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Abstract

One of the major factors plaguing the performance of synthetic aperture radar (SAR) imagery is the signal-
dependent, speckle noise. Grainy in appearance, it is due to the phase fluctuations of the electromagnetic returned
signals. Since the inherent spatial-correlation characteristics of speckle in SAR images are not embedded in the
multiplicative models for speckle noise, a new approach is proposed here that provides a new mathematical
framework for modeling and mitigation of speckle noise. The contribution of this report is thus twofold. First, a
novel model for speckled SAR imaging is introduced based on Markov random fields (MRFs) in conjunction with
statistical optics. Second, utilizing the model, a global energy-minimization algorithm, the simulated annealing
(SA), is introduced for speckle reduction. In particular, the joint conditional probability density function (cpdf)
of the intensity of any two points in the speckled image and the associated correlation function are used to derive
the cpdf of the center pixel intensity given its four neighbors. The Hammersley-Clifford theorem is then used
to derive the energy function associated with the MRF. The SA built on the Metropolis sampler, is employed
for speckle reduction. Four metrics are used to assess the quality of the speckle reduction: the mean-square
error, SNR, an edge-preservation parameter and the equivalent number of looks. A comparative study using
both simulations and real SAR images indicates that the proposed approach performs well compared to filtering
techniques such as the Gamma Map, the modified Lee and the enhanced Frost algorithms.
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1 Introduction

Synthetic aperture radar(SAR) is a type of imaging system that uses coherent radiation to create images. The
major advantage of SAR over non-radar imaging systems is that it does not rely on an external source. As an
active system, SAR emits its own radiations and remains effective independently of weather or daylight conditions
[9]. Unfortunately, this autonomy comes with a higher susceptibility to speckle noise.

A SAR system coherently records the amplitude and the phase echoed from a target. Since each resolution
cell of the system contains several scatterers, and since the phases of the returned signals from these scatterers
are randomly distributed, the inherent coherent processing involved results in interference noise like patterns also
called speckle. A large variety of speckle-reduction techniques have been proposed in the literature. Among them
are the Lee filter and its derivative [13, 15], the geometric filter [4], the Kuan filter [12], the Frost filter and its
derivative [15, 11], the Gamma MAP filter [15], the wavelet approach [2, 7] and theMarkov-random-field(MRF)
approach [17, 8]. In this report, we will focus on two issues: the modeling of speckled imagery and speckle
reduction. What is unique about our MRF model is that it is based on the physics of the speckle phenomenon. In
particular, we merge the concept of a MRF with statistical properties of speckle from optics and use this model
to implement speckle reduction using simulated annealing (SA).

2 First order MRF model

A MRF consists of an undirected graphG = (V,E), which has undirected edges drawn as lines. The setV of ver-
tices of the graph is{Ik, Ik1, Ik2, Ik3, Ik4} andE is the set of edges. Two type of cliques can be defined for the graph

in Figure 1. The single-clique,C1 =
{
(xk,yk),k∈ S

}
, and the pair-clique,C2 =

{
{(xk,yk),(xk1,yk1)},{(xk,yk),

(xk2,yk2)},{(xk,yk),(xk3,yk3)},{(xk,yk),(xk4,yk4)} k∈ S,ki ∈ S, i = 1, · · ·,4
}

, whereS is the set of indexes of the

image.

Ik3
Ik

Ik4

Ik2

Ik1

(a)
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� � �
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(b)

Figure 1: (a) First order neighborhood (lattice form). (b) Graph of the first order neighborhood.

