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Thermal time: body size, food quality and the 10°C rule

Eric L. Charnov* and James F. Gillooly

Department of Biology, The University of New Mexico, Albuquerque, NM 87131-1091, USA

ABSTRACT

Developmental rates of ectotherms (y) are often linearly related to temperature (7, in °C) within
some biologically relevant range of temperatures as y = (1/S)(T, — T,), where T, is the estimated
temperature at zero development, and the thermal constant S is the development time multi-
plied by the temperature above T}, (i.e. degree days above 7,). Among similar species, it has been
widely shown that S and 7, are negatively related across environments, that S is positively
related to body size, and that T, is independent of body size but increases with mean
environmental temperature. Here we present a model that predicts quantitatively each of these
relationships by showing that the developmental rate equation (y) is a linear approximation to a
universal exponential function (in Kelvin) reflecting the underlying biochemical kinetics of
metabolism. The model combines the effects of body size and temperature on individual growth
to explain the majority of variation in development rates among a broad assortment of aquatic
ectotherms (fish, amphibians, zooplankton) at different life stages. Specifically, the model
predicts that body size enters as (mass)"™, and that T}, is about 10°C below the mean develop-
mental temperature for ectotherms in nature (‘the 10°C rule’). We conclude by explaining how
differences in food type would affect the model.

Keywords: degree days, growth, temperature, threshold temperature.

INTRODUCTION

For ectotherms, thermal time refers to a linear relationship between development rate (y),
measured as 1/(time to complete some phase of development), and temperature in °C (T,)
(Honek and Kocourek, 1990; Trudgill, 1994; Trudgill and Perry, 1994; Gilbert and Raworth,
1996; Honek, 1996a,b, 1999; Bonhomme, 2000). As an example, the larval development
period is measured for an insect reared at four temperatures within the normal range experi-
enced by the larvae such that the fitted line is y = (1/S) (T, — T;), where 1/S is the slope and
y=0when T.=T,, the estimated lowest temperature for development (Fig. 1). S'is called the
‘thermal constant for development’, because the development period at every temperature
takes S=(7,.— T,)/y degree days accumulated above the developmental threshold (7}).
Thermal time is widely used to understand development time in both plants and animals,
and T, and S have been estimated under a wide variety of conditions (Honek and Kocou-
rek, 1990; Trudgill, 1994; Trudgill and Perry, 1994; Gilbert and Raworth, 1996; Honek,
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1996a,b, 1999; Bonhomme, 2000). Among similar organisms, S and 7, are often negatively
correlated with each other across various environments (Honek and Kocourek, 1990;
Trudgill, 1994; Trudgill and Perry, 1994; Honek, 1996a,b, 1999; Bonhomme, 2000), and S is
positively related to body size (Trudgill, 1994; Trudgill and Perry, 1994; Honek, 1999). T,
is often correlated with the typical environmental temperature (Gilbert and Raworth, 1996;
Honek, 1996a, 1999; Bonhomme, 2000), but apparently not with body size (Honek, 1996a);
for example, 7, is higher for tropical species than temperate species (Honek, 1996a). Finally,
some evidence suggests that food type may influence S (Honek, 1999).

This paper develops an approach to thermal time by combining temperature and body
mass into a general production or growth function for ectotherms. The resulting differential
equation may then be solved to yield the time for development through any life-history
phase. The linear regression of (development time) ™' versus rearing temperature then yields
a general equation for S and 7, (Fig. 1).

THE GROWTH FUNCTION

Most models for growth of individual body mass () ignore temperature, but include body
mass itself (Reiss, 1989), and yield a bowed-upward trajectory of mass versus time (Reiss,
1989). The simplest model (Gillooly et al., 2002) for pre-reproductive growth that includes
bod;gﬁsize and temperature has a growth rate proportional to whole body metabolism
(esm™™),

dm 0.75

& am (1)
with the temperature dependence of growth contained in @, via an approximation of
the (°K) Boltzmann’s factor; the °C (7.) approximation is a(7.) o ¢’ (Gillooly et al.,
2002), where a can be predicted from the basic biochemical kinetics of metabolism and the
transformation from °K to °C (Gillooly et al., 2002). We use this a(T,) o< " . This addition
of temperature yields

d_m: e TeL 075 )

/

T 4
o )
E ® «— (slope)'is S,
o L4 the thermal constant
s ¢ for development
o ’
’
oL _«
07, Temperature (7,,°C)

