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PHYSICAL REVIEW A VOLUME 27, NUMBER 3 MARCH 1983 

Space-charge-limit instabilities in electron beams 

E. A. Coutsias and D. J. Sullivan'" 
Department oj Mathematics, University oj New Mexico, Albuquerque, New Mexico 87131 

(Received 22 April 1982) 

The method of characteristics and multiple-scaling perturbation techniques are used to 
study the space-charge instability of electron beams. It is found that the stable oscillating 
state (virtual cathode) created when the space-charge limit is exceeded is similar to a col­
lisionless shock wave. The oscillatory solution originates at the bifurcation point of two 
unstable steady states. Complementary behavior (virtual anode) results when an ion beam 
exceeds its space-charge limit. The virtual cathode can also exist in the presence of a neu­
tralizing heavy-ion background. The Pierce instability, where the electron and ion charge 
densities are equal, is a special case of this broader class. Estimates of the nonlinear growth 
rate of the instability at the space-charge limit are given. 

I. INTRODUCTION 

Since the discovery of the Child-Langmuir rela­
tion1•2 it has been known that exceeding the limiting 
current of a diode leads to the development of a vir­
tual cathode. Subsequently, numerous papers were 
written on experiments and theory relating to 
space-charge-limited flows. Reference 3 provides 
an excellent background and bibliography. More re­
cently, the exact steady-state solutions for electron 
beams in one-dimensional relativistic diodes4 and 
bounded drift spacess were derived. It is easily seen 
that for sufficiently large currents there exist two 
steady states for an electron beam, only one of 
which is stable.6 At the space-charge limit (SCL) 
these two states coalesce, and above the SCL they 
disappear? As current is increased past the SCL, 
the beam develops a jump instability and relaxes 
into an oscillating state. 

In the early 1960's, computer models were 
developed which quantitatively depicted the non­
linear oscillatory nature of the virtual cathode.8- 10 

These were one-dimensional, nonrelativistic, electro­
static, multiple-sheet models. References 8 and 9 
qualitatively pointed out many interesting dependen­
cies of the oscillation frequency and potential 
minimum position on injected current, thermal 
spread, and circuit resistance. Reference 10 presents 
computer experiments with one and two species. 

The phenomenon of virtual-cathode formation in 
intense relativistic electron beams figures prom­
inently in a number of high-interest research areas. 
Devices used to produce high-current ion beams for 
inertial-confinement fusion-pinch reflex diodes 11.12 

and reflex triodes\3· 14-depend on the virtual 
cathode to inhibit electron transport and use its po­
tential well to accelerate ions. The recent concept of 
the spherical electron-to-ion converterlS requires a 
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virtual cathode. 
The virtual cathode plays a dominant role in areas 

other than production of light-ion beams for fusion. 
It is attributed with the main role in collective ion 
acceleration in neutral gas.16•17 Control of virtual­
cathode motion is the mechanism for acceleration in 
the Ionization Front Accelerator.18•19 It is also the 
acceleration method in two concepts for collective­
effect accelerators.20•21 A final application is the use 
of virtual-cathode oscillations to produce high­
power short-wavelength microwaves.22- 2s Experi­
ments using reflex triodes have already produced 1.4 
GW of power with 12% beam-to-rf energy­
conversion efficiency. 26 

In this paper we use multiple-scaling perturbation 
techniques to study the time-dependent behavior of 
a beam when the SCL is exceeded. We derive esti­
mates for the nonlinear growth rate of the ensuing 
instability and show that even below the SCL the 
beam is unstable to sufficiently large perturbations. 
The method can be applied to a wide class of prob­
lems, but here we treat the short-circuited one­
dimensional electrostatic diode depicted in Fig. 1 as 
the simplest model containing the appropriate phys­
ics. We show that, at least in one dimension, an ar­
bitrary heavy-ion background does not alter the 
qualitative behavior of the beam and present numer­
ical results that exhibit virtual-cathode oscillations 
for a neutral beam. 

