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Abstract

In this report, we provide algebraic tests to determine whether a linear Single-
Input-Single-Output (SISO) system, is stabilizable with a constant output
feedback.

1 Introduction

The problem of output stabilizability of linear systems remains one of the most
challenging problems in systems theory. While it is true that many techniques
exist to stabilize systems using only output measurements, the fundamental
question of the existence of such controllers is still open. In other words, given
a linear, time-invariant system (LTI), the existence of a constant output feed-
back that will stabilize the system can not in general be answered, short of
using a root-locus or Nyquist approach that will actually answer the existence
question by �nding such a stabilizing controller. One might argue that with
the advent of graphing software, the question is moot since one can answer
the question graphically for almost any LTI, SISO system. It is however im-
portant to obtain an algebraic answer to the stabilizability question for many
reasons. First, a constant output feedback is the simplest member of the hi-
erarchy of �xed-structure controllers, and an answer to the constant output
feedback stabilizability might provide an answer to the more general �xed-
structure controllers, where a graphical approach is not available. Second, the
algebraic conditions may provide the designer with a negative answer to the
stabilizability question without actually solving the problem. Finally, these
conditions will provide an alternate view at this classical problem, allowing us
to consider the robust stabilizability problem in a future paper.

This report is organized as follows: The problem is stated in section 2, our
main results are given in section 3, a numerical example is presneted in section
4, while our conclusions are given in section 5.

2 Problem Statement

We consider the problem of stabilizing the SISO continuous-time, linear, time-
invariant system described by the transfer function

G(s) =
b(s)

a(s)
=

b0s
n + � � �+ bn�1s+ bn

sn + � � �+ an�1s+ an
(1)
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connected in the standard feedback con�guration, with the output feedback
compensator u = �ky + r, so that the closed-loop system is described by

T (s) =
kG(s)

1 + kG(s)

=
k(b0sn + b1s

n�1 + � � �+ bn�1s+ bn)

p(s; k)
(2)

where p(s; k) = a(s)+kb(s). Let us decompose p(s; k), a(s) and b(s) into their
even and odd parts

p(s; k) = pe(s
2; k) + spo(s

2; k)

a(s) = ae(s
2) + sao(s

2)

b(s) = be(s
2) + sbo(s

2) (3)

The approach we consider is to determine �rst the jw axis crossings wi of
the roots of p(s; k), solve for the corresponding gains ki and then determine
whether a particular crossing is from the Left-Half-Plane (LHP) to the Right-
Half-Plane (RHP) or vice-versa. By keeping track of the number and the
direction of crossings, we will be able to answer the stabilizability question for
a given G(s).

3 Main Results

Let us then consider the closed-loop characteristic equation 0 = p(s; k), which
becomes along the jw axis

0 = a(jw) + kb(jw) (4)

= ae(�w
2) + jwao(�w

2) + k[be(�w
2) + jwbo(�w

2)]

= [ae(�w
2) + kbe(�w

2)] + jw[ao(�w
2) + kbo(�w

2)]

= [aR(�w
2) + kbR(�w

2)] + [aI(�w
2) + kbI(�w

2)]

where xR(jw) = xe(jw) and xI(jw) = wxo(jw). Therefore, setting both real
and imaginary parts to zero, we can eliminate k and obtain

Y (�w2) = aR(�w
2)bI(�w

2)� aI(�w
2)bR(�w

2) = 0 (5)

Note that Y (�w2) is actually the negative of the numerator of the imaginary
part of b(jw)=a(jw), in other words

G(jw) = R(jw) + jI(jw)

=
X(�w2)

D(jw)
+ j

�Y (�w2)

D(jw)
(6)

2



and note also that the roots of Y (�w2) = 0 are exactly those frequencies at
which I(jw) = 0 which are also those frequencies where the Nyquist plot of
G(jw) intersect the real axis. The positive real roots of equation (5) wi; i =
1; � � � ;m represent the jw axis crossings. We can then �nd the corresponding
gains as

ki = �a(jwi)=b(jwi); i = 1; � � � ;m

= �aI(�w
2
i )=bI(�w

2
i ); i = 1; � � � ;m (7)

= �aR(�w
2
i )=bR(�w

2
i ); i = 1; � � � ;m

and order them as k1 < k2 < � � � < km. Let us assume that a(s) has at least
one root in RHP. Otherwise, a small enough value of k which stabilizes p(s; k)
always exists. The closed-loop system will be stabilized if, at any wi, all n
roots are in the LHP. Let xR(jw) = xe(jw) and xI(jw) = wxo(jw). We then
have the following results.

Lemma 1 The output stabilizbility problem is solvable if and only if any of
the m polynomials p(s; ks) is stable, where ki�1 � ks � ki; i = 1; � � � ;m and
k0 � k1.

Proof: Obvious.

Lemma 2 Suppose that p(s) has a single root at s = jwi��, for a su�ciently
small real � > 0. Then the argument of p(jw) is a strictly increasing function
of w at wi, i.e.,

@

@w
argfp(jw)g jw=wi

> 0.

