive

character of Fq with frequency k ∈ Znp . We follow the common convention that non-

trivial multiplicative characters vanish at 0. We use the quadratic character η of F∗q,

which is 1 for squares, and −1 for non-squares, to select rows and columns which

differ by values in the “even” subgroup mentioned above.

Weak measurement gives us the representation ρ with overwhelming probability.

Conditioning on this event, we get the mixed state

ρ(Hb
a)j,k =

√
2

q − 1

q−1/2∑
t=1

ω(1−atb)·j
p δk,atj

=

√
2

q − 1

q−1/2∑
t=1

ωb·(j−k)p δk,atj

=

√
2

q − 1
ωb·(j−k)p (1 + η(jk))/2 .

Measuring the column k gives us, up to a phase, ρ(b)j =
√

2
q−1 ω

b·j
p (1± η(j))/2.

We again include the zero component, with zero weight, and perform the abelian

Fourier transform over the additive group Fq ≡ Znp . The probability of measuring
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frequency ` is

P (`) =
1

q

∣∣∣∣∣∑
j

ωj·`p ρ(b)j

∣∣∣∣∣
2

=
2

q(q − 1)

∣∣∣∣∣∑
j 6=0

ω(b−`)·j
p (1± η(j))/2

∣∣∣∣∣
2

=
2

q(q − 1)

∣∣∣∣∣∑
j 6=0

χb−`(j)±
∑
j 6=0

χb−`(j)η(j)

∣∣∣∣∣
2

=
1

2q(q − 1)
|G(1, χb−`)±G(η, χb−`)|2

=
1

2q(q − 1)
|qδb,` − 1± η(b− `)G(η, χ1)|2

=
1

2q(q − 1)

∣∣qδb,` − 1± η(b− `)idq1/2
∣∣2

where d is odd for odd n if pn ≡ 3 (mod 4), and d is even otherwise.

For ` = b we have P (`) = (q − 1)2/2q(q − 1) = (q − 1)/2q. For ` 6= b we have

P (`) = (q + 1)/4q(q − 1) if d is odd. If ` 6= b and d is even, we have P (`) =

(q ± 2q1/2 + 1)/4q(q − 1). In any case, the probability of observing b is

P (b) =
q − 1

2q
=

1

2
−O(1/q) ,

so repeating this measurement will allow us to identify ` = b with any desired

probability. As SL(2; q) is a small extension of PSL(2; q), we can handle it similarly,

by Theorem 8 in [33].

3.7 AGL(d; 2) and its stabilizer subgroups

An interesting question is whether it is useful to apply this approach to the other

family of 3-transitive groups. This is the d-dimensional affine group AGL(d; 2),

consisting of functions on Fd2 of the form Av + B, where A ∈ GLd(F2) and B ∈ Fd2.

It can be expressed as a block matrix of the form

A B

0 1

. It is the semidirect

product GL(d; 2) n Fd2, and hence obviously not simple. That it is triply transitive
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can be seen by realizing that the affine geometry it acts on has no three points that

are collinear.

The stabilizer subgroups are 2d conjugate subgroups of the original GL(d; 2).

Obviously this stabilizes the point 0, and is the largest subgroup that will, as GL(d; 2)

has two orbits: the zero vector, and all others. A general point P is stabilized by

translating it to 0 with the element (A,B) = (1, P ), applying any element of GL(d; 2),

and then translating back. To apply our method we need to look at the intersections.

Consider the point ~1 = (0, ..., 0, 1)T . Splitting A into two diagonal blocks of size

(d−1)×(d−1) and 1×1 and two off-diagonal blocks of size (d−1)×1 and 1×(d−1)

allows us to see that ~1 is stabilized by a (transposed) copy of AGL(d − 1; 2) living

in GL(d; 2). The last column must be ~1 = (0, ..., 0, 1)T to preserve ~1. The large

(d − 1) × (d − 1) block must be in GL(d; 2) to keep the the entire transformation

invertible, and anything in GL(d; 2) will preserve the first d− 1 0 bits of ~1. The rest

of the last row can be arbitrary, resulting in a subgroup isomorphic to AGL(d−1; 2).

As a result, distinguishing the stabilizers of points reduces to distinguishing con-

jugates of a smaller transposed copy of the affine group in the general linear group.

This last reduction does not immediately yield an efficient new quantum algorithm.

3.8 Conclusion

It is interesting to note that although we can Fourier sample over AGL(d; 2) effi-

ciently [32], we don’t know how to do so in the projective groups. The fastest known

classical Fourier transform for SL(2; q) or PSL(2; q) takes Θ(q4 log q) time [27], and

the natural quantum adaptation of this takes Θ(q log q) time [32]. If q is exponen-

tially large, this is polynomial, rather than polylogarithmic, in the size of the group.

In the absence of new techniques for the FFT or QFT, this suggests that we need to

somehow reduce the HSP in PSL(2; q) to that in some smaller, simpler group—which

was the original motivation for our work.
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We conclude by asking whether our analysis of AGL(d; 2) can be extended to give

an efficient algorithm distinguishing its stabilizer subgroups, or whether any of the

other 2-transitive groups have usable “almost” 3-transitive actions.
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Chapter 4

Symmetries of continuous spaces:

finding the center of a sphere

Quantum walks have been the basis for many interesting quantum algorithms, from

evaluating a NAND tree with n leaves in time O(n1/2) to recovering hidden nonlinear

structures in finite fields. Taking the continuous limit of a continuous-time quan-

tum walk on a lattice yields the time-dependent Schrödinger equation for a single

particle. Rather than solving algebraic problems, we use this approach to recover

geometric information about an initial state. In Rn, given a state concentrated on

a hyperspherical shell, or access to a spherically-symmetric function, we can effi-

ciently locate its center of symmetry using a small number number of samples. This

compares favorably to the O(n) samples required classically, and gives a simpler

alternative to an algorithm of Liu. The phenomena we exploit are analogous to

classical phenomena in diffraction and geometric optics, such as Arago’s spot and

the brightening of caustics and their cusps.

4.1 Introduction

There are many perspectives for viewing quantum algorithms, but fundamentally

they are all based on delicately constructing interference such that some property of
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an initial state, Hamiltonian, or unitary operator determines which of a set of states

will be observed with high probability.

In Grover’s algorithm [19], the initial state is a uniform distribution over all

elements, and alternating “query” and “diffusion” operators iteratively concentrate

amplitude on a marked element. Farhi and Gutmann describe a nice variant [16]

that works in continuous time, where the marked element is encoded as the sole

eigenvector of a Hamiltonian with nonzero eigenvalue. By turning on an additional

interaction that does not depend on which element is marked, time evolution under

the new Hamiltonian recovers the marked element.

A similar framework is used by Farhi, Goldstone, and Gutmann [15], in their

Hamiltonian algorithm for evaluating NAND trees. As in [16], the input to the

algorithm consists of a Hamiltonian, namely the adjacency matrix of a binary tree,

where the presence or absence of an additional edge at each leaf represents a truth

value. This Hamiltonian is then modified by the addition of a line of ancillary nodes

connected at the origin to the root of the tree. Time evolution under this Hamiltonian

implements a continuous-time quantum walk on this graph. They construct a suitable

wave packet that will propagate on the line, and either reflect off the tree or pass

through it depending on the truth value of the tree. Measuring which side of the line

the wave packet ends up on then gives the truth value.

Childs, Schulman, and Vazirani consider various “hidden nonlinear structure”

problems [7]. In their “hidden flat of centers” problem, one key construction is

their use of a continuous-time quantum walk on the Winnie Li graph of a finite

field. Again, the Hamiltonian is the adjacency matrix of the graph. Starting with a

superposition over a “quasi-spherical” shell, this walk shifts probability closer to the

center, letting them reconstruct the hidden flat.

Inspired in particular by these last two papers, we explore how interference could

be used in the case of continuous spaces. We know from [7] and [15] that continuous-

time quantum evolution, i.e. running the time evolution given by Schrödinger’s equa-

tion gives us useful information when we run it on a “designer Hamiltonian.” In [15],
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the initial state is prepared by the algorithm, and the Hamiltonian is the input (the

NAND tree), while in [7] the initial state is generated by consulting an “oracle” and

the Hamiltonian is a carefully-designed part of the algorithm. Thus we can gain

algorithmic power by designing the Hamiltonian, the initial state, or both.

We are interested in the computational power of continuous-time quantum walks

in continuous spaces. In this paper, we focus on the case where the input to the

algorithm consists of the initial state, and the Hamiltonian is simply H = p2/2m,

the free propagation of a massive particle in a zero potential, with only a kinetic

energy term. Even in this simplest possible setting—perhaps the simplest non-trivial

Hamiltonian encountered in quantum mechanics—we find that time evolution with

Schrödinger’s equation can reveal geometric information about the initial state more

efficiently than classical computation can, especially in high dimensions.

Note that this case of Schrödinger’s equation can also be seen as the low-energy

limit of quantum walks on lattices. The time-dependent Schrödinger equation reads

−i~ ∂
∂t
ψ = Hψ .

For a free particle, H is just the kinetic energy,

H =
p2

2m
= −~2∇

2

2m
.

The standard way to define continuous-time quantum walks on graphs uses the ad-

jacency matrix as the Hamiltonian—or, with a rescaling of the energy, the graph

Laplacian. Consider, for example, a 1-dimensional lattice with spacing d. The adja-

cency operator Ad and discrete Laplacian ∇2
d are:

Ad ψ(x) = ψ(x− d) + ψ(x+ d)

∇2
d ψ(x) = ψ(x− d)− 2ψ(x) + ψ(x+ d) .

Since Ad = ∇2
d+2, using Ad or ∇2

d as the Hamiltonian only affects the time evolution

by an overall phase.1

1For graphs with non-constant degree, A and ∇2 correspond to different potentials,
since they no longer differ by a constant.
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In the limit d→ 0, where the lattice becomes continuous, or equivalently the low-

energy limit where the particle’s wavelength is much larger than d, we have ∇2
d →

d2∇2. We can can see this by considering the complete eigenbasis ψk(x) = exp(ikx)

shared by both operators. For the continuous case, each ψk has an eigenvalue of

λ = −k2, while for the discrete case it is λd = 2 cos kd − 2. In the low-frequency

limit kd � 1 where the wavelength 1/k is much larger than the lattice spacing, we

have λd(k)→ (kd)2 = d2λ(k).

Thus one of the canonical forms of quantum evolution in physics, Schrödinger’s

equation with H = −~2∇2/2m, corresponds to a limit of quantum walks popular in

computer science. But how do we get it to do something useful?

We borrow a problem of Yi-Kai Liu to find the center of spherically symmetric

functions [29]. This problem fits into the Hidden Symmetry Subgroup Problem

(HSSP) framework recently discussed by Decker et al. in [11]. Given a group G

acting on a set M , and a black-box function f whose level sets partition M , the goal

is to find the subgroup of G that does not disturb this partition. If M = Rn and

G is the group of all Euclidean transformations in dimension n (i.e., rotations and

translations), then f ’s level sets partition M into spherical shells around its point of

symmetry, and the desired subgroup is the set of rotations around that point.

We treat f as a black-box function using only the ability to evaluate it at points

or quantum superpositions of points, rather than analyzing its implementation in

an attempt to discern its symmetry. If we prepare a wave function that is constant

over a region containing the center (analogous to a uniform superposition in discrete

algorithms), and evaluate f and measure its output, we end up with a state analogous

to a coset state in hidden subgroup problems. This picks out a particular spherical

shell. Measurements are generally not exact, so we should end up with a state with

some finite width, but concentrated on a shell, and spherically symmetric.

We analyze the evolution of a particular family of initial states concentrated

on a spherical shell whose center and radius are unknown. After evolving for an

appropriate amount of time, the state becomes highly concentrated near the center,
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giving a probability proportional to ε of observing a position within ε of the center,

regardless of the number of dimensions. While we make some assumptions about the

initial state for simplicity, nearly any smooth initial state concentrated on a shell will

produce similar results, as the main effect is geometric. Combining the information

from multiple such shells localizes the center to higher accuracy.

While our entire analysis and inspiration is based on continuum behavior, we

expect any concrete implementation to use a quantum computer to simulate the

evolution. This gives a readily understandable way to implement a function and

measure it. As long as the grid length is shorter than the shell width, a discrete

version will not largely disturb the evolution. The evolution can be readily imple-

mented by quantum Fourier transforms, then controlled phase gates, followed by the

inverse quantum Fourier transform. Simulating an arena of side L to a grid spacing

of size ε is a state space of size (L/ε)n which requires O(n log(L/ε)) position qudits.

The n Fourier transforms and inverses can each be done in depth O(log(L/ε)). The

exponentially larger system size makes an implementation in linear optics unfeasible.

Classically, given the ability to evaluate functions, we cannot construct any ana-

logue of the superpositions that we depend on in the quantum case. As we will

see later, even adding a variety of reasonable seeming extra abilities to a classical

computer does not help much.