II. PHYSICAL DESCRIPTION 

Simulations were carried out in conjunction with 
the theory presented in the next section using a 
two-dimensional, relativistic, electrostatic, particle­
in-cell code. The code can solve self-consistently for 
the time-dependent trajectories of tens of thousands 
of plasma particles over thousands of plasma 

1535 ® 1983 The American Physical Society 
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x 

FIG. 1. Schematic of the short-circuited one­
dimensional electrostatic diode modeled in this study. 

periods. All variables are expressed in dimensionless 
terms. Therefore length is in units of c Imp, time is 
measured in units of mi 1, and particle velocity is 
given by 

IJ;=f3;y (i =1,2,3) , 

where mp is the initial electron plasma frequency. 
In these simulations a monoenergetic 51-keV elec­

tron beam is injected into a Cartesian geometry. 
The left and right boundaries are grounded, 
representing a planar short-circuited diode. Periodic 
boundary conditions in the transverse direction 
make configuration space effectively one­
dimensional. In general, the simulation had 62 cells 
in the longitudinal direction modeling a length of 
1.Oe Imp" The time step was O.0125mi 1. Twenty 
particles were injected per cell. 

A detailed discussion of the physical dynamics of 
the virtual cathode based on these numerical results 
is appropriate here. The usual graph of potential 
minimum t/Jm in the diode versus electron-beam 
current a is shown in Fig. 2. The parameter a will 
be discussed later. When a is increased above the 
space-charge limit, t/Jm jumps from the stable 
normal-C branch to the oscillatory stable branch. 
The amplitUde and position of t/Jm while on the os­
cillatory branch describe a limit cycle, as expected 
for a relaxation oscillation which this represents. 
Typical limit cycles are depicted in Fig. 3. As a is 
increased further, t/Jm, the oscillation frequency, and 
virtual-cathode position within the diode asymptoti­
cally approach limiting values. If a is decreased, the 
oscillation amplitude tJ..t/Jm decreases, and the posi­
tion of t/Jm moves toward the diode center. The elec­
tron flow reverts to the equilibrium steady state 
when the perturbation due to the rate of change of 
diode current below the space-charge limit is suffi­
ciently large. This normally occurs before the bifur­
cation point is reached. The entire process forms a 
hysteresis loop, which is depicted in Fig. 2. 

The virtual cathode originates at the bifurcation 
point. This is the intersection of the oscillatory state 
with the C-overlap' and partially reflected solution 
branches. S The bifurcation point cannot be reached 

'".r-__ 

BIFURCATION 
POINT 

, , .....,. , , 
NORMAL C 

I 

lic OVERLAP V-HYSTERESIS LOOP , I 
I 

! !1 PARTIA;klu~~ri;ECTED 

OSCILLATORY 
VIRTUAL CATHODE 

FIG. 2. Electrostatic potential minimum as a function 
of current a. Plot depicts the various possible solutions 
such as normal-C flow (stable), C-overlap (unstable), the 
partially reflected solution (unstable), and the oscillatory 
virtual cathode (stable). Motion around the hysteresis 
loop is denoted by arrows. 

in the short-circuited diode. Of the three branches 
emanating from it, two (the steady ones) are physi­
cally unstable while the oscillatory branch is numer­
ically unstable at this point. This results because the 
limit cycle at the bifurcation point is infinitesimally 
small, so that simulation codes lose resolution before 
it can be reached. Loss of resolution creates a 
small-amplitude high-frequency oscillation observed 
in this study and previously.9 This result is numeri­
cal, not physical. 

This problem can be overcome if we eliminate the 
hysteresis loop. Then the C-overlap branch disap­
pears, and we can get to the bifurcation point along 
the stable normal-C branch. This can be accom­
plished in several ways. The most appropriate in 
this study is to have a retarding potential difference 
across the diode equal to the injected-electron kinet­
ic energy. Then the C-overlap solution vanishes, 
and the bifurcation takes place at the space-charge 
limit aseL- The oscillation can be described as a 
small perturbation on the beam rather than the radi­
cal change that results in the short-circuited diode 
when aseL is exceeded. This analysis indicates that 
the onset of virtual-cathode formation occurs when 
the electron velocity in the steady state vanishes at 
some point inside the diode. For the short-circuited 
diode, this occurs at the diode center; for the biased 
diode, it occurs at x < I. Because the oscillation is a 
small perturbation o~ the steady-state fields in the 
biased diode, it is readily seen that the virtual­
cathode oscillation period at onset is the electron 
transit time from the injection plane to the position 
where the velocity vanishes. 

