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Abstract

The capability to achieve three-dimensional (3D) imaging in a single snapshot is

a highly coveted goal for the imaging community. To be able to extend the depth-of-

field while simultaneously encoding depth in the point spread function (PSF) itself

allows an imaging solution which is less time consuming and less data intensive than

the inefficient multiscan based conventional 3D imaging. Light-field cameras also

achieve 3D imaging in a snapshot, but at the cost of greatly reduced resolution.

Phase mask based depth encoding solutions have been proposed by other groups,

but they all suffer from a relatively smaller depth-of-field.

Recently there has been much progress in the field of live-cell imaging where

intracellular molecules have been imaged with nano-meter (nm) resolution. Our

rotating point spread function (RPSF) imager will allow for nm resolution in all

three dimensions in a single snapshot over a much larger axial field depth. This

will help indirectly in achieving a much better temporal resolution by means of 3D
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video sequences in order to study dynamics of protein molecules inside a cell. We

have shown how to implement compressive sensing tools to improve the temporal

resolution even better.

Reconstruction of extended 3D objects is much harder for techniques based on

pupil plane coding, including our RPSF imager, but point sources are easily localized

and resolved in 3D by using such techniques. Based on this observation, we have

proposed, developed and analyzed the idea of a new 3D shape acquisition technique

for non-self-luminous objects using external laser point illumination. This technique,

which we call Shape Recovery by Point Illumination (ShaRPI), uses multiple frames

to illuminate the 3D object surface via arrays of well separated laser spots, one array

per frame. Since the tight laser spots may be regarded as point sources, they can be

well localized in 3D by the RPSF imager, frame by frame. The smooth object surface

can then be reconstructed in 3D from such point-illumination localization estimates

with high accuracy in an appropriate basis, such as the wavelet basis, that takes

advantage of sparsity resulting from the smoothness of the surface shape. We can

in this way also achieve improved temporal resolution by tailoring the illumination

frames and limiting their number, subject minimally to the sought degree of spatial

resolution, so the 3D spatial information can be acquired efficiently in time.

In future work, a phase engineered approach to perform joint polarization-3D

localization estimation is under way.
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Chapter 1

Introduction

1.1 Three-dimensional (3D) Imaging

Three-dimensional (3D) imaging seeks to capture the 3D structure of scenes and

objects within our environment. The goal is to estimate the depth or distance from

the camera (z coordinate) for every transverse location (x, y) in the object space.

The output of a 3D imaging process can be analyzed and processed to extract shape

and brightness information that supports a wide range of applications, such as object

recognition, shape search on the web, face recognition for security and surveillance,

robot navigation, mapping of the Earths surface, forests or urban regions, clinical

procedures in medicine, and 3D localization of intracellular molecules [2].

1.1.1 Nature’s way: Binocular perception of depth

There are many visual cues that provide us the perception of depth to varying degree

[2]. Some of these are monocular cues (occlusion, shading, texture gradients) and

some are binocular cues (retinal disparity, parallax, eye convergence). Of course,
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humans, and most predator animals, are equipped with a very sophisticated binocular

vision system, and it is the binocular cues that provide us with accurate short range

depth perception. Clearly it is advantageous for us to have good depth perception

to a distance at least as large as the length of our arms. The principles of binocular

vision were already recognized in 1838 by Sir Charles Wheatstone who described the

process of binocular perception:

. . . the mind perceives an object of three dimensions by means of the two dissimilar

pictures projected by it on the two retinae. . . [3]

Figure 1.1: Left: Human binocular perception of 3D scene. Right: the perceived images
of the left and right eye, showing how the depth-dependent disparity results in a parallax
shift between foreground and background objects. Both observed images are fused into a
3D sensation by the human eye-brain visual system. From Pears et al. [2].

The important observation was that the perception of two correctly displaced

2D-images of a scene is equivalent to the perception of the 3D scene itself. Figure

1.1 illustrates human binocular perception of a 3D scene, comprised of a cone in

front of a torus. At the right of this figure are the images perceived by the left and

the right eye. If we take a scene point, for example the tip of the cone, this projects

to different positions on the left and right retina. The difference between these

two positions (retinal correspondences), known as disparity, associated with nearby

surface points (on the cone) is larger than that associated with more distant points

(on the torus). As a result of this difference between foreground and background

disparity the position (or alignment) of the foreground relative to the background

changes as we shift the viewpoint from the left eye to the right eye. This effect is
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known as parallax.

Figure 1.2: A picture taken by an aberration-corrected camera. Note that only a small
range of depth is in-focus, severity of defocus increases as one moves away from in-focus
region. The picture shows in-focus region, and different defocus regions with severity of
defocus increasing from defocus1 till defocus2. Image taken from Tang et al. [1].

Binocular vision gave rise to the technology of stereo-vision, which has its own

limitations that we will discuss later. In the pursuit of estimating depth with the

best accuracy with the least image acquisition time, computation data burden and

cost, my dissertation tries to achieve depth recovery using defocus. In a conventional

imaging system, there is only a small range of axial distances, called the depth-of-

field (DOF), for which an object will appear in focus. Defocus is the phenomenon in

which, as the object is moved away from this plane of best focus, it appears blurred

as illustrated in Fig. 1.2. Regions of scene which are in the in-focus plane are the
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sharpest, and the rest are blurred, the severity of blur increasing with the distance of

the imaged region from the in-focus plane. This phenomena of blurring as a function

of distance of object points from the in-focus plane in a traditional camera is called

defocus blurring. From this simple example, we can see the first fundamental concept

behind this dissertation: the amount of defocus of an object is directly related to the

amount of blurring of its image. In other words, defocus blurring provides a way to

encode depth.

In human visual system and traditional cameras, defocus causes a simple blurring

of the image, leading to a loss in the signal to noise ratio (SNR), thereby making

depth estimation difficult. In contemporary computational cameras, the optics are

typically modified so that the camera can encode depth without a significant loss of

SNR, thereby leading to accurate depth estimations. This is the second fundamental

concept we utilize in this dissertation: to modify the optical design of an imaging

system to permit a sensitive acquisition of the variation of depth across a 3D scene.

1.2 Motivation

Originally, as a part of my dissertation project, I was attempting to solve the problem

of digital superresolution (DSR), where the goal is to reconstruct a high-resolution

(HR) image using multiple low-resolution (LR) images obtained from an imaging

system whose bandwidth is limited by the nyquist of the sensor array. Generalized

sampling theorem (GST) [4] provides a mathematical framework to solve the prob-

lem of DSR. The theorem states that a band-limited signal (−Ω ≤ ω ≤ Ω) can be

completely and perfectly reconstructed from the sampled outputs of R nonredun-

dant (i.e., diverse) linear channels, each of which employs a sample rate of 2Ω/R

(i.e., each of the R signals is undersampled at 1/R the Nyquist rate). One of the

techniques of obtaining the multiple independent LR images involves acquiring im-
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age data by moving the sensor array by sub-pixel shifts within the in-focus plane

[5]. This technique has been successful, but it suffers from the fact that slight er-

rors in shift estimations are detrimental to reconstructions. In order to provide a

method that is less stringent on registration accuracy, we pursued a technique based

on defocus-shifted frames. In this technique, different images of the same object

are obtained by shifting the sensor array along the axial direction so that images at

different defocus planes are captured. Since we couldn’t find a rigorous derivation

of GST in the literature, we first developed the theoretical derivation of GST, and

then developed the mathematical framework of DSR using defocus-shifted frames,

which provided us a way to obtain a high-resolution reconstructed image by stitch-

ing together multiple low-resolution defocus-shifted frames in the frequeny domain.

Appendix B provides a mathematical derivation of GST.

We soon realized that the defocus-shifted frames would suffer from a lowered SNR

due to defocus blurring, and hence felt the need to develop an imaging system whose

point spread function (PSF) does not blur with defocus. We needed an imaging

system in which the defocus manifests itself as PSF rotation, and not as PSF blur.

While trying to find a solution, my advisor Dr. Prasad came upon the idea of a novel

computational imager that consists of a phase mask comprising of Fresnel-type zones

with a specific phase profile in each zone [34]. The PSF of such an imager remains

compact over a large DOF. In addition, it rotates with defocus, thereby encoding

depth information in the structure of the PSF, and hence provides a method to

achieve 3D imaging. We refer to such an imager as a rotating point spread function

(RPSF) imager. A quantitative analysis convinced us that an RPSF imager is a

better candidate to achieve DSR than a conventional imager. We present here the

analysis.

Consider a problem of DSR, where our goal is to achieve a 4-fold resolution

enhancement. According to the GST, it requires four different LR image frames.
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Figure 1.3: Normalized magnitude of MTF as a function of spatial frequency for a con-
ventional imager and an RPSF imager at different defocus planes. Plots for conventional
imager are shown in blue, and that for RPSF imager in red. The legend denotes conven-
tional imager as C - and the RPSF imager as R -, with the defocus phase expressed in
radians. Noise level is shown in dashed black color.

In the defocus-based DSR method, the first image frame is acquired at the in-focus

plane, and the rest three are acquired by placing the sensor array at different defocus

planes, each corresponding to a different value of defocus phase at the pupil edge. In

a conventional imager, each image plane corresponds to a different degree of defocus

blur, and in an RPSF imager, each image plane corresponds to a different degree

of defocus rotation. S. Prasad [8] had found that a minimum defocus phase of 3

6



Chapter 1. Introduction

radians at the pupil edge is required to provide enough diversity between the data

collected at the in-focus plane and an out-of-focus plane for a conventional imager.

For the case of four-fold resolution enhancement, we compared the capabilities of a

conventional imager and an RPSF imager in achieving DSR by choosing the defocus

planes corresponding to defocus phases of 0, 3 radians, 6 radians and 9 radians at

the pupil edge . In Figure 1.3, we show the normalized magnitude of the modulation

transfer function (MTF) as a function of spatial frequency for the two imagers at

different defocus planes. We considered a case when the noise power is 5% of the

peak of the signal. From the plots, it is clear that a conventional imaging system’s

response causes signal power at the intermediate and higher spatial frequencies to be

lower than the noise level for defocus planes with a defocus phase of 6 radians and 9

radians at the pupil edge, indicating that such information cannot be recovered. For

an RPSF imager, MTF at all the defocus planes are comparable, and signal power

only at very high spatial frequencies are below the noise level. This indicates that

an RPSF imager is a better candidate to achieve DSR than a conventional imager.

The depth encoding ability of the RPSF imager gave rise to a new direction to

my dissertation research, that of 3D localization and imaging, which required further

study before I could tackle the defocus-blur based DSR. The present dissertation is

concerned with a comprehensive study of the full 3D localization and imaging capa-

bilities of the RPSF imager, a study whose findings can serve as the starting point for

future research on defocus-based DSR. There are many applications which require

accurate estimates of the 3D structure of an object, but the presence of image blur

due to varying defocus in traditional cameras makes such estimates difficult. Suit-

ably modifying the optical design of an imaging system as is done in computational

cameras, allows us a way to encode 3D structure of an object with high SNR over a

large DOF. In this dissertation, we study 3D imaging using a computational camera

based on pupil phase engineering (PPE). Though PPE computational cameras for

3D imaging have been proposed before [6]-[10], the race to provide high transverse
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resolution over a large DOF has kept researchers busy with producing new designs.

In this dissertation, a simulation study of 3D imaging using a specific PPE camera

consisting of a Fresnel-type zones based phase mask, originally proposed by Prasad

[34], is presented. Our study suggests that such a camera provides the largest DOF,

but it comes at the cost of lower transverse resolution. We divide the dissertation

work into two general categories: 3D imaging of point sources and 3D imaging of

extended sources. An overview of all the 3D PPE computational cameras and the

comparisons between them is also presented.

1.3 3D point source imaging

The first problem we address is 3D point source localization. By this we mean the

ability to locate a single point source spatially in all three dimensions, including

its depth along the optical axis. This problem has found wide application in the

fields of biology and chemistry, specifically in live-cell imaging. In the well known

PALM/STORM imaging techniques in live-cell imaging, fluorophores attached to

individual protein molecules can be used to monitor molecular processes inside a live

cell [11]-[15]. These objects can be tracked on the nm scale by approximating them as

point sources. By imposing such a priori information about the source, localization

accuracy far beyond those for an unknown, arbitrary object can be achieved.

While other methods like interferometry have been used [16]-[17], the use of a

defocus-dependent point spread function (PSF) is a popular method of tracking

particles in the third dimension [18]-[20]. The majority of this work however, has

used a traditional imaging system to do the tracking where in multiple frames are

obtained by shifting the focal plane. While [18] uses cylindrical lenses to modify the

imaging system which suffers from low SNR at large defocus distances, recently PSF

engineering has been used to encode depth. Piestun et al. combine an appropriate
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selected subset of Gauss-Laguerre modes, followed by pupil-phase optimization, to

create a double-helix rotating PSF pattern with a high power throughput [21]. This

creates an incoherent PSF that rotates at a uniform rate with changing defocus while

maintaining its shape and form approximately. Such PSF rotation can be exploited

to encode the depth of field in a 3D scene with a sensitivity that is nearly uniform

over the entire scene. In this dissertation, we analyze a different engineered PSF

imager that is able to encode depth more efficiently in terms of the rotation of PSF

about the Gaussian image point.

1.4 3D extended depth imaging

The second major topic that we discuss in this dissertation is 3D deep field imaging.

3D imaging can be broken up into two distinct areas: passive and active. Active

means that some form of radiation or energy is being sent out by the system to

illuminate an object that is otherwise dark. The radiation reflects off the object

and is detected back at the original system. Active techniques include time of flight

methods [22]-[24] and structured illumination [25]-[26]. In passive 3D imaging, only

ambient light, generally incoherent and white, is used to perform the depth and

brightness estimation. Passive methods include stereo vision, depth from refocus,

and depth from defocus-dependent PSF.

In time-of-flight methods, a pulse of light is sent out and the time it takes for the

pulse to return is measured [22]-[24]. Given the speed of light, the distance can then

be computed. These methods are generally limited to resolutions on the millimeter

scale. This is due to physical constraints on how quickly electronics can respond,

generally limited to the gigahertz range, as well as traditional SNR concerns.

In structured illumination [25]-[26], a specific light pattern is projected on the

object to encode the distance information. An example of such a pattern would be
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regularly spaced fringes. Due to beam divergence, the size and spacing of the fringes

will change with the distance from the imaging system. This information can be

used, along with the parameters of the lens system such as focal length and image

plane distance, to estimate the distance to the object. This method suffers from the

problem that it requires complete control over the illumination source. This is not

always possible; for example, if the objects are too far away or if other lighting is

present.

The most popular passive ranging technique is stereo vision, also called parallax

[27]-[28]. In stereo vision, two images of the same scene are taken with two cameras

that are some distance away from each other. The objects in the images will see a

different amount of transverse shift compared to each other, depending on how far

away from the cameras they are. This method has two major drawbacks. First is

the problem of occlusion, which occurs when an object can be seen in one image,

but not the other. If this happens there is nothing that can be done other than

reorienting the imaging systems so that the object can be seen in both images, as

half the information needed to estimate depth is missing from the occluded parts.

The other major drawback is the correspondence, or registration, problem. This is

the problem of finding which pixels in one image that correspond to which pixels

in the other image, and is notoriously computationally intensive. Parallax methods

also have trouble for scenes where the defocus phase aberration is not negligible, as

is common in high numerical aperture (NA) situations such as microscopy. This is

because an object being in focus in one image and out of focus in the other makes

the correspondence problem more difficult, or, in some cases, impossible.

Another passive technique is depth from focus [29]-[30]. In this method a series

of images (usually on the order of 10-15) are taken, each at a slightly different focal

setting of the camera. The images are then processed to find in which image each

object is most sharp, or nearest to best focus. Then, knowing the parameters of the
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lens system for each image, the distance can be estimated. The major problem with

this method is again computational, due of the large number of images that must be

acquired and processed. Additionally, due to the serial nature of the measurements,

acquisition time is relatively long and quickly changing scenes cannot be imaged.

Finally, there is depth from defocus [31]-[33], the method that is most closely

related to the work in this dissertation. In this method, two images are taken at

different focal settings and again, knowing the parameters of the lens system, the

depth can be estimated by comparing the amount of blur in one image to the blur

in the other image. Two images are necessary to provide depth estimation because

there are two independent unknowns, depth and intensity. Because a considerably

fewer number of images is necessary, this method has an advantage over depth from

focus, and because the images are taken from the same point of view, it does not

suffer from either the occlusion or correspondence problem of stereo vision.

1.5 Main contributions of this work

The main contributions of this work are in three categories: the design of the PSF for

increased sensitivity to defocus, 3D point source imaging, and 3D extended source

imaging. Measurement techniques have been advanced to take advantage of the

compressed reconstruction tools [53]-[55]. As mentioned in Section 1.2, the proposed

techniques were born from an attempt to solve the digital superresolution (DSR)

problem using defocused frames. The problem of quickly losing sensitivity with

defocus in a conventional imager prompted us to look for imaging solutions where

point spread function (PSF) does not blur with defocus. In 2013, S. Prasad [34] had

proposed an engineered PSF imager called a Rotating PSF (RPSF) imager, based on

a novel PSF design that provides a PSF that not only remains compact with defocus,

but also rotates, thereby, encoding depth in terms of rotation angle.
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The novel computational imager studied in this dissertation consists of a phase

mask comprising of Fresnel-type zones with a specific phase profile in each zone.

By changing only a few parameters, one is able to obtain different PSF profiles for

the imager, and we will study some of these features of the imager with attention

devoted to finding the best imager for 3D point source imaging and 3D extended

source imaging. The standard Airy-disk PSF of a conventional clear-aperture imager

is also symmetric about the plane of best focus, causing an ambiguity in determining

which side of the best focus the PSF is on, a problem we do not encounter with the

modified PSF since its rotation is unidirectional. Being able to create a single-lobe

PSF which is off-centered from the Gaussian image of a point source, provides great

advantage in estimating two sources along the same line-of-sight.

For 3D point source imaging, we demonstrate in simulation, depth estimation for

an object space consisting of a few point sources. With a single snapshot image of

the object and using a priori information of point sources, we estimate the number of

sources and 3D position coordinates of each source. The specific case of line-of-sight

sources is also studied.

Finally, for 3D extended source imaging, we present simulation-based results for a

variety of objects consisting of combinations of Gaussian intensity and depth profiles.

Since there are two independent unknown variables, depth and intensity, we need a

minimum of two independent image frames. This will require two different imaging

systems with sufficient diversity between the two image frames. In order to estimate

the shape, we use an optimization routine to minimize a regularizer-based cost func-

tion [51]. We observe that the optimization routine suffers from severe local minima

issues [52], the cost function being highly non-linear in the depth variables to be es-

timated. As most objects in nature as well as man-made objects are approximately

sparse in some domain, we optimize the cost function in a sparse, wavelet domain

[53]-[55] in order to ameliorate the local minima issues. We find that the algorithm
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performance depends sensitively on the value of the regularization strength in our

regularized optimization approach. Also, the fact that we need two different imaging

systems, which makes it a costly approach. For objects which are not self-luminous

but can be actively illuminated, we propose another measurement technique, called

Shape Recovery by Point Illumination (ShaRPI), wherein the object is imaged in

multiple frames by using an array of tight laser spots which illuminate few points on

the object in a single frame. Imaging the object as a combination of few well sepa-

rated point sources in a single frame, and then repeating with a number of frames

with different patterns of point illumination provides high estimation accuracies us-

ing only a single imaging system without any need for fine-tuning the regularization

strength.