As the effect here is due to wave interference, it seems we could do an equivalent

job with a classical system supporting waves. This would of course require a system

with the right number of dimensions, though these are not readily available. Further

we would need to efficiently construct an initial condition concentrated on a spherical

shell, given the ability to compute a given function. However, there is no a general

method to construct such an initial state short of either separately computing many

points and “plotting them” (note that verifying that a given sphere has the same

center requires testing O(n) points, and finding a suitable sphere would require many

more), or finding the center some other way, letting a wave propagate out from the

center, and then fixing the phases so that the evolution does not continue with the

wave propagating outward.
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4.2 States concentrated near surfaces, and their

evolution

Our initial states are concentrated on a surface S in Rn, such as a spherical shell.

One seemingly natural choice would be to take the wave function to be a Dirac “delta

function” on S, such as δ(|x|−R) for a shell of radius R, but this is not a well-defined

state, as it lies outside the space of L2 functions. We instead want the density to

approach a Dirac delta function of the radius, and examine the case where the width

of this delta (i.e., the thickness of the shell) is much smaller than any other length

scale in the problem. As discussed later in Section 4.4, such states arise naturally as

a projective, approximate measurement of a spherically symmetric function applied

to a constant wave function over a region containing its center.

We describe these states with a kernel ϕ0 convolved with a Dirac delta function

on the shell. Symbolically,

ψ0(~x) =
1√
N0

∫
S

d~y ϕ0(~x− ~y) ,

where N0 is a normalization constant. This separates the geometry from the concen-

tration, which gives us the flexibility to examine any surface S, without arduously

constructing wave functions tailored to each surface.

We set ~ = 1 and m = 1. For analytic ease we use an n-dimensional Gaussian

kernel of initial width w0 and take the limit w0 → 0. As the main effects are

essentially geometric, any kernel that decays rapidly enough in both position space

and frequency space will have similar behavior. Explicitly, this kernel is

ϕ0(r;w0) =
1

(πw2
0)
n/4

exp

(
− r2

2w2
0

)
. (4.1)

This is normalized so that
∫

d~x |ϕ0|2 = 1. However, this normalization will not be

preserved when we integrate it over a given surface—hence the normalizing factor

N0. (Note that N0 is not simply the area of S.)

Expressing the initial state as the integral of a kernel over a surface S enables

us to treat the evolution uniformly. By linearity, we can get the state at time t by
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integrating the kernel evolved to time t over the surface. Letting U(t) denote the

unitary time evolution of Schrödinger’s equation,

ψt(~x) = U(t)ψ0(~x)

=
1√
N0

U(t)

∫
S

d~y ϕ0(|~x− ~y| ;w0)

=
1√
N0

∫
S

d~y ϕt(|~x− ~y| ;w0) , (4.2)

where

ϕt(|~x− ~y| ;w0) = U(t)ϕ0(|~x− ~y| ;w0)

denotes the time-evolved kernel.

Evolving the kernel is simplified by detouring through the Fourier domain. A bit

of algebra gives the standard result of a spreading Gaussian wave function. We work

here with a rescaled time

τ = t/w2
0 ,

and a final width w where

w2 = w2
0(1 + τ 2) = w2

0 +
t2

w2
0

.

Up to a global phase, the time-evolved kernel is then

ϕτ (r;w) =
1

(πw2)n/4
exp

(
−r

2(1 + iτ)

2w2

)
. (4.3)

As for ϕ0, this kernel is normalized so that
∫

d~x |ϕτ |2 = 1. However, an additional

normalization factor will be needed when integrating over a surface.

4.3 Spherical shells

We now focus the case where our initial state is concentrated on the surface of an

n-dimensional hypersphere. As the state evolves, a remarkable thing occurs: the
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spherical symmetry forces a large degree of constructive interference in the center,

analogous to Arago’s spot in two dimensions.

If the resulting probability density were smooth at the center, it would be ex-

ponentially unlikely, as a function of n, to observe a point within ε of the center,

since a ball of radius ε has a volume O(εn). Instead, the probability density becomes

singular, and scales as r−(n−1) down to a cutoff determined by the thickness of the

initial state. Multiplying the density by the volume of a sphere, the distribution of

the distance from the center is roughly uniform, and we observe a point within ε of

the center with probability proportional to ε rather than εn−1.

4.3.1 The initial state and its evolution

We denote the standard hypersphere in n dimensions with radius 1 centered at the

origin as Sn−1. Its surface area is

Cn =
∣∣Sn−1∣∣ = 2πn/2/Γ(n/2) .

To obtain the final state we integrate the time-evolved kernel (4.3) over Sn−1. By

symmetry, the result is a function only of the distance r from the origin.

Without loss of generality, we can consider a point (r, 0, . . . , 0), where x1 = r and

all other coördinates are 0. By symmetry around the x1 axis, we can evaluate the

integral over Sn−1 as a sum of integrals over Sn−2 shells of radius sin θ, where θ is

the angle away from the x1 axis. The distance `(r, θ) from this point to a point on

such a shell is given by

`2(r, θ) = 1 + r2 − 2r cos θ .

To simplify our expressions, we define

b =
1 + iτ

2w2
. (4.4)

thus reducing (4.3) to

ϕτ (`;w) =
1

(πw2)n/4
exp
(
−b`2

)
.
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We also wish to extract the portion of exp(−b`2) that does not depend on θ, and

hence define

g(b, r) = exp
(
−b(1 + r2)

)
. (4.5)

We label the coördinates on the surface of the sphere collectively as ~ξ. Ignoring

normalization, we can express the wave-function at time τ as follows:

Ψτ (r;w)

=

∫
Sn−1

d~ξ ϕτ (~ξ − (r, 0, . . . , 0);w)

=
1

(πw2)n/4

∫
Sn−1

d~ξ exp
(
−b`2(r, θ)

)
(4.6)

=
Cn−1

(πw2)n/4
g(b, r)

∫ π

0

exp(2br cos θ) sinn−2 θ dθ (4.7)

=
Cn−1

(πw2)n/4
g(b, r)

√
π Γ

(
n− 1

2

)(
1

br

)n
2
−1

In
2
−1(2br)

=
2πn/4

wn/2
g(b, r)

(
1

br

)n
2
−1

In
2
−1(2br) . (4.8)

Here In/2−1 is the modified Bessel function of the first kind. As

|b| =
√

1 + τ 2

2w2
=

1

2w0w

and

|g(b, r)|2 = exp
(
−(2 Re b)(1 + r2)

)
= exp

(
−1 + r2

w2

)
, (4.9)

this gives an unnormalized probability density of:

|Ψτ (r;w)|2 =
(4π)n/2wn−20

w2 rn−2
exp

(
−1 + r2

w2

) ∣∣In
2
−1(2br)

∣∣2 . (4.10)

Integrating |Ψτ |2 over all space to produce a normalization constant does not

appear to be easy. Happily, by unitarity we can derive the normalization constant

from the initial state. Let

N0 =

∫
dV |Ψτ |2 =

∫
dV |Ψ0|2 .



Chapter 4. Sphere centers 32

At τ = 0, we have w = w0 and b = 1/(2w2), so

|Ψ0(r;w0)|2 =
(4π)n/2wn−40

rn−2
exp

(
−1 + r2

w2
0

)
In

2
−1

(
r

w2
0

)2

.

Then we have

N0 =

∫
rn−1 |Ψ0(r;w0)|2 d~ξ dr

= Cn

∫
rn−1 |Ψ0(r;w0)|2 dr

= Cn(4π)n/2wn−40

∫
exp

(
−1 + r2

w2
0

)
In

2
−1

(
r

w2
0

)2

r dr

= Cn(4π)n/2wn0

∫
exp

(
−1 + u2w4

0

w2
0

)
In

2
−1(u)2 u du

=
1

2
Cn(4π)n/2wn−20 exp

(
− 1

2w2
0

)
In

2
−1

(
1

2w2
0

)
.

Since our results are asymptotic, we are only interested in N0 in the limit where

the width w0 of the initial shell approaches zero. We use the asymptotic behavior of

the Bessel function,

Iν(x) ' ex√
2πx

as x→∞ , (4.11)

with x = 1/(2w2
0), to obtain

N0 '
1

2
√
π
Cn(4π)n/2wn−10 . (4.12)

As expected, N0 scales as wn−10 , since w0 sets a length scale in each of the n − 1

directions of integration on the sphere.

4.3.2 A singularity at the center

Combining (4.10) and (4.12) gives a normalized probability density, in the limit

w0 → 0, of

|ψ(r;w)|2 =
1

N0

|Ψ(r;w)|2

' 2
√
π

Cnw0w2rn−2
exp

(
−1 + r2

w2

) ∣∣In
2
−1(2br)

∣∣2 . (4.13)
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Integrating over spheres of radius r, the probability density that we observe a point

at a distance r from the origin is

ρ(r) = Cn r
n−1 |ψ(r;w)|2

' 2
√
πr

w0w2
exp

(
−1 + r2

w2

) ∣∣In
2
−1(2br)

∣∣2 . (4.14)

We will examine the asymptotic behavior of this distribution carefully in the next

section. But as a preview, let us take w = O(1), so that we evolve the wave function

until its width is comparable to the radius R = 1 of the sphere. In the limit w0 → 0,

we have

τ ' w/w0 and b ' 1

2

(
1

w2
+

i

ww0

)
. (4.15)

Thus b has a large imaginary part. As we move north on the complex plane, the

Bessel function Iν(z) oscillates as a function of Im z. However, in the limit y → ∞

the average of these oscillations behaves as the following generalization of (4.11),

|Iν(x+ iy)|2 ' cosh 2x

πy
. (4.16)

In that case we have

∣∣In
2
−1(2br)

∣∣2 ' ww0

πr
cosh

2r

w2

Combining this with (4.14) gives

ρ(r) ' 2√
πw

exp

(
−1 + r2

w2

)
cosh

2r

w2

=
1√
πw

(
exp

(
−(r − 1)2

w2

)
+ exp

(
−(r + 1)2

w2

))
. (4.17)

Note that ρ(r) is the sum of two Gaussians with variance w2/2, one centered at r = 1

and the other at r = −1. The total probability is
∫∞
0
ρ(r) dr = 1.

We will address all of this more precisely, including taking the oscillations into

account, in the next section. But we already see that, if we fix w and take the

limits w0 → 0 and τ → ∞ appropriately, the distribution of observed distances r

is independent of n, and is smooth (i.e., nearly uniform) even at r = 0. To put it
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differently, the probability distribution in Rn becomes singular at the origin, diverging

as r−(n−1),

|ψ(r)|2 ' 1

Cn rn−1
2√
πw

exp

(
−1 + r2

w2

)
cosh

2r

w2
.

Thus the probability of observing a point within ε of the origin is proportional to

ε, rather than to εn as it would be if we were dealing with a smooth probability

distribution in Rn.

4.3.3 Using the method of stationary phase

In this section, we perform a more exact asymptotic analysis of the evolved state.

As alluded to in the previous section, we first define an appropriate limit. To be

algorithmically relevant, the time evolution must exhibit interesting interference be-

havior. If w is too small, the state will remain concentrated near the initial shell

and have no opportunity for interference. Conversely, if w is too large, most of the

probability will propagate away to infinity. Thus to have reasonable interference

near the center of the shell, we consider the case where w is constant, but w0 � 1.

Setting two of {w,w0, τ} fixes the third, so this requires τ ' w/w0 � 1.

Note that while the rescaled time τ is large, the actual time is small, t = w2
0t '

ww0 � 1. This should not be unexpected: a small w0 means there are large con-

tributions from high-frequency modes. These propagate and interfere quickly, so a

small t can have large effect.

The details of the interference effects are hidden inside the behavior of the Bessel

function In/2−1 on the complex plane. To expose them, we reconsider the equation

that generated In/2−1 by integrating on the sphere. Recall the unnormalized wave

function from (4.6),

Ψ(r) =
1

(πw2)n/4

∫
Sn−1

d~ξ exp
(
−b`2(r, θ)

)
.

This has a form vulnerable to attack by the method of stationary phase (see ap-

pendix B for a review). For non-zero r, this expression has two second-order station-
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Figure 4.1: Caps on the sphere around the stationary points at the poles with sig-
nificant contributions towards the integral.

ary points, one for ~ξ at each pole of the x1 axis. There is a cap around each pole

that contributes a large amount to the integral, as shown in Figure 4.1. The width of

the cap necessary to get a good estimate of Ψ(r) varies with r. As r goes to 0, these

caps grow until the entire sphere contributes to an infinite-order stationary point.

We do not integrate over Sn−2 shells of radius sin θ, and then apply the stationary

phase method to the integral over θ appearing in (4.7). Since there are coördinate

singularities at the poles θ = 0 and θ = π, the differentials sinn−2 θ dθ , and hence the

full integrand, go to zero precisely at the points of interest. While there are forms
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Figure 4.2: The non-singular coördinates ξ1, . . . , ξn−1.

of the stationary phase method that can handle this, that boil down to multiple

integrations by parts, it is much simpler to rewrite the integral instead.