Finally, consider the particle dynamics during the 
oscillation period for counterclockwise limit cycles 
(a .$ ased as in Fig. 3(c). At the point where the 
virtual-cathode position is a minimum and the po­
tential well is starting to move to the right, its am­
plitude is too small to stop the electrons. When its 
motion is to the left it opposes the electron beam 
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FIG. 3. Typical virtual-cathode limit cycles in the clas­
sical short-circuited one-dimensional diode with an injec­
tion energy of 51 keY. (a) a=2.5, (b) a=2.0, and (c) 
a= 1.4. Motion in (a) is clockwise and in (c) is counter­
clockwise. 1 = 1. Oc / w,. 

and causes particle bunching. Since the well is 
deeper, the stream velocity will vanish at some loca­
tion and then become negative. Here, the second 
derivative of the velocity (d 2U / dx 2) is also negative. 
In this process the stream is continuously deformed 
to create a double-valued negative velocity pro­
trusion. The entire system is three-valued (Fig. 4), 
as in a collisionless shock wave.27 Here, the region 
of triple flow is not limited, as in usual collisionless 
shocks, by the presence of a transverse magnetic 
field,28 but mther by the presence of the walls. 
Indeed, the reflected part detaches from the main 
beam and exits through the anode periodically, thus 

being responsible for the onset of oscillatory 
behavior in beam characteristics. As the potential 
minimum reaches the end of its left motion the two 
"lips" of the back reflected stream close. At this 
point no more electrons are reflected, and the well 
moves to the right, repeating the cycle. 

For larger values of a the limit cycle is distorted 
into a figure "s" with one lobe having a clockwise 
motion and the other a counterclockwise one [Fig. 
3(b)]. This transition continues until the motion is 
completely clockwise [Fig. 3(a)]. It indicates a 
change in the particle bunching process and is relat­
ed to the fraction of current which is reflected 
versus transmitted from the injected-electron beam. 
In Fig. 3(a) most of the beam is reflected, whereas in 
Fig. 3(c) most electrons are transmitted. 

III. THEORY 

The one-dimensional motion of electrons in the 
diode is given by the equations of continuity and 
momentum conservation for the electrons plus 
Poisson's equation. They are expressed here as 

Pi+(pv)x=O, 

vi+vvx=-(e/m)s, 

€oSx=P+Ph , 

(1 a) 

(1b) 

(1c) 

where 0 ~ x ~ l. The subscripts denote differentia­
tion with respect to that variable. Electron and 
heavy-ion charge densities, and electron velocity, 
electric fie~, time, and position, are indicated by P, 
Ph, v, S, t, and x, respecti~ly. The l!Ppropriate 
boundary conditions are v(O,t)=vo, p(O,t)=po, and 
J.l sdx=O. An ion component is placed in 
pgisson's equation in order to discuss two-species 
space-charge flow. Conservation equations of mass 
and momentum for the heavy ions are not included, 
because it is assumed that their velocity does not 
change appreciably during their passage through the 
diode. 

In order to simplify the mathematics, we intro­
duce dimensionless equations for our model. They 
are 

ut+uu..,=-aE, 

E..,=a(n +1), 

where n =p/ I Po I, u =v/vo. 

E=(e€o/m IPol )1/2S/VO' 

t =vot';[ • x=x/[ • 

a=(e Ipo I /€om)1/2Z/vO 

(2a) 

(2b) 

(2c) 
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FIG. 4. Successive snapshots of electron-beam momentum space and corresponding potential shape in the diode for 
a=2.0, 1= 1.Oe/alp- Time between frames is O. Sal, !. Initial beam kinetic energy is 51 kev. 

(a dimensionless parameter related to current), and 
the ratio of heavy-ion to electron charge densities, 
I =Ph I' Po ,. Alternatively, a may be written as 
lclJplvo, where (tJp is the beam plasma frequency. 
The boundary conditions for electrons become 
u(O,t)=l, n(O,t)=-l, and Io1Edx=0. For an 
ion beam, n (0,1)= 1; otherwise, the following 
derivation is the same. 