2.1 Conditional probability density specification

Theconditional probability density(cpd) function of the intensityIk j at pointk j given the value of the intensity
Iki at pointki is given by Goodman in [5]. Here, the global mean,〈I〉, has been substituted by(it)k j , which is
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defined as the true intensity image at pointk j . The realization of the random variableIk j at pointk j is denoted by
ik j . More precisely,

p
Ik j
|Iki

(ik j |iki ) =
e
−

|µ(rki kj
)|2iki

+ik j
(it )kj

(1−|µ(rki kj
)|2)

(it)k j (1−|µ(rkik j )|2)
× I0

( 2
√

iki ik j |µ(rkik j )|
(it)k j (1−|µ(rkik j )|2)

)
, (1)

whereI0(·) is a modified Bessel function of the first kind and zero order, and|µ(rkik j )| andrkik j are, respectively,
the coherence factor and the Euclidian distance between the pointski andk j . We define the coherence factor as
follows:

|µ(rkik j )|=
{
|αrki kj

| ∈ [0,1[ ∀ rkik j ≤ 1

0 otherwise.
(2)

Note that ifrkik j > 1 then (1) becomes independent ofiki and equal topIk j
(ik j ) = e

−
ik j

(it )kj /(it)k j . In addition, in

(2) the correlation is assumed to be limited to one unit from the center pixel. This condition can still be met with
larger correlation (more than one unit correlation) by preprocessing the data. Indeed, in the case of an image
having a larger correlation we will apply one of the interpolation methods in order for the correlation to fit the
above definition of the coherence factor [8]. The Euclidian distance between the pair of pixels(ik1, ik2), (ik2 , ik3),
(ik3, ik4), (ik4, ik1),(ik2, ik4) and(ik1, ik3), is either

√
2 or 2; in both cases, the distance is greater than 1 unit. Using

the coherence factor defined in (2), we can conclude that these pairs of pixels are conditionally independent given
the center pixelik. Then cpd function of the intensity of the center pixel,ik, given the four neighborsik1, ik2, ik3

andik4 takes the following form

p
Ik|Ik1

,Ik2
,Ik3

,Ik4
(ik|ik1, ik2, ik3, ik4)=

p
Ik|Ik1

(ik|ik1)p
Ik|Ik1

(ik|ik1)p
Ik|Ik1

(ik|ik1)p
Ik|Ik1

(ik|ik1)
(

pIk
(ik)

)3 (3)

Recall that each term in (3) is precisely known using (1). Therefore, after substitution we obtain

p
Ik|Ik1

,Ik2
,Ik3

,Ik4
(ik|ik1, ik2, ik3, ik4)=

e
−∑4

j=1

A(ik,ik j
)

B(ik,ik j
)

∏4
j=1 I0(

C(ik,ikj
)

B(ik,ikj
) )

(pIk
(ik))3 ∏4

j=1B(ik, ik j )

=
e
−∑4

j=1

A(ik,ik j
)

B(ik,ik j
)
e

∑4
j=1 ln(I0(

C(ik,ik j
)

B(ik,ik j
) ))

e
ln(pIk

(ik))3)
e∑4

j=1 ln(B(ik,ikj
))

=e
−∑4

j=1

A(ik,ik j
)

B(ik,ik j
)
e

∑4
j=1 ln(I0(

C(ik,ik j
)

B(ik,ik j
) ))

e
−∑4

j=1 ln(B(ik,ikj
))

e
−3ln(pIk

(ik))

=e
−∑4

j=1

A(ik,ik j
)

B(ik,ik j
) +∑4

j=1 ln(I0(
C(ik,ik j

)

B(ik,ik j
) ))−∑4

j=1 ln(B(ik,Ikj
))−3ln(pIk

(ik))

And finally,

p
Ik|Ik1

,Ik2
,Ik3

,Ik4
(ik|ik1, ik2, ik3, ik4) = e

−∑4
j=1 ln(B(ik,ikj

))−∑4
j=1

A(ik,ik j
)

B(ik,ik j
) +∑4

j=1 ln(I0(
C(ik,ik j

)

B(ik,ik j
) ))−3ln(pIk

(ik))
(4)

whereA(ik, ik j ) = |αrkkj
|2ik j + ik, B(ik, ik j ) = (it)k(1−|αrkkj

|2), andC(ik, ik j ) = 2
√

ikik j |αrkkj
|.
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2.2 Energy and potential function

We observe that the cpd function obtained in (4) has the form

p
Ik|Ik1

,Ik2
,Ik3

,Ik4
(ik|ik1, ik2, ik3, ik4) = e−U(ik,ik1

,ik2
,ik3

,ik4
) (5)

where,
U(ik, ik1, ik2, ik3, ik4) = VC1(ik)+VC2(ik, ik1, ik2, ik3, ik4), (6)

VC1(ik) = 3ln(pIk
(ik)),

VC2(ik, ik1, ik2, ik3, ik4) =
4

∑
j=1

(A(ik, ik j )
B(ik, ik j )

− ln
(

I0
(C(ik, ik j )

B(ik, ik j )
))

+ ln
(
B(ik, ik j )

))
.