1.6 Dissertation overview

In this dissertation, we show 3D imaging capabilities of a novel RPSF imager which

consists of a phase plate comprising of Fresnel-type zones. In the last decade, many

different groups have proposed 3D PPE cameras [6]-[10] and it is important to com-

pare their performances. Such a comparison has not been done sufficiently in the

past. We present here for the first time a comparison of all 3D PPE cameras. Such

cameras can be characterized using their PSFs, and sharp comparisons can be made

based on their transverse resolution and DOF. Chapter 2 presents an overview of

computational cameras, with particular attention paid to the theory of 3D PPE

cameras. We also present a comparison between all 3D PPE cameras.

In Chapter 3, we discuss the theory behind the Fresnel-type zones based PPE

camera, which we call rotating-PSF (RPSF) imager, and use this for all 3D imaging

discussed in this dissertation. It begins with the design of the PSF. We consider

the features of the PSF that improve the optical system’s ability to estimate de-

13
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focus. Finally we compare our modified PSF to the conventional PSF that results

from a standard clear, circular aperture imaging system, as found in most conven-

tional cameras. We discuss why the modified PSF is superior for the task of depth

estimation.

Next we present point source imaging simulations in Chapter 4. Here we elabo-

rately discuss the estimation algorithm, and mention strongly the need for a proper

choice for the initial guess of the estimation parameters. We highlight the advantage

of the choice of the cost function since it provides a unique way to distinguish if

the minimization has converged to the global minimum or stuck at a local minima.

Line-of-sight sources which are difficult to resolve with a conventional imager are

shown to be estimated with great accuracy.

Chapter 5 discusses the results of computer simulation for extended source imag-

ing with the rotating PSF. Given the need for two different imaging systems with

enough diversity between their PSFs, we need to pick a second imaging system. We

do this by a comparison between different imaging systems. The modulation trans-

fer functions (MTF) [56] are compared and the one with bandwidth closer to the

first imaging system is selected. Here we discuss algorithms based on optimization

in the physical space and its limitations. We realize that the rotating PSF imager

based on pupil plane coding makes the deconvolution much harder. To overcome the

limitations, we discuss simulations based on the optimization in the sparse wavelet

space. We find that estimation accuracies still need to be improved.

Poor reconstructions in the two-frame based extended source imaging prompted

us to find an imaging technique that is able to extract 3D shape information from

the data space with utmost accuracy for any object in general using a single RPSF

imaging system. Inspired by a laser scanning confocal microscope [50] and the

PALM/STORM imaging methods [13]-[15] of superresolution imaging of protein

molecules inside a cell, we propose a technique called ‘Shape Recovery by Point

14



Chapter 1. Introduction

Illumination’ (ShaRPI) which will allow extended objects to be imaged as a cluster

of well separated point sources. This is achieved using an array of lasers as illumi-

nating sources, where the laser sources are configured in a grid pattern. Chapter

6 discusses our proposed ShaRPI technique. Here we describe the technique and

discuss our reconstruction algorithm. We compare ShARPI estimation results with

those of the previous methods studied.

Chapter 7 presents the conclusions, reviewing the significant contributions of this

work. Potential future work is discussed in Chapter 8 with focus on snapshot 3D

polarimetric imaging.

In an attempt to convey my ideas effectively, I have used pictures taken from

different sources like journals and websites after obtaining proper permission and a

complete reference has been made.
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Chapter 2

Computational Cameras for 3D

Imaging

2.1 Computational camera

Often, the way information is coded by a camera can make it difficult to extract

certain features in the object. In such a scenario, the optics of camera has to be

modified. For example, in a traditional camera, depth information gets encoded

in terms of defocus blur. In the presence of noise, it is difficult to decode depth

information for an extended object. A computational camera (Figure 2.1 (c)) uses

a combination of novel optics and processing to produce images that cannot be

captured with traditional cameras. The novel optics are used to map rays from the

scene onto pixels on the detector in an unconventional fashion. For example, the ray

shown in Figure 2.1 (c) is geometrically redirected by the optics to a different pixel

than the one it would have reached in the case of a traditional camera. As illustrated

by the change in color from yellow to red, the ray can also be photometrically altered

by the optics. Although the images captured by computational cameras are optically
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Figure 2.1: (a) In a typical scene for imaging, light rays from sources are reflected by ob-
jects, collected by camera lens, and then converted to digital signals for further processing.
(b) A traditional camera model captures only those principal rays that pass through its
center of projection to produce the familiar linear perspective image. (c) A computational
camera uses optical coding followed by computational decoding to produce new types of
images. Image taken from Zhou et al. [2].

coded and may not be visually meaningful in their raw form, the information can

be recovered by using computation. In all cases, the new arrangement of the rays

helps to encode more useful visual (or non-visual) task specific information in the

captured images compared to traditional cameras. Here we present a brief overview

of computational camera, with most material being the original work of C. Zhou and

S. K. Nayar [1]-[3].

2.2 Computational camera: an overview

The combination of novel optics and computation used in computational cameras

can produce new types of images that are potentially beneficial to a vision system

[1]-[3]. The coding methods used in todays computational cameras can be broadly
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Figure 2.2: Optical coding approaches used in computational cameras. (a) Object side
coding, where an optical element is attached externally to a conventional lens. (b) Pupil
plane coding, where an optical element is placed at, or close to, the aperture of the lens.
(c) Sensor side coding, where an optical element is behind the lens. (d) Imaging systems
that make use of coded illumination. (e) Imaging systems that are made up of a cluster
or array of traditional camera modules. (f) Imaging systems using unconventional camera
architectures or non-optical devices. Image taken from Zhou et al. [2].

classified into six approaches: object side coding, pupil plane coding, sensor side

coding, illumination coding, camera clusters or arrays, and unconventional coding

[1]-[2].

2.2.1 Object side coding

Object side coding (Figure 2.2 (a)) attaches external devices to the camera and

is probably the most convenient way to implement computational cameras. For

the distance between the optical element and the lens, the cones of light rays from

objects at different field angles will intersect with the element in different areas.
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As a result, if the surface profile is not homogeneous, object side coding will yield

spatially varying modulation. This property has been widely used to encode more

useful visual information and can be found in various applications.

Lee et al. [4] proposed using a bi-prism in front of lens for stereo vision with a

single camera. Light rays from any single point will be split into two by the bi-prism

and produce two image points on the sensor as if viewed from two viewpoints. This

yields an effect of stereo. Georgeiv et al. [5] propose using an array of lens-prism

pairs in front of the main lens to capture light fields. The information captured by

the sensor can be used to reconstruct the 4D light field. In [5] and [6], the authors

also mentioned other possible object side configurations for light field acquisition by

arranging prisms and lenses in different ways.

Catadioptric techniques combine lenses and mirrors in camera design and are of-

ten used to increase camera FOV [7]-[10] . These techniques have significant impact

on a variety of real-world applications, including surveillance, autonomous naviga-

tion, virtual reality, and video conferencing.

Another type of object side coding, although less common, has been proposed by

using homogeneous filters. For example, Umeyama and Godin [11] and Nayar et al.

[12] propose capturing images with differing polarization directions in order to remove

specular reflections. Rouf et al. [13] use a star filter mounted in front of a camera

to encode the visual information for saturated areas and then use computation to

recover high dynamic range images.

2.2.2 Pupil plane coding

Pupil plane coding (Figure 2.2 (b)) places optical elements (or an optical element)

at or close to the pupil plane of a traditional lens. Since any rays from objects

ideally pass through the same pupil plane, pupil plane coding can be used to provide
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spatially invariant light modulation and to manipulate the system PSF.

Pupil plane coding using intensity modulators is often referred to as coded aper-

ture techniques or sometimes also apodizer techniques in optics. When diffraction

and optical aberration are negligible, the shape of the PSF is simply determined by

the aperture pattern, and the scale is determined by the amount of defocus. Previous

optics research has proposed using coded apertures (e.g., [14] [15]) to preserve more

high frequency information in the case of defocus. In astronomy, optimized patterns

such as Modified Uniformly Redundant Array (MURA) are often used for lensless

imaging [16] [17] in order to improve the signal-to-noise ratio of the captured images.

Pupil plane coding using phase modulators is often referred to as wavefront coding

or pupil phase engineering (PPE). A phase modulator is usually a plate of glass of

certain 3D profile. A phase plate will distort the input light field by adding an extra

phase with a specific profile. Wavefront coding techniques have been studied for

decades in optics for a variety of applications. Cathey and Dowski [18] and Dowski

and Cathey [19] propose a cubic phase plate design which yields a PSF that is

relatively depth-invariant. Cossairt et al.[20] use a coded diffuser, which is a special

type of phase plate for extended depth of field. Different phase plates have been

proposed for 3D localization of point sources [21]-[32].

2.2.3 Sensor side coding

Sensor side coding (Figure 2.2 (c)) places additional optical elements on the sensor

side of the lens. The element can be either placed in the space between the sensor

and the lens, or placed on or close to the sensor, but in each case the functionality

will be different. Sensor side coding can provide similar functionalities as object side

coding. One important advantage of using sensor side coding instead of object side

coding is that it can be compactly built into a camera and hence is non-intrusive to
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the scene.

As in object side coding, lens arrays can also be used on the sensor side to capture

light fields. This is the idea behind light-field cameras, also known as plenoptic

camera. The first light-field camera was proposed by Gabriel Lippmann in 1908.

Since the 1990s, a variety of plenoptic cameras have been proposed and implemented

in vision and graphics. Adelson and Bergen [33] proposed using a lenslet array in

front of the sensor for light field acquisition. To achieve different amount of trade-offs

between spatial and angular resolution, Lumsdaine and Georgiev [34] and Bishop et

al. [35] proposed several different strategies for positioning lenslets and sensors.

Coding on the sensor plane provides pixel-wise modulations. Color filter arrays,

such as the Bayer mode array, are widely used in these instances to encode color

information in a monochromatic sensor [36] [37]. Other color filter patterns have

also been proposed [38] [39], and various demosaicing algorithms have also been used

to obtain a high quality color images [40] [41]. Nayar and Narasimhan [42] generalize

the color filter array to assorted filter arrays in order to capture extra multi-spectral

and high dynamic range information.

2.2.4 Illumination coding

Illumination coding (Figure 2.2 (d)) alters captured images by using a spatially

and/or temporally controllable camera flash. This approach enables image coding in

ways that are not possible by only modifying the imaging optics. The basic function

of the camera flash has remained the same since it first became commercially available

in the 1930s. It is used to brightly illuminate scenes inside the camera FOV during the

exposure time of the image detector. With significant advances made with respect to

digital projectors, the flash now plays a more sophisticated role in capturing images.

It enables the camera to project arbitrarily complex illumination patterns onto the
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scene, capture the corresponding images, and extract scene information that is not

possible to obtain with a traditional flash.

Illumination coding has a long history in the field of computer vision. For exam-

ple, virtually any structured light method (see [43] [44] for surveys) or a variant of

photometric stereo [45] is based on the notion of illumination coding. Many other

illumination coding techniques for depth estimation or 3D reconstruction have been

proposed in recent years. Zhang and Nayar [46] and Gupta et al. [47] recover depth

from defocused projections; and Kirmani et al. [48] measure the depths of points

outside the cameras field of view by using echoes of pulsed illumination; Raskar et

al. [49] use multiple flashes for depth edge measurement.

Structured illumination techniques based on a phenomenon known as the Moirè

effect have been used to overcome the resolution limits of microscopy [50] [51] and

other imaging systems [52] [53].

2.2.5 Camera clusters or arrays

The capability of a single camera is virtually constrained by optical size, which

physically determines the light flux to be captured. One way to transcend this limit

is by using larger lenses. However, it is often too expensive and difficult to built large

imaging systems of high quality. In recent years, techniques have been proposed to

use a number of low cost small cameras to capture more visual information. Camera

clusters or arrays (Figure 2.2 (e)) provide a more flexible and economical way to

transcend the limits of individual cameras by combining multiple cameras.

Camera arrays have been used for stereo vision over an extended history. Multi-

view stereo helps to solve the ambiguity problem in stereo matching and hence in-

creases the precision of depth estimation [54] [55]. A flexible array of cameras with

a large FOV is designed for scene collage [56].
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2.2.6 Unconventional imaging systems

Unconventional coding (Figure 2.2 (f)) includes computational camera designs us-

ing unconventional architectures or non-optical devices that cannot fit well into the

above five categories. Work has been done to simplify camera architectures by us-

ing computation instead of extending the functionalities of the camera. Stork and

Robinson [57] and Robinson and Stork [58] discuss several mathematical and con-

ceptual foundations for digital-optical joint optimization, and propose a singlet lens

design and a triplet lens design with improved image quality after computation.

2.3 3D Imaging using PPE cameras

A number of different computational cameras have been designed recently to perform

3D imaging. In this dissertation, we use a pupil phase engineering (PPE) technique

to encode depth information, and hence perform 3D imaging. In this section, we

present a brief overview of different 3D imaging techniques based on PPE.

2.3.1 Double-Helix PSF imager

The point spread function of a double-helix PSF (DH-PSF) imager has been engi-

neered to have two-rotating lobes with the angle of rotation depending on the axial

position of the source. As a result, the PSF appears as a double-helix along the z axis

of the imager. This method is based on the work of Rafael Piestun at the University

of Colorado, who showed that a rotating DH-PSF could be formed by a superposi-

tion of Gauss-Laguerre (GL) modes that form a line in the GL modal plane. The

GL basis is a family of functions that form an orthogonal basis for two-dimensional

complex functions [23].
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Figure 2.3: Examples of GL modes: (a) intensity, (b) phase. Image taken from Piestun et
al. [23].

Each element of the basis is indexed by two integers, m and n, which are param-

eters of the generalized Laguerre polynomial. While n can be any positive integer,

m is limited such that

m = ±(n− 2k), (2.1)

where k is an integer between [0, n/2]. Figure 2.3 shows the intensity and phase of

some lower order modes. Increasing m causes the intensity distribution to expand

out, and controls the number of times the phase vortex wraps. Increasing n causes the
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intensity and phase distributions to have more concentric rings, with each successive

ring of amplitude having a phase shift compared to the adjacent rings. The phase

discontinuities only occur where the amplitude is zero.

Figure 2.4: The Gauss-Laguerre modal plane. Image taken from Piestun et al. [23].

The GL basis is of interest because the superpositions of certain combinations of

GL modes exhibit the phenomenon of continuous rotation as they propagate [24].

This means that at any propagation distance, the transverse distribution will have the

same intensity function, only rotated and scaled. To find these distributions, a useful

way of looking at the GL basis is the GL modal plane, represented in Figure 2.4.

All allowed GL modes are represented by dots in the modal plane. Any distribution

that exhibits continuous rotation with propagation is formed by the superposition

of modes that fall on a single line, like those on the line in Figure 2.4. The rate of

rotation of the distribution depends on the slope of the line that the modes lie on,

so that the angle of rotation at some propagation distance z is

θ = c tan−1
z

z0
, (2.2)
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where c is the slope of the line, and z0 is the called the Rayleigh range and is defined

by

z0 =
πω2

0

λ
, (2.3)

where ω0 is called the waist size and controls the transverse scaling of the distribution.

The rotation rate is greatest at z = 0, and gradually decreases as the distribution

propagates, eventually rotating a total of c π/2 radians at infinity.

To find the best PSF out of the set of continuously rotating PSF, a combination of

heuristic and computational optimization techniques is used. For the global problem,

differential evolution [25], and unconstrained nonlinear optimization (fminsearch in

MATLAB) may be used to fine-tune the results. The parameter space that the

optimization algorithms are allowed to optimize over consists of the starting point

and slope of the line on which the modes lie, as well as the amplitude and phase

of the coefficients of each mode in the superposition. Pavani et al. [27] showed 3D

single molecule superresolution imaging using an optimization-based DH-PSF. W.E.

Moerner [27], [29] at Stanford University also uses an optimization-based DH-PSF

to do 3D single molecule superresolution imaging.

2.3.2 Corkscrew PSF imager

The corkscrew PSF is based upon a superposition of GL modes (m,n) [23] equal to

(1,1), (2,4), (3,7), and (4,10). However, because these modes have both amplitude

and phase components, convolving the fluorescence signal directly with these modes

is highly photon inefficient.

Consequently, Lew et al. [21] designed an efficient phase-only mask to emulate the

behavior of these modes. They optimized the corkscrew PSFs phase mask design by
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Figure 2.5: GL modal composition (m,n) of the corkscrew PSF in normalized units. Inset
shows the corkscrew PSF phase mask in radians. Image taken from M. D. Lew et al. [21].

running an iterative optimization algorithm, using these modes as a starting point.

This algorithm simultaneously enforced three constraints: (1) a phase-only mask in

the Fourier plane of a 4f system; (2) a GL modal composition that is concentrated

near the original superposition of modes described above; and (3) a Gaussian-like

rotating spot in the image plane of the 4f system. The resulting phase mask and

GL modal composition of the corkscrew PSF are shown in Figure 2.5. Note that the

cloud of GL modes surrounding the original superposition has the effect of limiting

the rotation of the corkscrew PSF to a finite depth of field.

2.3.3 Grover et al.’s analytic DH-PSF

Previous phase-only mask designs to generate a DH-PSF have relied on numerical

optimization starting with an initial amplitude/phase mask generated by superposi-

tion of Gauss-Laguerre modes. In contrast, Grover et al. [30] generate the DH-PSF

32



Chapter 2. Computational Cameras for 3D Imaging

analytically via a superposition of vortex phase singularities in the pupil plane while

the optimization is reduced to finding the number of vortices and their relative loca-

tions to achieve the desired characteristics. In order to attain an analytic expression

for the DH-PSF phase mask, Grover et al. [30] apply the properties of propagating

vortices and the theory of rotating beams [24]. They further note that numerically

generated designs typically and distinctively contain a set of vortices lying along a

straight line [28]. Therefore, they propose to describe the pupil plane phase mask

mathematically by a set of vortex singularities on a straight line along a diameter

of the pupil. In radial coordinates, this phase function is generated by the following

equation:

Epupil(r, θ) = circ
(
r

R

)
exp

i arg

 M∏
k=−M

(
reiθ − rkeiθk

) , (2.4)

where (r, θ) are the pupil plane co-ordinates, R is the radius of the pupil aperture,

(2M + 1) is the number of vortices and (rk, θk) is the location of the kth vortex.

For DH-PSF, they used the 3D Cramer-Rao bound (CRB) [59] metric and found

the optimal number of vortices to be 9 with the distance between successive vortices

a constant d = 0.66R. The phase mask has only three vortices located within the

aperture while the other six are located outside but still have a significant effect on

the phase in the aperture. Each vortex is a singularity of the phase so at its center

the amplitude is zero. In this design all the singularities have equal charge of + 1.

Because the singularities have the same charge there is rotation of the field pattern

in the far field [31]. The particular location of the singularities along a line generates

two lobes and hence a double helix in 3D space.

