3-15-2014

Patterns of failure in the distal radius following treatment for extra-articular fractures (AO 23-A3.2) using two-column volar plates

Christina Salas
Justin Brantley
James Clark
Evan Baldwin
Mahmoud Reda Taha

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/hand_wrist

Recommended Citation
Christina Salas, Justin Brantley, James Clark, Evan Baldwin, Mahmoud Reda Taha, Deana Mercer. Patterns of failure in the distal radius following treatment for extra-articular fractures (AO 23-A3.2) using two-column volar plates. Poster presented at: ORS 2014 Annual Meeting; Mar 15-18 2014; New Orleans, LA

This Poster is brought to you for free and open access by the Orthopedics at UNM Digital Repository. It has been accepted for inclusion in Hand and Wrist by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
Authors
Christina Salas, Justin Brantley, James Clark, Evan Baldwin, Mahmoud Reda Taha, and Deana Mercer

This poster is available at UNM Digital Repository: https://digitalrepository.unm.edu/hand_wrist/13
The distal radius is the most common fracture site in the upper extremity. Dorsally displaced, unstable fractures are commonly treated with locked plate fixation using a volar approach. Damage analysis of matched paired specimens with simulated AO 23-A3.2 fracture treated with volar plating may provide information on whether implant geometry may affect fracture stability. (Fig. 1)

The purpose of our study was to characterize the damage accumulated in a model of extra-articular distal radius fracture with dorsal comminution treated using two-column volar distal radius plates during a simulated post-operative healing period. Patterns of failure of the bone and implant are reported from cyclic testing and ramped load to failure experiments.

Ten matched pairs of fresh-frozen, cadaveric distal radii were used in this study:

- One radius from each donor was randomized to Group I; the contralateral limb from the same donor assigned to Group II
- Group I: Prepared with Geminus® volar distal radius plating system by Skeletal Dynamics. (n=10) This implant uses a dual head design for independent two-tier scaffolding. (Fig. 2A)
- Group II: Prepared with Acu-Loc® 2 Proximal Volar Distal Radius Plate by Acumed. (n=10) This implant uses a single head design for enhanced ulnar buttressing. (Fig. 2B)
- A custom fixture was designed to apply a 60/40 ratio through scaphoid and lunate facets. (Fig. 3A)
- Specimens were subject to cyclic axial loading; sinusoidally compressed from 75-250N at a rate of 1 Hz for 5,000 cycles

- Damage (D), which defines the period between a state of material perfection and the onset of crack initiation, was calculated using the effective Modulus of Elasticity (E_{eff}) from hysteresis data (Fig. 3B)
 $D = 1 - \frac{E_{\text{final}}}{E_{\text{initial}}}$ where E_{initial} is calculated at cycle 5; E_{final} is calculated at every 500th cycle
- Constructs not failed during cyclic loading were subject to a ramped load to failure at 1mm/s
- A matched-paired t-test was used to determine statistical significance (p=0.05)

- Group II specimens experienced significantly more damage under cyclic loading than Group I specimens. (0.78±0.11 and 0.66±0.10, respectively; p=0.02) (Fig. 4A, Fig. 4B)
- One specimen in Group II experienced coronal fracture of the dorsal pole of the lunate during cyclic loading and was excluded from load to failure testing.
- Group I specimens were significantly stiffer than Group II specimens. (481.47±161.37 N/mm and 337.90±112.04 N/mm, respectively; p=0.04) (Fig. 4C)
- Ultimate force at failure in Group I (1268.50±307.69 N) and Group II (1025.63±496.45 N) specimens was not significantly different (p=0.11) (Fig. 4D)