Proof: The proof can be obtained by writting p(jw) = (jw+ �� jwi)R(jw),
R(jwi � �) 6= 0 then di�erentiating its argument.

We will next present a lemma and its proof for the special case where only
one branch of the root locus crosses the jw axis at a particular ki. The more
general case where l roots cross the jw axis is discussed in lemma 5.

Lemma 3 A complex conjugate pair crosses the jw axis as k increases

1. From the LHP to the RHP at �jwi if and only if

@

@w
[Y (�w2)] jw=wi

> 0

2. From the RHP to the LHP at �jwi if and only if

@

@w
[Y (�w2)] jw=wi

< 0
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Finally, the roots stay in one half-plane if

@

@w
[Y (�w2)] = 0; 8w

Proof: We will only prove case 1) for the case where one branch of the root
locus crosses the jw axis at k = ki. At the frequency wi and k = ki � �, for a
small � > 0, we have a pair of complex conjugate roots in the LHP, but close
to the jw axis. Then, by Lemma 2,

@

@w
argfa(jw) + (ki � �)b(jw)g jw=wi

> 0

In the following, we drop the explicit dependence on w and wi, to obtain

@

@w
argfa(jw) + (ki � �)b(jw)g jw=wi

> 0

()
@

@w
Arctanf

aI + kibI � �bI
aR+ kibR � �bR

g > 0

() [a0I + (ki � �)b0I ][aR+ (ki � �)bR]

> [a0R + (ki � �)b0R][aI + (ki � �)bI ]

() [a0I + (ki � �)b0I ][��bR]� [a0R + (ki � �)b0R][��bI] > 0

() �(a0I + kib
0

I)bR + (a0R + kib
0

R)bI � �(b0IbR � b0RbI) > 0

then, since � is arbitrarly small, and using (7),

(a0R + kib
0

R)bI � (a0I + kib
0

I)bR > 0

() a0RbI � aIb
0

R � a0IbR + aRb
0

I > 0

()
@

@w
[aR(jw)bI(jw)� aI(jw)bR(jw)] jw=wi

> 0

Note at this point that an interpretation of
this lemma in terms of the Nyquist plot of G(jw) is possible. It is possible to
count the number of crossings of the G(jw) with the real axis and note their
directions (down or up). If there is a real axis region where there is a net of n
up crossings, a real value of k exists for which the closed-loop T (s) is stable.
This will be further investigated when studying a robust version of our test.

Lemma 4 A complex conjugate pair crosses the jw axis from the LHP to the
RHP at �jwi as k increases if and only if

ki
@

@w
argfb(jw)=a(jw)g jw=wi

< 0
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Proof: Consider

ki
@

@w
[arg(b(jw)=a(jw)] jw=wi

> 0

In the following, we drop the explicit dependence on w and wi, to obtain

ki
@

@w
[arg(b(jw)=a(jw)] jw=wi

> 0

() ki
@

@w
[argfba�g] > 0

() ki
@

@w
(
�bRaI + bIaR
bIaI + aRbR

) > 0

() ki(�bRaI + bIaR)
0(bIaI + aRbR)

> ki(bIaR + aRbR)
0(�bRaI + bIaR)

but using (7),

�bRaI + bIaR =
1

ki
(bRbI � bRbI) = 0

bIaI + aRbR =
1

ki
(�a2I � a2R) (8)

therefore, (8) is satis�ed if an only if

(bIaR � bRaI)
0 > 0 (9)

which is condition 1) in Lemma 3. Therefore, the lemma is proven.

Finally, we present the general result in the following lemma.

Lemma 5 Suppose that l branches cross the jw axis at w = wi. Let lLR be
the number of branches crossing from the LHP to the RHP as k increases and
lRL the number of branches crossing from the RHP to the LHP as k increases.
Also let m = lRL � lLR be the number of net crossings from RHP to LHP.
Then, the following is true

1. m=-1 if and only if Y (�w2) is a strictly increasing function of w at
w = wi.

2. m=1 if and only if Y (�w2) is a strictly decreasing function of w at
w = wi.

3. m=0 if and only if Y (�w2) has a local maximum/minimum at w = wi.
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Proof: Suppose l branches of the root locus cross the jw axis at w = wi and
for k = ki. Clearly then, we must have

p(s; k) = (s� jwi)
lR(s) + (k � ki)b(s)

where R(jwi) 6= 0. Note that we have p(s; k) = a(s) + kb(s) so that

a(s) = (s� jwi)
lR(s)� kib(s) (10)

Then, the function Y (�w2) in (5) can be written in the following form

Y (�w2) = �jl�1(w �wi)
l(RIbI +RRbR); l odd (11)

Y (�w2) = jl(w � wi)
l(RRbI �RIbR); l even (12)

From the expressions above, it is clear that the conditions on Y (�w2) at
w = wi can be rewritten as

1. m = �1 if and only if l is odd and the polynomial�jl�1(RIbI+RRbR) jw=wi
>

0.

2. m = 1 if and only if l is odd and the polynomial�jl�1(RIbI+RRbR) jw=wi
<

0.

3. m = 0 if and only if l is even.