From the Hammersley-Clifford theorem [3], the energy function is identified to beU(ik, ik1, ik2, ik3, ik4). The terms
VC1(ik) andVC2(ik, ik1, ik2, ik3, ik4) are, respectively, the single-clique and the pair-clique potential functions.

3 Simulation and Experimental Results

3.1 Image quality assessment parameters

The assessment of the speckle reduction quality will be based on four metrics. The first metric is themean square
error (MSE) between the noise-free and the denoised images having eachK pixels; it is defined as follows

MSE= K−1
K

∑
i=1

(Ii − Îi)2.

The second metric is the so-calledβ parameter used in [7], which assesses the quality of the edge preservation. It
is defined by

β =
Γ(IH− IH, ÎH− ÎH)√

Γ(IH− IH, IH− IH)Γ(ÎH− ÎH, ÎH− ÎH)
.

with Γ(I1, I2) = ∑K
i=1 I1i I2i . The best preservation coefficient is 1. The quantitiesIH andÎH are the highpass filtered

versions ofI and Î , respectively (using the Laplacian operator), andI and Î represent the original (or noise free)
and the noisy (or despeckle) intensity image, respectively. The third metric, which is thesignal-to-noise ratio
(SNR) in db is defined by

SNR= 10log10(
K

∑
j=1

I i
2
/ K

∑
j=1

(I i − Î i)
2
).

The forth and final metric is theeffective number of looks(ENL); it is often used to estimate the speckle noise
level in a SAR image [8]. The higher the parameter the lower the speckle noise in the area will be. The ENL is
used to assess the reduction performance not only on simulated but also on real speckled images. It is obtained
by using the mean and variance intensity over a uniform area as follows

ENL =
(mean2)UniformArea

(variance)UniformArea

3
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3.2 Simulated Annealing using the Metropolis sampler algorithm

In this section we describe the combined SA andMetropolis sampler(MS) scheme used for speckle reduction.
The SA is a global energy-minimization algorithm [10]. It is applied on the MS at a gradually decreasing tem-
peratureT. Note that∆U represents the energy difference between the candidate and the current configuration
energy. This is where the energy obtained in (6) comes into play. The description of the SA-MS algorithm is
summarized as follows:

Initialization Enter the image to process then set the initial temperatureT0 and the coherence factorαrkkj
.

Step 1 : Start the SA process: Consider thekth pixel with intensityik. Generateiknew ∈ L\{iknew} at random with
L\{iknew} being the set of grey levels exceptiknew.

Step 2 : Update the temperature withTk = λ×Tk−1, whereλ is a fixed parameter (here,λ is chosen as 0.97).

Step 3 : Computep = min{1,e−∆U/Tk}, where∆U = U(iknew, ik2, ik3, ik4)−U(ik, ik2, ik3, ik4).

Step 4 : Acceptance/Rejection step.

Generate a uniformly-distributed r.v.R∈ [0,1].

If R< p then acceptiknew, i.e., ik ← iknew.

If R≥ p then rejectiknew, i.e., ik is unchanged.

Step 5 : Incrementk and go to Step-1 untilk = M×N, theM×N being the size of the image.

Steps 1-5 constitute one iteration of the SA scheme. The SA will be run until the equilibrium is reached then the
despeckled image is returned.

3.3 Simulation of speckled images

In order to create a speckled image from an original image we feed the SA-MS algorithm with the original image
and set the temperature to a fix value; here we have chosenT0 = 10 (the results of other choices are presented
later). The algorithm is run one time. The noise free images used in this work, are the aerial photographs of two
scenes; they will be called photo1 and photo2, respectively [1]. Figures 2 and 3 show the result of the simulations.
The SNR is used to calculate the information content. We will study now certain special cases: for a temperature
T approaching zero, the Metropolis algorithm predicts no major change of the output compared to the current
input; this is shown in Figure 4a and Figure 4b below. As the temperatureT increases, so does the noise. This is
shown in the Figures 5-8.