Figure 2.6(a) shows the effect of increasing the number of vortex singularities, N ,

on the infocus PSF. As N grows, the diffracted energy is more confined in the two

lobes of the PSF. On the other hand, Figure 2.6(b) shows the effect of increasing the
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Figure 2.6: Influence on the PSF of the number and distribution of vortex singularities
in the pupil function. (a) The left column shows the pupil phase function (phase mask)
with an increasing number of vortex singularities N and constant spacing d between them.
The corresponding infocus PSFs are shown in the right column. (b) Shows the change in
the phase mask (left) and PSF at focus (right) as the spacing d increases with a constant
N = 9. Image taken from Grover et al. [30].

distance d among the vortex singularities. As d increases the two lobes of the PSF

become closer, a direct result of the Fourier transform properties of wave propagation.

From a physical point of view the vortices are responsible for the rotating wave [31]

effect exerted on the emission pattern from each single molecule. From an engineering

point of view, helical PSFs of different pitch, Strehl ratio, and depth of field can be

generated by modifying just two parameters: N and d/R. Therefore, varying the

number and spacing of singularities provides two significant degrees of freedom that

enable flexibility in the design of the DH-PSF. Moreover, if desired, a nonperiodic

array of vortices provides additional design freedom. The new flexibility in DH-

PSF design makes these microscope systems well suited for a variety of biological

applications.
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2.3.4 Prasad’s rotating PSF imager

Figure 2.7: The nth Fresnel zone of the imaging pupil. Each zone is filled with an increasing
amount of glass, so the optical phase delay as one turns azimuthally around the center of
the pupil by 2π is 2nπ for the nth zone. All zones have the dislocation line at the same
angular position in the aperture. The other zones are not shown for clarity.

In this dissertation work, we have used Prasad rotating PSF imager [32] that

generates rotating PSFs by having Fresnel-type zones in the entrance pupil of the

imager, with successive zones carrying spiral phase profiles of successively larger

topological quantum number. Figure 2.7 shows a schematic of one of the Fresnel

zones. Since it uses a phase-only mask, its transmission efficiency is guaranteed to

be 100%, unlike the pure GL modal approach [23] in which the pupil function must

be modified both in its amplitude and phase. This implies an improved sensitivity

for the recovery of depth information even under low-light levels. Moreover, because

of the single-lobe character of the PSF, the extraction of defocus variation across a

densely populated 3D field is potentially less challenging than with the double-helix

PSF with two nearly equally bright but well-separated lobes.

35



Chapter 2. Computational Cameras for 3D Imaging

2.4 Performance comparison of different 3D PPE

imagers

As we have discussed in the previous section, there are many ways of encoding

depth using the PPE technique. For most applications, the quality of a 3D imager

is decided by the transverse resolution and the depth-of-field. In order to do a

performance comparison of different 3D PPE imagers, we studied PSF profiles of

different imagers at different defocus planes. PSF profiles of numerical optimization-

based DH-PSF and Corkscrew PSF imager were gratefully provided by Dr. Matt

Lew in Dr. Moerner’s lab. Grover et al.’s DH-PSF being analytical was computed

by me, but I appreciate her indulgence with my questions. Due to copyright issues, I

was not able to acquire numerical optimization-based DH-PSFs from Dr. Piestun’s

lab. The 3D imaging simulation study in this dissertation is based on a Fresnel-

type zones based PSF imager invented by S. Prasad [32]. Prasad’s single lobe and

double lobe PSFs were also compared. Since the PSFs of all the different imagers are

generated on a computer, Appendix A provides the mathematical details. Special

care was taken to provide a strict comparison between all the imagers by using a

single reference mask for all the imagers, which provides the physical location and

the size of the aperture, as well as the grid size in the pupil plane.

Studying PSF profiles at different defocus planes as shown in Figure 2.8 sug-

gest that Fresnel-type zones based Prasad’s RPSF imager, both the single-lobe and

double-lobe structures, have the largest DOF, but at the cost of lower transverse res-

olution, indicating that there is a trade-off between transverse resolution and DOF.

An increase in DOF comes at the cost of lower transverse resolution.

The modulation transfer functions (MTF) of different imagers are compared at

the in-focus plane and at a defocus plane of -20 radians of defocus phase at the pupil

edge in Figures 2.9-2.13. The MTF is studied for spatial frequencies along the X-axis
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and along the Y-axis. At the in-focus plane, a clear aperture imager provides the

largest bandwidth, where as at -20 radians of defocus phase, it provides the smallest

bandwidth. At large defocus, the Fresnel zone based Prasad’s PSF provides the

largest bandwidth, and hence the best transverse resolution.
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Figure 2.8: Comparing PSF profiles for different 3D PPE imagers. PSFs at different
defocus planes are plotted. Defocus is in the units of radians of defocus phase at the
pupil edge. Comparisons are made between Moerner’s cork-screw PSF, Moerner’s DH-
PSF, Grover-Piestun’s DH-PSF, Prasad’s single-lobe PSF and Prasad’s double-lobe PSF.
Prasad’s Fresnel-type zones based PSFs provide the largest DOF, but at the cost of lower
transverse resolution visible from the larger spread of the in-focus PSFs. There is a clear
indication of trade-off between transverse resolution and DOF.
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Figure 2.9: 2D MTF plots of different 3D PPE imagers. Top plots show 2D MTF plots
at the in-focus plane and bottom plots at a defocus plane corresponding to a defocus
phase of -20 radians at the pupil edge. (a) and (b) represent clear aperture conventional
imager, (c) and (d) represent Grover et al.’s DH-PSF imager, (e) and (f) represent Prasad’s
single-lobe RPSF imager, (g) and (h) represent Prasad’s double-lobe RPSF imager, (i) and
(j) represent Moerner’s DH-PSF imager, (k) and (l) represent Moerner’s corkscrew PSF
imager.
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Figure 2.10: Comparing MTF for different 3D PPE imagers at the in-focus plane for
spatial frequency along the X-axis. Comparisons are made between clear aperture, Grover-
Piestun’s DH-PSF, Moerner’s DH-PSF, Moerner’s cork-screw PSF, Prasad’s double-lobe
PSF and Prasad’s single-lobe PSF. There is a clear indication that a clear aperture imager
provides the largest bandwidth at the in-focus plane.
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Figure 2.11: Comparing MTF for different 3D PPE imagers at the in-focus plane for
spatial frequency along the Y-axis. Comparisons are made between clear aperture, Grover-
Piestun’s DH-PSF, Moerner’s DH-PSF, Moerner’s cork-screw PSF, Prasad’s double-lobe
PSF and Prasad’s single-lobe PSF. There is a clear indication that a clear aperture imager
provides the largest bandwidth at the in-focus plane.
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Figure 2.12: Comparing MTF for different 3D PPE imagers at a defocus phase of -20
radians at the pupil edge for spatial frequency along the X-axis. Comparisons are made
between clear aperture, Grover-Piestun’s DH-PSF, Moerner’s DH-PSF, Moerner’s cork-
screw PSF, Prasad’s double-lobe PSF and Prasad’s single-lobe PSF imager. There is clear
indication that the single-lobed PSF imager of Prasad provides the largest bandwidth at
-20 radians of defocus.
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Figure 2.13: Comparing MTF for different 3D PPE imagers at a defocus phase of -20
radians at the pupil edge for spatial frequency along the Y-axis. Comparisons are made
between the clear aperture, Grover-Piestun’s DH-PSF, Moerner’s DH-PSF, Moerner’s cork-
screw PSF, Prasad’s double-lobe PSF and Prasad’s single-lobe PSF imager. Again, Prasad
single-lobe PSF imager provides the largest bandwidth at -20 radians of defocus.
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Chapter 3

Rotating PSF Imager

3.1 Introduction

Point spread function (PSF) is the response of an imaging system to a point source

in a scene. The amount of the spreading is often used as a measure for the quality

of an imaging system. In practice, a PSF is often a combination of multiple optical

effects, including diffraction, aberration, defocus, veiling glare, and etc.

Diffraction occurs because light as a wave will bend around obstacles and spread

past them. In a typical lens camera, the spreading of the diffraction PSF is propor-

tional to the wavelength and the lens f-number, which is the ratio of the focal length

to the aperture diameter. The shape of diffraction PSF of a circular aperture is often

referred to as airy disk. Optical aberration is a departure in the performance of an

optical system from the predictions of paraxial optics [2]. Typical optical aberra-

tion includes spherical aberration, coma, astigmatism, chromatic aberration, field of

curvature, distortion and other effects.To compensate for aberrations, modern lens

design applies lenses of different shapes and materials [3] [4]. Defocus is one partic-

ular type of optical aberrations, which occurs when objects are out of focus and is
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an effect familiar to almost every camera user.

3.2 Point spread function and depth of field

3.2.1 Point spread function

The thin lens equation provides the in-focus paraxial, or Gaussian, image plane of

an imaging system as being that where the geometrical imaging condition is met.

1

f
=

1

zobj
+

1

zimg
, (3.1)

where f is the focal length of the lens, zobj is the distance from the object-side

principal plane of the lens to the object, and zimg is the distance from the image-side

principal plane to the image [1]. Though geometrical optics maps a point in the

object space into a point in the in-focus image plane for a perfect lens, a proper wave

analysis of the imaging system shows that a point in the object space does not image

into a point in the image plane, but its intensity is spread out into a finite spot.

The imaging systems we consider here can be modeled as linear systems, where

the impulse response, called the point spread function (PSF), is determined by the

transmission structure of the exit pupil, which is the limiting aperture of the sys-

tem. With coherent light, the system is linear with respect to complex electric field

amplitude, and with incoherent light it is linear with respect to intensity. In this

dissertation, we will primarily be dealing with incoherent imaging.

The PSF is the response of an imaging system to a point source in a scene. For

objects in the in-focus image plane the PSF is the magnitude squared of the inverse

Fourier transform of the transmission function of the exit pupil. If all the objects lie

in a single plane at a constant distance from a well corrected imaging system, the

linear system can also be considered to be shift invariant across the entire field of
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view. However, this is generally not the case, and having three-dimensional objects,

or objects at multiple distances from the lens, introduces the phenomenon of defocus

induced blurring.

3.2.2 Defocus

Defocus blurring is a measure of how the PSF changes for objects at different dis-

tances from the lens. For an object point at the in-focus plane, defocus is equal to

zero, and as the object point moves away from the in-focus plane, defocus magnitude

increases, defocus being negative towards one side of the in-focus plane, and positive

for other side of in-focus plane. For a standard clear, circular aperture system, the

PSF distorts and broadens as an object is moved away from best focus, as seen in

Figure 3.1, leading to a blurred image.

Figure 3.1: The point spread function (PSF) of a standard clear, circular aperture imaging
system at different defocus planes. The plots from left to right are for increasing values
of defocus, from −24 radians to +24 radians of defocus in steps of 8 radians, at the pupil
edge. Note that PSF structure is symmetric about the in-focus plane, making it hard to
distinguish positive and negative values of defocus of the same magnitude.

The amount of defocus is quantified by the defocus parameter,

ζ =
π

λ

(
1

zobj
− 1

z′obj

)
R2, (3.2)

where λ is the wavelength of light, R is the radius of the exit pupil, zobj is the in-

focus object distance, and z′obj is the actual object distance. Physically, the defocus

parameter is the phase error, compared to a correctly focusing wave, at the edge
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of the aperture (in radians). Dividing it by 2π converts it to the number of waves

defocus.

The PSF for defocused objects can be found using the generalized pupil function,

pgen(x, y) = p(x, y) exp

[
π

λ

(
1

zobj
− 1

z′obj

)
(x2 + y2)

]
(3.3)

where p(x, y) is the exit pupil transmission function. As we would expect, the defocus

phase in the exponent goes to zero when the geometrical imaging condition is met.

Including the effects of defocus, the imaging system is a shift-variant linear sys-

tem, where the shift-variance depends on the defocus of an object point, and hence

the distance from the imaging system to the object point. It is this property that

we intend to take advantage of to be able to estimate the distance to an object by

estimating how defocused it appears in the image.

3.2.3 Depth of field (DOF)

The fact that PSF broadens for a traditional imager as the defocus value is increased

means that image sharpness is lost. The depth of field (DOF) is the range between

the nearest and farthest objects in a scene that appear acceptably sharp in an image.

There is a fundamental trade-off between DOF and image signal-to-noise ratio (SNR)

[6]. DOF can be increased by stopping down the aperture. However, this reduces

both the amount of light received by the sensor, resulting in lower SNR, and the

transverse resolution of the imager. The trade-off between DOF and SNR is one of

the fundamental and long-standing limitations of imaging.

In this dissertation, we use a pupil phase engineered point spread function design

that is able to encode depth over an extended DOF without sacrificing SNR.
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3.3 Pupil phase engineered point spread function

design

For a clear, well corrected imaging aperture in space, the point-spread function (PSF)

in its Gaussian image plane has the conventional, diffraction-limited, tightly focused

Airy form, as seen in the middle panel of Figure 3.1. Away from that plane, the PSF

broadens rapidly, however, resulting in a loss of sensitivity and transverse resolution

that makes such a traditional best-optics approach untenable for rapid 3D image

acquisition. One must scan in focus to maintain high sensitivity and resolution as

one acquires image data, slice by slice, from a 3D volume with reduced efficiency. An

ideal 3D imager should have a PSF that does not broaden with defocus, and is able

to encode depth with high resolution. In the past, there have been attempts to devise

such an imager using orbital-angular-momentum (OAM) states-of-light beams.

The discovery of pure orbital-angular-momentum (OAM) beams [7] has spawned

a number of important applications, including microparticle rotation, high informa-

tion density free-space communication protocols [8], and quantum cryptography [9].

By linearly superposing light states with different OAM quantum numbers possessed

by different Gauss Laguerre (GL) modes under free-space propagation, one can re-

alize beams with amplitude, phase, and intensity patterns that merely rotate with

propagation while maintaining their transverse shape [10].

Greengard et al. [11] extended this idea of approximate beam-shape invariance

to create for imaging systems an incoherent point-spread function (PSF) that ro-

tates at a uniform rate with changing defocus while maintaining its shape and form

approximately. Such PSF rotation can be exploited to encode the depth of field in a

3D scene with a sensitivity that is nearly uniform over the entire scene. The demon-

stration of a rotating double-helix PSF by superposing suitably chosen GL modes

and its further improvement by pupil-phase optimization [12] have led to a useful
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suite of methods for generating high throughput rotating PSFs.

Prasad [13] proposed a different approach for generating rotating PSFs that uses

Fresnel-type zones in the entrance pupil of the imager, with successive zones carrying

spiral phase profiles of successively larger topological quantum number. Since it uses

a phase-only mask, its transmission efficiency is guaranteed to be 100%, unlike the

pure GL modal approach [10] in which the pupil function must be modified both in

its amplitude and phase. This implies an improved sensitivity for the recovery of

depth information even under low-light levels. Moreover, because of the single-lobe

character of the PSF, the extraction of defocus variation across a densely populated

3D field is potentially less challenging than with the double-helix PSF with two

nearly equally bright but well-separated lobes.

In this dissertation, we used the rotating PSF imager proposed by S. Prasad [13].

Here we review the theoretical analysis of the rotating PSF.

For a circular imaging pupil of radius R, the coherent PSF, as a function of

image-plane radial distance and azimuthal angle coordinates, s and φ, is given by

the pupil integral

K(s, φ; ζ) =
1√
π

∫ 2π

φ=0

∫ 1

u=0
u du dφu exp[i2π~u.~s+ iζu2 + iψ(~u)], (3.4)

where

ψ(u, φu) =

lφu,
√
l − 1

L
≤ u ≤

√
l

L
| l = 1, . . . , L

 , (3.5)

where ~s is the image-plane position vector ~r normalized by the in-focus diffraction

spot-radius parameter at the imaging wavelength for the in-focus object plane a

distance l0 from the pupil,

~s =
~r

r0
, r0 ≡

λl0
R
, (3.6)

and ~u is the pupil-plane position vector ~ρ normalized by the pupil radius, ~u = ~ρ/R.

The function ψ(u, φu) denotes the pupil phase, as a function of the normalized radial
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coordinate u = |~u| and the azimuthal angle φu, that we shall choose presently. The

defocus parameter ζ is related to the object-plane distance δz from the in-focus

object plane, as given by Eqn. 3.2,

ζ = − πδzR2

λl0(l0 + δz)
, (3.7)

As is customary, any nonunit transverse magnification has been subsumed into the

definition of the transverse radial coordinate r, and an unimportant overall factor has

been omitted from the expression in Eqn. (3.4). The incoherent PSF, h(s, φ; ζ) =

|K(s, φ; ζ)|2, is normalized to have area 1, corresponding to a clear aperture that

transmits all the light falling on it.

Choose the pupil-phase function ψ(u, φu) as follows: Subdivide the pupil into L

annular Fresnel zones, with the lth zone bounded by circles of radius Rl−1 and Rl,

where Rl = R(l/L)1/2. Endow the lth zone with an azimuthally linearly increasing

phase that makes l complete cycles in a full rotation of the azimuthal angle about

the optical axis, that is, its topological index is l. Assuming that the x axis is the

common line of dislocation for the different phase annuli, the pupil-plane phase thus

has the form

ψ(u, φu) = lφu ∀
√
l − 1

L
≤ u ≤

√
l

L
, l = 1, ..., L. (3.8)

For the phase function in Eqn. 3.8, the coherent PSF may be expressed as the

following sum of radial integrals, one over each zone:

K(s, φ; ζ) =
2π√
π

L∑
l=1

il exp(−ilφ)
∫ √ l

L

u=
√

l−1
L

u du Jl(2πus) exp(iζu2), (3.9)

where we used the identity∫ 2π

0
dφu exp[ix cos(φ− φu)− il(φ− φu)] = 2πilJl(x), (3.10)

in which integration is performed over a fundamental period of the azimuthal angle

φu.

55



Chapter 3. Rotating PSF Imager

To see that the terms in the sum (3.9) have an equivalent phase rotation with

respect to defocus as well, which we need to generate a defocus-dependent rotating

incoherent PSF, let us examine the radial integrals. For a sufficiently large number of

zones, L �1, they are over intervals whose width is decreasing rapidly as (4lL)−1/2

with increasing zone index l. These integrals may then be well approximated by

evaluating the more slowly varying Bessel-function factor of the integrand in the lth

term at ul = (l/L)1/2, at least when s is not too large and l is not too small, which

is the case for the large majority of terms for sufficiently large L. The remaining

exponential integral then can be evaluated exactly as

∫ √ l
L

u=
√

l−1
L

duu exp(iζu2) = exp[iζ(l − 1/2)/L]
sin[ζ/(2L)]

ζ
, (3.11)

so the coherent PSF in Eq. (3.9) may be approximated by the simpler sum

K(s, φ; ζ) ≈ 2
√
π exp[−ζ/(2L)]

sin[ζ/(2L)]

ζ

×
L∑
l=1

il exp[−il(φ− ζ/L)]Jl(2π
√
l/Ls). (3.12)

The square-root scaling of the zone radii,
√
l/L, was essential to generate in the

expression in Eqn. (3.12) a phase rotation with defocus ζ that is linear in the zone

index l for the different zones, so each term in the sum in Eqn. (3.12) depends on φ

and ζ only via the difference φ−ζ/L. The overall prefactor is essentially independent

of ζ, at least for ζ � 2πL. Both the coherent and incoherent PSFs are thus essentially

shape and size invariant, merely rotating at the rate 1/L rad per unit defocus change.