We choose a different coördinate system ξ1, . . . , ξn−1 for the surface of the sphere

that is regular and orthonormal at the “north” and “south” poles where θ = 0 and

θ = π respectively, as shown in Figure 4.2. (Alternatively, we can think of this as

using azimuthal coördinates but where the point r lies beneath the “equator”.) The

angle away from the north pole is, to first order,

θ ' s =

(
n−1∑
j=1

ξ2j

)1/2

,

or θ = π − s at the south pole. Thus

`2 = 1 + r2 ∓ 2r cos θ

' 1 + r2 ∓ r

(
2−

n−1∑
j=1

ξ2j

)
, (4.18)

where + and − refer to the north and south poles respectively. This gives us an

approximation for the phase of the integrand that is quadratic in ~ξ, which is the

essence of the method of stationary phase.



Chapter 4. Sphere centers 37

Letting

q = r

(
2−

n−1∑
j=1

ξ2j

)
,

we write Ψ as the sum of two contributions, one from each pole:

Ψ ' Ψ+ + Ψ− ,

where (recall the definition of g(b, r) from (4.5))

Ψ± =
g(b, r)

(πw2)n/4

∫
Patch±

(
n−1∏
j=1

dξj

)
exp(±bq) .

Expanding exp(±bq) gives (with b as in (4.4))

exp(±bq) = exp

(
±br

(
2−

n−1∑
j=1

ξ2j

))

= exp(±2br)
n−1∏
j=1

exp
(
∓brξ2j

)
= exp(±2br)

nL−1∏
j=1

exp

(
∓
rξ2j
2w2

)
exp

(
∓
iτrξ2j
2w2

)
.

This lets us rewrite Ψ± as a product of n − 1 identical one-dimensional Gaussian

integrals,

Ψ± = exp(±2br)
g(b, r)

(πw2)n/4

n−1∏
j=1

Sj,± , (4.19)

where

Sj,± =

∫
dξj exp

(
∓
iτrξ2j
2w2

)
exp

(
∓
rξ2j
2w2

)
. (4.20)

If we assume that ξj ranges from −∞ to ∞ then we can compute this integral

exactly, giving

Sj,± =

√
2πw2

τr
exp(∓πi/4) .

This assumption is another ingredient in the method of stationary phase. It incurs

an exponentially small error, since the integral is dominated by ξj close to the unique

stationary point ξj = 0.
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Taking the product (4.19) then gives

Ψ± =
g(b, r)

(πw2)n/4

(
2πw2

τr

)(n−1)/2

exp

(
±2br ∓ (n− 1)πi

4

)
,

and so

Ψ ' g(b, r)

(πw2)n/4

(
2πw2

τr

)(n−1)/2

· 2 cosh

(
2br − (n− 1)πi

4

)
.

Using the identity

|2 cosh(x+ iy)|2 = 2(cosh 2x+ cos 2y) ,

and (4.9), we can finally calculate |Ψ|2, the normalized probability density |ψ|2, and

the probability density ρ(r) of the distance r of the observed point from the origin:

|Ψ|2 ' 2nπn/2−1wn−2

τn−1rn−1
exp

(
−1 + r2

w2

)[
cosh

2r

w2
+ cos

(
2τr

w2
− (n− 1)π

2

)]
(4.21)

|ψ|2 =
|Ψ|2

N0

' 1

Cn rn−1
2√
πw

exp

(
−1 + r2

w2

)[
cosh

2r

w2
+ cos

(
2τr

w2
− (n− 1)π

2

)]
(4.22)

ρ(r) = Cn r
n−1 |ψ|2 ' 2√

πw
exp

(
−1 + r2

w2

)[
cosh

2r

w2
+ cos

(
2τr

w2
− (n− 1)π

2

)]
(4.23)

The oscillations in (4.23) come from interference between the contributions to Ψ

from the north and south poles. These oscillations modulate the overall probability

with a wavelength O(w2/τ), so in the limit w0 → 0, τ → ∞ and w fixed these

modulations become impossible to observe and can be ignored. At that point, we

recover the expression (4.17) for ρ(r) that we obtained from the asymptotic behavior

of the Bessel function,

ρ(r) ' 1√
πw

(
exp

(
−(r − 1)2

w2

)
+ exp

(
−(r + 1)2

w2

))
.

We compare (4.17) to (4.23), and to the exact distribution, in Figure 4.3.
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0.5 1 1.5 2.

r

rho Sampling Density

Figure 4.3: The exact probability density ρ(r) (red) and our asymptotic expres-
sions (4.23) (blue) and (4.17) (green) for n = 4, τ = 40, w = 1, and w0 ' 1/40.

4.3.4 Behavior near the origin

For small r, ρ(r) is essentially constant, so for small ε we observe a point with r < ε

with probability

P (r < ε) ' 2√
πw

exp

(
− 1

w2

)
ε , (4.24)

In the next section we will use the fact that P (r < ε) ∝ ε in our algorithm for finding

the center of a sphere. More generally, we can write P (r < ε) =
∫ ε
0
ρ(r) dr in terms

of the error function.

However, the expression (4.23) does not hold if r is too small as a function of the

other parameters. Our stationary phase approximation is equivalent to treating the

sphere as a paraboloid at each pole, by writing

cos θ ≈
n−1∏
j=1

cos ξj ≈
n−1∏
j=1

(
1−

ξ2j
2

)
≈ 1− 1

2

n−1∑
j=1

ξ2j .
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The multiplicative error in the second-order Taylor series for cos ξ is 1 + O(ξ2).

However, taking the product over the n − 1 coördinates at the cap raises this to

1 + O(nξ2). Thus the width of the cap that contributes significantly to the integral

must obey ξ � n−1/2 for our approximation to hold. Since the width of the Gaussian

Sj,± in (4.20) is (τr)−1/2 ∼ (w0/r)
1/2, this requires that

r � n

τ
∼ nw0 .

To put this differently, if our ambition is to observe points a distance r < ε away

from the origin, we need the initial thickness of the shell to be

w0 �
ε

n
.

This fits with the fact that the asymptotic formulas (4.11), (4.16) for the Bessel

function Iν(z) in the real and complex-valued case hold when z � ν2 and y � ν

respectively.

Ultimately, the probability density |ψ|2 at the origin must take some finite value,

so that ρ(0) = 0. We can consider its behavior when r � nw0 ∼ n/τ so |br| � n,

using the power series of the modified Bessel function:

Iν(2z) = zν
∞∑
j=0

z2j

Γ(ν + 1 + j) Γ(j + 1)
.

Thus to leading order,

In/2−1(2br) =
(br)n/2−1

Γ(n/2)
,

and we can approximate (4.13) as

|ψ(r;w)|2 ' 2
√
π

Cnw0w2
exp

(
−1 + r2

w2

)
|b|n−2

Γ(n/2)2

' 2Cn
√
π

(2πw)nwn−10

exp

(
−1 + r2

w2

)
. (4.25)

Note that the factors of rn−2 cancel out. Thus the peak in the probability density

at the origin grows as w0 → 0, but is finite for any given w0.
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4.4 Algorithmic applications

We have shown that physical evolution of a certain class of spherically symmetric

states concentrates the probability near the center of the sphere. In this section, we

show how to use this as a primitive to estimate the center of these spheres within a

certain error with a small number of such experiments.

First, scaling arguments imply that for a spherical shell of radius R, the proba-

bility density (4.17) generalizes to

ρ(r;R,w) ' 2√
πw

exp

(
−R

2 + r2

w2

)
cosh

2Rr

w2
. (4.26)

Assume for the moment that w0 and R are known. If we evolve the initial state to

time t = w2
0(w

2 − w2
0) and measure the position, we have a reasonable probability

of getting close to the center with one sample. Namely, for small ε, we get within

distance of r with probability at least ε, where

r

R
.

√
π

2

w

R
exp(R2/w2) ε .

If w/R is a constant—which we can arrange if we know that R lies in some interval

[R0, CR0] for a constant C—then we have

Pr
[ r
R
< ε
]
∝ ε .

Our goal below is to show how to achieve small r/R by combining multiple measure-

ments of this kind.

For comparison, consider classical sampling, where each point is chosen uniformly

from the same spherical shell. Each measurement restricts the location of the center,

until after n+1 measurements we can determine the center by triangulation. (Three

points determine a circle, four a sphere, and so on.) This is a somewhat apples-and-

oranges comparison, since in our algorithm we do not assume that we have multiple

copies of a state, all with the same radius, and our shells have a finite thickness w0.

But it is a good illustration of how the “curse of dimensionality”—the dependence

of the number of measurements on the number of dimensions—behaves in a classical

setting.
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4.4.1 Combining multiple measurements

We have seen that by evolving the initial state, a single measurement achieves an

estimate of the center of the sphere with error r/R < ε with probability proportional

to ε. Given s such samples, ~x1, . . . , ~xs, how can we combine them to achieve a smaller

error ε, and how does s grow as ε decreases?

One approach is to simply take the mean. However, by the central limit theorem,

this gives ε ∼ 1/
√
s or

s ∼ 1/ε2 .

This is no better than leaving the state unevolved, and taking the mean of s samples

from the initial shell. While the analysis is more complicated, the same is true for the

generalized median (the point that minimizes the total distance to all the samples)

or the coördinatewise median (choosing a basis and, along each axis, setting the

coördinate of our estimate to the median of the corresponding coördinates of the

samples). These methods do no better than the initial state because they do not

take advantage of the singularity in the probability distribution. While ρ(r) diverges

as r → 0, its variance is not much less than a spherical Gaussian of width R, and

the error incurred by the mean and median depend primarily on this variance.

Instead, we use a maximum likelihood estimator (MLE) approach. We seek

the position of the center ~x0 that would maximize the probability of observing the

samples,

L(~x0) = P ({~x1, . . . , ~xs} | ~x0) =
s∏
i=1

P (~xi | ~x0) , (4.27)

where the product holds because the samples are independent. However, in this case

the MLE has a very unusual feature. Because the probability distribution of each

sample scales roughly as

P (~xi | ~x0) ∝ |~xi − ~x0|−(n−1) , (4.28)

the likelihood L(~x0) is not log convex, and has a peak close to each sample. As a

result, many of the standard ways of dealing with MLEs do not work here. However,
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this doesn’t mean there’s something wrong with the expression (4.27)—it accurately

reflects the information available.

Since the MLE will necessarily be near one of the sample points, we restrict our-

selves to considering only the sample points themselves as candidates. For simplicity,

we will assume that the scaling (4.28) holds exactly. Since this diverges at ~x0 = ~xi,

we “renormalize” away the term P (~xi | ~xi). We are then left with the following algo-

rithm: given s samples ~x1, . . . , ~xs, choose the ~xi that maximizes the product∏
j 6=i

|~xj − ~xi|−(n−1) ,

or, equivalently, that minimizes the product∏
j 6=i

|~xj − ~xi|2 . (4.29)

We will show, at least for certain values of s, that this algorithm often returns

the sample ~xi that is closest to the true center of the sphere. Since the probability

density ρ(r) of the distance from the center is roughly uniform near r = 0, it follows

that the closest sample typically has

r

R
∼ 1

s
,

so the number of samples it takes to achieve an error r/R < ε grows as

s ∼ 1/ε ,

as long as w0 � ε/n. Thus we remove, or at least reduce, the curse of dimensionality,

and achieve a quadratic speedup (measured in terms of the number of samples) over

the naive algorithm of sampling s times from the spherical shell and taking the mean.

4.4.2 Analyzing the MLE algorithm

To avoid technical details, we analyze the performance of our MLE algorithm in a

simplified setting. By spherical symmetry, each sample ~xi is chosen uniformly from
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the spherical shell of radius r, where r is chosen according to ρ(r). Recall from (4.17)

that, when R = 1, ρ(r) is approximately a sum of two Gaussians, with mean 1 and

−1, and variance w2/2 = O(1).

Here we instead assume that ρ(r) is uniform in the unit interval. This avoids

geometrical factors in the Gaussian distribution, and gives us a reasonable approxi-

mation that we can analyze rigorously. Below we report on numerical experiments

showing that the behavior when ρ(r) is given by (4.17) is similar.

In this setting, we will prove the following theorem.

Theorem 1. There is are constants C,D > 0 such that, for s < C
√
n, the sample

point closest to the center has the smallest product (4.29) of squared distances to the

other samples, with probability at least D.

Thus, up to O(
√
n) samples, the error ε scales as 1/s. Indeed, numerical experiments

show that this scaling persists up to significantly larger values of s (and significantly

smaller values of ε).

We prove Theorem 1 by bounding the probability that any sample point other

than the closest one has a smaller product of squared distances. Let ri = |~xi| be

the uniformly chosen radii, and sort them from smallest to largest so that r1 ≤ r2 ≤

· · · ≤ rs. Let θi be the unit vector such that ~xi = riθi. We will start by assuming

that the radii ri are fixed and that the sequence {ri} has certain typical properties,

and use the fact that the θi are uniform and independent on the sphere of radius

1. Then we will prove that {ri} does indeed have these properties with probability

bounded above zero.

First we introduce some notation. Given two sample points ~xi and ~xj, the distance

squared between them is

Di,j = |~xj − ~xi|2 = r2i + r2j + 2rirjθi · θj .

The product of these for a given point we denote

Qj =
∏
k 6=j

Dj,k .
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Thus our goal is to show that, with probability bounded above zero,

Q1 < Qj for all j > 1 .