4
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(a) (b)

Figure 2: (a) Original photo1. (b) Speckled version of photo1 with SNR=14.11 db.

(a) (b)

Figure 3: (a) Original photo2. (b) Speckled version of photo2 with SNR=14.34 db.

5
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(a) (b)

Figure 4: (a) Speckled version of photo1 withT0 → 0 and SNR=25.66 db. (b) Speckled version of photo2 with
T0 → 0 and SNR=27.84 db.

(a) (b)

Figure 5: (a) Speckled version of photo1 withT0 = 20 and SNR=11.29 db. (b) Speckled version of photo1 with
T0 = 30and SNR=10.27 db.

6
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(a) (b)

Figure 6: (a) Speckled version of photo1 withT0 = 40 and SNR=9.74 db. (b) Speckled version of photo1 with
T0 = 500and SNR=7.74 db.

(a) (b)

Figure 7: (a) Speckled version of photo2 withT0 = 20 and SNR=11.12 db. (b) Speckled version of photo2 with
T0 = 30and SNR=9.92 db.

7
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(a) (b)

Figure 8: (a) Speckled version of photo2 withT0 = 40 and SNR=9.27 db. (b) Speckled version of photo2 with
T0 = 500and SNR=7.06 db.

3.4 Speckle reduction of simulated speckled images

The goal here is to reduce the speckle existing in Figures 2b and 3b. We compare our proposed approach against
well-known speckle removal filters: the Gamma Map, the modified Lee and the enhanced Frost filters [14, 15].
The results of the speckle reduction are presented in Figures 9-13 for photo1 on one hand and Figures 14-17 for
photo2 on the other hand.

(a) (b)

Figure 9: (a) Original photo1. (b) Speckled version of photo1 withT0 = 10and SNR=14.11 db.

Tables I and II give a summary of the results. The metrics ENL, MSE,β, and SNR defined in section 3.1
are evaluated for the proposed approach and compared to the other filters. For both images tested (photo1 and

8
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(a) (b)

Figure 10: (a) Modified-Lee filtered version. (b) Gamma filtered version.

photo2), around 40 iterations, our proposed approach outperforms the other filters based on all above four metrics.

(a) (b)

Figure 11: (a) Frost Enhanced filtered version. (b) Proposed approach after 40 iterations.

9
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(a) (b)

Figure 12: (a) Proposed approach after 50 iterations. (b) Proposed approach after 60 iterations.

(a) (b)

Figure 13: (a) Proposed approach after 74 iterations. (b) Proposed approach after 100 iterations.

10
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ENL MSE β SNR(db)
Noisy photo1 26.14 733.95 0.2754 14.11

Gamma filtered 48.28 354.37 0.3608 17.27
Modified-Lee filtered 50.06 305.51 0.4384 17.92

Enhanced-Frost filtered 48.50 306.67 0.3995 17.90
Proposed approach after40th iterations 51.26 302.67 0.4264 17.96
Proposed approach after50th iterations 52.59 299.11 0.4399 18.01
Proposed approach after60th iterations 53.41 297.44 0.4496 18.03
Proposed approach after74th iterations 54.96 296.42 0.4588 18.05
Proposed approach after100th iterations 56.29 298.41 0.4663 18.22

Table I: Some results of speckle reduction using photo1.

(a) (b)

Figure 14: (a) Original photo2. (b) Speckled version of photo2 with SNR=14.34 db.

11
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(a) (b)

Figure 15: ((a) Modified-Lee filtered version. (b) Gamma filtered version.

(a) (b)

Figure 16: (a) Enhanced Frost filtered version. (b) Proposed approach after 40 iterations.

12
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(a) (b)

Figure 17: (g) Proposed approach after 50 iterations. (h) Proposed approach after 60 iterations.