Since this invariance holds approximately out to ζ ∼ L, increasing the number of

zones will achieve shape invariance of the PSFs over an increasingly larger range of

defocus values. Because the rotation rate decays inversely with L, however, the PSF

rotates by only a single turn, δφ = 2π, when the defocus has changed by L waves

at the pupil edge. Arguably, there is an optimum application-dependent value of L

at which the most sensitive rotational character of the PSF will be realized. This
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optimum can be obtained in a variety of ways, with Fisher information [14] providing

one statistical metric.

A complete rotation of the PSF requires a defocus of amount 2Lπ; but at that

value of the defocus, the prefactor in the approximate expression in Eqn. (3.12)

vanishes, signaling a breakup of the PSF whose shape might bear no resemblance to

the more compact in-focus PSF. Note, however, that the approximate expression in

Eqn. (3.12) has to be overly pessimistic in this respect since its squared modulus,

the incoherent PSF, is constrained by its unit area normalization at all ζ, and the

other approximated terms in the expression maintain their accuracy more robustly

with increasing ζ than the approximation suggests. The phase-engineered PSF (PE-

Figure 3.2: Surface plots of the incoherent PE-PSF, with L = 7 (top row) and 10 terms
(middle row) in the Fresnel zone partitioning of the pupil. The IDL-PSF, as shown in
Figure 3.1, is shown once again for the sake of comparison in the bottom row of plots.The
plots from left to right are for increasing values of defocus, from −24 radians to +24 radians
of defocus in steps of 8 radians, at the pupil edge.
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PSF) obtained by numerically evaluating the exact expression in Eqn. (3.11) and

then taking its squared modulus is displayed in Figure 3.2 for two different values of

L, namely 7 and 10, for defocus ranging from −24 to +24 rad (at the pupil edge)

in steps of 8 rad. For comparison, the corresponding ideal diffraction-limited PSF

(IDL-PSF) obtained without any phase mask (ψ = 0) is displayed in the very bottom

panel. With increasing defocus, while the IDL-PSF broadens rapidly, the main lobe

of the PE-PSF maintains its compact elliptical core and asymmetric secondary arcs

while rotating in a shape- and size-invariant manner at a fixed radius about the

paraxial image point. The rate of rotation with changing defocus, as discussed, is

indeed smaller for L = 10 than for L = 7. Note finally that the PE-PSF remains well

formed and nearly shape and size invariant out to the largest defocus value shown

in Figure 3.2, confirming the robustness of this PSF.

A preliminary study of the variation of the PE-PSF in a wavelength range around

a central wavelength at which the mask meets the integral-phase-winding-number

requirement in Eqn. (3.8) perfectly shows little degradation of performance when

the wavelength range is less than 5% of the central wavelength. A combined use

of multilevel masks and carefully chosen material dispersion [3]-[5] can extend the

usable wavelength range of the PSF.

3.4 Characterization of the Rotating PSF imager

Though the DH-PSF invented by Piestun et al.[10]-[12] is capable of encoding depth,

we find that the Rotating PSF imager is much more versatile due to the fact that

one can generate different PSF structures by changing the phase profile of each

zone in a closed-form analytical manner. Fig 3.3 shows this characteristic. A phase

configuration of lφ for the lth Fresnel zone produces the most compact PSF as shown

in the same figure.
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Figure 3.3: Plots showing PSF profiles generated by the Rotating PSF imager with dif-
ferent phase profiles in each Fresnel zone for a system with seven zones. Plots (a) to (e)
correspond to the lth zone phase profile being lφ, (l + 2)φ, (l + 5)φ, 2lφ, 3lφ, 4lφ, respec-
tively. PSFs have been normalized so that sum of all pixel values is unity and all are
plotted on the same brightness scale.

Figure 3.4: Plots showing PSF profiles generated by Rotating PSF imager with different
number of Fresnel zones. Top row: number of Fresnel zones=3, middle row: number of
Fresnel zones=7, bottom row: number of Fresnel zones = 20. For each case, PSFs are
shown for defocus values of −30 radians, −20 radians, −10 radians, 0 radians, 10 radians,
20 radians, 30 radians from left to right. All plots are in same scale. Note that for the case
when number of Fresnel zones is 3, sensitivity to change in depth is the largest, but it has
the smallest depth-of-field. For the case when number of Fresnel zones is 20, sensitivity to
change in depth is the least, but it has the largest depth-of-field.
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The number of Fresnel zones decides the extent of depth-of-field and sensitiv-

ity to change in depth. The larger the number of Fresnel zones, the larger is the

depth of field, but its sensitivity to change in depth reduces. Figure 3.4 shows this

characteristic. We find that a phase mask with phase profile of lφ for the lth Fresnel

zone and number of zones = 7 produces the most optimum imager for encoding depth.

3.5 Summary

This chapter discusses a new pupil-phase engineered PSF that rotates uniformly with

image defocus and possesses form invariance with 100% power transmission. The

phase profile of the phase mask can be changed to provide different PSF structures, all

carrying the depth encoding capability, and be suitably applied to different imaging

problems. For example, increasing the number of Fresnel zones makes it suitable

for an imaging problem that needs large DOF but reduced sensitivity to depth. For

better sensitivity to depth, one should choose a phase mask with fewer number of

Fresnel zones. For our study, we have chosen a phase mask with 7 Fresnel zones, and

phase profile of lth Fresnel zone is lφ.
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Chapter 4

3D Point Source Imaging

4.1 Introduction

When an object is so compact that it cannot be resolved by an imaging system, i.e., it

is contained within the diffraction limit of the imaging system, we may approximate

it as a point source. The image produced by this type of object will in effect be the

PSF of the imaging system. A motivation to study 3D point source imaging comes

from recent advances in super-resolution imaging of intra-cellular protein molecules

in biomedical research. A fundamental question in biomedical research is how spe-

cific, nanometer-scale biomolecules are organized into multicomponent micron-scale

structural and signaling ensembles that facilitate cell function [14]. For example,

microtubules are built of 8-nm tubulin subunits that incorporate on the ultrastruc-

tural level into polymers 25 nm in diameter and >10 µm in length that serve as

the building blocks of superstructures such as mitotic spindles and flagella. Because

cellular structures are organized on the nanoscale, nanometer resolution is required.

Diffraction imposes limitation on the resolution of a conventional microscope, and in

order to achieve nm resolution, certain super-resolution microscopic techniques are
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Figure 4.1: PALM/STORM imaging technique: Successive rounds of photoactivation
and single molecule imaging, centroid determination, and additive computer rendering
of the molecular localizations builds up a more complete dataset. Individual molecular
localizations are added to the rendering round after round until the complete structure can
be determined. Image taken with permission from Jim Schumacher [1].

used.

4.2 Super-resolution microscopy

Super-resolution microscopy is a form of light microscopy. Due to the diffraction of

light, the resolution of conventional light microscopy is limited as stated by Ernst

Abbe in 1873 [2]. A good approximation of the resolution attainable is the full

width at half maximum (FWHM) of the point spread function, and a well corrected

widefield microscope with high numerical aperture and visible light usually reaches
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a resolution of ∼250 nm. Super-resolution techniques allow the capture of images

with a higher resolution than the diffraction limit. They fall into two broad cate-

gories: ‘True’ super-resolution techniques, which capture information contained in

evanescent waves, and ‘functional’ super-resolution techniques, which use clever ex-

perimental techniques to reconstruct a super-resolution image [3].

True super-resolution imaging techniques include those that utilize the Pendry

Superlens and near field scanning optical microscopy, the 4Pi Microscope and struc-

tured illumination microscopy technologies like SIM and SMI [4]-[9]. However, the

majority of techniques of importance in biological imaging fall into the functional

category. There are two major groups of methods for functional super-resolution

microscopy:

1. Deterministic super-resolution: The most commonly used emitters in biological

microscopy, fluorophores, show a nonlinear response to excitation, and this nonlin-

ear response can be exploited to enhance resolution. These methods include STED,

GSD, RESOLFT and SSIM [10]-[12].

2. Stochastic super-resolution: The chemical complexity of many molecular light

sources gives them a complex temporal behaviour, which can be used to make

close-by fluorophores emit light at separate times and thereby become resolvable in

time. These methods include SOFI [13] and all single-molecule localization methods

(SMLM) such as PALM, FPALM, STORM and dSTORM [15]-[19].

As illustrated in Figure 4.1, in the present STORM and PALM super-resolution

microscopy, each image frame consists of images of very few activated fluorophores,

well separated from each other. The fluorophores can be considered as point sources

since their dimensions are much smaller than the diffraction-limit of microscope. The

figure shows two different image frames, labeled as Round 1 and Round 2, obtained

using the PALM microscopy technique. The plots in the extreme left show the actual

image frames, which consist of images of point sources well separated from each other
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so that there is no overlap between them. The middle plots show how a centroid

determination algorithm estimates the center of each point source image in order to

localize the point source. The extreme right plot shows the estimated location of all

the point sources composited from the two temporally separated image frames. By

repeating this experiment many times, the complete structure of the entire object is

determined.

For an object space consisting of multiple point sources at different depths, a tra-

ditional imager produces an image that has high signal-to-noise ratio only for sources

that are in or near the in-focus plane. Any point source that is away from the in-

focus plane, may have an unacceptably blurred image, and hence suffer from low

SNR, leading to significant localization errors. In the PALM/STORM imaging tech-

niques, out-of-focus sources are not estimated, and they contribute to background

noise, leading to estimation errors for the in-focus source localization. Currently,

light sheet fluorescence microscopy (LSFM) is used to minimize the effects of out-

of-focus sources, wherein a thin sheet of laser light or lightsheet is created in the

focal region that is used to excite fluorescence only in a thin slice (usually a few

micrometers thin) of the sample, thereby, forcing all the out-of-focus sources to stay

in the dark state [20]-[22]. A schematic of the microscope is shown in Figure 4.2.

By sequentially scanning different axial sections of the object, a full 3D image of the

object is recovered. One of the technical requirements of LSFM is that the thin light

sheet should lie exactly in the focal plane of the imaging system which demands

tricky alignment. The shape and size invariance of our Fresnel-zone based rotat-

ing PSF [23][24] over a large depth-of-field (DOF) relieves one from such a stringent

alignment condition. In fact, for a sample whose thickness is comparable to the DOF

of the RPSF imager, one can reconstruct the full 3D structure with high accuracy

using multiple PALM/STORM image frames without using LSFM.
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4.3 3D source-pair resolution

In 3D point source imaging, a single snapshot image of the object is obtained using

an imager like the Rotating PSF (RPSF) imager, and 3D reconstruction of the object

is obtained using the image data. The only prior information used is that the object

consists of point sources. For this case, the simplest inverse problem one can set up

to extract the number of point sources and their spatial coordinates and flux is that

of minimizing the following unregularized cost function [25]:

C({r1, ..., rp; z1, ..., zP ;F1, ..., FP}) =
1

2σ2
||G−

P∑
i=1

FiH(ri; zi)||22, (4.1)

where G denotes the two-dimensional noisy image data matrix, H(ri; zi) the rotating

PSF (blur) matrix for the ith point source of flux Fi, transverse location ri, and depth

zi. The unregularized cost function is also called the fit-to-data term or χ2-term.

The number of sources, P , is not known a priori but is to be estimated from the

data themselves. The minimization of the cost function, as shown in Eqn 4.1, is

performed iteratively until agreement with noise is attained, roughly when the χ2-

value is reduced to a value that lies within 1-2 standard deviations of its mean value

equal to half the number of image-plane pixels (details in Appendix C). Much as in

Ref. [26], the procedure is repeated for different values of P starting from 1 until the

minimum value of the cost function is consistent with the mean χ2 value.

In the minimization, the starting guesses of the point-source locations, particu-

larly in the transverse image plane, are dictated by the spatial distribution of the

image data. They must be chosen to allow for spatial overlap between the image

estimates computed from the forward model based on these locations and the actual,

noisy image data to induce the optimization algorithm to move the estimate down

the cost-function landscape in the space of the parameters being estimated. All the

source fluxes were started at zero value as were all the depth coordinates.

We now present the results of our simulation of the problem of resolving two point
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sources that are either at the same depth but differing transverse locations or at the

same transverse location but different depths, i.e., along the line of sight, for varying

levels of detection noise, which we take to be distributed normally in an independent

and identically distributed (IID) fashion across the image pixel array. The purpose

of this exercise was to set practical sensitivity limits on transverse and longitudinal

resolutions for our computational 3D imager.

4.3.1 Studying transverse resolution

We first studied the problem of resolving two point sources that are at the same

depth but differing transverse locations. In Figure 4.3(b), we show as a function of

the peak SNR (PSNR) the minimum value of the cost function (Eqn. 4.1) that the

optimizer, fminunc, was able to drive down toward the mean χ2-value for perfect

fit, which is N2
p/2 for an Np × Np image (Appendix C, Section C.1). Since in the

presence of noise the cost function can fluctuate around its mean value by amount

of order σχ2 = Np/
√

2 (Appendix C, Section C.2), of order 90 for Np = 128 used in

our simulations, we expect the agreement for a perfect fit between the actual data

and the forward-model-based data estimate to be within 1-2 times σχ2 . For two

sources to be considered resolved, we must be able to demonstrate that starting with

either one or three-source guesses cannot reduce the cost function down to N2
p/2

at these SNR values, regardless of how they are chosen initially. The two plotted

curves represent the cases of two different values, namely 1 and 2, for the number

of point sources. The two point sources in the actual image were taken to be 10

pixel units apart but in the same depth plane corresponding to 10 radians of defocus

phase at the pupil edge. Since the main lobe of the PSF is about 10 pixel units

across its short axis along which the sources are separated, this scenario corresponds

to minimally-resolved point sources. Not surprisingly, the one-source assumption is

completely untenable here, as seen in its high minimum value of the cost function at
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all of these PSNR values. While not shown, the three-source assumption does seem

to attain the χ-squared fit, but a careful examination of the recovered parameter

values revealed that one of the three sources had vanishing flux, consistent in effect

with the two-source assumption after all.

When we bring the point sources closer, placing them only 2 units apart along

the short dimension of the PSF, so their noise-free images overlap considerably, as

shown in Figure 4.3(a). These sources may be regarded as being barely, if at all,

resolvable. In this case both the one-source and two-source starting guesses seem

to produce comparable cost-function minima, as we see from the third and fourth

plots in Figure 4.3(b), although the rise of the curve for the one-source guess above

the curve for the correct two-source guess with increasing PSNR indicates that the

sources can be resolved at sufficiently high values of the PSNR. The ability to achieve

arbitrary amounts of spatial resolution depends on the SNR, as is well known from a

number of early works [27]. The number of iterations to achieve the minimum value

of the cost function in all cases turned out to be around 50.

Our conclusions are illustrated more directly by considering a scatter plot of the

reconstructed positions of the point sources. We plot in Figure 4.4 the x, y coordi-

nates of the estimates for the same values of PSNR for the two cases of resolvable

and non-resolvable pairs of point sources considered in the previous figures. The

reconstructed positions of the two point sources are given an extension inversely

proportional to the PSNR value of the reconstruction, so, e.g., a tight spot repre-

sents a high-PSNR estimate. It is clear from this figure that in the former case, the

two sources are indeed well resolved tightly around their true positions even at the

lowest PSNR of 10, while in the latter case, the scatter of the values of the recon-

structed separation is dramatically larger than the true source separation except for

the highest few PSNR values, signaling a barely resolved binary source.
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4.3.2 Studying depth resolution for line of sight sources

We next explored the question of longitudinal, or depth (z), resolution for two point

sources that are along the same line of sight (LOS) but at slightly different depths, as

measured by the defocus phase at the pupil edge of values 6 radians and 3 radians,

for the two images shown in Figure 4.5. The first case, as one may appreciate,

corresponds to z-resolvable sources, while in the latter case the sources seem visually

irresolvable. Yet, our analysis of depth estimates shows that in both cases the depth

estimates are quite accurate. This is shown in Figure 4.6(a) where the estimates are

shown as a function of the PSNR. The true defocus phases of 0, 6, 0, and 3 radians

are shown by the dashed lines on this plot. This is supported by the observation

that the minimum value of the cost function is well within ±2σχ2 of the mean χ2-

value of N2
p/2 for both cases when the correct two-source assumption is made in

the reconstruction. For the incorrect one-source assumption, the minimum value of

the cost function in both cases is well outside this range of fit to data within the

noise. Figure 4.6(b) shows the minimum cost function for the same ten PSNR values

discussed earlier for the correct two-source assumption and the incorrect one-source

assumption in the two cases.
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Figure 4.2: A diagram showing a side and top view of the basic components of a light
sheet fluorescence microscope (LSFM). The light sheet is formed by a laser (solid state or
gas) and is collimated and expanded with a beam expander. A cylindrical lens forms the
light sheet (green beam), and it is projected through an illuminating objective. The focal
point or the thinnest portion of the light sheet is positioned usually within the middle of the
specimen chamber. The specimen chamber is made of optically clear glass walls and has an
open top for specimen insertion. The chamber is filled with either a warmed physiological
solution for live-cell imaging or clearing fluid for fixed and cleared tissue. The specimen
(white ellipsoid) is attached to a rod and is intersected by the light sheet and a fluorescent
plane (i.e., optical section) within the tissue (labeled emission [orange cone]), which is
collected by a microscope that is usually mounted in a horizontal position. The specimen
rod is attached to rotating and translating stages (not shown) for micropositioning. For a
small specimen or a relatively thick light sheet, the fluorescent plane within the tissue is
collected by a digital camera as a real-time two-dimensional optical section. However, for
specimens larger than the distance of the confocal parameter of the light sheet, the specimen
is scanned in the x-axis to produce a wellfocused composite image across the width of the
specimen. By moving the specimen in the z-axis and collecting another image, a stack of
well-aligned, serial optical sections (i.e., a z-stack) through the tissue is obtained. Bar = 5
cm. Image taken from Santi et al.[20]
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Figure 4.3: (a): Image of the point-source pair for the two different source separations of
10 and 2 pixel units. The two sources were taken to be in the same defocused depth plane,
corresponding to a defocus phase at the pupil edge of 10 radians. (b): Minimum value of
the cost function achieved by the algorithm vs. PSNR, for two different source separations.
The mean χ2 value of N2

p /2 for a Np ×Np sensor array is shown by the dashed line. The
plots of the minimum value of cost function for the two-source assumption for the large
and small separation and the mean χ2 are found to be on top of each other.
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Figure 4.4: Estimated positions of the two point sources in the two cases of large and
small transverse separations, with round spots for the former case and square spots for
the latter case. The scatter plot shows excellent position estimate in the former case, but
poorer agreement with the true positions in the latter case except at the highest few values
of the PSNR considered.
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Figure 4.5: Image of the point-source pair in the line of sight at the center of the field but
at two different depths, corresponding to (a) 0 and 6 radians and (b) 0 and 3 radians of
defocus phase at the pupil edge.
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Figure 4.6: (a) Estimated defocus phases for the two point sources and (b) minimum value
of the cost function achieved by the algorithm vs. PSNR for the same two cases as in Fig.
4.5. In (a), the dashed lines are drawn at the correct defocus phases.

75



References

[1] http://www.photometrics.com/resources/technotes/fpalm.php.

[2] E. Abbe, Beitrage zur Theorie des Mikroskops und der mikroskopischen
Wahrmehmung. Archiv fr Mikroskopische Anatomie (in German) 9: 413-420
(1873).