The following lemma will be useful:

Lemma 2. If E [Y ] > E [X], then

Pr[X > Y ] ≤ Var [X − Y ]

(E [X]− E [Y ])2
. (4.30)

Proof. We apply Chebyshev’s bound (e.g. [31, §A.3.2]) to the random variable X−Y ,

bounding the probability that it is zero, and hence more than E [X − Y ] away from

its mean.

We define ηj as the probability that our MLE algorithm judges ~xj to be a better

estimate than ~x1. Thus

Pr[Qj < Q1] = ηj

≤ Var [Qj −Q1]

(E [Qj]− E [Q1])
2

=
Var [Q1] + Var [Qj]− 2 Cov [Q1, Qj]

(E [Qj]− E [Q1])
2 , (4.31)

where we recall the definition of the covariance of two random variables,

Cov [X, Y ] = E [XY ]− E [X]E [Y ] .

The astute reader may have noticed that Qj and Q1 share the common term

D1,j = Dj,1. We could instead have used variables defined without this common

term, but this complicates the notation for no appreciable gain.

We will, of course, need to know how to work with the moments and correlations

of the Di,j. Assume the radii ri are fixed, and that the θi are uniform and independent

on the unit sphere. First we prove a simple lemma:

Lemma 3. Let θ be uniform and independent on the n-sphere of radius 1, and let

y, z be vectors in Rn. Then

E [(θ · y)(θ · z)] =
y · z
n

. (4.32)
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In particular, for i 6= j we have

E
[
(θi · θj)2

]
=

1

n
.

Proof. Treat θ as a column vector. By Schur’s lemma, the expected outer product

of θ with itself is

E
[
θθT
]

=
1

n
1 ,

so

E [(θ · y)(θ · z)] = y · E
[
θθT
]
· z =

y · z
n

.

Now note that, for any j, the squared distances Dj,k for k 6= j are independent

of each other, since by symmetry we can take θj to be any fixed vector. Moreover, if

j 6= k then E [θj · θk] = 0. Thus the expectations and second moments of the Qj are

given by

E [Qj] =
∏
k 6=j

E [Dj,k] =
∏
k 6=j

(r2j + r2k) , (4.33)

E
[
Q2
j

]
=
∏
k 6=j

E
[
D2
j,k

]
=
∏
k 6=j

(
(r2j + r2k)

2 +
4r2j r

2
k

n

)
, (4.34)

where in (4.34) we used Lemma 3.

The Qi for various i are not independent. Happily, our next lemma shows that

they are positively correlated with each other, which will help us bound the proba-

bility that Qi < Q1.

Lemma 4. Assume the radii ri are fixed, and that the θi are uniform and independent

on the unit sphere. Then for all distinct i, j,

Cov [Qi, Qj] ≥ 0 .
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Proof. Let Eθk [X] denote the expectation over θk, while all other θi are held fixed.

By Lemma 3,

Eθk [Di,kDj,k] = (r2i + r2k)(r
2
j + r2k) + 4rirjr

2
k

θi · θj
n

.

Then

E [QiQj] = E

[
D2
i,j

∏
k 6=i,j

Di,kDj,k

]

= Eθi,θj

[
D2
i,j

∏
k 6=i,j

Eθk [Di,kDj,k]

]

= Eθi,θj

[ (
r2i + r2j + 2rirjθi · θj

)2
×
∏
k 6=i,j

(r2i + r2k)(r
2
j + r2k) + 4rirjr

2
k

θi · θj
n

]
,

while

E [Qi]E [Qj] = E [Di,j]
2
∏
k 6=i,j

Eθk [Di,k]Eθk [Dj,k]

= (r2i + r2j )
2
∏
k 6=i,j

(r2i + r2k)(r
2
j + r2k) . (4.35)

Comparing these expressions, we see that the covariance

Cov [Qi, Qj] = E [QiQj]− E [Qi]E [Qj] .

is a sum of terms, with positive coefficients, each of which contains the mth moment

E [(θi · θj)m] for some integer m ≥ 0. These moments are zero if m is odd and positive

if m is even, so the covariance is non-negative.

Lemma 4 and (4.31) give us a better bound on the probability ηj that our algo-

rithm chooses ~xj instead of ~x1,

ηj ≤
Var [Q1] + Var [Qj]

(E [Qj]− E [Q1])
2 . (4.36)

Our goal is to bound
∑s

j=2 ηj. We will find two trivial analytic facts helpful. First,

if 0 ≤ x ≤ 1, then

exp(x) ≤ 1 + 2x , (4.37)
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since this bound holds at x = 0 and x = 1, and exp(x) is convex. Second, if x, y 6= 0,

the arithmetic-geometric mean inequality (or elementary algebra) gives√
x2y2 ≤ x2 + y2

2
,

and squaring both sides gives

4x2y2

(x2 + y2)2
≤ 1 . (4.38)

Next we bound the relative variance of Qj.

Lemma 5. If s ≤ n, then for all 1 ≤ j ≤ s

Var [Qj]

E [Qj]
2 <

2s

n
. (4.39)

Proof. From (4.33) and (4.34),

Cj =
E
[
Q2
j

]
E [Qj]

2 − 1

=
∏
k 6=j

(
1 +

4r2j r
2
k/n

(r2j + r2k)
2

)
− 1

= exp

(∑
k 6=j

log

(
1 +

4r2j r
2
k

n(r2j + r2k)
2

))
− 1

≤ exp

(
1

n

∑
k 6=j

4r2j r
2
k

(r2j + r2k)
2

)
− 1

≤ 2

n

∑
k 6=j

4r2j r
2
k

(r2j + r2k)
2

≤ 2(s− 1)

n
,

where we used (4.37), (4.38) and the fact that s ≤ n in the fifth line.

We now wish to argue that ~x2 is the sample most likely to be ranked above ~x1

by the MLE algorithm. Consider the ratios between the expectations E [Qj],

γi,j =
E [Qi]

E [Qj]
.
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Lemma 6. If i > j then γi,j > 1, and γi,1 > γj,1. In particular, γj,1 > γ2,1 for all

j > 2.

Proof. Applying (4.33) and dividing out the common term r2i + r2j , we have

γi,j =
∏
k 6=i,j

r2i + r2k
r2j + r2k

.

Since ri > rj, each term is greater than one, so γi,j > 1. Then

γi,1
γj,1

= γi,j > 1 .

Combining (4.36) with Lemmas 5 and 6 gives

ηj ≤
2s

n

E [Q1]
2 + E [Qj]

2

(E [Qj]− E [Q1])
2

=
2s

n

1 + γ2j,1

(γj,1 − 1)2

≤ 2s

n

1 + γ22,1

(γ2,1 − 1)2
,

where we used the fact that (1 + x2)/(x− 1)2 is monotonically decreasing for x > 1.

Thus we have the following bound on the probability that the MLE algorithm fails

to choose ~x1,

s∑
j=2

ηj ≤
2s2

n

1 + γ22,1

(γ2,1 − 1)2
. (4.40)

Our bound (4.40) shows that the MLE algorithm succeeds with high probability

as long as s �
√
n and γ2,1 is bounded above one. We now use the fact that the

radii are random, and prove that the latter condition holds with reasonably large

probability.

Lemma 7. Let ri for 1 ≤ i ≤ s be chosen uniformly and independently from the unit

interval, and then sorted so that r1 < r2 < · · · < rs. Then

Pr[γ2,1 ≥ 1.2] ≥ 1/2 .
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Figure 4.4: The region of the triangle 0 ≤ x ≤ y ≤ 1 such that γ2,1 ≥ 1.2.

Proof. Taking just the first term in the product,

γ2,1 ≥
r22 + r23
r21 + r23

=
1 + (r2/r3)

2

1 + (r1/r3)2
.

If we condition on the value of r3, then r1/r3 and r2/r3 are chosen uniformly and

independently from [0, 1], and then sorted. If we call these x = r1/r3 and y = r2/r3,

then x and y are uniform in the triangle defined by 0 ≤ x ≤ y ≤ 1. The region in

which γ2,1 ≥ 1.2 is shown in Figure 4.4, and the fraction of the triangle it occupies

is greater than 0.55.
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Putting this together with (4.40), we have that with probability at least 1/2,

γ2,1 ≥ 1.2

1 + γ22,1
(γ2,1 − 1)2

≤ 61

s∑
j=2

ηj ≤ 122
s2

n
.

Thus the total probability that the MLE algorithm fails is bounded by

Pr[MLE fails] ≤ 1

2

(
1 + 122

s2

n

)
. (4.41)

Thus, as long as s/
√
n is sufficiently small, there is a constant probability of picking

the point closest to the center with this method, and therefore obtaining an estimate

with error

ε = r/R ∼ 1/s .

Note that our simplifying assumption that the radii are uniformly distributed

enters in only two places: the bound on γ2,1 in Lemma 7, and our claim that r1 is

typically of order 1/s. Both of these still hold if the ri are chosen according to the

distribution 4.17 rather than the uniform distribution on [0, 1]. Since ρ(r) tends to

a constant as r → 0, as long as s is reasonably large, with high probability the three

smallest radii will be in a region where ρ(r) is effectively uniform, and the geometry

of Lemma 7 stays the same. Similarly, the expectation of the smallest radius r1 is

C/s where C is a geometrical constant.

However, our analysis is far looser than it could be at several points. Using

Chebyshev’s bound as in Lemma 2 is very pessimistic, since the variables Qj are far

more concentrated than their variance alone would suggest. In Lemma 5 we treated

all s − 1 terms in the sum as being close to 1; in reality, they decrease rapidly as

rk gets far from rj, which happens for almost all sets of radii. Finally, in the union

bound (4.41) we treated ηj for all j as if it were as large as η2, while these too rapidly

decrease as j increases.
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Figure 4.5: The probability that the MLE algorithm selects the closest sample point.

Indeed, we claim that the probability of failure is o(1), as opposed to merely

being bounded by a constant, and that this holds for a larger range of s than our

proof suggests—in particular, for s well above
√
n. Numerical experiments where

the ri are chosen according to (4.17) support this. Figure 4.5 shows that the MLE

algorithm selects the closest sample point with probability close to 1 for s ranging

from 1 all the way up to n, and Figure 4.6 shows that the error ε scales as s−α for

α ≈ 1 over this entire range. Even when the selected point is not the closest, it is

usually among the closest, and the error is still inversely proportional to the number

of samples.

4.4.3 Iterating estimates to improve accuracy in spherically-

symmetric functions

An attractive application of physics producing peaked measurement probability near

the center is to find the center of a spherically symmetric function f(~x). By starting

with a uniform superposition over a large region in Rn and measuring the value of
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Figure 4.6: The error ε as a function of the number of samples s.

f , we should end up with a state concentrated on one of f ’s level sets, i.e., on a

spherical shell (or a union of several such shells if f is not monotonic as a function of

radius). Evolving for roughly the right amount of time and measuring the position

~x would then give a good estimate of the center with high probability.

Unfortunately, several technical problems arise with this approach. First of all,

unlike in discrete Hilbert spaces such as the hidden subgroup problem on finite

groups, there is no natural state that is precisely concentrated on a level set. Unless

f is constant, an exact measurement of f would lead to an unphysical state, and is

prohibited by the uncertainty principle in any case. If the value of f is measured

with some small Gaussian error ν, however, we can obtain a state like those analyzed

in the previous sections, where the width of the shell depends on ν and the derivative

df/dr.

Another difficulty is that we can’t, of course, prepare a wave function constant

over all of Rn. If f is defined on a compact space, such as a torus or hypersphere,

then an analysis similar to the one we carried out in the previous sections should
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work. However, if f is defined on Rn, our initial superposition can only be uniform

on some finite region. Then another problem arises: since most of the volume of an

n-sphere is near its boundary, the observed shell will probably be one of those that

intersects the boundary of the region. In that case, the initial shell is incomplete,

weakening the interference effects that cause the evolved state to concentrate at the

origin.

However, we can arrange for these shells to be nearly-complete with high prob-

ability if we already know the center ~x0 of f to within some accuracy. Specifically,

if we know that ~x0 is at most δ from some estimate ~xest, we can sample from a ball

B centered at ~xest of radius R, where R depends on δ. We can use the results of

our algorithm to obtain a new estimate ~x′est with a new error δ′, and iterate until

the error is as small as we desire, as in Liu [29]. Thus we will proceed in a series of

rounds, where in each round we sample s times from the evolved distribution, and

reduce the error from δ to δ′ ∼ R/s.

While it’s true that each sample point in a round will be from the evolved version

of a different shell, corresponding to a different value observed as output of f , the

distributions from each run will be quite similar. The probability that we observe a

given shell is proportional to its area, so the observed shell will be biased towards

the largest possible shell in B; as we will see below, the initial radius will typically

be (1 − 1/n)R. Since the thickness of the shell is small, it has a significant spread

of spatial frequencies, and the interference effects at the center are quite robust to

small changes in the initial radius.

How large does the radius R of the sampled ball B have to be for all this to

work? We can think of the measurement process as choosing a random point ~y in B,

and then producing the intersection of B with the shell around ~x0 of radius |~y− ~x0|.