ENL MSE β SNR(db)
Noisy photo2 13.82 760.02 0.3139 14.34

Gamma filtered 24.48 309.66 0.4427 18.24
Modified-Lee filtered 25.13 308.32 0.4289 18.26

Enhanced-Frost filtered 24.92 313.41 0.3808 18.19
Proposed approach after40th iterations 84.79 297.64 0.4440 18.41
Proposed approach after50th iterations 91.45 294.78 0.4562 18.45
Proposed approach after60th iterations 97.15 294.46 0.4629 18.46

Table II: Some results of speckle reduction using photo2.

3.5 Application of speckle reduction to real SAR image

We have seen in Section 3.4 that our filtering approach behaves as expected on simulated speckled images. It will
now be tested on a real SAR images [16, 6].

The results of the speckle reduction are shown in Figures 18-21 for the first real SAR image (SAR1). Table III
gives a summary of the results obtained. It can be seen that after 21 iterations, the proposed approach yields a
higher ENL than the other filters, which is an indication of a more efficient speckle reduction.

The second real SAR image (SAR2), is processed similarly. The results of the speckle reduction are shown
in Figures 22-25 and Table IV gives a summary of the results. The ENL for the proposed approach after 19
iterations is, once again, larger than those obtained for the standard filters.

13
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(a) (b)

Figure 18: (a) SAR1 (noisy). (b) Modified Lee filtered SAR1.

(a) (b)

Figure 19: (a) Gamma filtered SAR1. (b) Enhanced Frost filtered SAR1.

ENL
SAR1 114.63

Gamma filtered SAR1 36.51
Modified Lee filtered SAR1 40.06

Enhanced Frost filtered SAR1 40.05
Proposed approach after21st iterations (SAR1) 40.29
Proposed approach after31st iterations (SAR1) 43.64
Proposed approach after41st iterations (SAR1) 45.55
Proposed approach after51stiterations (SAR1) 46.93

Table III: Some results of speckle reduction using SAR1.

14
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(a) (b)

Figure 20: (a) The proposed approach after 21 iterations. (b) The proposed approach after 31 iterations.

(a) (b)

Figure 21: (a) The proposed approach after 41 iterations. (b) The proposed approach after 51 iterations.

ENL
SAR2 9.47

Gamma filtered SAR2 14.78
Modified Lee filtered SAR2 15.08
Enhance Frost filtered SAR2 13.96

Proposed approach after19th iterations (SAR2) 15.14
Proposed approach after29th iterations (SAR2) 15.79
Proposed approach after39th iterations (SAR2) 16.27
Proposed approach after49th iterations (SAR2) 16.57

Table IV: Some results of speckle reduction using SAR2.

15
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(a) (b)

Figure 22: (a) SAR2 (noisy). (b) Modified Lee filtered SAR2.

(a) (b)

Figure 23: (a) Gamma filtered image. (b) Enhanced Frost filtered SAR2.
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(a) (b)

Figure 24: (a) The proposed approach after 19 iterations. (b) The proposed approach after 29 iterations.

(a) (b)

Figure 25: (a) The proposed approach after 39 iterations. (b) The proposed approach after 49 iterations.

17
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4 Conclusion

The contribution of this report is twofold. 1) It presents a novel model to model and simulate speckled images,
in the context of Markov random field ; and 2) uses this model together with the Metropolis SA algorithm to
reduce the speckle in simulated speckle imagery as well as in real SAR imagery. Various speckled images have
been tested showing a similar trend. The reduction process using our proposed approach seems to outperform
the Gamma Map, the modified Lee and the enhanced Frost filters. Three main reasons can explain this improved
performance. Firstly, the intrinsic spatially-correlated and signal-dependent nature of speckle noise makes the
MRF framework a natural choice. Secondly, the SA, being an iterative method, allows a gradual and interactive
noise removal compared to the standard methods [8]. Thirdly, since the energy function used in the SA is derived
according to the physical model of the speckle, which, in turn, leads to a reliable speckle reduction. The only bot-
tleneck of the proposed approach is its computational complexity, which is currently under further investigation.
An extension of this work to a dynamic model for speckle is also under investigation.
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