[3] A. Neice, Methods and Limitations of Subwavelength Imaging. Advances in
Imaging and Electron Physics, Vol. 163, page 117 (2010).

[4] X. Zhang and Z. Liu, Superlenses to overcome the diffraction limit. Nature
Materials, Vol. 7, pp. 435-441 (2008).

[5] S. Kawata, Y. Inouye, P. Verma, Plasmonics for near-field nano-imaging and
superlensing. Nature Photonics, Vol. 3, pp. 388–394 (2009).

[6] U. Dürig , D. W. Pohl and F. Rohner, Near-field optical scanning microscopy.
Journal Applied Physics, Vol. 59, no. 10, pp. 3318–3327 (1986).

[7] S.W. Hell, E. H. K. Stelzer, S. Lindek, C. Cremer, Confocal microscopy with an
increased detection aperture: type-B 4Pi confocal microscopy. Optics Letters,
Vol. 19, Issue 3, pp. 222–224 (1994).

[8] A. V. Failla et al., Nanostructure analysis using Spatially Modulated Illumina-
tion microscopy. ComPlexUs;Vol. 1, pp. 77-88 (2003).

[9] G. Best et al., Structured illumination microscopy of autofluorescent aggrega-
tions in human tissue. Micron, Vol. 42, Issue 4, pp. 330–335 (2011).

[10] S. W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimu-
lated emission: Stimulated-emission-depletion fluorescence microscopy. Optics
Letters, Vol. 19, Issue 11, pp. 780-782 (1994).

76



References

[11] M. G. L. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field
fluorescence imaging with theoretically unlimited resolution. Proceedings of the
National Academy of Sciences of the United States of America, Vol. 102, Issue
37, pp. 13081-13086 (2005).

[12] M. Hofmann, C. Eggeling, S. Jakobs, St. W. Hell, Breaking the diffraction
barrier in fluorescence microscopy at low light intensities by using reversibly
photoswitchable proteins. Proceedings of the National Academy of Sciences of
the United States of America, Vol. 102, Issue 49, pp. 17565–17569 (2005).

[13] T. Dertinger et al., Advances in superresolution optical fluctuation imaging
(SOFI). Quarterly Reviews of Biophysics, Vol. 46, Issue 2, pp. 210–221 (2013).

[14] Shtengela et al., Interferometric fluorescent super-resolution microscopy resolves
3D cellular ultrastructure. Proceedings of the National Academy of Sciences of
the United States of America, Vol. 106, no. 9, pp. 3125-3130 (2008).

[15] E. Betzig et al., Imaging Intracellular Fluorescent Proteins at Nanometer Res-
olution. Science, Vol. 313, no. 5793, pp. 1642-1645 (2006).

[16] M. J. Rust, M. Bates, X. Zhuang, Sub diffraction-limit imaging by stochastic
optical reconstruction microscopy (STORM). Nature Methods, Vol. 3, no. 20,
pp. 793-796 (2006).

[17] Method of the Year 2008. Nature Methods, Vol. 6, no. 1 (2009).

[18] B. Huang, H. Babcock and X. Zhuang, Breaking the Diffraction Barrier: Super-
Resolution Imaging of Cells. Cell, Vol. 143, no. 7, pp. 1047-1058 (2010).

[19] Lee et al., Superresolution Imaging of Targeted Proteins in Fixed and Living
Cells Using Photoactivatable Organic Fluorophores. Journal of the American
Chemical Society, Vol. 132, no. 43, pp. 15099-15101 (2010).

[20] Peter A. Santi, Light Sheet Fluorescence Microscopy. Journal of Histochemistry
and Cytochemistry, Vol. 59, no. 2, pp. 129-138 (2011).

[21] F. C. Zanacchi et al., Live-cell 3D super-resolution imaging in thick biological
samples. Nature Methods, Vol. 8, no. 12, pp. 1047-1049 (2011).

[22] J. Mertz and J. Kim, Scanning light-sheet microscopy in the whole mouse brain
with HiLo background rejection. Journal of Biomedical Optics, Vol. 15, no. 1,
016027 (2010).

[23] S. Prasad, Rotating point spread function via pupil-phase engineering. Optics
Letters, Vol. 38, Issue 4, pp. 585–587 (2013).

77



References

[24] R. Kumar and S. Prasad, PSF rotation with changing defocus and applications
to 3D imaging for space situational awareness. AMOS Technical paper (2013).
http : //www.amostech.com/TechnicalPapers/2013.cfm

[25] M. Bertero and P. Boccacci, Introduction to inverse problems in imaging. CRC
Press (1998).

[26] P. Magain, F. Courbin, S. Sohy, Deconvolution with correct sampling. The As-
trophysical Journal, Vol. 494, pp. 472–476 (1998).

[27] L. Lucy, Statistical Limits to Super Resolution. Astronomy and Astrophysics,
Vol. 261, pp. 706–710 (1992).

78



Chapter 5

3D Shape Recovery

5.1 Introduction

In Chapter 4, we studied point source imaging, wherein the object space consists

of only point sources, and the goal was to estimate 3D position coordinates of each

point source. We used the prior [1][2] knowledge that the scene was comprised of

discrete point sources alone, which is a powerful piece of information capable of

providing robust reconstructions as we have seen. Reconstructions were obtained

using the tools of inverse problems [3]-[6]. In many applications, the object space

consists of extended sources, and the goal is to estimate the continuous depth profile

[10]-[22]. Here we assume that we have no prior information except a certain level of

smoothness of the object shape. Generalizing our 3D imaging and recovery of scenes

consisting of point sources alone to extended sources is highly nontrivial. That is

because point sources can be represented exactly in terms of a small number of

parameters, which provides a very tight constraint on image-data inversion even in

the presence of considerable amounts of noise. For an extended 3D object, the full

description, even for a single pose of the object, requires the specification of both
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the brightness and depth, namely Iij, zij, as a function of the pixel index ij over

an (Np × Np) pixel array. This is a highly underdetermined problem with a single

image data frame, and we must acquire at least one additional, independent image

data frame to render the inverse problem of 3D image reconstruction even marginally

solvable.

5.2 Two-frame based reconstructions

As we have shown, a Fresnel-zone based rotating PSF imager produces a single-lobe

PSF when the phase profile of the lth zone is lφ, where φ is the azimuthal angle.

The PSF structure allows it to encode depth uniquely in terms of the rotation angle

of PSF with-in the depth-of-field. The problem of 3D shape recovery using a single

snapshot of the object is a highly underdetermined problem, and hence we require

a second independent image of the object to be able to recover the 3D shape with

reasonable accuracy. A two-frame reconstruction imposes certain constraints on data

acquisition, specifically that the object remain unchanged while acquiring the second

image and that there be enough diversity between the two images. It is easy to main-

tain the first constraint by simultaneously acquiring the two images by first dividing

the beam using a beam splitter, and then imaging using two different imagers. For

static or slow moving objects, one can obtain the two images sequentially by just

changing out the phase plate.

5.2.1 Second imaging system

How do we choose the second imaging system? What factors need to be considered?

One of the criteria to decide the second imaging system is the signal-to-noise ratio

(SNR) for all defocused points in the image space. For example, a rotating PSF
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Figure 5.1: In-focus PSF profiles of different PPE imagers which are potential candidates
for second imaging system. (a) PSF of the first imaging system which is based on a Fresnel-
type zones based phase mask, with lφ as the phase profile in the lth zone, where φ is the
azimuthal angle in the pupil plane. We will refer to it as Prasad’s single-lobe imager, (b)
PSF of clear aperture imager, (c) PSF of Fresnel-zone based imager with 2lφ phase in the
lth zone. We will refer to it as the Prasad’s double-lobe imager, (d) PSF of Grover et al.’s
DH-PSF imager [23].

imager is able to provide comparable SNR for all points within the depth-of-field

(DOF), where as for the conventional imager, SNR decreases with increasing defocus

shift. Loss in SNR can be studied using the modulation transfer function of the

system. We would like for the transfer function to not have nulls or areas of low

amplitude over the entire range of defocus. Anywhere the transfer function falls

below the noise floor of our system the information contained there is irrecoverable.

Zeroes in the transfer function can be of two types. The first are zeroes that lie inside

the bandwidth of the function, simply due to the structure of the function itself. The

second type is due to a lack of bandwidth. The bandwidths of all optical transfer
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functions will contract with increasing defocus, and it is necessary that the PSF of

the second imaging system maintain at least the same bandwidth as the rotating

single-lobe PSF imager over the entire defocus region. Another factor that needs to

be considered is the cost. A rotating PSF imaging system requires a phase plate

that can be the most expensive component in the imaging system. For example, a

Liquid-crystal spatial light modulator based phase plate that can introduce phases

between 0 and 5π can cost more than 20000 dollars. Hence cost is definitely a key

component that needs to be considered to design the imaging system. The crietria

to design the second imaging system will be based on diversity, MTF and cost. The

simplest and cheapest system that can be a suitable candidate for the second imaging

system is the clear aperture conventional imager and it is very easy to implement

such a design since, after acquiring the first image, one can remove the phase plate,

and obtain the second image. But the fact that it loses bandwidth quickly with

defocus works against it.

Different pupil phase engineered (PPE) imagers were compared to find the best

imager to work as the second imaging system. As mentioned in Chapter 3, Fresnel-

zone based 3D imager phase mask can be modified to provide different PSF profiles.

An azimuthal phase of lφ for the lth zone produces a single-lobe PSF which is used

as the first imaging system. An azimuthal phase of 2lφ and 3lφ respectively produce

two-lobe and three-lobe PSF profiles. We will study two-lobe PSF imager since it is

more suited for crowded scenes than a three-lobe PSF. DH-PSF imager proposed by

Grover et al. [23] is also compared. Figure 5.1 shows PSF profiles of different imagers

which are potential candidates for the second imaging system. As is evident, all these

imagers provide image data which are very different from that of the first imaging

system, thereby providing enough diversity in the data space. Hence a favorable

comparison of bandwidths is an essential criterion for selection. So we study the

modulation transfer function (MTF) of all imagers. MTF was plotted along one of

the rotating axis at large defocus shifts. Figure 5.2 shows MTF plots for all imagers
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Figure 5.2: MTF plots for different PPE imagers at 20 radians of defocus phase at the
pupil edge. MTF plot was studied to select an optimum second imaging system. An imager
with a bandwidth closer to that of the first imager and least number of zeroes is chosen.
Color codes for the curves are: Clear aperture (blue), Grover et al. (red), Prasad 2-lobe
(black) and Prasad 1-lobe (green). Prasad’s 2-lobe PSF imager is selected as the second
imaging system.

at defocus phase of 20 radians at the pupil edge. It is evident from the MTF plots

that the Fresnel zone based two-lobe PSF imager, labeled as ‘Prasad 2-lobe’ in the

plot, has a bandwidth closest to the first imaging system labeled as ‘Prasad 1-lobe’,

and hence will be chosen as the second imaging system. Grover et al.’s DH-PSF

imager and clear apertute imager have similar bandwidths, pointing to similar levels

of large PSF blur.
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5.3 Reconstruction algorithm for full 3D shape re-

construction

After we have determined the two imaging systems that will be used to provide full

3D shape reconstruction, we now discuss the reconstruction algorithm that is used to

estimate the 3D shape of the object from the two data frames. We pose the problem

as: Given two independent data frames of a 3D object acquired by imaging an object

with two different 3D imagers, we would like to estimate intensity and depth profiles

of the object. Mathematically, the problem of 3D shape reconstruction can be posed

as estimating depths on an Np×Np grid on a transverse plane in object space, given

two independent frames of 2D image data. The size of the grid in the transverse plane

in object space is decided by the spatial resolution required. From now on, we will

refer to a grid on the transverse plane as transverse grid. In our simulation study, the

transverse grid in the object space consists of a 64× 64 pixel array. Image data are

also on a grid of 64× 64 pixel array. For an extended 3D object, the full description,

even for a single pose of the object, requires the specification of both the intensity

and depth, namely Iij, zij, as a function of the pixel index ij over an (Np×Np) pixel

array. In order to keep the mathematical analysis simple, we map the intensity and

depth into an equivalent 1D space as vectors I and Z, each of dimension N2
p × 1.

The Np × Np image data, corresponding to the two data frames, are also mapped

into 1D space as vectors, Y1 and Y2, each of dimension N2
p ×1. In order to determine

an estimated image, we define a rotating PSF blur matrix, H, which is a function

of the depth profile such that HI is a 1D map of the estimated image. Note that H

is a N2
p × N2

p matrix. Thus H1 and H2 are the two blur matrices corresponding to

the two imaging systems. We choose a cost function consisting of a fit-to-data term

and two regularizer terms [6][7] applied to intensity and depth separately. We work

with quadratic regularizers [25] which allow us to express the cost function as in Eqn

5.1. The fit-to-data term consists of the squared L2 norm [6][8] of the estimate from
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data for the two frames, and RI and RZ are the two regularizers, with strengths

λI and λZ , applied to intensity and depth respectively. Since the objects chosen for

study have smooth intensity and depth profiles, we apply Laplacian regularization

to both intensity and depth. For a discrete system, the Laplacian regularizer for a

variable x is defined as
∑
<i,j>[(xi,j+1− xi,j)2 + (xi+1,j − xi,j)2]. It favors smoothness

by penalizing differences amongst neighboring pixels.

C(I, Z) =
1

2σ2
[(Y1 −H1I)T (Y1 −H1I) + (Y2 −H2I)T (Y2 −H2I)]

+
λI
2
ITRII +

λZ
2
ZTRZZ. (5.1)

At the best intensity estimate,

∂C(I, Z)

∂I
= 0, (5.2)

providing us an expression for IBest as (refer to Appendix D, Section D.1):

IBest = M1Y1 +M2Y2 (5.3)

where

M1 = (λIσ
2RI + H1

TH1 + H2
TH2)−1H1

T (5.4)

M2 = (λZσ
2RZ + H1

TH1 + H2
TH2)−1H2

T (5.5)

Plugging in the expression of IBest for I in Eqn 5.1, we get a reduced cost function

which is a function only of depth variable and is given by:

C(Z)|@Ibest =
1

2σ2
[(Y T

1 − ITBestH1
T )(Y1 −H1IBest)

+ (Y T
2 − ITBestH2

T )(Y2 −H2IBest)]

+
λI
2
ITBestRIIBest +

λZ
2
ZTRZZ (5.6)

In order to obtain an estimate of depth and intensity profile, we follow an alternate

depth and intensity optimization routine. We minimize the reduced cost function

85



Chapter 5. 3D Shape Recovery

given in Eqn. (5.6), using a chosen initial guess of depth profile, with the intensity

profile computed from Eqn. (5.3). Minimization is stopped every 100 iterations, and

intensity profile is updated by plugging in the most recent estimate of depth in Eqn.

(5.3). Final estimates are obtained by updating the minimization routine about 30

times.

In order to recover the 3D shape with reasonable resolution, the transverse grid

needs to have enough points. For example, we choose a transverse grid with 64× 64

points. Hence the number of optimization variables for the reduced cost function

are 4096 depth values. Optimization is performed in Matlab, using a minimizer

called ‘fminunc’. The minimizer finds the minimum of a scalar function over many

iterations, where in each iteration, it computes the value of the function, its first

order partial derivative called the Gradient, and its second order partial derivative

called the Hessian, at each optimization variable, which helps it in finding the slope

to move towards the minimum of the function in the high-dimensional space. For a

problem with large number of variables, this can be computationally time consuming.

One way to reduce the computation time is to compute the gradient and Hessian

[9] in a separate program, and provide it as input to the minimizer routine. In

Appendix D, Sections D.2 and D.3, we derive how to compute approximate values

of the gradient and the Hessian. By providing the gradient and Hessian as input to

the minimization routine, computation time for minimization was greatly reduced.

5.4 Full 3D shape reconstruction using two frames

A full 3D shape reconstruction of an extended object requires two independent data

frames, and the reconstruction algorithm can be expressed in terms of a reduced cost

function which is a function of only depth. We consider a 64×64 grid in a transverse

plane in the object space. The goal is to determine intensity and depth values at
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all the 64 × 64 grid points in the object space. Two independent image data sets

are availabe on a 64 × 64 grid in image space. Thus the number of unknowns are

4096 intensity and 4096 depth values, and the number of knowns are 2× 4096 data

values. Even though the reduced cost function allows us to reduce the number of

optimization variables from 2× 4096 to 4096, the minimization routine still takes a

lot of time even for a single iteration. In order to make the minimization routine

iterate faster, we wrote a matlab code that computes the gradient and the Hessian

of the cost function relative to the intensity and depth variables, and provide it as

input to the minimization routine.

Most objects of interest have a smooth intensity and depth profile, so we focus our

study on such smooth objects. We simulated object intensity and depth profiles by

using a linear superpositions of gaussian profiles. Since we use no prior information

regarding the depth or intensity profiles, we start with an initial guess of depth

to be zero radians of defocus at each object pixel. Initial estimate of intensity is

obtained using the analytical expression Eqn. (5.3) for the best intensity estimate.

We follow an alternate depth and intensity optimization routine. We minimize the

reduced cost function (Eqn 5.6) which is a function of depth only. Minimization is

stopped every 100 iterations, and intensity profile is updated by plugging in the most

recent estimate of depth in Eqn 5.3. Final estimates are obtained by updating the

minimization routine about 30 times.

The regularization strength on intensity was chosen to be 2 × 103 and that on

depth was 2 × 102. Figure 5.3 shows the depth and intensity profiles of an actual

object, and the data frames obtained using single-lobe and double-lobe PSF imagers

for a read-noise limited system. Figure 5.4 shows intensity and depth reconstructions

at different updates of the intensity at a high SNR and low SNR level, and Figure 5.5

shows the error in 3D shape reconstruction as a function of the number of intensity

updates. It takes a minimum of 5 intensity updates to reach the best estimation
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in depth profile. Observed errors in 3D shape reconstruction are 5% and 13% for

peak SNR levels of 100 and 20 respectively. In order to test the performance of the

reconstruction algorithm, a second object with more features was studied. Figure 5.6

shows the depth and intensity profiles of the actual object, the two data frames at

a peak SNR of 100, and the estimated depth and intensity profiles after 30 intensity

updates. We observe that even at a high SNR, the algorithm produces very poor

results, with an error of 42%. A possible reason for poor reconstructions is the

stagnation of optimization at local minima due to the fact that the depth variables

are connected with the image brightness distribution in a highly non-linear fashion.

Another potential limitation is the fact that we need two different imaging systems

to do a full 3-D shape reconstructions which makes the full system very expensive.