First let’s ask how often this shell is complete. In the worst case, when ~x0 is δ away

from ~xest, the sphere of radius R′ = R − δ around ~x0 is contained in B, and the

observed shell is complete whenever ~y is in this sphere (see Figure 4.7). This occurs
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Figure 4.7: All shells around ~x0 with radii smaller than R− δ are complete.

~xest ~x0

δ
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Figure 4.8: Scaling for attaining a half-shell is O(
√
n).

with probability

Pr[complete shell] =

(
R′

R

)n
=

(
1− δ

R

)n
.

If R = nδ, say, then this probability tends to 1/e.

However, as we showed in the previous section, we need s ∼ 1/ε samples in order

to obtain a new estimate whose error is εR. If R = nδ, then this means we need

more than n samples in each round to make any progress, i.e., to achieve δ′ < δ.

Happily, we don’t need the shells to be complete. As long as they have a large

enough solid angle, their fidelity with a complete shell will be large enough for the

algorithm to work; see the discussion below. To get a sense for how R should scale
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to achieve a given solid angle with high probability, consider the case where the solid

angle must be at least 1/2 of a complete shell. This occurs whenever |~y − ~x0| ≤ R′,

where the shell of radius R′ around ~x0 intersects the surface of B at points that form

a right angle with ~x0 and ~xest as in Figure 4.8. In that case, Pythagoras’ theorem

gives

R′ =
√
R2 − δ2 ≈ R

(
1− 1

2

δ2

R2

)
.

The left half of the sphere of radius R′ is contained in B, so the probability that

|~y − ~x0| ≤ R′ is

Pr[solid angle ≥ 1/2] ≥ 1

2

(
R′

R

)n
=

1

2

(
1−O(nδ2/R2)

)
.

This is bounded above zero whenever R = δ
√
n.

A constant fraction being good is good enough—our use of an MLE procedure is

quite robust to having a few bad samples, because they can’t be clustered in such a

way to overpower the clustering near the center.

Suppose we seek a fixed ε accuracy. After r rounds, we have:

ε = δ

(
k

fs

)r
. (4.42)

Then,

r = log ε− log δ

log(k/fs)
. (4.43)

Minimizing the total number of samples rs is minimizing

s

log(k/fs)
(4.44)

hence

log s = log(k/f) + 1 (4.45)

s = ek/f. (4.46)

If we construct a ball of radius R around our estimate ~xest, and the true center

~x0 differ by δ, then the larger the partial shell constructed, the worse the fraction
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Figure 4.9: Partial shells from off-center sampling.

inside the sampled ball. How large must R′ be to still have a good a partial shell in

the worst case? And how does the volume of the full ball compare to the volume of

“good” shells and partial shells? If by “good” we mean “constant fractional area”,

then we can improve the scaling to O(
√
n).

The vast bulk of the area of a shell is very close to the equator. As a result,

even a shell that is only slightly more than “half,” in the sense that it includes

latitudes O(1/
√
n) beyond the equator, is nearly complete. For a unit shell in n

dimensions, any given coördinate has a Beta distribution that is closely approximated

by a Gaussian with variance 1/(n− 3),

p(x) =
Γ(n/2)√

π Γ((n− 1)/2)
(1− x2)(n−3)/2

≈ 1√
2π/(n− 3)

exp

(
−(n− 3)x2

2

)
.

Replacing n− 3 with n when n is large, standard tail bounds on the Gaussian then

give

Pr
[
x > C/

√
n
]
≤ 1

2
exp

(
−C2

2

)
. (4.47)

Now consider Figure 4.9. If |~y − ~x0| ≤ R′, then the observed shell is complete
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except for points within θ′ of one pole. If cos θ′ = C/
√
n, then (4.47) tells us

that, compared to a complete shell, its missing solid angle is O(exp(−C2/2)). If |φ〉

denotes the uniform superposition on this observed shell and |ψ〉 denotes the uniform

superposition on the complete shell of the same radius, the fidelity is the fractional

solid angle,

F = |〈ψ|φ〉|2 = 1−O(exp(−C2/2)) .

The probability that a given measurement distinguishes an observed shell from a

complete one is at most log(1/F) = O(exp(−C2/2)). [6, 1] By setting C to a large

enough constant, we can make this probability as small as we like. By making C

slightly larger than a constant, say C = log s, we can even make this probability

o(1/s), so that our algorithm will not notice the difference between these shells and

complete ones over its entire operation.

The only question remaining is how large R has to be for cos θ′ = C/
√
n to hold

with high probability. The law of cosines gives the following relationship between R,

R′, and δ,

R2 = R′2 + δ2 + 2δR′ cos θ′ ,

Although we have not rigorously proved this, the scaling here strongly suggests

that we can still take k = O(
√
n), without having a significant chance of the state

being distinguishable, and can thus use this procedure to speed up narrowing down

locations of the center.

4.4.4 Comparison with previous work

This problem can be seen as a harder version of the hidden subgroup problem on

the Euclidean group E(n), the isometries of Rn, with the hidden subgroup promised

to be the group of rotations about some point. One difficulty is we are not given a

function on E(n), but only on Rn, which E(n) acts on. A standard Fourier transform

gives only the representations associated with the translation subgroup, and there is
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no more information to extract. This is not the only transform open to us, of course.

We can trade off the translation information for other information. Yi-Kai Liu has

shown that the quantum curvelet transform lets one find the center of a large class of

spherically symmetric functions with a constant number of queries, and conjectures

that this generalizes to the discrete case with the same asymptotics.

Liu specifically analyzes three algorithms: algorithm 1 finds the center of of ball

given as a quantum sample state; algorithm 2 finds the center of of a radial function;

and algorithm 3 recursively applies a variant of algorithm 2 to improve the scaling.

Liu’s algorithm 1 uses 1 measurement of a ball state, and with Pr[r < ε] ∈

Ω(ε3/R3). The curvelet transform is applied, and measurement then gives a line

near which the center must be. This succeeds in giving fine enough angular resolu-

tion with probability at least Ω(ε2/R2). Guessing a random point on the line gives a

point within ε of the center with probability at least Ω(ε/R). Liu does not address

how having access to multiple copies of the initial state can improve things. Directly

copying the techniques in algorithm 2 result in probability Ω(ε4/R4), as both trials

must have sufficient angular resolution. With many trials, this can get better, as one

can pick out the two best results to combine. This is not directly comparable to our

results as we only analyze the case of a spherical shell, not a ball.

Liu’s algorithm 2 constructs a spherical shell by sampling from a radially sym-

metric function and measuring the output. The curvelet transform is applied and

measurement yields a line that the center must be near. Repeating this gives an-

other line. If these lines have sufficient angular resolution, points near their closest

approach are near the center.

Constructing a region to sample over requires a promise that an estimate of the

center is within some distance of the true center. The procedure of sampling creates

a shell that is up to a factor of n larger than the initial estimate.

The subprocedure to extract the center of a shell yields an uncertainty ε that

depends on the radius of the shell R, the dimension n, and thickness of the shell

w0. With constant probability, ε < O(
√
w0nR). Note that R is n times the initial
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estimated distance. though the construction of the shell is not heralded.

This is not directly comparable to our results. For a spherical shell, we have a

probabilistic result that Pr[r < ε] ∈ O(ε/R), for w0 � ε� R. A constant probability

gets us within a constant fraction of the distance to the center,

Liu’s algorithm 3 iterates a variant of algorithm 2 in order to shrink the promise

in each step, feeding in a better estimate for the next. In order to reduce the chances

of constructing a bad shell to O(1/s), he uses a ball of size S larger than R, with S

tuned to the stage of the overall algorithm.

The present work answers this question in a rather different way. Rather than

use a series of quantum gates as a circuit to transform the state to a basis that

extracts algebraic information about the problem (lines given as a point on them

and a direction, combined to locate the intersection), we use the geometry of the

state and let Schrödinger’s equation do the work for us.

This process of spherical symmetry in initial conditions causing a peak near the

center should also remind one of the phenomenon of Poisson’s spot (also known as

Arago’s spot).2 A light source is blocked by an opaque circular disk, and the shadow

projected onto a screen. At the center of the circular shadow is a bright spot. This

is due to constructive interference; by Huygens’s principle we can think of each spot

on the edge of the disk being a point source of light. At the center, the light travels

an equal distance, so has the same phase difference from each point along the edge.

Poisson’s analysis was intended to demonstrate the absurdity of a wave theory of

light. Arago’s experimental verification showed that Poisson’s sense of the absurd is

not a reliable guide to the workings of the universe.

2In accordance with Stigler’s law of eponymy, earlier observations were reported, in-
cluding by Joseph-Nicolas Delisles in 1715, and Giacomo F. Maraldi in 1723, about 100
years before Poisson’s derivation, or Arago’s subsequent observational confirmation.
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4.5 Discussion

Although the problems we describe are somewhat artificial, we have shown that even

the simplest possible potential—a constant— still allows for interesting quantum

information processing under evolution by the Schrödinger equation. These problems

have a highly geometric nature, as opposed to the algebraic structures at which most

quantum information processing is aimed. Specifically, given states concentrated

near a high-dimensional hypersphere we can recover the center of the sphere with a

constant number of samples, rather than the classically needed O(n). Given a state

concentrated near a plane curve, we can instead sample from its evolute. In both

cases optimizing the evolution time requires knowing how concentrated the state is

and what the scale of the initial state is, but neither need be known precisely. The

finer the initial concentration, the more peaked we can make our final samples. Due

to the nature of the Gaussian broadening, a sharper kernel actually requires less real

time to evolve to the endpoint. This makes sense given the higher energy Fourier

modes available, and is another expression of the standard time-energy tradeoff for

continuous-time algorithms.
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Chapter 5

Applications to less symmetric

spaces: sampling from evolutes

In the previous chapter, we showed that scattering lets us find the center of an initial

spherical shell. In this chapter, we explore similar phenomena on more general curves

and surfaces. As in the spherical case, the probability distribution becomes singular,

but now along the “evolute” of the initial state. We analyze these singularities, and

show that various scaling exponents can arise.

This is preliminary work in an attempt to generalize the results of the previous

chapter to less symmetric cases. We start in two dimensions, even though this means

the computations done in this chapter can easily be classically replicated. In higher

dimensions, an ellipsoidal shell where many of the axes are the same has nearly as

much symmetry as the sphere. In general, what can be done with that? As we will

see here, the scaling exponents for evolutes of arbitrary curves in 2-d are weaker

than that for the center of a circle. Even for an ellipse, all the axes are different

sizes, so the symmetry is already completely broken. Cases of only partially broken

symmetry may prove different in higher dimensions.
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5.1 Curves in two dimensions

Arago’s spot provokes the question of what happens when the object blocking a light

source has less symmetry than a circle. Arago’s measurements have been extended to

ellipses, or nearly equivalently, tilted circular disks, and other fairly simple geometric

shapes [10, 9]. With these “shadow masks”, the bright spot of the circular disk

becomes a bright curve of the evolute of the boundary of the shape. The evolute is

the set of all “centers of curvature” of a given curve. Indeed, the circular disk is a

degenerate case, where the evolute reduces to the central point.

We can readily characterize the results by considering the interference proper-

ties of the light diffracted around the edge. The result at any point should be an

integral of contributions from such diffractions around the edge. Using the method

of stationary phase as a heuristic to guide our analysis, we see that at a generic

interior point the interference should be mostly destructive. This occurs locally from

most places along the edge, so long as the path length differences vary. However we

expect local constructive interference from a few points, where there is a point on

the edge such that the path length is stationary with respect to movements along

the edge. To gain an understanding of the wave function’s behavior we need ana-

lyze only these few points. Each such point generating a stationary path length can

also be characterized as being a minimum or maximum path length. This in turn

implies that the line connecting the point on the edge to the generic interior point

being considered must be perpendicular to the edge. Turning this around, for a given

point on the edge, the points in the interior to which it greatly contributes are the

ones that lie on the perpendicular to the edge at that point. Different points along

this line have lesser or greater contributions, peaking at the point that such that the

boundary locally resembles a circular boundary with the same radius of curvature

R. This is the “center of curvature” of the given location on the boundary curve.

As the collection of all of these points is the evolute of the curve, we should expect

brightening precisely on this curve.

As an example, the evolute of an ellipse is approximately shaped like a four-
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Figure 5.1: An ellipse, its evolute, and the interference pattern it generates, concen-
trated on the evolute.

pointed star. A point can have up to four stationary distances to the ellipse, with

two being maxima and two minima. This occurs inside the evolute. For a point

outside the evolute two stationary points exist, one maximum and one minimum.

The evolute itself has three fixed points—approaching from the interior, two fixed

points have merged producing one of higher order, and hence stronger concentration.

Similarly, the cusps, with two fixed points have merged three of the four points

creating another higher-order fixed point.

Although we produce similar patterns to diffraction around a connected opaque
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R

Figure 5.2: Each point on a curve has a circle (the “osculating circle”) that will “fit
snugly”. The center is the point on the evolute generated by that point on the curve.

shape, our setup is more analogous to diffraction through a curved slot on a screen,

at various widths. However, because only the boundaries produce strong effects, the

analysis essentially carries through similarly. Physically we can understand this with

Babinet’s principle of complementary screens. Consider a screen with our curve as

its edge. By Babinet’s principle the complement of this screen produces a similar

diffraction problem. Shrinking one slightly and enlarging the other will only slightly

change the size of each diffraction pattern. Combining them gives a screen with a

curved slot. This will give a diffraction pattern that is a combination of the two,

with interference effects.