In order to determine what happens to the root locus in a neigborhood of jwi,
we need to determine those directions such that the root locus can exist at
in the neigborhood of jwi. In other words, we need to determine the locus of
points s such that p(s; k) = 0, or such that the number

k � ki = �
(s� jwi)lR(s)

b(s)
(13)

is real. The root locus can then exist around jwi in those directions where

Imf(s� jwi)
lR(s)b�(s)g = 0 (14)

and

Ref(s� jwi)
lR(s)b�(s)g < 0; k > ki (15)

Ref(s� jwi)
lR(s)b�(s)g > 0; k < ki (16)

where b�(s) is the complex conjugate of b(s). Now, in the neigborhood of jwi,
we can write

s = jwi + �ej� (17)
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The problem then reduces to �nding � such that (14) is satis�ed as � ! 0.
Substituting (17) in (14) and (15), this is equivalent to

(2p + 1)� = l�+ argfR(jwi)b
�(jwi)g; p integer ; (18)

for k > ki and analogously,

(2p)� = l� + argfR(jwi)b
�(jwi)g; p integer ; (19)

for k < ki. Clearly, the net number of crossings from the RHP to the LHP
is given by the di�erence between the number of di�erent solutions to (19)
lying in the interval (��=2; �=2) and those lying in the interval (�=2; 3�=2).
According to (19) this number can be either �1 or 1 for l odd, and 0 when
l is even. This latter conclusion leads to the proof of case 3) in the Lemma
so we will hereafter concentrate on the l odd case. Let us designate � =
argfR(jwi)b�(jwi)g. The solutions to (19) are given by

� = 2p�=l + �=l; p integer ; (20)

Now the number lRL of di�erent values of � in the interval (��=2; �=2) satis-
fying (20) is given by

1. When l = 4r + 1, r integer, and � 2 (��=2; �=2), lRL = 2r + 1.

2. When l = 4r + 3, r integer, and � 2 (��=2; �=2), lRL = 2r + 1.

3. When l = 4r + 1, r integer, and � 2 (�=2; 3�=2), lRL = 2r.

4. When l = 4r + 3, r integer, and � 2 (�=2; 3�=2), lRL = 2r + 2.

And since m = 2lRL � l, these cases imply in turn that m = 1 in cases 1) and
4) and m = �1 in cases 2) and 3).
In order to complete the proof of this Lemma, �rst note that

� 2 (��=2; �=2)() (RIbI +RRbR) > 0 (21)

� 2 (�=2; 3�=2)() (RIbI +RRbR) < 0 (22)

Now, conditions 2) and 3) (which are equivalent to m = �1) can be written
in a more compact form as

�jl�1(RIbI +RRbR) > 0 (23)

and, similarly, conditions 1) and 4) (equivalent to m = 1) as

jl�1(RIbI +RRbR) > 0 (24)

This completes the proof.
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4 Numerical Example

Consider the polynomials

a(s) = s7 � 3:25s6 � 9s5 � 39:375s4 � 70:75s3 � 79:5s2 � 88s � 48 (25)

b(s) = s7 � 7:5s6 � 25s5 � 85:75s4 � 149:5s3 � 167s2 � 160s � 80 (26)

By means of the Routh-Hurwitz algorithm it is easy to check that the open
loop plant p(s) = b(s)=a(s) has 4 poles in the LHP and 3 poles in the RHP.
In order to check whether p(s) can be stabilized with a constant gain, we
construct the polynomial Y (�w2) as in (5) and compute its positive real roots.
These roots happen to be f0; 1:2180; 2; 2; 2:5732g. For each of these values of
wi we compute ki using (7), and obtain the set f�0:6; 1:7408;�0:5;�0:5470g.
Once these values are ordered, the local behaviour of Y (�w2) is studied at the
corresponding wi either by explicitely calculating its derivative or by examining
the plot of Y (�w2). Table (4) summarizes the set of ki, wi as well as the

corresponding sign of the derivative @Y (�w2)
@w

. Starting with k = 0 (where there

ki -0.6 -0.5470 -0.5 1.7408
wi 0 2.5732 2 1.2180

@Y (�w2)
@w

+ + 0 -

are 3 roots in the RHP) we see that at k = �0:5 there are no net crossings
(m = 0), at k = �0:5470 a pair of complex conjugate roots crosses from RHP
to LHP (thus leaving 1 root in RHP) and at k = �0:6 there is one real root
(w = 0) crossing from RHP to LHP. Therefore, for k < �0:6 the plant can be
stabilized.
In Figure 1 the function Y (�w2)=T (w) is plotted in the interval [0; 5], where
T (w) is a suitably chosen polynomial such that T (w) > 0; w � 0 and the ratio
Y (�w2)=T (w) is adequately bounded for graphical purposes. In addition, the
roots of Y (�w2) are labeled with the corresponding values of k.

5 Conclusions

In this report we have provided algebraic conditions for the stabilizability of
SISO systems with constant gains. The conditions are simple, testable, and
may be extended to the robust stabilizability problem as will be reported on
in a future paper.
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Figure 1: Y (�w2)=T (w)
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