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Reflection, transmission, and absorption

At this point, no reflection, transmission, or absorption fraction validation stud-

ies have been completed. The Moment-Preserving method has been shown to give

good agreement with an analog benchmark when calculating reflection, transmis-

sion, or absorption fractions, but there were no efforts to compare with experimental

benchmarks. That said, assuming an analog DCS model is identified that provides

acceptable agreement with experiment, there is no reason to believe that the Moment-

Preserving method will not provide similar agreement. There is a variety of reflec-

tion, transmission, or absorption fraction experiments due to Bishop, Darlington,

Lockwood, Nubert, and Ebert [99, 87, 100, 101, 102]. The following figures provide

examples of quantities of interest from a few of these studies.

Figure 10.6: Comparison of experimental and theoretical energy backscatter for elec-
trons incident at 0� and 60� as a function of target atomic number (fig. ref. [100].)
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Figure 10.7: Back-scattering coefficient as a function of the mass thickness of alu-
minum films and gold films for different energies normally incident electrons (fig. ref.
[101]).

Figure 10.8: Absorption coefficient as a function of the mass thickness of aluminum
films and gold films for different energies normally incident electrons (fig. ref. [101]).

201



Chapter 10. Conclusions and Future Work

Fano cavity test

One of the most stringent tests for the electron transport and boundary crossing

algorithms in any condensed history Monte Carlo code is the simulation of an air

cavity as a representation of an ionization chamber [91]. The Fano cavity test (see

Fig. 10.9) is an ionization chamber test under idealized conditions such that use

can be made of the Fano Theorem [30]. That is, under charged particle equilibrium

in an infinite medium, the charged particle fluence will not be altered by density

variations from point to point. Under these conditions, a condensed history method

should agree with theoretical prediction regardless of the step-size. Ultimately, the

Fano cavity test is used to test the different mechanisms involved in CH electron

transport including step limitation, energy-loss fluctuation, and multiple scattering.

At this point, it is unclear whether or not the Fano cavity test is applicable to

the Moment-Preserving method. However, if the test is applicable it would present

an interesting comparison because the Moment-Preserving method is not step-size

dependent and does not require boundary crossing algorithms.

Figure 10.9: Fano cavity test schematic (fig. ref. [90]).
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External beam radiotherapy

The last suggestion for a validation test is a comparison to the experimental results

due to Ross et al. [103] similar to work by Faddegon et al. [89]. With increased avail-

ability of Monte Carlo methods for planning electron beams, there is an increased

interest in modulated electron radiotherapy. It is imperative to determine the accu-

racy of various Monte Carlo methods for fluence and dose calculation in emerging

electron therapy treatments [89]. The accuracy of the calculated fluence distribution

may not be as accurate as calculated dose distributions. Electron therapy is generally

done using scattered electron beams and the accuracy of calculated dose distributions

is typically not as sensitive to scattered beam effects. However, calculated fluence

distributions may not be as accurate as calculated dose distributions because fluence

is sensitive to scattered beam effects. Therefore, it is important to make efforts to

validate electron transport codes against accurate measurements of fluence. Ross et

al. [103] completed such an experiment that allows a more accurate assessment of

fluence calculations. The experimental setup is presented in Fig. 10.10a, and results

from an accuracy test of EGSnrc, Geant4, and PENELOPE [89] are presented in

Fig. 10.10b.
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(a) Experimental Setup (b) Characteristic Angle Comparison

Figure 10.10: (a) Experimental geometry, as simulated. Drawing is not to scale.
Positions of the different components are listed below. (b) Difference of the calculated
and measured square characteristic angle, 13 MeV beam. EGSnrc top panel, Geant4
center panel and PENELOPE bottom panel. The triangular area bounded by a solid
straight line is 1% experimental uncertainty (fig. ref. [89]).
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10.2.3 Adaptive cross-section selection

In section 9.3.2, 2-D dose deposition results were presented where the impact of radial

spreading is seen in the form of discrete artifacts. The discrete artifacts are mitigated

in one of two ways. That is, by adding more discrete angles to the discrete elastic

DCS or through use of the hybrid DCS with a sufficient cut, the discrete artifacts

are no longer present. As a result, the efficiency of the calculation is reduced because

more accurate representation of elastic scattering is required.