In the case of shadow masks and optical diffraction, this can be analyzed fairly

rigorously with Kirchoff diffraction theory [25], though care must be taken that all

the assumed limits are applicable. This would leave us with a frequency-dependent

reduced wave equation in the plane perpendicular to propagation.

Rather than examining the steady state behavior of a beam satisfying such a

reduced wave equation ∇2ψ+k2(ω)ψ = 0, we directly work in a 2-dimensional space,

and examine the evolution of a wave function initially localized near a plane curve.
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We attain qualitatively similar behavior to these diffraction effects with a different

kernel, evolving under Schrödinger’s equation. After a given amount of time, the

probability density is concentrated on the evolute of the original curve. Given an

initial concentration to a width w0 around a given curve, we have calculated the

scaling behavior of the width and probability density of the brightness along the

evolute (w
1/3
0 and w

−1/3
0 , respectively), and the width and probability density at

cusps of the evolute (w
1/2
0 and w

−1/2
0 , respectively), where w0 is the initial width of

the wave function around the starting curve.

We consider a curve with a Gaussian intensity profile. Again, rather than directly

integrating across the width of the curve, we instead convolve a zero-width curve with

a Gaussian kernel of a given width, which gives us the profile we want. Specializing

the kernel of the previous sections to n = 2 gives

ϕ0(r;w0) =
1

w0π1/2
exp

(
− r2

2w2
0

)
.

For example, the unnormalized wave function for a uniform line of width w0 is

constructed by:

Ψ(x, y) =

∫
dx0 ϕ0(x, y;w0)

=
1

w0π1/2

∫
dx0 exp

(
−(x− x0)2 + y2

2w0

)
=

1

w0π1/2
N2(w0) exp

(
− y2

2w0

)
.

To represent a curve other than the line y0 = 0, we use three functions x(s), y(s),

and a density ρ(s). We parameterize all three with a common variable s which is

integrated over to produce the final state. This variable s can locally be considered

proportional to the arc length of the curve. We would like to construct a wave

function from this that goes to zero density off the curve, and a density proportional

to ρ(s) on the curve.

Evolving our state is handled by evolving the kernel inside the integral.

ϕτ (r;w0) =
1

(πw2)1/2
exp

(
−(1 + iτ)r2

2w2

)
,
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with τ = t/w2
0, and a final width w2 = w2

0(1 + τ 2). By linearity, the wave function

representing the time-evolved curve is just the integral of this kernel around the

curve.

We have so far not handled the overall normalization factor. We want to maintain

a constant probability integrated over the plane. Although it looks like the the

dependence on w would be accounted for in that the kernel has a constant squared

integral, this will not work as the integral along the curve is also scaled by w0. As

a result, we must also take N2(w0) ∝ w
−1/2
0 . Strictly speaking, this scaling is exact

only for the limit as w0 → 0, but this is precisely the limit we are interested in.

The exponential drop-off in amplitude taken from the original kernel remains, but

with a growing length scale w instead of the fixed w0. In order to observe interesting

interference effects, we consider the case where we covary τ and w0 to keep w fixed

at a length scale corresponding to the plane curve. This results in finer and finer

concentration along the evolute as the scaled times τ increases, with w0 decreasing

to compensate. (Note that for a fixed w, as τ increases, t decreases. As the initial

width w0, the decomposition of the state into plane waves has more support on

higher-frequency modes, requiring less unscaled time t to operate.)

5.1.1 Analysis of a specific point

In our case, we write

ψ = N2(w0)
1

w0π1/2

∫
ds ρ(s) exp(−kq(s))

= N2(w0)
1

w0π1/2

∫
ds f(s) exp(−iτφ(s))

with

q(s) = (x− x(s))2 + (y − y(s))2),

f(s) = N2(w0)
1

w0π1/2
ρ(s) exp(−q(s)/2w),
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and

φ(s) = q(s)/2w.

For φ(s) to be stationary, the distance squared q must also be stationary. To set

a common framework, we lay down new u, v axes so that the stationary point under

consideration is at the origin, with increasing s leading strictly in the u direction.

We reparameterize the curve so that u(s) = s and v(0) = v′(0) = 0.1 which puts the

point we are evaluating on the v axis, at some (0, h). Calculating the derivatives of

q with respect to s gives:

q(s)=s2 + (h− v(s))2 q(0)=h2

q′(s)=2s− 2(h− v(s))v′(s) q′(0)=0

q′′(s)=2− 2(h− v(s))v′′(s) + 2v′(s)2 q′′(0)=2− 2hv′′(0)

q′′′(s)=2(v(s)− h)v′′′(s) + 6v′(s)v′′(s) q′′′(0)=−2hv′′′(0)

q(4)(s)=2(v(s)− h)v(4)(s) + 8v′(s)v′′′(s) + 6v′′(s)v′′(s) q(4)(0)=−2hv(4)(0) + 6v′′(0)2

So long as q′′(0) = 2− 2hv′′(0) 6= 0, this is a second-order stationary point (the first

derivative is zero, but not the second), and the method of stationary phase gives us

the asymptotic value of the integral:

S(τ) ' f(0) exp(iτφ(0))

√
2π

τ |φ′′(0)|
1± i√

2
+O

(
1

τ

)
where the sign is that of φ′′(0).

The probability density is the square of the wave function. Except near points

with unusual degrees of symmetry, one point will dominate. The lowest order term

in 1/τ is

|ψ|2 ' f(0)2
2π

τ |φ′′(0)|

' N(w)N2(w0)
2πwρ(0)2

τ |1− hv′′(0)|
exp(−h2/w2)

1Other conventions for the parameterization are possible. A natural one would be to
require s to be the path length, but this makes no difference in these arguments until the
fourth order.
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The overall density in the long time limit of each generic point asymptotes to a

constant.

Not all points are generic, however. Note that this expression diverges as φ′′(0)→

0, or as the distance squared becomes a third-order fixed point in s. This happens

when v′′(0)→ 1/h, which is just when (0, h) is on the evolute of (u(s), v(s)).

If q′′′(0) 6= 0, the method of stationary phase for a third-order stationary point

then gives:

S(τ) ' 2 f(0) cos
π

6
Γ

(
4

3

)(
6

τ |φ(3)(0)|

)1/3

+O(τ−2/3).

The density’s lowest order term in 1/τ then scales as

|ψ|2 ' f(0)2Γ

(
4

3

)2 (
6τ
∣∣φ(3)(0)

∣∣)−2/3
' ρ(0)2 exp(− h

2

w2
)N(w)N2(w0)

(
τ
∣∣q(3)(0)

∣∣
w

)−2/3
,

or as w
−1/3
0 ' τ 1/3.

5.1.2 Width of region near the evolute

As we have seen, the second-order approximation diverges near the evolute. A rea-

sonable way to characterize the distribution here requires not just an estimate of the

probability density, but an estimate of the region over which this estimate should be

used—the width of the evolute.

For any given point we evaluate, for a “high enough” τ value, the method of

stationary phase eventually resolves separate stationary points into their individual

contributions. However, different points will have different values of τ that are high

enough. For a point that has a second-order stationary phase contribution but that

is “nearly” a third-order contribution, it can be appropriate to instead analyze it as

a third-order contribution. We set the width of the evolute by analyzing how this

border changes with τ .
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The contribution to a point a distance h from the curve is from an integral with

an oscillatory portion of the form:∫
ds exp(iτ(s2 + h2 + v(s)2 − 2hv(s)),

As h approaches 1/v′′(s), the second-order contribution diverges, and evaluating the

third-order contribution becomes necessary. The phase can be written as:

φ = τ((1− hv′′(s))s2 + h2 − hv′′′(s)s3/3 +O(s4))

= τ((R− h)s2/R− hv′′′(s)s3/3 +O(s4))

= τ(δs2/R− hv′′′(s)s3/3 +O(s4)),

giving the integral:

exp(iτh2)

∫
ds exp(iτ(δs2/R− hv′′′(s)s3/3 +O(s4)).

For a given value of τ , what is the value of h (or the width δ = R− h) such that the

s3 term is significant compared to the s2 term?

There is a rigorous extension of the stationary phase method dealing with “co-

alescing saddle points” that can help answer this. The coalescing can be seen the

following way: another characterization of the evolute is the envelope of all normals

from the curve. From this it is clear that as we approach the evolute, more than one

stationary point can contribute, and eventually they must merge into one directly on

the stationary point. However, this use does just as much to obscure as to illuminate

what happens. Any finite number of stationary points with the same scaling will

scale the same way. Instead we turn back to our heuristic explanation. The value

contributed to the integral by some critical point is due only to small variations in

the phase near that critical point. Large variations past some cut-off can be ignored.

We can see that if this cut-off is large enough, the s3 term must dominate and that if

this cut-off is small enough, the s2 term must dominate. Where neither dominates is

the region we are trying to find. This will be a regime where the phase contribution

for both powers of s are of comparable magnitude. That is, for a given τ , we want

an s0 satisfying φ0 = τδs20/R = τhv′′′(s)s30. It is important to note that although we
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need not be specific what φ0 is, it must be considered a constant that sets s0—we

cannot just divide through by τs20. Indeed, it need not even be the same for the s20

and s30 terms—changing the ratio between them alters exactly where the trade-off is

placed, but not how it scales. We set s20 = φ0R/τδ. Substituting in the other equal-

ity gives s30 = φ
3/2
0 R3/2/τ 3/2δ3/2 which reduces to φ0 = τhv′′′(s)φ

3/2
0 R3/2/τ 3/2δ3/2. In

the limit of small δ, h ' R, resulting in δ ∝ τ−1/3—but with the exact switch-off

determined by our choice of φ0.

This scaling of the width is exactly what we expect from conservation of prob-

ability: the probability density of finding the particle near the evolute grows more

intense, but the as the probability of any given point off the evolute goes to a constant,

then “near the evolute” must shrink accordingly in order to conserve probability.

5.1.3 Cusps—fourth order points

All closed curves (and some open ones) have evolutes with “cusps”: these cusps are

where the point generated on the evolute does not vary to first order in s. A bit

of algebra shows that this is equivalent to q′′′(s) = 0, and we must then look at

the fourth derivative q(4) to determine the behavior of the contribution from these

points.

Exactly analogously to before, the dominant term from the integral must scale

as τ−1/4, the square as τ−1/2, and the normalized density as τ 1/2.

The size of the region of validity of this growth is complicated to even define:

it can be approached from multiple angles, with multiple scaling results. A generic

approach has phase coefficients of s2, s3, and s4, giving multiple possible trade-

off regimes. However, along the line connecting to the generating point on the

curve there are no s3 terms. The argument from the previous section then has

φ0 = τδs20/R = τ
(
6/R2 − 2v(4)(0)(R− δ)

)
s40/12.
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s20 = φ0R/δτ

s40 = φ2
0R

2/δ2τ 2

φ0 = τ(3/R2 − v(4)(0)(R− δ))φ2
0R

2/6δ2τ 2

6τ = (3/R2 − v(4)(0)(R− δ))φ0R
2/δ2

6τδ2 = (3− v(4)(0)(R− δ)R2)

For small δ, we have δ ' τ−1/2. This is reassuring, as it fits with the growth in

amplitude.

5.1.4 Similar work

This work covers similar ground to that of Michael Berry [4], in that it investigates

how caustics scale when the length-scale of the producer changes. The set-up is

different in that it was examining the steady-state intensity of constant-frequency

source, with the wave being perturbed during its propagation by non-homogeneities

in media. In our setup, the caustic is not caused by a perturbation, but by the initial

conditions, which are a coherent superposition of many frequencies centered at zero

(but with a well specified length-scale). We evolve forward a length-scale dependent

amount of time to find a caustic, and we examine how the evolute parameters change

with scale.

It should be clear that the the phenomenon of the evolute brightening due to

constructive interference is ubiquitous—all that is needed is a quickly oscillating

phase that varies rapidly with distance. For the scaling results to apply, the form of

this must be that the phase varies as the square of the distance.
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Chapter 6

Further directions

I think the present work speaks for itself regarding the usefulness of physical tech-

niques being applied to the development of quantum algorithms. Going beyond this,

we can ask what other sorts of problems we can attack with means like these.

There are many other groups that act as permutation on finite sets, and at-

tacking their stabilizer subgroups seem a plausibly reasonable way to attack them.

Indeed, Gábor Ivanyos looks at the subgroups of GL(n) that stabilize “flags” of

nested subspaces.[22]

It also seems worthwhile to adapt the techniques of wave propagation from sources

concentrated on surfaces to other geometric purposes. Are the reasonable ways to

encode problems into potentials or Hamiltonians other than p2/2m?

It also seems reasonable to look at other spaces than Rn. Manifolds in general

have less symmetry to work with, but a non-abelian variant would be possible on the

surface of an n-sphere. Consider the problem of starting with a state concentrated at

the “equator”, and asking what direction the pole is in. Classical sampling requires

O(n) samples to eliminate all directions but one, but the concentration of propagating

wave should get us the direction with few samples.