5.5 Conclusion

In this chapter, we studied a method of 3D shape recovery using RPSF imagers. The

method involves imaging an object with two different RPSF imagers, a single-lobe

PSF and a double-lobe PSF imagers so that two different data frames for the same

view of the object can be acquired. Estimation algorithm is based on a cost function

consisting of fit-to-data term and Laplacian regularization applied to intensity and

depth, the two variables of optimization. It was able to reconstruct a simpler smooth

object with reasonable accuracy, but an object with more features showed poor

reconstruction. This brings us to a point where we need to investigate other methods

of 3D shape recovery.
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Figure 5.3: A smooth extended 3D object is reconstructed using two image frames obtained
from single-lobe and two-lobe Rotating PSF imagers with a Laplacian regularizer-based
cost function. The top plot shows the depth and intensity profiles of an actual object,
the middle plot shows the data frames obtained by a single-lobe PSF imager for two SNR
conditions, peak SNR of 100 and 20, for a read-noise limited system. The bottom plot
shows corresponding data frames obtained using double-lobe PSF imager.
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Figure 5.4: Intensity and depth reconstruction for a smooth extended object using two
RPSF imagers, starting with an initial guess of uniform depth profile at zero defocus for
two different SNR conditions, a high and a low. A reduced cost function was used with
depth as the only variable of optimization, where in the best intensity estimate at a given
depth was computed using an analytical expression. Laplacian regularizer was used for
both depth and intensity. The algorithm used minimizes the cost function numerically
w.r.t depth using fmincon keeping the intensity fixed. Optimization is run multiple times
after updating intensity.
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Figure 5.5: Error in 3D shape reconstruction is studied as a function of the number
of updates in intensity for a peak SNR levels of 100 and 20. It takes a minimum of 5
intensity updates to reach the best estimation in depth profile. Observed errors in 3D
shape reconstruction are 5% and 13% for peak SNR levels of 100 and 20 respectively.

91



Chapter 5. 3D Shape Recovery

Figure 5.6: In order to test the performance of reconstruction algorithm, a second object
with more features was studied. (a) and (b) show the depth and intensity profiles of
the actual object respectively, (c) and (d) show the data frames obtained with single-
lobe and double-lobe PSF imagers respectively with peak SNR of 100, (e) and (f) show
the reconstructed depth and intensity profiles after 30 intensity updates. We observe 42%
error in depth reconstruction and 5% error in intensity reconstruction. Poor reconstruction
indicates that the optimization gets stuck at a local minima.
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Chapter 6

Shape Recovery by Point

Illumination

6.1 Introduction

Three dimensional (3D) shape reconstructions of extended objects using the Rotat-

ing PSF (RPSF) imager are typically of low quality, even though the RPSF imager

can maintain its compactness over a large depth-of-field (DOF) and encode depth

over such large DOFs. A possible reason for poor reconstructions is the stagnation

of optimization at local minima due to the fact that depth is connected with the

image brightness distribution in a highly non-linear fashion. Another potential lim-

itation is the fact that we need two different imaging systems to do a full 3-D shape

reconstructions which makes the full system very expensive.

This observation prompted us to find a different imaging scheme that allows us to

extract 3D shape information from the image data with excellent accuracy in general

using a single RPSF imaging system. With highly robust 3D localization results for

point sources, we propose a measurement technique based on turning smooth ex-
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tended objects into clusters of points. This is achieved by using arrays of laser spots,

each array configured in a grid pattern. We call this technique ”Shape Recovery by

Point Illumination” (ShaRPI). The need for highly accurate 3D image reconstruc-

tions has been appreciated in the past. A laser scanning confocal microscope is an

instrument to accomplish 3D imaging by means of raster scan. ShaRPI, inspired

by such a device and by the PALM/STORM techniques [4]-[7] for superresolution

imaging of large collections of single molecules, can provide highly accurate 3D shape

reconstructions using a laser as excitation source. Since there are lots of similarities

between confocal microscopy and ShaRPI imaging, we will present a brief overview

of confocal microscope discussing its advantages and disadvantages, and why it is a

very popular instrument inspite of being expensive.

6.1.1 Laser scanning Confocal microscope

Confocal microscopy [1][2] offers several advantages over conventional widefield opti-

cal microscopy, including the ability to control depth of field, elimination or reduction

of background information away from the focal plane (that leads to image degrada-

tion), and the capability to collect serial optical sections from thick specimens. The

basic key to the confocal approach is the use of spatial filtering techniques to elimi-

nate out-of-focus light or glare in specimens whose thickness exceeds the immediate

plane of focus. There has been a tremendous explosion in the popularity of confocal

microscopy in recent years, due in part to the relative ease with which extremely

high-quality images can be obtained from specimens prepared for conventional flu-

orescence microscopy, and the growing number of applications in cell biology that

rely on imaging both fixed and living cells and tissues. In fact, confocal technol-

ogy is proving to be one of the most important advances ever achieved in optical

microscopy.
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Figure 6.1: A confocal microscope. Courtesy: Eric S. Flem [3]

A laser is used to provide the excitation light (in order to get very high intensities).

The laser light reflects off a dichroic mirror. From there, the laser hits two mirrors

which are mounted on motors; these mirrors scan the laser across the sample. Dye

in the sample fluoresces, and the emitted light (red) gets descanned by the same

mirrors that are used to scan the excitation light from the laser. The emitted light

passes through the dichroic and is focused onto the pinhole. The light that passes

through the pinhole is measured by a detector, ie., a photomultiplier tube.

So, there never is a complete image of the sample – at any given instant, only

one point of the sample is observed. The detector is attached to a computer which

builds up the image, one pixel at a time. Different techniques are used in order to

speed up the scanning.

There are a number of disadvantages of confocal microscopy. It is limited pri-

marily to a small number of excitation wavelengths available with common lasers

(referred to as laser lines), which cover very narrow bands and are expensive to pro-
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duce in the ultraviolet region. In contrast, conventional widefield microscopes use

mercury or xenon based arc-discharge lamps to provide a full range of excitation

wavelengths in the ultraviolet, visible, and near-infrared spectral regions. Another

downside is the harmful nature of high-intensity laser irradiation to living cells and

tissues. Since it is a scanning system, acquisition time required to capture the whole

object is high. Finally, the high cost of purchasing and operating multi-user confo-

cal microscope systems, which can range up to an order of magnitude higher than

comparable widefield microscopes, often limits their implementation in smaller lab-

oratories.

Taking the lead from laser scanning confocal microscope, the ShaRPI technique

also uses external laser sources to illuminate the object as a cluster of well sepa-

rated point sources. The fact that there is no defocus induced blurring in a Rotating

PSF imager, since PSFs remain compact over a large DOF, all the illuminated point

sources can be captured in a single frame with a sensor array with no loss in estima-

tion accuracy, hence there are no tricky alignment issues unlike those with a pinhole

used in a confocal microscope.

6.2 ShaRPI

In order to get highly accurate 3D shape reconstructions using a single rotating

PSF imaging system, we propose here a new technique called ShaRPI. This is an

active imaging system, where we use external sources to illuminate the object and

thus the object cannot be self-luminous. In this technique, an object is illuminated

with an array of tight laser spots, where only a fraction of sources are switched

on at any time, with the proviso that any two illuminated points in a single frame

are well separated to make sure their images do not have much overlap. Such a

requirement is needed to achieve high estimation accuracy. Here we assume that
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Figure 6.2: A single pattern of laser spots on a 3D space object created by an array
of narrow illuminating beams, shown by dashed red arrows, and the scattered light rays,
shown by solid green arrows, that are captured by the imager and carry information about
the 3D locations of the spots.

the laser beams do not spread significantly, so that each image frame consists of

images of well-separated point like spots on the object. Figure 6.2 is a schematic

illustration of the technique. It shows an array of narrow illuminating beams, shown

by dashed red arrows, and the scattered light rays, shown by solid green arrows,

that are captured by the imager and carry information about the 3D locations of

the spots. This point-wise illumination and shape recovery of the object comes at

the cost of more time required to acquire images for the whole object. This leads

to a loss in temporal resolution, which is an important factor while imaging moving

objects. Thus we make an attempt to increase the number of point sources imaged

in a single image frame without compromising estimation accuracy. Another tool
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that helps in reducing the image acquisition time is compressed reconstruction [8][9].

Most objects man-made or natural, are sparse in some appropriate transform domain

such as wavelet domain. Sparse objects can be reconstructed using significantly fewer

measurements by applying L1 minimization [10][11]. Thus the ShaRPI technique,

being based on point source imaging provides high estimation accuracies, and post-

processing the data with compressed reconstruction tools allows us to acquire the

full 3D image with a small number of measurements, thereby reducing the image

acuisition time. Also it requires a single imaging system as opposed to two imaging

systems required in a snapshot full-3D shape recovery as discussed in the previous

chapter.

6.2.1 ShaRPI image acquistion

We present here results of simulation for 3D shape recovery using ShaRPI technique.

An extended 3D object is illuminated by using arrays of tight laser spots, each array

configured in a grid pattern. This arrangement approximates an extended object by

means of clusters of points. Scattered radiations from the point illumination of the

object pass through the RPSF imager which encodes depth information. The depth

encoded images are then received by a sensor array. The number of received photon

counts is decided by the angle of incidence at the object surface. For a smooth object,

received photon counts are affected not just by the local reflectance variations of the

object but also by the obliquity of illumination, being the largest for points with

normal incidence and smallest for points with oblique incidence. In our study, we

simulated received photon counts, Nph for N illuminated points on the object using

the matlab command: Nph = 100 + 100 × rand(1, N), so that the received photon

counts for all point sources are between 100 and 200 counts.

Mathematically, the problem of 3D shape reconstruction can be posed as esti-
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mating depths on an M ×N grid on a transverse plane in object space, given a 2D

image data. The size of the grid in the transverse plane in object space is decided by

the spatial resolution required. From now on, we will refer to a grid on the transverse

plane as transverse grid. In our simulation study, the transverse grid in the object

space consists of a 64× 64 pixel array. Image data are also on a grid of 64× 64 pixel

array. First we study a case of low levels of crowdedness. To acquire a single image

frame of the object, we select a 6×6 transverse illumination grid in the object space,

and image all the grid points. This grid is moved around to collect multiple images

of the object non-reduntantly so that no two image frames have any point sources in

common. In general, the depth value at each point on the object is an independent

parameter, and hence for a 64× 64 transverse grid in the object space and with each

image frame consisting of only 6× 6 points, one needs more than 100 image frames

to estimate depths at all points. We will use a sparsity constraint to reconstruct the

full 3D shape using far fewer image frames. We will study the estimation error as

a function of the number of image frames used. Figure 6.3 shows the actual depth

Figure 6.3: A 3D object being imaged by ShaRPI. left: actual depth profile of an object,
middle: points on the object imaged in a ShaRPI image frame with different colors rep-
resenting illuminated object points in the different frames, right: ShaRPI data (detector
noise limited with peak SNR=100 and background is 20% of peak signal) shown for one of
the images.
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profile of an object, with the center plot showing points on the object imaged in a

ShaRPI image frame with different colors representing illuminated object points in

the different frames. The ShaRPI data for a representative frame are also shown at

the extreme right.

6.2.2 ShaRPI shape estimation

3D shape estimation using ShaRPI image frames is a three-step process. In the esti-

mation process, we use the prior information that the object space for each ShARPI

image frame consists of point sources, and the (x, y) location of each point source is

known exactly, that being the predetermined laser source location that illuminated

that point. In order to find an efficient estimation algorithm, we take advantage of

certain characteristics of the imager. For example, the limits of the depth-of-field

(DOF) of the imager provides limits on the depth estimates. The estimation algo-

rithm consists of two steps - to first provide a smart initial guess of the depths for

each point source, and subsequently to let the optimization routine run to refine this

guess by homing in on the true values, minimizing in this way the probability of the

optimization being trapped at local minima. As mentioned in chapter 4, the starting

guesses of the point-source locations are dictated by the spatial distribution of the

image data. They must be chosen to allow for spatial overlap between the image

estimate computed from the forward model based on these locations and the image

data to allow the minimization algorithm to move the estimate efficiently down the

cost-function landscape in the space of the parameters being estimated.

6.2.3 STEP 1: Initial estimation of the depths

In the first step, we obtain a rough estimate of the depth coordinate of each point

source. A necessary condition for the optimization to move robustly in the right
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direction is that the initial guess of the PSF (image) for each point source, which

in-turn is decided by the initial depth guess, should have some overlap with the data

PSF. We assume that depth coordinate for each point source can take values only

from all possible depth values with-in the known DOF of the imager. Any other prior

information can be used to narrow down the search region. For example, if there is

a prior information that limits the depth range of the object to being between -10

radians and +10 radians of defocus, then a possible set of integer depth candidates

for each point source is [-10, -9, -8, ...,8, 9, 10], in units of radians of defocus, a total

of 21 candidates. The optimization variables are the photon counts corresponding to

all possible depth candidates for each point source. We defined a cost function [12]

as:

C(F1, ..., FMP ) =
1

2σ2
||G−

MP∑
i=1

FiH(~ri; zi)||22, (6.1)

where G denotes the two-dimensional noisy image data matrix, H(~ri; zi) the rotating

PSF (blur) matrix for the ith point source of flux Fi, transverse location ~ri, and depth

zi. For this optimization, we assume there are MP sources, where M is the number

of depth candidates per source, and P is the number of point sources, both known

a priori. The transverse location ~ri for each point source is also known a priori and

the depth coordinate zi corresponds to each possible depth candidate.

The initial guess of photon counts for each depth candidate is an average com-

puted from the total number of photons in the data space. For example, in our

simulation study, total photon counts in data space for a 6× 6 point source ShaRPI

image frame were 8.3× 103. The number of depth candidates for each point source

was 21. The initial guess value of photon counts for each depth candidate was taken

as the number of photon counts per source per depth, namely 8.3× 103/36/21 = 11.

We perform a χ2 fit with respect to (w.r.t) intensity and let the optimization run for

5 iterations. The depth value that corresponds to the highest intensity estimate at
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Figure 6.4: ShaRPI first level depth estimation for a read-noise limited system with
peak SNR = 100 and background is 20% of peak signal. χ2 fit minimization is done
for each ShaRPI frame with 36 sources where the optimization variables are photon counts
corresponding to all depth candidates between -10 and 10 radians in steps of 1 radian. A
3-D scatter plot is shown in (a) and depth vs point source curve is shown in (b), with blue
circle represents true depths and red cross represents first level estimated depths.

the end of 5 iterations is taken as the first level estimate of depth. In our simulation

study, 15 different ShaRPI image frames with 36 point sources per frame were col-

lected. Results are shown in Figure 6.4 for a read-noise limited system with the peak

SNR at 100 and background at 20% of peak signal. The average error in first level

depth estimation was found to be 1.5%. Photon counts received back at the sensor

end depends on the angle of incidence of laser beam at each point on the object.

A highly oblique angle of incidence will result in low photon counts received at the

sensor end, which will cause a large depth-estimation error.
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6.2.4 STEP 2: Refinement of the depth estimate at each

ShaRPI point source

In the second step, we define a more customary cost function as

C({z1, ..., zP ;F1, ..., FP}) =
1

2σ2
||G−

P∑
i=1

FiH(~ri; zi)||22 + λ1||F||22 + λ2||z||22, (6.2)

where G denotes the two-dimensional noisy image data matrix, H(~ri; zi) the rotat-

ing PSF (blur) matrix for the ith point source, Fi its flux, ~ri its transverse location,

and zi its depth. The number of sources, P , and their transverse locations ~ri are

known a priori. Since these are point sources, we chose to apply Tikhonov regular-

ization [13][14] on both the depth and intensity variables. For a discrete system, the

Tikhonov regularizer for a variable x is defined as
∑
<i,j> x

2
i,j. It penalizes large values

of x. Since the scales on the two variables are, in general, different, we allowed the

regularization strengths to be different for the two. Here the optimization variables

are the depths and intensities corresponding to all point sources over all the ShaRPI

frames.

The depth estimates obtained from Step 1 are used as the initial guess input for

Step 2. The average photon counts per point source computed from the data space

are taken as the initial guess for the intensities. The results of estimation shown in

Figure 6.5 clearly suggests that Step 2 has resulted in much better depth estimations.

The depth estimation error reduces from 1.5% obtained in Step 1 to 0.35% at the

end of Step 2.

The purpose of the ShaRPI system is to provide highly accurate 3D shape recovery

and hence sources with large estimation error in the first step should be identified

and discarded before the final estimation process. We recognize the fact that the

estimation accuracy is highly dependent on the initial guess of the depths, which if
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Figure 6.5: ShaRPI second level depth estimation for a read-noise limited system with peak
SNR = 100 and background 20% of the peak signal level. The χ2 fit minimization is done
for each ShaRPI frame with 36 sources w.r.t to the intensities and depths corresponding
to all laser illuminated point sources. A 3D scatter plot of depth estimates is shown in (a)
and depth vs point source index is shown in (b), where blue circles represent true depths,
red crosses first level estimated depths and black squares second level depth estimates.

far from the true values would imply that the corresponding point source cannot be

estimated correctly. Sources which scatter back only a few photon counts towards

the sensor also incur a high probability of wrong preliminary estimates. Hence it is

essential that one should be able to detect such erroneously estimated sources, and

discard them from the final estimation process.

We propose a Sign Test, wherein we compute the χ2 value sequentially for every

point source and compare its value when a specific source is swithched on vs off,

keeping the rest of the sources on. An erroneously estimated source will have a

larger value of χ2 when it is switched on compared to when it is off. The sign of the

difference in χ2 value between when source is on vs off is computed for each point
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source. A sign test result of +1 corresponds to wrongly estimated sources. Each

point source is assigned intensity equal to the the average photon counts per point

source computed from the data space.

6.2.5 STEP 3: Recovery of full 3D shape from ShaRPI

point estimates using compressed reconstruction

After estimating the depth values at all ShaRPI illuminated points on the object

and discarding the wrongly estimated sources, we reconstruct the full 3D shape. In

general, the depth value at each point on the object is an independent parameter,

and hence for a 64 × 64 transverse grid in object space, with 36 point source per

frame, will require more than 100 image frames to estimate depth values at all 4096

points on the object. This will require a large data acquisition time, which would

in effect reduce the temporal resolution. Hence we exploit the sparsity of an object,

which is justified if we assume the object shape to be smooth, and which allows us

to use compressed reconstruction methods to reconstruct signals from significantly

fewer frames.

Compressed reconstruction aims to reconstruct signals and images from signifi-

cantly fewer measurements than would be needed to reconstruct all the object pixels

[8]. The ShaRPI imaging technique, as discussed above, is a high precision 3D shape

reconstruction approach for smooth object shapes, which while requiring multiple

image frames from a single object, nevertheless employs a compressed reconstruction

strategy with the potential for significant reductions in the number of image frames

needed.

One of the key requirements for successful application of compressed reconstruc-

tion in ShaRPI is that the depth profile of the object should be compressible. Most

objects are compressible by sparse coding in an appropriate transform domain (e.g.,
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by wavelet transform). The point illumination strategy works for smooth shapes,

but a different illumination/measurement strategy that maximizes the incoherence

between the observation and representation (sparsifying) bases [8] will be needed for

a different kind of sparsity.

Natural images can often be compressed with little or no perceptible loss of

information [8]. The world-wide-web demonstrates this billions of times weekly.

Transform-based compression is a widely used compression strategy adopted in

JPEG, JPEG-2000, and MPEG standards. This strategy first applies a sparsify-

ing transform, mapping image content into a vector of sparse coefficients, and then

encodes the sparse vector by approximating the most significant coefficients and

omitting the smaller ones. The Discrete Cosine Transforms (DCT) is the sparsifying

transform at the heart of JPEG, while the discrete wavelet transform (DWT) is the

workhorse of JPEG-2000. Some images are already sparse in the pixel domain, so

here the sparsifying transform is the identity transform. Some images are piecewise

smooth and their gradient field is sparse; the sparsifying transform there is spatial

finite-differencing. More complex imagery can be sparsified in more sophisticated do-

mains, such as the discrete cosine transform domain or the wavelet domain. Sparse

representation is not limited to still imagery. Many still images can be compressed

5 to 10-fold without a perceptible loss of visual information, but often videos can

be safely compressed much more heavily. This is demonstrated by the success of

MPEG, which exploits the fact that the successive frames of a movie are either es-

sentially constant or else undergo changes that are small between neighboring pixels.