It is likely that the more accurate models are not necessary throughout the entire

calculation. For example, one could assign an ROP DCS to regions of the problem

where higher accuracy is required (for example, nearby the source) and relax the

ROP DCS in regions where lower levels of accuracy are sufficient. The selection of

the ROP DCS for each region will depend on how much information, in the form of

analog DCS moments, should be propagated from the source to the various regions

of the problem. Although interesting, this process would be tedious and is problem

dependent.

Alternatively, one could use an adaptive cross-section selection algorithm for de-

termining the ideal DCS given the initial and current state of the particle. The

metric for determining what cross-section is required is the key subject of the devel-

opment of an adaptive cross-section selection algorithm. For example, the number of

collisions suffered by the particle or the fraction of the transport mfp travelled could

be used. In addition, spatial information like longitudinal or lateral displacement

with respect to the source could be a viable metric. If such an algorithm is devel-

oped, users would not be required to select the DCS and can rely on the adaptive

cross-section selection algorithm for optimization of accuracy and efficiency.
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10.2.4 Protons and heavy ions

Currently, the Moment-Preserving method has only been applied to electrons. Ex-

tension of the method to positrons is trivial and simply requires the necessary analog

DCSs. However, extension to protons and heavy ions has not yet been studied. This

will require identification of an elastic and inelastic DCS like those given by Janni

or Evans [104, 19] or for a generic ion there is a DCS suggested by Boschini et al.

[105].

Given a DCS model, the moment-preserving algorithms should be tested to de-

termine if they are effective for protons and heavy ions where the peaked-ness of the

scattering is even more extreme. It is possible that the numerics could break down;

although, some testing has been completed where the screening parameter for the

screened Rutherford elastic DCS was driven to machine precision and the moment-

preserving algorithms still produced ROP DCS that passed all tests for determining

if a viable ROP DCS was generated. One last complexity, that is converting from

center-of-mass to the lab frame when using ROP DCSs for protons and heavy ions,

must be addressed.

Lastly, the algorithms for generating ROP DCSs and the Geant4 physics models

will remain unchanged for protons and heavy ions, which makes extension of the

Moment-Preserving method to additional particles straightforward.

10.2.5 Variance reduction

Variance reduction techniques are used to reduce the number of source particles; in

turn, the efficiency of a Monte Carlo calculation is improved. There are a variety

of variance reduction techniques and all of these techniques require that the physics

models do not change throughout the calculation. For this reason, variance reduc-
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tion techniques can be used in conjunction with the Moment-Preserving method

because one can select a single elastic and inelastic ROP model for use throughout

the calculation.

No testing has been completed on this subject with respect to the Moment-

Preserving method. Geant4 supports some variance reduction tools like importance

sampling (or geometrical splitting and Russian roulette) and the weight window tech-

nique, so testing of variance reduction techniques in conjunction with the Moment-

Preserving method will not require further code development.

10.2.6 Deterministic methods

Various deterministic methods based on Fokker-Planck, Boltzmann Fokker-Planck,

and generalized Fokker-Planck have been implemented. However, each of these meth-

ods rely on Fokker-Planck when regularizing the singular component of the elastic

DCS. Therefore, only the transport cross section is preserved. Deterministic meth-

ods based on the Moment-Preserving method have yet been tested. It is unclear

what kernel decomposition will be required, but it is likely that a discrete or hy-

brid model will not be appropriate in deterministic settings because of the discrete

representation. However, it is possible to construct ROP models where the singular

component is regularized with a “smoothing” function. That is, one can use an ap-

proach similar to the hybrid DCS, where the tail is represented by the analog DCS

and a moment-preserving smoothing function is applied over the peaked region of

the DCS.
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