We also looked at states with less symmetry than a sphere, but only in two

dimensions. The analogous problem in higher dimensions leaves much more room
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for shapes to avoid any useful concentration of probability. Nonetheless, it might be

possible to do the same thing in certain settings. If we have an ellipsoid with only a

few different semi-axes, we might be able to bootstrap that to finding the center, and

hence finding maxima or minima of functions in Rn, as long as we’re close enough

so that the 2nd-order Taylor series is accurate enough.
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Appendix A

Derivations

A.1 Spreading of a Gaussian wave-packet via ex-

pansion in the Fourier domain

It’s well known that a standard minimum-uncertainty Gaussian wave-packet will

spread out over time. Here we reproduce that result.

We start with a Gaussian wave packet of width w0, with standard quantum

normalization.

ψ(x,w0) =
exp(−x2/2w2

0)

(π)1/4w0
1/2

We Fourier transform it, to get the momentum-space representation.

ψ̃(k, w0) =

√
w0

(π)1/4
exp(−w0

2k2/2)

The Hamiltonian and evolution operators are simple in this basis.

H = −∇2/2 ' k2/2

U(t) = exp(−iHt) = exp(it∇2/2) ' exp(−itk2/2)

And some routine manipulations give us our desired propagator in momentum-
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space.

ψ̃(k, w0, t) =

√
w0

π1/4
exp(−w0

2k2/2) exp(−itk2/2)

=

√
w0

π1/4
exp(−(w0

2 + it)k2/2)

We change back to position space to show the spreading. By analyticity, we can

legitimately use standard Fourier transform tables treating this as a Gaussian with

complex width.

ψ(x,w0, t) =
√
w0 exp

(
−x2

2(w0
2 + it)

)
/π1/4(w2

0 + it)1/2

=

√
w0

π1/4(w2
0 + it)1/2

exp

(
−x2 w2

0 − it
2(w4

0 + t2)

)
=

√
w0

π1/4(w2
0 + it)1/2

exp

(
− w2

0x
2

2(w4
0 + t2)

)
exp

(
i

tx2

2(w0
4 + t2)

)
=

√
w0 exp(iθ(w0, t))

π1/4(w0
4 + t2)1/4

exp

(
− w2

0x
2

2(w4
0 + t2)

)
exp

(
i

tx2

2(w4
0 + t2)

)
Undimensionalizing t = τw0

2

ψ(x,w0, τ) =
exp(iθ(w0, τ))

π1/4w0
1/2(1 + τ 2)1/4

exp

(
− x2

2w2
0(1 + τ 2)

)
exp

(
−i τx2

2w2
0(1 + τ 2)

)
setting w2 = w0

2(1 + τ 2)

ψ(x,w0, τ) =
exp(iθ(w0, τ))

π1/4w1/2
exp

(
− x2

2w2

)
exp

(
−i τx

2

2w2

)
Ignoring the physically irrelevant phase-factor, we end with:

ψ(x,w, τ) =
1

π1/4w1/2
exp

(
− x2

2w2

)
exp

(
−i τx

2

2w2

)
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Appendix B

Stationary phase method

For high τ the phase of time-evolved kernel (4.3) varies rapidly with position. When

we integrate it over a given surface, the distance to a given point also varies, resulting

in rapidly varying contribution to the amplitude ψ(x; t). The rapidly varying phase

in the integrand of (4.2) makes numerical integration difficult, and makes the integral

difficult or impossible to evaluate exactly.

Fortunately we can turn this seeming liability into a very useful approximation

capturing the prominent features of the evolution. We tame the wild behavior by

turning to the class of asymptotic methods commonly called the stationary phase

approximation [5, 14], or method of stationary phase. Similar techniques applied to

contour integrals give the saddle-point approximation. We review here what kinds of

results the method gives, and sketch out how it applies to a simplified integral.

These methods asymptotically approximate oscillatory integrals of the form∫
ds f(s) exp(iτφ(s))

in the large τ limit. This approximation is as a function of the values (and derivatives)

of both the phase τφ and envelope f at stationary points where the derivative of the

phase is zero, expressed as an inverse power series in τ . For integrals of this form,

most places have a rapidly varying phase, and nearby regions largely cancel due

to destructive interference. Intuitively, the integral is dominated by contributions
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from regions where the phase varies slowly; in the large τ limit these are solely the

stationary points.

Much like Laplace’s method, we may learn the scaling behavior by considering a

region where the phase is nearly constant over a width δs given by the parameter τ . In

the large τ limit this region shrinks, so that if f(s) is a slowly-varying pre-factor, it is

also effectively constant over it. This region then contributes f(s) exp(iτφ(s))δs(τ).

For the scaling information, the exact definition of “effectively constant” does not

really matter.

For concreteness, consider a simple integral such as
∫

exp(iτs2) ds . Changing

variables leads us to a standard form, 1√
τ

∫
exp(iz2) dz , immediately demonstrating

the scaling based on τ . If there are boundaries, they must be changed to agree with

the new variables. For unbounded ends (or a boundary at zero), there is nothing

to change. However, even for bounded ends, in practice this works well for large

enough τ . The change of variables merely extends the boundaries by a factor of
√
τ .

Consider S(zf ) =
∫ zf
0

exp(iz2) dz . As zf increases, S(zf ) spirals around and into the

end point
√
πi/2. In this sense, the error of a finite approximation monotonically

decreases, and for any given accuracy required, there is some zf such that S(zf ) is

a good approximation to the whole integral
∫∞
0

exp(iz2) dz . Conversely, the whole

integral provides a reasonable approximation to the bounded one, for large enough

τ .

It should be clear that this scaling argument works for any phase that is locally

approximated by a simple power. If a power series is a good approximation, then for

high enough τ , the lowest power will dominate, and need be the only one considered.

We say that a stationary point s0 is order m if φ behaves as (s− s0)m in its vicinity.

1 In that case, the integral scales as τ−1/m.

Above we focus on the scaling, but the leading value can also be computed. We

give only the behavior for a stationary point on a left boundary. Stationary points

1This is not a uniform convention. Also common is calling sm an order m−1 stationary
point, so that s2 is order 1.



Appendix B. Stationary phase method 79

on a right boundary are a trivial modification, and interior stationary points can be

handled by splitting the integral in two.

S(τ) = lim
τ→∞

∫ ∞
0

ds f(s) exp(iτsm)

' f(0)Γ

(
m+ 1

m

)(
i

τ

)1/m

+O(τ−2/m).

When the integral has multiple stationary points, it is well approximated by a

sum of terms like these, each with their own dominant term and asymptotic series

in fractional powers of τ−1.
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Appendix C

Code

Included here is the code written for numerical experiments related to Chapter 4.

C.1 Box-Muller for Gaussian sampling

The following code uses the Box-Muller transform on a common random number

generator, the Mersenne Twister [30], to generate numbers drawn from a standard

Gaussian.

C.1.1 box muller.h

double box mul ler ( void ) ;

C.1.2 box muller.c

#include <math . h>

#include ” box mul ler . h”

#include ”mt19937ar . h”

struct b o x m u l l e r s t a t e {
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double value ;

int use ;

} ;

void b o x m u l l e r s t a t e i n i t ( struct b o x m u l l e r s t a t e ∗ s )

{

s−>use = 0 ;

}

/∗ Polar form , wi th r e j e c t i o n sampling ∗/

double box mul l e r r ( struct b o x m u l l e r s t a t e ∗ s t a t e )

{

i f ( s ta te−>use ) {

s ta te−>use = 0 ;

return s ta te−>value ;

} else {

f loat u , v , s , q ;

do {

u = 2∗ genrand rea l3 ( )−1;

v = 2∗ genrand rea l3 ( )−1;

s = u∗u + v∗v ;

} while ( s > 1) ;

q = s q r t (−2 ∗ l og ( s ) / s ) ;

s ta te−>use = 1 ;

s ta te−>value = v∗q ;

return u∗q ;

}

}

double box mul ler ( void )

{
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stat ic struct b o x m u l l e r s t a t e s = { . use = 0 } ;

return box mul l e r r (&s ) ;

}

C.2 Generating samples

C.2.1 sampled.c

#define XOPEN SOURCE

#include <math . h>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <time . h>

#include <uni s td . h>

#include ”mt19937ar . h”

#include ” box mul ler . h”

void usage ( const char ∗name)

{

f p r i n t f ( s tde r r , ”Usage :\n” ) ;

f p r i n t f ( s tde r r , ”%s [− s seed ] −c count −d dimension\n” ,

name) ;

f p r i n t f ( s tde r r , ” seed d e f a u l t s to cur r ent unix time\n” ) ;

e x i t (EXIT FAILURE) ;

}

void gen and pr int sample ( int dimension ) {

double coords [ dimension ] ;

double norm = 0 ;

for ( int d = 0 ; d < dimension ; d++) {
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coords [ d ] = box mul ler ( ) ;

norm += coords [ d ]∗ coords [ d ] ;

}

norm = s q r t (norm) ;

norm /= ( 1 . 0 + box mul ler ( ) ) ; // Gaussian centered at 1

norm = fabs (norm) ;

for ( int d = 0 ; d < dimension ; d++) {

coords [ d ] /= norm ;

p r i n t f ( ”%.15e ” , coords [ d ] ) ;

}

p r i n t f ( ”\n” ) ;

}

void gen and pr in t sample s ( int samples , int dimension )

{

for ( int s = 0 ; s < samples ; s++) {

gen and pr int sample ( dimension ) ;

}

}

void p a r s e o p t i o n s ( int argc , char ∗∗argv , int ∗dimension ,

unsigned long ∗ seed , int ∗ count )

{

int c ;

c = getopt ( argc , argv , ”d : s : c : ” ) ;

while ( c != −1) {

switch ( c ) {

case ’ d ’ :

∗dimension = a t o i ( optarg ) ;

break ;

case ’ s ’ :
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∗ seed = a t o i ( optarg ) ;

break ;

case ’ c ’ :

∗ count = a t o i ( optarg ) ;

break ;

case ’ ? ’ :

usage ( argv [ 0 ] ) ;

break ;

default :

break ;

}

c = getopt ( argc , argv , ”d : s : c : ” ) ;

}

i f ( ! ∗ count | | !∗ dimension ) {

usage ( argv [ 0 ] ) ;

}

}

int main ( int argc , char ∗∗ argv )

{

int samples = 0 ;

int dimension = 0 ;

unsigned long seed = 0 ;

p a r s e o p t i o n s ( argc , argv , &dimension , &seed , &

samples ) ;

i f ( ! seed ) {

t ime t t = time (NULL) ;

seed = t ;
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f p r i n t f ( s tde r r , ”No seed supp l i ed . Using

cur r ent unix time %lu .\n” , seed ) ;

}

i n i t g e n r a n d ( seed ) ;

gen and pr in t sample s ( samples , dimension ) ;

e x i t (EXIT SUCCESS) ;

}

C.3 Analysis

C.3.1 make-estimates.c

#define XOPEN SOURCE

#include <math . h>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <s t r i n g . h>

#include <time . h>

#include <uni s td . h>

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ What do we r e p o r t ? 0 means don ’ t report , 1 ∗/

/∗ means do . We don ’ t c o n t r o l the order . The ∗/

/∗ l a s t member ” n e e d l i k e l i h o o d s ” determines ∗/

/∗ whether we do the f i r s t two c a l c u l a t i o n s . ∗/

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

struct which outputs {
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unsigned mle : 1 ;

unsigned bayes mean : 1 ;

unsigned mean : 1 ;

unsigned coord inate median : 1 ;

unsigned geometr ic median : 1 ;

unsigned m l e i s s m a l l e s t r a d i u s : 1 ;

unsigned n e e d l i k e l i h o o d s : 1 ;

} ;

stat ic void usage ( const char ∗name)

{

f p r i n t f ( s tde r r , ”Usage :\n” ) ;

f p r i n t f ( s tde r r , ”%s −w <window s i z e> −d <dimension> [ −

lbmgc ] < samples . dat\n” , name) ;

f p r i n t f ( s tde r r , ” The −l , −b , −m, −c , and −g f l a g s

s e l e c t e s t imato r s .\n” ) ;

f p r i n t f ( s tde r r , ” I f no f l a g s are s p e c i f i e d the

rad iu s o f a l l e s t imato r s i s r epor ted .\n” ) ;

f p r i n t f ( s tde r r , ” − l : r epo r t the rad iu s o f the

maximum Like l i hood es t imator .\n” ) ;

f p r i n t f ( s tde r r , ” −b : r epo r t the rad iu s o f the

Bayesian mean es t imator .\n” ) ;

f p r i n t f ( s tde r r , ” −m : repor t the rad iu s o f the Mean

.\n” ) ;

f p r i n t f ( s tde r r , ” −c : r epo r t the rad iu s o f the

Coordinate median .\n” ) ;

f p r i n t f ( s tde r r , ” −g : r epo r t the rad iu s o f the

Geometric median .\n” ) ;

f p r i n t f ( s tde r r , ” −− or −−\n” ) ;

f p r i n t f ( s tde r r , ”%s −w <window s i z e> −d <dimension> −r

< samples . dat\n” , name) ;
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f p r i n t f ( s tde r r , ” −r : r epo r t the number o f t imes the