Interframe temporal differences of video content are thus often sparse, so movies are

sparsified by temporal finite differences.

The transform sparsity of the depth profile of a smooth 3D object can be demon-

strated by applying a sparsifying transform and then reconstructing an approxima-

tion using a subset of the largest transform coefficients. To illustrate this, consider
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Figure 6.6 in which the depth profile of a 3D object was compressed with wavelets

and reconstructing an approximation to the object using less than 5% of the largest

transform coefficients.

Figure 6.6: An example of wavelet transform sparsity of depth profile of a 3D object. (a)
shows the true depth profile of the object, while (b), (c) and (d) respectively show the
reconstructed depth profiles using only 1.5%, 3% and 5% of the largest wavelet transform
coefficients, the rest of the coefficients are set to zero. All plots are in the same scale.

6.2.6 Image recovery using compressed reconstruction

We now briefly describe a useful formal approach for reconstruction using compressed

reconstruction tools. We represent the reconstructed image by a vector m. Let Ψ de-

note the linear operator that transforms from the pixel representation into a sparse

representation. Let FS denote the operator that maps the signal from the object

space into the measurement space. If m is an M × 1 vector and the number of mea-

sured values is N , then FS is an N ×M matrix. For example, in our case, FS picks

up illuminated points in the object such that FSm is a vector of estimated depths

at the illuminated points. Our reconstructions are obtained by solving the following

constrained optimization problem:

minimize ||Ψm||1
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s.t. ||FSm − y ||2 < ε, (6.3)

where y represents a vector of the measured values. In the present ShaRPI system,

y represents the estimated depth values at discrete illuminated points on the object

and ε controls the fidelity between the reconstructed and the measured data. The

threshold parameter ε is roughly the expected noise level. Here the L1 norm is defined

as

||x||1 =
∑
i |xi|.

Minimizing the L1 norm of Ψm promotes sparsity.The constraint ||FSm−y ||2 < ε

enforces data consistency. In words, among all solutions which are consistent with

the acquired data, Eqn 6.3 finds a solution which is compressible by the transform

Ψ.

One way to implement Eqn 6.3 is to define a cost function as:

C(m) =
1

2σ2
||FSm − y ||22 + λ||Ψm||1 , (6.4)

where σ is the standard deviation of noise and λ is the regularization strength.

6.2.7 Final reconstructions

We will now discuss what each of these parameters represent in the ShaRPI imaging

system. As stated before, m, a M × 1 vector, represents 1D mapping of the recon-

structed depth profile at M points in the object space. The symbol y represents a

N × 1 vector consisting of estimated depths at the N laser illuminated points on the

object. Fs is an N ×M matrix consisting of only 1s and 0s such that the operation

Fsm picks up depths at laser illuminated points.

In our simulations, we optimized the cost function in wavelet space, represented

by a vector w consisting of all the wavelet coefficients. We pose the problem as
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Figure 6.7: CS-based reconstructed depth profile on a 64 × 64 grid using ShaRPI esti-
mated depths from 540 laser illuminated points on the object. (a) true depth profile, (b)
reconstructed depth profile. Estimation error is 0.4%.

estimating depths on a 64 × 64 transverse grid in object space. Thus M = 64 ×

64 = 4096. Each ShaRPI image frame consists of 36 laser illuminated points, and

we acquired 15 such frames. Thus N = 36 × 15 = 540. The object chosen is

highly sparse in the wavelet space, and we optimize in only 6% of the wavelet space

coefficients, assuming the rest to be zeros. The validity is shown in Figure 6.6, where

reconstructing the object using 5% of the largest wavelet coefficients incurs an error

of only 0.1%. Hence the cost function we used is:

C(w) =
1

2σ2
||FSΨ−1w − y ||22 + λ||w ||1 , (6.5)

The value of the regularization strength, λ, we used was 1× 100. The reconstructed

depth profile is shown in Figure 6.7. Note that the estimation error is only 0.4%.
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6.2.8 Reconstructions as a function of SNR

Figure 6.8: ShaRPI 1st and 2nd level depth estimates shown as a 3D scatter plot for a
read-noise limited ShaRPI system with 36 point sources per frame at different peak SNR
(PSNR) levels, with the background set at 20% of the peak signal. Blue circles represent
true depths, red crosses represent first level estimated depths and black squares represent
second level depth estimates.

We studied 3D shape reconstructions using the ShaRPI technique at different

noise levels for read noise limited systems with a uniform background. Figure 6.8

shows a 3D scatter plot of the first and second level depth estimates of an extended

3D object at peak SNR levels of 100, 50, 20, and 10. Results show that the estimation

accuracy at low SNR levels can be improved using second level optimization.

Full 3D shape reconstructions are obtained by minimizing the cost function shown

in Eqn 6.5. The full 3D shape estimation error is studied as a function of the number

of point sources whose depth estimates are used to provide the constraint in the cost

function. Figure 6.9 shows the estimation error as a function of the number of point

sources used for different SNR levels. Figure 6.10 shows the reconstructed 3D shapes

using depth estimates from 13% of point sources which provide the constraint for

L1 minimization based cost function shown in Eqn 6.5. Estimation errors as low as

0.4% are observed at a peak SNR level of 50 and an error of 2% at peak SNR of 10.

Results confirm that the ShaRPI imaging technique, when combined with compressed
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Figure 6.9: Estimation error in full 3D shape recovery as a function of number of point
sources whose depth estimates provide necessary constraint for L1 minimization algorithm
at different SNR levels for a read noise limited system.

reconstruction tools provide high estimation accuracy for 3D shape reconstructions

with very few image frames.
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Figure 6.10: Full 3D shape reconstructions using ShaRPI technique at different noise levels
for a read noise limited system and background is 20% of peak signal.
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Chapter 7

Conclusions

The ultimate goal of a 3D imaging system is to encode all three position coordinates,

(x, y, z), and the brightness of every point on the object. A conventional camera,

being limited by its intrinsic defocus blur, has a small depth-of-field (DOF), and

hence it will not be able to achieve 3D imaging in a single snapshot for extended 3D

objects with large variations of depth across the field. Modifying the phase in the

pupil of a conventional imaging system by an external phase modulating device allows

us a way to extend the depth-of-field, and thus encode the position coordinates of

the points on such 3D objects. Specifically, the transverse coordinates, (x, y), of each

point in the object are encoded in the physical location of the corresponding PSF,

while the depth coordinate, z, can be encoded in the orientation of the PSF, since the

PSF in such pupil-phase-engineered imagers can be made to rotate with depth. Such

imaging systems are called rotating point spread function (RPSF) imagers. The PSF

rotation also breaks the symmetry of positive-negative defocus that plagues, in the

absence of aberrations, the PSF of a conventional imaging system about the plane of

best focus, allowing RPSF imagers to maintain excellent axial localization sensitivity

throughout the DOF.
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RPSF imagers have been proposed in the past by different research groups, the

most popular being the double-helix PSF (DH-PSF) imagers invented by Dr. Rafael

Piestun from the University of Colorado. The DH-PSFs are a class of PSFs, and

there are different numerical and analytical designs which provide such PSFs. The

RPSF imager studied theoretically in my dissertation was invented by Dr. Sudhakar

Prasad from the University of New Mexico, and its main advantage is that it is based

on a simple analytical design and has the largest DOF, an essential feature for 3D

imaging of large extended objects. I find that this design is highly versatile, since

by changing just a few parameters in the phase mask, one can obtain PSFs with

different structures, all capable of achieving 3D imaging, but with each best suited

for a particular object or application.

As recent advancements in the PALM/STORM experimental techniques of super-

resolution imaging of intra-cellular protein molecules have shown, a highly accurate

3D localization of point sources is essential. In this dissertation, we studied, among

other things, computer simulations of the problem of resolving two point sources

that are either at the same depth but differing transverse locations or at the same

transverse location but different depths (i.e. along the line-of-sight). Highly robust

reconstruction results are observed even at very low SNR conditions with the RPSF

imager.

3D shape recovery of extended objects requires a minimum of two different imag-

ing systems, since both the intensity and depth are unknown variables to be estimated

at all the object pixels. After careful investigation, an RPSF imager with a rotating

double-lobe PSF structure was chosen as the best candidate for the second imag-

ing system. Poor reconstructions were observed, with a possible cause for failure

attributed to the stagnation of the mathematical optimization routine employed to

reconstruct the depth at local minima due to the fact that depth is connected with

the image brightness data in a highly non-linear fashion in a high dimensional space.
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Noting, by contrast, the highly robust nature of 3D localization for point sources,

we proposed an imaging technique called ShaRPI (Shape Recovery by Point Illumi-

nation) which is based on turning a smooth extended object into a cluster of point

sources. This is achieved by using multiple arrays of tight laser spots that illuminate

the 3D object, assumed to be non-self-luminous, with each array configured in a grid

pattern. The data corresponding to a single image frame encodes the 3D position

coordinates of well separated points in the object, which can be recovered with high

accuracy. Multiple image frames are collected and analyzed for 3D localization of

the laser spots on the object, making sure there are no redundancies. By invoking

sparsity, compressed reconstruction tools are used to recover the full 3D structure of

the object from the 3D locations of the illuminating spots using significantly fewer

frames than naively needed based on the total number of object pixels at which the

depth must be reconstructed. Estimation errors as low as 0.4% is observed for a

peak SNR (PSNR) of 50, but they are still small at about 2% even for PSNR values

as low as 10 for a read noise limited system.
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Future Work

For a clear, well corrected imaging aperture in space, the point-spread function (PSF)

in its Gaussian image plane has the conventional, diffraction-limited, tightly focused

Airy form. Away from that plane, the PSF broadens rapidly, however, resulting in

a loss of sensitivity and transverse resolution that makes such a traditional best-

optics approach untenable for rapid 3D image acquisition. One must scan in focus

to maintain high sensitivity and resolution as one acquires image data, slice by slice,

from a 3D volume with reduced efficiency.

A computational imaging approach based on modifying the pupil phase using an

external device is able to encode 3D information in the structure of PSF, and also

the PSF remains compact over a large DOF. There have been many such designs,

and each is better suited for a particular application. The RPSF imager used in

this dissertation work consists of a phase plate which has Fresnel type zones, and

each zone has a phase profile of lφ, where l is an integer whose value is 1 for the

innermost Fresnel zone, and L for the outermost zone, L being the total number

of Fresnel zones in the phase plate, and φ is the azimuthal angle. Note that the

integral winding number l remains constant over the full area of each zone. By doing
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a comparison of the existing 3D PPE imagers, we find that this RPSF imager has

the largest DOF, but at the cost of lower transverse resolution. We made an attempt

to improve the transverse resolution of the Fresnel type zone based RPSF imager.

8.1 Improving the RPSF imager

The integral winding number for each Fresnel zone remains constant over the whole

zone, being l for the lth zone for a single lobe PSF imager, and 2l for a double lobe

PSF imager. In order to improve the transverse resolution of the images, we use

intuition to modify the phase mask. The inner and outer radii of the lth Fresnel zone

are
√

(l − 1)/L and
√
l/L respectively, where L denotes the total number of zones.

If (u, φ) denote the polar coordinate in the pupil plane, then we modify the phase

design of the lth Fresnel zone as Lu2φ, which is a continuouly increasing phase with

u, in such a way that at the inner circumference of the zone, the integral winding

number is still (l − 1) and at the outer circumference, it is l.

Figure 8.1(a) depicts the phase profile of the RPSF imager with a constant in-

tegral winding number in each Fresnel zone, showing clearly the discreteness of the

winding numbers. Figure 8.1(b) shows the phase profile of the RPSF imager with

a continuously varying winding number along the radial direction. Figs 8.1(c) and

8.1(d) show the normalized PSF profiles for the two cases at the in-focus plane plot-

ted in the same scale. The peak value of the normalized PSF is chosen as the metric

to compare transverse resolution, a larger peak value indicating a better transverse

resolution. One concludes that a phase design with a continuously varying winding

number along the radial direction provides better transverse resolution. Figure 8.2

compares the transverse resolution for the two cases at different defocus planes. A

continuously varying winding number along the radial direction provides compara-

tively a better transverse resolution, but a smaller DOF, pointing again to a trade-off
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Figure 8.1: Phase and PSF profiles of the Fresnel type zone based RPSF imagers. (a)
and (c) respectively are the phase and PSF profiles for an RPSF imager whose lth zone
has a phase of lφ. (b) and (d) respectively are the corresponding plots for the case of
continuously varying phase profile along the radial direction, where the phase of the lth

zone is given by Lu2φ, with L being the total number of Fresnel zones, and u denoting the
radial coordinate in the pupil plane.

between transverse resolution and DOF.
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Figure 8.2: Comparing transverse resolution of two different phase profiles of Fresnel type
zone based RPSF imagers. The peak value of the normalized PSF is chosen as the metric
to compare transverse resolution. The plot with the blue crosses represent an RPSF imager
which has a phase of lφ in the lth Fresnel zone. The plot with the red circles represent
an RPSF imager with the phase varying continuously along the radial direction as Lu2φ,
where L is the total number of Fresnel zones with

√
(l − 1)/L being the inner radius and√

l/L the outer radius of the lth Fresnel zone, and u denotes the radial coordinate in the
pupil plane.

8.2 Digital superresolution using the RPSF im-

ager

My original goal for the PhD dissertation was to solve a problem in digital superres-

olution (DSR). In DSR, the goal is to reconstruct a high resolution (HR) image from
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Figure 8.3: Schematic depicting the effect of pixel-limited resolution when optical PSF is
impulse-like.

multiple low resolution (LR) images where the resolution of the imaging system is

limited by the sensor array. The need for DSR arises because, often, the present dig-

ital imaging systems, may employ photodetector pixels that are large relative to the

extent of the PSF and in such cases the resulting pixel blur and/or aliasing can be-

come the dominant distortion limiting overall imager performance. This is illustrated

by Figure 8.3. This figure is a 1D depiction of the image formed by a traditional

camera when two point objects are separated by a subpixel distance. We see that

the resulting impulse-like PSFs are imaged onto essentially the same pixel leading to

spatial ambiguity and hence a loss of resolution. In such an imager, the resolution

is said to be pixel limited. The generalized sampling theorem (GST) by Papoulis [6]

provides a mechanism through which this aliasing distortion can be mitigated. The

theorem states that a band-limited signal (−Ω ≤ ω ≤ Ω) can be completely and

perfectly reconstructed from the sampled outputs of R nonredundant (i.e., diverse)

linear channels, each of which employs a sample rate of 2Ω/R (i.e., each of the R sig-

nals is undersampled at 1/R the Nyquist rate). This theorem suggests that aliasing

distortion can be reduced by combining multiple LR images to obtain a HR image.

A complete mathematical derivation of GST is provided in Appendix B.
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In the RPSF imager, the extent of the PSF is much larger than the individual

sensor pixel size, a scenario very different from the traditional DSR problems. Ashok

et al. [7] proposed to introduce pseudo random phase masks in order to achieve DSR.

In there, they intentionally increase the extent of PSF using PSF engineering such

that a single PSF covers many sensor pixels. This allows to localize point sources

very accurately, even beyond optical superresolution, as has already been shown in

PALM/STORM superresolution techniques [9]-[11]. The ShaRPI imaging technique

discussed in Chapter 6 images an extended object in many frames, where in each

frame, a cluster of few well separated points on the object are imaged. Thus ShaRPI

technique will allow us to achieve superresolution for extended objects.

8.3 Joint polarimetric-3D imaging using the

RPSF imager

A conventional imaging system maps brightness distribution from the object space

into the image space. Even though it provides the best quality images in the infocus

plane, but it has the least sensitivity to encode other important features in the

object like depth or polarization. In computational imaging, we modify the optical

design of the imaging system, so that the sensitivity to encode other important

features increases. Such imaging systems are often also referred to as ‘task-specific’

imaging systems. The RPSF imager is one such imager, wherein, we modify the

pupil phase in order to increase the sensitivity of the imager to encode depth. The

state of polarization of the radiation emitted, reflected or scattered by an object

contains information regarding the chemical constituents, surface texture and surface

orientaion of the object. Thus being able to image polarization is of great significance

in science.
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The RPSF imager used in this dissertation is based on the use of the orbital

angular momentum (OAM) of light to create an imaging system whose point-spread

function (PSF) simply rotates with changing defocus over large ranges of defocus

phase. In the most basic design, a circular imaging aperture is subdivided into a

number of annular Fresnel zones, with each successively larger zone carrying a suc-

cessively larger value of the integral phase-winding number. Each of these zones

imprints a specific OAM state on the transmitted wavefront, so the overall trans-

mitted wavefront consists of a coherent superposition of a number of OAM states.

Such a wavefront focuses at the image plane into an intensity pattern that is sim-

ply rotated compared to that obtained at another image plane at a different depth.

By using a liquid crystal device called the q-plate in conjunction with the spiral

phase mask of the RPSF imager, one is able to obtain efficient coupling between

polarization and OAM, essentially by converting the spin angular momentum of the

photon, which represents polarization, into its OAM [1]. Thus by using a q-plate in

tandem with a Fresnel type zone based phase plate, one may be able to achieve joint

polarimetric-3D imaging.

8.3.1 Polarization, OAM and q-plate

Besides energy and linear momentum, one can associate to the electromagnetic field

also an angular momentum (AM) content [1]. In the paraxial limit, e.g. when dealing

with a beamlike optical field, this AM can be naturally split into two components:

(i) a spin-like AM component (SAM), associated with the ellipticity of the light

polarization, and (ii) an orbital AM component (OAM), associated with a nonzero

average azimuthal gradient of the field, as in the case of a helical wavefront.

Liquid crystals (LC) are materials that are particularly well suited for interacting

with the angular momentum of light, owing to their anisotropic properties, to their
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softness allowing for a relatively easy spatial patterning, and to the their flexibility to

an external control by means of electromagnetic fields [2]. The LC optical response

shows a great sensitivity to the specific interaction geometry, and the LC nonlinear

optical properties can be also largely modified by altering only slightly the material

composition, e.g. by adding suitable dopants [3]. Being birefringent, LCs couple

very naturally with the SAM component of light, but more recently it has been

shown that they can be also used to control effectively the OAM component. More

precisely, a LC cell with a singular pattern of the nematic director can introduce a

strong spin-orbit coupling in the light propagation, resulting into strong variations of

both SAM and OAM. In particular geometries, these variations can be interpreted

as a spin-to-orbital conversion of the angular momentum of light [1]. This is the

physical principle behind the so-called q-plate [1], a LC-based device that has been

attracting increasing attention in the last years, owing to its possible applications in

both classical and quantum photonics [1]. Many of these applications derive from

the possibility of establishing a physical one-to-one mapping between the polarization

Poincare sphere and an isomorphic OAM subspace of an optical beam or of a single

photon.