Fig. 1. In this hypothetical case, the time to grow from egg to pupa (1/y) is studied for an insect at four
temperatures (7)) and the development rate (y) is approximately linear with temperature. The fitted
line is y=(1/S) (T,— T,), where S is called the ‘thermal constant for development’ and 7, is the
(estimated) lower threshold temperature for development (i.e. y = 0 when 7, = T}).
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(H is discussed in Gillooly et al., 2002), which may be integrated from time zero to time ¢,
size m, to size m,. Setting the initial size (m,) = 0, we get:
t, 4

025 = o T,
my H-e ™

(©)

t,1s the development time to reach mass m, at a fixed temperature 7; if 7, varies during the
development period, growth equation (2) must be integrated to reflect the time dependence
of ¢ "*. Then, one must rewrite equation (3) as 1/z, to get at ‘thermal time”:

1 H

a-T,
—=——<c 4
= T @

So, a plot of 1/t, versus T, will be exponential for a species reared at different temperatures,
- . . 025
provided the temperatures do not alter m, [actually, since m, enters equation (4) as m, ~,

m, can vary with T, by up to = £50% without distorting the exponential very much].

THE LINEAR APPROXIMATION (S AND T,)

Various authors have noted that a developmental rate ought to be approximately exponen-
tial in temperature, and that thermal time is a linear approximation to the exponential
(e.g. Bonhomme, 2000). This section develops the linear approximation to equation (4), and
then predicts several unusual features of S and T, that are not discussed elsewhere.

Suppose the rearing temperatures represent a relatively small range in 7, so the exponen-
tial looks rather linear. If we fit a line to this, what will the line look like? If the 7. range is not
too big, the line will be approximately tangent to the exponential at 7., the average rearing
temperature. We illustrate this in Fig. 2. Of course, a fitted line will be a little above the
tangent, but we ignore this detail here. Now the slope of an exponential at 7, is oe”” [where
h = (H/4m"®) from equation 4], so a line through the point y,, x, (v, = he" ™, x, = T,) with
this slope has the equation:

Y = yo=slope- (x — x,)
Or, using equation (4):
y=he' " = hoe" T, - T] (5)

T, is where y = 0, so equation (5) yields:
T,=T 1 (6)

which is independent of / and thus independent of body mass. -
S, the thermal constant for development, is 1/slope; since the slope of the line is hae” ™,
S = (1/ha)e”*". From equation (6) we may write:

s (1) (Me-er :
~{au) ) ™

or
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4

To summarize, under our body-size growth model (equation 2), where the rate of develop-
ment (1/¢,) is a linear approximation of the exponential temperature function (Fig. 2):

1. Across environments with different 7.’s, S is a negative exponential function of T, for
species with similar body sizes and the same o (equation 7b). Indeed, the ‘size-corrected
S (= S/m,’”) is a negative exponential function of 7}, (equation 7b). Below we show that
o is expected to be very similar among otherwise diverse species (Gillooly etz al., 2002).

2. The ‘temperature-corrected S” (= S-e¢ ") should scale with body mass to the 0.25 power
(equation 7b).

3. T, is expected to be about 1/a degrees below the mean temperature, 7. (equation 6).

We test these three predictions below.

WHAT SETS «!?

The term o is set by the temperature dependence of the biochemical reactions of cellular
metabolism that govern the rate of growth and development in organisms. We argue else-
where (Gillooly et al., 2001, 2002) that this temperature dependence ought to be described
by a Boltzmann’s factor in T=K (e 'E/kT) which can be well approximated (Box 1
in Gillooly et al., 2002) in °C as BT T where o = (E/kT,’). In this formulation, E is
the average activation energy of metabolic reactions (~0.62 ev), k is Boltzmann’s con-
stant (8.62x107° ev K™), T,=273 K, and T, is the development temperature in °C

(Gillooly et al., 2002). Thus, o= 0.1 for all organisms across the biological temperature
range (~ 0-40°C).

y= he“'n
oy
£ -
[ a7,
- <« slope ~ hae
® I
14 1
]
< 1
0 ]
0 7, 7. Temperature (T, °C)

1/0=10°C

Fig. 2. Thermal time. Suppose the rate (y) is approximately an exponential in °C; then, ‘thermal time’
is a linear approximation to the exponential over some temperature range centred at a mean tempera-
ture of T,. The linear threshold for zero development (7,) is o' °C below the average temperature,
T.. The thermal constant for development (S) 1s 1/slope at T, or S =(1/(h-a-e))e >, since T, =
T, + (1/0). The parameter / is probably o< m~ "% (m = body mass, or final body mass at the end of
development). The parameter a is theoretically predicted to equal about 0.10 (Gillooly et al., 2002),
so 1/a = 10°C; thus, T, is predicted to be about 10°C below 7. We call this the ‘10°C rule.’
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S AND T, FOR AQUATIC ECTOTHERMS

We have studied development time for aquatic ectotherms (fish, amphibians and zoo-
plankton) (Gillooly ez al., 2002): time for eggs to hatch into free-living larval forms and, for
zooplankton, time to grow to adulthood. The thermal time study reported here used a
subset of the species for which each species was studied at three (or more) temperatures, so a
line could be fit to the data; we regressed y on °C. Figure 3 for hatching time (1/days) in fish
eggs (21 species) shows typical results when the species are uncorrected for egg size. Thus,
each species gives us S and T}, as well as body mass (egg mass).