A. Unneutralized beams 

For an unneutralized beam, setting I =0 and solv­
ing by the method of characteristics29,3o we find 

n- 1=-Ta2(t-s)2+aEo(s)(t-s)-1, (3) 

where s is the entry time for the particle occupying 

position x at time t, and Eo(s) is the electric field at 
x =0. The particle trajectories are found by utiliz­
ing Eq. (2a), from which it follows that 

[~; ], =n-1 • (4) 

This yields 

x = ~a2(t _S)3 +a ItS Eo(s)(t -s)ds +(t -s) . 

(5) 

Integration of the trajectory equation is hard for 
general time-dependent situations, because imposing 
the proper boundary conditions leads to a nonlinear 
integral equation for Eo(t). However, several special 
cases can be solved exactly. The problem of injec-



27 SPACE-CHARGE-LIMIT INSTABILITIES IN ELECTRON ... 1539 

tion into an empty diode can be integrated until the 
formation of a singularity in n, indicating the cross­
ing of trajectories.30 In this case, the stream velocity 
becomes three-valued, and one must use a Vlasov­
equation description,31 rather than system (2) that is 
derived assuming a single stream of monoenergetic 
particles. As described in Sec. II, this multistream­
ing is characteristic of the oscillatory state created 
when a exceeds its SCL value. 

Using these equations we can derive a similar rep­
resentation for Fig. 2 in terms of Eo and a. For 
steady states, Eo(t) =Eo, a constant, we find 

u =-n-1=+a2(t-s)2- aEo(t-s)+I, (6a) 

(6b) 

Imposing the conditions x = 1, u = 1 at t -s =to, 
the particle transit time, we note that to must satisfy 

(7) 

This ec:.Iuation has two positive solutions for 
Os; a s; "3, coalescing at a = ~. The largest one, for 
Os;a<2V2/3 does not correspond to a real flow. 
In Fig. 5 we show Eo (=ato/2) vs a. This represen­
tation will be used in the discussion of nonlinear sta­
bility. 

B. Neutralized beams 

The Pierce instability occurs when electron and 
ion space-charge flow is considered in finite 
geometries where there is no potential difference 
across the boundaries.32 The ions can be stationary 
or moving with respect to the electrons. Charge 
neutrality is maintained at the injection plane. This 
instability may have ramifications for charged­
particle inertial confinement fusion because of its ef-

o a 

FIG. 5. Electric field at the injection plane vs current a 
for I =0. Plot depicts the normal C-flow (stable) and C­
overlap (unstable) solutions. Oscillating virtual-cathode 
(stable) solution is also shown. Regions I and II define 
the domains of attraction of the normal-C and virtual­
cathode solutions near the SCL, a = f. 

fect on neutralized-beam propagation in the reac­
tor.33 In this section, we show that the Pierce insta­
bility is a special case of electron and ion space­
charge flow. In general, two-species flow has steady 
and oscillatory states analogous to one-species 
space-charge flow. 

The steady-state behavior for the case of arbitrary 
I can be found in a manner similar to I =0. Rewrit­
ing system (2) in characteristic coordinates, we ar­
rive at 

(8) 

For positive ions (I> 0) the solution of (8) after 
satisfying the boundary conditions is 

1 +1 In = (1 +I)cos[av'1 (t -s)] 

+Eov'1 sin[av'1<t -s)] . (9) 

Imposing conditions x = 1, u = 1 at t -s =to, we 
find the system 

1 [ I-I I' VI 1= ]to- aI3/2 slOta Ito) 

Eo 
+ aI [cos(av'1to)-I] , (lOa) 

1 [ I-I 1 . /r 1=]- -1- cos(av Ito) 

(lOb) 

For 1=1, which implies charge neutralization, 
these equations reduce to the relations given in Ref. 
34 for the Pierce instability. However, by varying I 
the curves shown in Fig. 6 are obtained. These are 
cuts at constant I through a three-dimensional con­
tiguous surface. The space is defined by the axes 
E=EoI112, A =aI3/2, and 1. The surface is 2'IT 
periodic in A with the vertical plane at A = 2'IT being 
common for all values of 1. For given A, a linear­
ized analysis establishes that the equilibria denoted 
by the curves are stable (unstable) for the lowest 
(highest) value of E. At I = 1, exchange of stability 
takes place at odd multiples of 'IT. For 1<1, ex­
change of stability occurs at the points where 
dEolda-oo. 