8.3.2 The q-plate: concept and technology

A q-plate is built as a planar LC cell having thickness and birefringence selected so as

to induce a homogeneous birefringent phase retardation δ at the working wavelength

λ, for light propagation perpendicular to the cell plane walls (z axis). The LC

nematic director n is assumed to be uniform in the z direction, but inhomogeneous

in the xy plane of the cell, according to a prescribed pattern n(x, y) = n(r, φ), where

r and φ are the polar coordinates in the xy plane. In particular, the q-plate pattern

is specified by the following expression:

α(r, φ) = α0 + qφ (8.1)
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where α(r, φ) is the angle between the director n(x, y) and the x axis, α0 is a constant

angle specifying the director initial orientation on the axis x, and q is an integer or

semi-integer constant specifying the q-plate topological charge.

It can be easily proved that the Jones matrix M describing the q-plate action on

the optical field at each transverse position r, φ is the following:

M(r, φ) = cos
δ

2

 1 0

0 1

+ isin
δ

2

 cos2(α0 + qφ) sin2(α0 + qφ)

sin2(α0 + qφ) −cos2(α0 + qφ)


where δ is the above-mentioned birefringent phase retardation. Let us now assume

that at the q-plate input there is circularly polarized wave (with SAM = ±h̄) having

an arbitrary OAM given by mh̄, where m is the OAM quantum number. Its Jones

electric-field vector is then given by

Ein(r, φ) = E0(r)

 1

±i

 eimφ
where E0(r) is a radially-dependent arbitrary amplitude and ± is + for the left-

circular case and for the right-circular one. At the q-plate output, we then obtain

the following field:

Eout(r, φ) = E0(r)cos
δ

2

 1

±i

 eimφ + iE0(r)sin
δ

2
e±i2α0

 1

∓i

 eim′φ
where m′ = m±2q. This output field can be interpreted as a coherent superposition

of a first wave that has the same circular polarization and OAM as the input one,

and a second wave having reversed circular polarization and a modified OAM given

by m′h̄ (plus a uniform phase shift of ±2α0). The relative amplitude of these two

components of the output field is fixed by the birefringent retardation δ.

A q-plate is said to be tuned if δ = π, so as to cancel the first wave, i.e. that

having unchanged properties, and hence to obtain a maximal (in principle unitary)
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conversion of the input wave into the second term, i.e. the wave having reshaped

wavefront. A precise tuning of the q-plate can be obtained by acting on the LC

cell via a suitable external control-parameter, such as the cell temperature or an

applied voltage. In particular, a temperature control can be used for adjusting the

LC birefringence [5].

Currently, the project on joint polarimetric-3D imaging is being carried out by

Zhixian Xu, a PhD student at the Department of Physics and Astronomy, UNM,

under the supervision of Dr. Sudhakar Prasad.
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Appendix A

Point Spread Function (PSF)

Calculation

The point spread function (PSF) of different imaging systems used in the simulation

studies of this dissertation are calculated using the scalar paraxial model from their

respective pupil functions. The Fourier transform of the coherent PSF at the in-focus

plane is the pupil function of the imaging system [1]. Since we insert the phase mask

in the pupil plane, the phase mask is the Fourier transform. The 2D PSF images

at different defocus positions of an imaging system are computed by multiplying the

pupil phase by a quadratic phase factor, calculating the inverse Fourier transform,

and then its modulo-squared value, given by:

PSF (x, y, z) = |=−1[H(u, v) exp{−i π
λn
NA2dz(u2 + v2)}]|2 (A.1)

where (u, v) are normalized pupil plane co-ordinates and H(u, v) is the pupil function,

NA is the numerical aperture of the objective, n is the refractive index and dz is the

defocus distance and = is the 2D Fourier transform operator. Since the PSFs are

generated on a computer using Eqn A.1, a single reference mask as shown in Figure

A.1, which provides the physical location and size of the aperture as well as the grid
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size in the pupil plane, was used in order to get a strict comparison between all the

imagers.

Figure A.1: The reference mask used in different PPE imagers. The red circular region
is the lens region in the pupil plane where the transmission is 100%, and the blue region
represents no transmission. This mask was used by Matt Lew ( Dr. Moerner’s lab) to
generate the DH-PSF and Corksrew PSFs by plugging in the corresponding phase pro-
files. I plugged in Prasad’s RPSF phase profile and Grover’s DH-PSF phase profile to get
corresponding PSFs.
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Appendix B

Digital Superresolution using

Generalized Sampling Theorem

B.1 Shannon sampling theorem

First, I will present the derivation for the classical Shannon-Whittaker sampling

theorem. In order for a band-limited (i.e., one with a zero power spectrum for

frequencies ν > σ) signal to be reconstructed fully, it must be sampled at a rate

ν ≥ 2σ. A signal sampled at ν = 2σ is said to be Nyquist sampled, and ν = 2σ

is called the Nyquist frequency. No information is lost if a signal is sampled at the

Nyquist frequency, and no additional information is gained by sampling faster than

this rate.

B.1.1 Derivation of Shannon-Whittaker sampling theorem

Consier a bandlimited signal f(x) with its frequency band limited to (−σ, σ), and

let F (ν) denote the Fourier transform of f(x). A typical form of F (ν) is as shown
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Figure B.1: Magnitude of the Fourier transform of a bandlimited signal. Note that
|F (ν)|=0, ∀|ν|>σ(= 5cyc/cm)

in Figure B.1. Now, consider a function F ′(ν) which is a periodic function obtained

by periodically repeating the function F (ν) with a period 2σ.

Since F ′(ν) is a periodic function, with period 2σ, we can represent it as a Fourier

series. Hence,

F ′(ν) =
∞∑

n=−∞
φ(n) exp[−j2πνn/(2σ)] (B.1)

where

φ(n) =
1

2σ

∫ σ

−σ
F ′(ν)exp[j2πνn/(2σ)]dν (B.2)

=
1

2σ

∫ σ

−σ
F (ν)exp[j2πνn/(2σ)]dν (B.3)

=
1

2σ

∫ ∞
−∞

F (ν)exp[j2πνn/(2σ)]dν
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Figure B.2: F ′(ν), a periodic function obtained by periodically repeating F (ν) at intervals
of 2σ

=
1

2σ
=−1[F (ν)]|x= n

2σ

=
1

2σ
f(x =

n

2σ
) (B.4)

where = denotes the Fourier transform.

Using Eqns B.1 and B.4,

F ′(ν) =
∞∑

n=−∞

1

2σ
f(x =

n

2σ
) exp[−j2πνn/(2σ)]. (B.5)

We can write

f(x) =
∫ ∞
−∞

F (ν) exp[j2πνx]dν (B.6)

=
∫ σ

−σ
F ′(ν) exp[j2πνx]dν (B.7)

=
∫ σ

−σ

∞∑
n=−∞

1

2σ
f(x =

n

2σ
) exp[j2πν(x− n/(2σ))]dν
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=
∞∑

n=−∞

1

2σ
f(x =

n

2σ
)
∫ σ

−σ
exp[j2πν(x− n/(2σ))]dν

=⇒ f(x) =
∞∑

n=−∞
f(x =

n

2σ
)sinc[2σ(x− n/(2σ))] (B.8)

Eqn B.8 is known as the Shannon-Whittaker sampling theorem.

B.2 Derivation of Generalized sampling theorem

Consider the same bandlimited signal f(x), and its Fourier transform F (ν). Let this

signal pass through a linear filter with transfer function Hl(ν). When f(x) passes

through the linear filter, let the output be denoted by gl(x). Let gl(x) be available as

discrete data at intervals of L
2σ

along the x axis, where L is a positive integer greater

than 1. Hence one can write:

gl(x) = =−1[F (ν) ·Hl(ν)]

=
∫ ∞
−∞

F (ν) ·Hl(ν) exp[j2πνx]dν

=
∫ σ

−σ
F (ν) ·Hl(ν) exp[j2πνx]dν

=⇒ gl(x =
mL

2σ
)|mεI =

∫ σ

−σ
F (ν) ·Hl(ν) exp[j2πν

mL

2B
]dν

=
∫ −σ+ 2σ

L

−σ
F (ν) ·Hl(ν) exp[j2πν

mL

2σ
]dν

+
∫ −σ+ 2·2σ

L

−σ+ 2σ
L

F (ν) ·Hl(ν) exp[j2πν
mL

2σ
]dν

+ . . .+
∫ −σ+ (L−1)·2σ

L

−σ+ (L−2)·2σ
L

F (ν) ·Hl(ν) exp[j2πν
mL

2σ
]dν

=
∫ −σ+ 2σ

L

−σ
{F (ν) ·Hl(ν) exp(j2πν

mL

2σ
)

+ F (ν +
2σ

L
) ·Hl(ν +

2σ

L
) exp[j2π(ν +

2σ

L
)
mL

2σ
]

+ . . .+ F (ν +
(L− 1)2σ

L
) ·Hl(ν +

(L− 1)2σ

L
)
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× exp[j2π(ν +
(L− 1)2σ

L
)
mL

2σ
]}dν

=
∫ −σ+ 2σ

L

−σ
[F (ν) ·Hl(ν) + F (ν +

2σ

L
) ·Hl(ν +

2σ

L
)

+ . . .+ F (ν +
(L− 1)2σ

L
) ·Hl(ν +

(L− 1)2σ

L
)] exp(j2πν

mL

2σ
)dν

=
∫ −σ+ 2σ

L

−σ
Jl(ν) exp(j2πν

mL

2σ
)dν, (B.9)

where

Jl(ν) = [F (ν) ·Hl(ν) + F (ν +
2σ

L
) ·Hl(ν +

2σ

L
)

+ . . .+ F (ν +
(L− 1)2σ

L
) ·Hl(ν +

(L− 1)2σ

L
)]. (B.10)

Consider a function J ′l (ν) which is periodic with periodicity of 2σ
L

, and

J ′l (ν) = Jl(ν), ∀ νε(−σ,−σ +
2σ

L
). (B.11)

Using Eqns. B.9 and B.11, we can write:

gl(x =
mL

2σ
)|mεI =

∫ −σ+ 2σ
L

−σ
J ′l (ν) exp(j2πν

mL

2σ
)dν. (B.12)

Since J ′l (ν) is periodic with periodicity 2σ
L

, one can write it as a Fourier series:

J ′l (ν) =
∞∑

n=−∞
φl(n) exp[−j2πνn/(2σ/L)], (B.13)

where

φl(n) =
1

(2σ/L)

∫ −σ+ 2σ
L

−σ
J ′l (ν) exp[j2πνn/(2σ/L)]dν. (B.14)

Comparing Eqns B.12 and B.14, we get:

φl(n) =
1

(2σ/L)
gl
(nL

2σ

)
. (B.15)

Using Eqns B.13 and B.15, we get

J ′l (ν)|νε(−σ,−σ+ 2σ
L
) = Jl(ν)|νε(−σ,−σ+ 2σ

L
)

=
∞∑

n=−∞

1

(2σ/L)
gl
(nL

2σ

)
exp[−j2πνn/(2σ/L)]. (B.16)
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Using Eqns B.10 and B.16, we get for all νε(−σ,−σ + 2σ
L

),

[F (ν) ·Hl(ν) + F (ν +
2σ

L
) ·Hl(ν +

2σ

L
)+ . . . +F (ν +

(L− 1)2σ

L
) ·Hl(ν +

(L− 1)2σ

L
)]

=
∞∑

n=−∞

1

(2σ/L)
gl(
nL

2σ
) exp[−j2πνn/(2σ/L)]

(B.17)

Using L different linear filters, we can rigorously write a matrix equation as below,

which should be true for all νε(−σ,−σ + 2σ
L

).

H1(ν) H1(ν + 2σ
L ) . . . H1(ν + (L−1)2σ

L )

H2(ν) H2(ν + 2σ
L ) . . . H2(ν + (L−1)2σ

L )
...

...
...

...

HL(ν) HL(ν + 2σ
L ) . . . HL(ν + (L−1)2σ

L )





F (ν)

F (ν + 2σ
L )

...

F (ν + (L−1)2σ
L )

 =



∑∞
n=−∞

L
2σ
g1(

nL
2σ

) exp[−j2πνn/(2σ/L)]∑∞
n=−∞

L
2σ
g2(

nL
2σ

) exp[−j2πνn/(2σ/L)]
...∑∞

n=−∞
L
2σ
gL(nL

2σ
) exp[−j2πνn/(2σ/L)]


.

In the above matrix equation, let us call the system matrix as H and the unknown

vector as F , and the known vector g which consists of discrete data sets . Hence in

these notations, one can write:

H · F = g (B.18)

Thus the necessary and sufficient condition to be able to evaluate the Fourier trans-

form of the signal at all frequencies (−σ, σ), is that the system matrix H is invertible

at all frequencies ν ∈ (−σ,−σ+ 2σ
L

). This is called the Generalized sampling theorem.
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Appendix C

Localization of Point Sources

C.1 Mean value of χ2

In Chapter 4, we discuss the problem of localization of point sources using the RPSF

imager. As mentioned in section 4.3, estimates of 3D position coordinates of a scene

consisting of point sources is achieved by minimizing an unregularized cost function,

called the fit-to-data term or χ2-term, as given in Eqn 4.1. The minimization of the

χ2-term is computed numerically in Matlab using one of the minimization routines

like fminunc. Using simple statistical analysis, we can derive the minimum value

of the χ2-term and its variance. Let the Np × Np 2D pixel array be mapped into

an equivalent N2
p × 1 vector. Let the difference between the true values and the

estimated values of the image at the ith pixel be denoted by δyi. The noise at the

ith pixel be denoted by ni, with σ2 being the variance of noise. The average of the

χ2-term can be derived as follows:

χ2 ≡ 1

2σ2

N2
p∑

i=1

(δyi + ni)
2
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=
1

2σ2

N2
p∑

i=1

[(δyi)
2 + n2

i + 2δyini]
2

=⇒< χ2 > = <
1

2σ2

N2
p∑

i=1

[(δyi)
2 + n2

i + 2δyini] >

=
1

2σ2

N2
p∑

i=1

[< (δyi)
2 > + < n2

i > + < 2δyini >]

=
1

2σ2

N2
p∑

i=1

[< (δyi)
2 > + < n2

i >]

=
1

2σ2

N2
p∑

i=1

[< (δyi)
2 > +σ2]

=
1

2σ2

N2
p∑

i=1

< (δyi)
2 > +

N2
p

2
(C.1)

At the global minimum of the χ2-term, there is perfect match between the true and

estimated images, and hence the average value of the minimum value of the χ2-term

is given by

< χ2
min > =

N2
p

2
(C.2)

C.2 Variance of χ2

The variance of the χ2-term at its global minimum can be derived as follows:

σ2
χ2 = < (χ2

min− < χ2
min >)2 > (C.3)

= < [
1

2σ2

N2
p∑

i=1

(n2
i − σ2)]2 >

=
1

4σ4
< [

N2
p∑

i=1

N2
p∑

j=1

(n2
i − σ2)× (n2

j − σ2)] >

=
1

4σ4

N2
p∑

i=1

N2
p∑

j=1

< [n2
in

2
j − n2

iσ
2 − σ2n2

j + σ4] >
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=
1

4σ4

N2
p∑

i=1

N2
p∑

j=1

[< n2
in

2
j > −σ4]

=
1

4σ4
[{
N2
p∑

i=1

∑
j=i

< n2
in

2
j > −σ4}+

N2
p∑

i=1

∑
j 6=i
{< n2

in
2
j > −σ4}]

=
1

4σ4
[

N2
p∑

i=1

(< n4
i > −σ4) +

N2
p∑

i=1

∑
j 6=i

(< n2
i >< n2

j > −σ4)]

=
1

4σ4

N2
p∑

i=1

(3σ4 − σ4)

=
N2
p

2
(C.4)

Here we have used the Gaussian moment theorem:

< x2n >=
(2n!)

2n(n!)
< x2 >n (C.5)
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Appendix D

Full 3D Shape Recovery using Two

Data Frames

D.1 Reduced cost function

In Chapter 5, we discuss the problem of 3D shape recovery using two data frames.

As mentioned in section 5.3, estimates of intensity and depth profiles are obtained

by minimizing a cost function expressed in Eqn 5.1 as:

C(I, Z) =
1

2σ2
[(Y1 −H1I)T (Y1 −H1I) + (Y2 −H2I)T (Y2 −H2I)]

+
λI
2
ITRII +

λZ
2
ZTRZZ (D.1)

At the best intensity estimate :

∂C(I, Z)

∂I
= 0 (D.2)

=⇒ λIRII −
1

σ2
{H1

T (Y1 −H1I) + H2
T (Y2 −H2I)} = 0

=⇒ {λIRI +
1

σ2
(H1

TH1 + H2
TH2)}I =

1

σ2
(H1

TY1 + H2
TY2)

=⇒ (λIσ
2RI + H1

TH1 + H2
TH2)I = (H1

TY1 + H2
TY2)
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=⇒ IBest = (λIσ
2RI + H1

TH1 + H2
TH2)−1(H1

TY1 + H2
TY2)

=⇒ IBest = M1Y1 +M2Y2 (D.3)

where

M1 = (λIσ
2RI + H1

TH1 + H2
TH2)−1H1

T (D.4)

M2 = (λIσ
2RI + H1

TH1 + H2
TH2)−1H2

T (D.5)

D.2 Gradient of fit-to-data term

For an extended 3D object, let bij, zij, yij, hij denote the 2D brightness, depth, data

and PSF distribution as a function of the pixel index ij over an (Np × Np) pixel

array. Here hij is a function of the depth zk,l. Let I, Z, Y denote the 1D mapping

of 2D brightness, depth and data respectively, and H denote the blur matrix for the

equivalent 1D system. The fit-to-data term, in terms of the 2D parameters is given

by:

F =
1

2σ2

∑
<i,j>

[yi,j −
∑
<k,l>

hi−k,j−l(zk,l)bk,l]
2 (D.6)

The gradient of F w.r.t depth is given by:

∂F

∂zk,l
=

1

2σ2
× 2

∑
<i,j>

[yi,j −
∑

<k′,l′>

hi−k′,j−l′(zk′,l′)bk′,l′ ]

× (−bk,l
∂hi−k′,j−l′

∂zk,l
)

≈ −IK
σ2

∑
N

[{YN −
∑
K′

HN−K′(ZK′)IK′}

× 1

ε
{HN−K(ZK+ε)−HN−K(ZK)}]

= −IK
σ2

(Ȳ T − ĪTHT )(HZK+ε
−HZK )/ε (D.7)
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where indices N and K run from 1 to N2
p , representing the indices in the equivalent

1D mapped space.

D.3 Hessian of fit-to-data term

For N 6= K, the Hessian of F w.r.t depth is given by:

∂2F

∂zi,j∂zk,l
=

∂

∂ZN
(
∂F

∂ZK
)

=
IK
σ2

∑
N ′

∂HN ′−N

∂ZN
IN ×

∂HN ′−K

∂ZK

=
INIK
σ2

∑
N ′

∂HN ′−N

∂ZN
× ∂HN ′−K

∂ZK
(D.8)

For N = K, the Hessian of F w.r.t depth is given by:

∂2F

∂zi,j∂zk,l
=

I2K
σ2

∑
N ′

(
∂HN ′−K

∂ZK
)2

−
∑
N ′

[YN ′ −
∑
K′

HN ′−K′(ZK′)IK′ ]×
IK
σ2

∂2HN ′−K

∂Z2
K

(D.9)

Approximate 2nd derivative is computed as:
HZK+ε+HZK−ε−2HZK

ε2
.
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