MLE i s the c l o s e s t to the o r i g i n .\n” ) ;

e x i t (EXIT FAILURE) ;

}

stat ic void p a r s e o p t i o n s ( int argc , char ∗∗argv , int ∗window

, int ∗dimension , struct which outputs ∗which )

{

int o u t p u t f l a g s = 0 ;

memset ( which , 0 , s izeof (∗which ) ) ;

int c ;

do {

c = getopt ( argc , argv , ”d :w: lbmcgr” ) ;

switch ( c ) {

case ’ d ’ :

∗dimension = a t o i ( optarg ) ;

break ;

case ’w ’ :

∗window = a t o i ( optarg ) ;

break ;

case ’ l ’ :

o u t p u t f l a g s = 1 ;

which−>mle = 1 ;

which−>n e e d l i k e l i h o o d s = 1 ;

break ;

case ’ b ’ :

o u t p u t f l a g s = 1 ;

which−>bayes mean = 1 ;

which−>n e e d l i k e l i h o o d s = 1 ;

break ;

case ’m’ :
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o u t p u t f l a g s = 1 ;

which−>mean = 1 ;

break ;

case ’ c ’ :

o u t p u t f l a g s = 1 ;

which−>coord inate median = 1 ;

break ;

case ’ g ’ :

o u t p u t f l a g s = 1 ;

which−>geometr ic median = 1 ;

break ;

case ’ r ’ :

o u t p u t f l a g s = 1 ;

which−>m l e i s s m a l l e s t r a d i u s = 1 ;

which−>n e e d l i k e l i h o o d s = 1 ;

break ;

case ’ ? ’ :

usage ( argv [ 0 ] ) ;

break ;

default :

break ;

}

} while ( c != −1) ;

i f ( ! ∗window ) {

usage ( argv [ 0 ] ) ;

}

i f ( ! ∗ dimension ) {

usage ( argv [ 0 ] ) ;

}

i f ( ! o u t p u t f l a g s ) {

which−>mle=1;
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which−>bayes mean =1;

which−>mean=1;

which−>coord inate median =1;

which−>geometr ic median =1;

which−>m l e i s s m a l l e s t r a d i u s =0;

which−>n e e d l i k e l i h o o d s =1;

}

i f ( ( which−>mle | | which−>bayes mean | | which−>mean

| | which−>coord inate median | | which−>

geometr ic median ) && which−>

m l e i s s m a l l e s t r a d i u s ) {

usage ( argv [ 0 ] ) ;

}

}

stat ic int read samples ( int window , int dimension , double

samples [ window ] [ dimension ] )

{

double temp ;

for ( int w = 0 ; w < window ; w++) {

for ( int d = 0 ; d < dimension ; d++) {

i f ( s can f ( ”%l f \n” , &temp ) != 1) {

return −1;

}

samples [w ] [ d ] = temp ;

}

}

return 0 ;

}
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stat ic double d i s tance2 ( int dimension , const double p1 [

dimension ] , const double p2 [ dimension ] )

{

double r2 = 0 ;

for ( int d = 0 ; d < dimension ; d++) {

r2 += ( p1 [ d ] − p2 [ d ] ) ∗( p1 [ d ] − p2 [ d ] ) ;

}

return r2 ;

}

stat ic double l o g c o s h (double x )

{

return x∗ log1p ( exp(−2∗x ) ) − l og (2 ) ;

}

stat ic double p a i r w i s e l o g l i k e l i h o o d ( int dimension , const

double p1 [ dimension ] , const double p2 [ dimension ] )

{

double r2 = d i s tance2 ( dimension , p1 , p2 ) ;

double r = s q r t ( r2 ) ;

// re turn exp(−r2 ) ∗ cosh (2∗ r ) ∗ pow( r ,1−dimension ) ;

return −r2 + (1−dimension )∗ r + l o g c o s h (2∗ r ) ;

}

stat ic int maximum index ( int window , const double samples [

window ] )

{

int index = 0 ;

for ( int i = 1 ; i < window ; i++) {

i f ( samples [ i ] > samples [ index ] ) {

index = i ;
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}

}

return index ;

}

stat ic double sum( int window , const double l i k e l i h o o d s [

window ] ) {

double s = 0 ;

for ( int w = 0 ; w < window ; w++) {

s += l i k e l i h o o d s [w ] ;

}

return s ;

}

stat ic void n o r m a l i z e l o g l i k e l i h o o d s ( int window , double

l i k e l i h o o d s [ window ] )

{

double logmax = l i k e l i h o o d s [ maximum index (window ,

l i k e l i h o o d s ) ] ;

for ( int w = 0 ; w < window ; w++) {

l i k e l i h o o d s [w] −= logmax ;

}

}

stat ic void mean( int window , int dimension ,

double samples [ window ] [ dimension ] ,

double out [ dimension ] )

{

for ( int d = 0 ; d < dimension ; d++) {
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out [ d ] = 0 ;

}

for ( int d = 0 ; d < dimension ; d++) {

for ( int w = 0 ; w < window ; w++) {

out [ d ] += samples [w ] [ d ] ;

}

out [ d ] /= window ;

}

}

stat ic int double compare ( const void ∗a , const void ∗b)

{

double da = ∗(double ∗) a ;

double db = ∗(double ∗)b ;

i f ( da < db) return −1;

i f ( da > db) return 1 ;

return 0 ;

}

stat ic void coord inate median ( int window , int dimension ,

double samples [ window ] [ dimension ] ,

double out [ dimension ] )

{

double coords [ window ] ;

for ( int d = 0 ; d < dimension ; d++) {

for ( int w = 0 ; w < window ; w++) {

coords [w] = samples [w ] [ d ] ;

}

qso r t ( coords , window , s izeof (double ) , double compare

) ;
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out [ d ] = ( coords [ window /2 ] + coords [ ( window−1) / 2 ] )

/2 ;

}

}

stat ic void weighted mean ( int window , int dimension ,

double samples [ window ] [ dimension ] ,

const double weights [ window ] , double out [ dimension ] )

{

for ( int d = 0 ; d < dimension ; d++) {

out [ d ] = 0 ;

}

double t o t a l = sum(window , weights ) ;

for ( int w = 0 ; w < window ; w++) {

double weight = weights [w] / t o t a l ;

for ( int d = 0 ; d < dimension ; d++) {

out [ d ] += weight ∗ samples [w ] [ d ] ;

}

}

}

stat ic void i n v e r s e d i s t a n c e s ( int window , int dimension ,

double samples [ window ] [ dimension ] ,

const double point [ dimension ] ,

double weights [ window ] )

{

for ( int w = 0 ; w < window ; w++) {

double r2 = d i s tance2 ( dimension , samples [w] , po int ) ;

weights [w] = 1/ s q r t ( r2 ) ;
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}

}

stat ic void w e i s z f e l d ( int window , int dimension ,

double samples [ window ] [ dimension ] ,

double out [ dimension ] )

{

double es t imate [ 2 ] [ dimension ] ;

double weights [ window ] ;

const double e p s i l o n = 1e−15;

double de l t a ;

int which = 0 ;

/∗ I n i t i a l p o i n t ∗/

mean(window , dimension , samples , e s t imate [ which ] ) ;

do {

i n v e r s e d i s t a n c e s (window , dimension , samples ,

e s t imate [ which ] , weights ) ;

which = 1 − which ;

weighted mean (window , dimension , samples , weights ,

e s t imate [ which ] ) ;

d e l t a = d i s tance2 ( dimension , e s t imate [ 0 ] , e s t imate

[ 1 ] ) ;

} while ( d e l t a > e p s i l o n ) ;

memmove( out , e s t imate [ which ] , dimension ∗ s izeof (double )

) ;

}
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stat ic void l o g l i k e l i h o o d a t s a m p l e s ( int window , int

dimension ,

double samples [ window ] [ dimension ] ,

double r e n o r m a l i z e d l i k e l i h o o d [ window ] )

{

for ( int w = 0 ; w < window ; w++) {

r e n o r m a l i z e d l i k e l i h o o d [w] = 0 ;

}

for ( int w1 = 0 ; w1 < window −1 ; w1++) {

for ( int w2 = w1 + 1 ; w2 < window ; w2++) {

double l = p a i r w i s e l o g l i k e l i h o o d ( dimension ,

samples [ w1 ] , samples [ w2 ] ) ;

r e n o r m a l i z e d l i k e l i h o o d [ w1 ] += l ;

r e n o r m a l i z e d l i k e l i h o o d [ w2 ] += l ;

}

}

}

void dump samples and l ike l ihoods ( int window , int dimension ,

double samples [ window ] [ dimension ] ,

const double r e n o r m a l i z e d l i k e l i h o o d [ window ] )

{

for ( int w = 0 ; w < window ; w++) {

for ( int d = 0 ; d < dimension ; d++) {

f p r i n t f ( s tde r r , ”%l f ” , samples [w ] [ d ] ) ;

}

f p r i n t f ( s tde r r , ”%l f \n” , r e n o r m a l i z e d l i k e l i h o o d [w] )

;

}

}
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stat ic double rad iu s ( int dimension , const double p [ dimension

] ) {

double r2 = 0 ;

for ( int d = 0 ; d < dimension ; d++) {

r2 += p [ d ]∗p [ d ] ;

}

return s q r t ( r2 ) ;

}

stat ic void map doub le des t ruct ive (double (∗ func ) (double ) ,

int s i z e , double data [ s i z e ] )

{

for ( int i = 0 ; i < s i z e ; i++) {

data [ i ] = func ( data [ i ] ) ;

}

}

stat ic void f o rmat rad iu s ( int n o t f i r s t , double rad iu s )

{

i f ( n o t f i r s t ) {

f pu t s ( ”\ t ” , s tdout ) ;

}

p r i n t f ( ”%.15 l e ” , r ad iu s ) ;

}

stat ic void proce s s ( int window , int dimension , struct

which outputs which )

{
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double samples [ window ] [ dimension ] ;

double r e n o r m a l i z e d l o g l i k e l i h o o d [ window ] ;

double point [ dimension ] ;

int good = 0 ;

int bad = 0 ;

while ( ! read samples (window , dimension , samples ) ) {

int n o t f i r s t = 0 ;

i f ( which . n e e d l i k e l i h o o d s ) {

l o g l i k e l i h o o d a t s a m p l e s (window , dimension ,

samples , r e n o r m a l i z e d l o g l i k e l i h o o d ) ;

n o r m a l i z e l o g l i k e l i h o o d s (window ,

r e n o r m a l i z e d l o g l i k e l i h o o d ) ;

i f ( which . mle ) {

double r max l = rad iu s ( dimension , samples [

maximum index (window ,

r e n o r m a l i z e d l o g l i k e l i h o o d ) ] ) ;

f o rmat rad iu s ( n o t f i r s t ++, r max l ) ;

}

i f ( which . bayes mean ) {

map doub le des t ruct ive ( exp , window ,

r e n o r m a l i z e d l o g l i k e l i h o o d ) ;

weighted mean (window , dimension , samples ,

r e n o r m a l i z e d l o g l i k e l i h o o d , po int ) ;

double r b mean = rad iu s ( dimension , po int ) ;

f o rmat rad iu s ( n o t f i r s t ++, r b mean ) ;

}

i f ( which . m l e i s s m a l l e s t r a d i u s ) {

double n e g a t i v e r a d i i [ window ] ;

for ( int s = 0 ; s < window ; s++) {
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n e g a t i v e r a d i i [ s ] = −rad iu s ( dimension ,

samples [ s ] ) ;

}

int r ad iu s i ndex = maximum index (window ,

n e g a t i v e r a d i i ) ;

int mle index = maximum index (window ,

r e n o r m a l i z e d l o g l i k e l i h o o d ) ;

i f ( r ad iu s i ndex == mle index ) {

good++;

} else {

bad++;

}

}

}

i f ( which . mean) {

mean(window , dimension , samples , po int ) ;

double r mean = rad iu s ( dimension , po int ) ;

f o rmat rad iu s ( n o t f i r s t ++, r mean ) ;

}

i f ( which . coord inate median ) {

coord inate median (window , dimension , samples ,

po int ) ;

double r c median = rad iu s ( dimension , po int ) ;

f o rmat rad iu s ( n o t f i r s t ++, r c median ) ;

}

i f ( which . geometr ic median ) {

w e i s z f e l d (window , dimension , samples , po int ) ;

double r g median = rad iu s ( dimension , po int ) ;

f o rmat rad iu s ( n o t f i r s t ++, r g median ) ;

}

i f ( ! which . m l e i s s m a l l e s t r a d i u s ) {
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puts ( ”” ) ;

}

}

i f ( which . m l e i s s m a l l e s t r a d i u s ) {

p r i n t f ( ”%d %d %d\n” , good , bad , good+bad ) ;

}

}

int main ( int argc , char ∗∗ argv )

{

int window = 0 , dimension = 0 ;

struct which outputs which ;

p a r s e o p t i o n s ( argc , argv , &window , &dimension , &which ) ;

p roc e s s (window , dimension , which ) ;

e x i t (EXIT SUCCESS) ;

}
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