It is evident from Fig. 6 that, for I < 1, there are 
no stable equilibrium solutions in the neighborhood 
of A ='IT. Therefore one expects a virtual cathode to 
form when 1<1 and A adiabatically increases to 'IT. 
We have found, by using numerical simulation, that 
in this case the beam settles to an oscillatory state, 
similar to the virtual cathode for unneutralized 
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A 

FIG. 6. Curves of scaled electric·field at the injection 
plane E vs scaled current A for various values of charge 
neutralization I. Curves represent slices through a three­
dimensional surface. S and U indicate stable and unstable 
branches, respectively, for the I = 1 slice. 

beams.31 By slowly increasing I past the neutral­
beam value of 1 in our simulation, we have estab­
lished that this oscillation persists. Indeed, finding 
this oscillatory state for I > 1 by other means would 
have been difficult, because the simulation would 
tend to follow the stable steady-state branch that is 
present for all values of current. 

C. Nonlinear stability analysis 

For 1< 1, it is of intere8t to establish the proper­
ties of the beam instability at the SCL-generalized 
for 1=1=0 to mean the point where da/dEo=O. We 
shall carry out the analysis for I =0, but our 
method can be applied to any similar jump 
phenomenon. 

A linear stability analysis6 about the steady state 
described by (7) results in the dispersion relation 

(2+{3)e- fJ=2-{3+/i /(a2t~) , (11) 

where (3=imto' We have written the expression de­
rived in Ref. 6 in terms of our dimensionless vari­
ables. For a near the SCL value we let 

(12) 

and find from (7) that near this value, to is approxi­
mately 

to~ ~ +E 2~ +O(e-2) , (13) 

where the - (+) sign corresponds to the lower 
(upper) branch in Fig. 5. 

By substituting in (11), and assuming (3 small, we 
find that 

im={3~+2V2E+O(E2) . (14) 

Since the linearized analysis led to time factors of 
the form elmt in the perturbations, it follows that the 
lower branch in Fig. 5 is stable and the upper un-

stable, while at the SCL (E=O) we have neutral sta­
bility. 

Above the value a = +, linearized theory is not 
applicable. Utilizing multiple-scaling perturbation 
theory,35 we can carry out a nonlinear stability 
analysis near a=+. In system (2) we set a=+±E2. 
In this neighborhood, perturbations evolve on a 
"slow" time scale, depicted by r=Et. 

Eliminating the electric field by combining (2b) 
and (2c) and utilizing r, system (2) becomes 

(EU1'+UUx )X = _( +±E2)2n 

with conditions u(O,r)=I, n(O,r)=-I, 

fol E dx =0 rewritten as 
rl 1 

E Jo u1'dx +T[u 2(l,r)-u 2(0,r)]=0. 

Substituting the asymptotic expansions 

U - f Elu/(x,r)+O(Ei+I) , 
j=O 

n - f Ejnj(x,r)+O(Ei+ I) , 
j=O 

(15a) 

(I5b) 

and 

(16) 

(17) 

for U and n into (15) and equating coefficients of 
various powers of E, there results a hierachy of equa­
tions for the Uj and nj. 

Solving the 0 ( 1 ) system gives 

(uo - + )(uo + 1)2=2(2x _1)2 , (l8a) 

no= -l/uo . (l8b) 

To solve the O(E) system we introduce a new vari­
able q by 

16 [3 3 1 x=9 ..2j-sq2 +q, (19) 

so that 

16 [2 3 1 uO=9 f-"4q +1. (20) 

We then find 

1 
nl=-2ul, (21a) 

Uo 

q(q-f) 
UI=C (21b) 

Uo 

with C a constant of integration which is, in general, 
a function of the slow time r. To find C =C(r) 
which determines the slow evolution of the pertur­
bation uI(x,r) we need to go to the next order, 
o (e-2). By substituting in the expressions for 
Uo,U I>nO,n I and eliminating n2, we find that 
u2(x,r) satisfies 
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[q(q-T) I 8 1 
C +--

l' Uo X - 3 Uo ' 
(22a) 

(22b) 

The solution to this inhomogeneous two-point boundary-value problem exists provided a certain orthogonality 
condition between the right-hand side and the solution of the adjoint problem that takes account of the boun­
dary conditions is satisfied (Fredholm alternative theorem).36 This leads to the desired equation determining 
CIT), 

aC1'+bC2±c =0, 

where a, b, and c are found to be 
3 r312 q(q-T) 16 2 9 3 

a=- Ji 2 [Tiq (q-4")+T]dq=1.6850, 
o Uo 

8 312q\q-T)3 
b=)" i 4 dq=-3.7968, 

o Uo 
8 r 3/2 3 

c=)" Jo q(q-T)dq=-1.5. 

(23) 

(24a) 

(24b) 

(24c) 

In (23) the ( + ) or (-) signs indicate that we are above or below the SCL, respectively. 
Above the SCL, we find 

C(T)= - ~ tan [a [T:TO II 
and below the SCL, 

~tanh[a[T:TO II, IC(O)ldc/b)\12 

C(T)= 

~ coth [a [T:TO II, I C(O) I >(c/b)I/2 

where TO is a constant of integration. In general, 
small initial perturbations will lead to the solution 

u(x,t)-Uo+E f Cj (T)e(i)jtUj (x) +0 (E2) , (28) 
1=\ 

where Wj are the various distinct solutions of the 
dispersion relation (11) at a = +.35,37 It is straight-
forward to show that all modes are such that 
Rewj <0 except one for which w=O. Thus all other 
modes will decay in the fast time scale and only the 
neutral mode (w=O) will persist. Our solution after 
a short time will look like 

3 
q(q-T) 

U-UO+EC(T) +0(E2) . (29) 
Uo 

From the given initial conditions it is easy to 
determine the initial condition for the neutral mode. 
Below the SCL, if the initial conditions are such 
that C(O!> _(C/b)I/2, the solution will evolve to 

(25) 

(26) 

(27) 

the stable lower branch in Fig. 5 (region I), while if 
C(Ol< _(c/b)I12, C-oo in finite time (Fig. 5, re­
gion 11). Blowup in finite time also occurs above the 
SCL for any C(O). This does not mean that the ac­
tual solution blows up, just that it evolves to a final 
state far away from the two steady-state branches 
shown in Fig. 5 and thus is not accessible by pertur­
bation theory. 

As can be seen in (25), the blowup above the SCL 
is described by a tangent function, therefore the 
growth rate we find for this case must be appropri­
ately interpreted. Note that the linearized dispersion 
relation seems to suggest an imaginary exponential 
growth rate above the space-charge limit.3,6 In view 
of our results, we see that this is actually misleading. 
Moreover, we find that even below the SCL the 
stable steady-state branch can be destabilized by suf­
ficiently large perturbations. 

Our results agree with the linear theory, provided 
we consider the limit where the latter becomes ap-



1542 E. A. COUTSIAS AND D. J. SULLIVAN 27 

plicable. Thus we must compare the linear theory 
with (26) as r~ + 00 (near the stable branch) and 
(27) as r~ - 00 (near the unstable branch). To 
demonstrate this we set r=Et in (26) and consider 
the limit r~ + 00. Then 

C(t)= ftanh [ VC; (Et +ro) ] 

[ 
2VCb 

l-exp --a-(Et+ro) 
c ______ L-____________ ~ 

b l+exp [_ 2? (Et +ro) ] 

c [ [2VCb ] ~b 1-2exp --a-(Et+ro) 

+ ... ]. (30) 

We see that the decay rate of the perturbations as 
t~ + 00 is equal to 

2VCb 
--E"",2.83E, (31) 

a 

which is the same as that found by the linearized 
analysis.6 This quantity is important as it also 
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