Each of the three predictions was supported using growth rates for the diverse assort-
ment of aquatic ecotherms (fish, amphibians and zooplankton) grown at different
constant temperatures in the laboratory. First (equation 7b), plots of the natural logarithm
of body mass-corrected development rate (i.e. S/m"”) versus 7, for each taxon yielded
straight lines with slopes (range 0.08-0.14) close to the predicted value of a = 0.1 (Fig. 4). In
the case of the zooplankton, this includes the growth rates of two different life-history
stages, both embryonic and post-embryonic. Data for amphibian eggs (Fig. 4b) are the
least convincing and have the smallest sample size. Second, when these same data are
temperature-corrected (i.e. In(S-e*”") and plotted versus the natural logarithm of body
mass, the slopes are close to the predicted value of 0.25 (Fig. 5). Together, these results
strongly support the second prediction. Finally, when these data are combined (n=
75 species), plots of T}, versus T, yield a straight line with a slope of 1.0 and an intercept of
—10.3 (Fig. 6). This final result lends strong support to ‘the 10°C rule’; T, is about 10°C
below T..

DISCUSSION

A multitude of data in the literature qualitatively support these three predictions (Honek
and Kocourek, 1990; Trudgill, 1994; Trudgill and Perry, 1994; Gilbert and Raworth, 1996;
Honek, 1996a,b, 1999; Bonhomme, 2000), although body size is an uncontrolled variable
in many data sets and T, is rarely reported. As a result, differences among species are
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Fig. 3. Hatching rate (D = days) versus temperature for the eggs of fish grown at different constant
temperatures. Each line represents a different species (21 species). Hatching rates are not corrected for
the effects of egg size. Data sources in Gillooly et al. (2002).
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Fig. 4. The natural logarithm of body mass-corrected developmental rate (S/m’>) versus the lower
developmental threshold temperature (7, in °C) for eggs of assorted fish (a), amphibians (b) and
freshwater zooplankton (c), and for adults of zooplanton (i.e. generation time™; for rotifers, copepods
and cladocerans) (d). Rates were determined for species grown at different constant temperatures, and
then mass-corrected according to the model presented in equation (7b). Data sources in Gillooly et al.
(2002).

often exaggerated and misinterpreted. Although it is well known that T, increases with the
‘typical’ environmental temperature (Gilbert and Raworth, 1996; Honek, 1996a, 1999),
this has been interpreted (for example) as an adaptation in T, to match the lowest tem-
peratures experienced (Gilbert and Raworth, 1996). Our approach (Fig. 2) suggests that the
exponential temperature function itself causes the estimated 7, to increase with 7, (see also
Bonhomme, 2000).

The concept of ‘thermal time’ has been useful [i.e. development takes xx degree
days above T, (Honek and Kocourek, 1990; Trudgill, 1994; Trudgill and Perry, 1994; Gilbert
and Raworth, 1996; Honek, 1996a,b, 1999; Bonhomme, 2000)], even if it is an approxi-
mation of a more fundamental exponential relation. But, across broad temperature
ranges, the exponential function [either °C approximation or the Boltzmann in K
(Gillooly et al., 2002)] is better, and it is simple to integrate equation (2) to reflect, for
example, varying temperatures. In one sense, the linear approximation obscures the more
universal features (a =0.10) of the exponential. Our approach extends the concept by
beginning with a size/temperature-dependent growth function (equation 2) and then
integrating over time — and temperature if it varies — to get the development interval, 1/z,,
as a function of size and temperature. Our growth model (equation 2) is very simple,
and more complex formulations in terms of how body size affects growth are clearly
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Fig. 5. The natural log of temperature-corrected development rate (S-¢*'™) versus the natural log
of body mass (m, in grams) for the eggs of assorted fish (a), amphibians (b) and freshwater zoo-
plankton (c), and for the adults of zooplankton species (i.e. generation time™'; for rotifers, copepods
and cladocerans) (d). Rates were determined for species grown at different constant temperatures, and
then temperature-corrected using 7, according to the model presented in equation (7b). Data sources
in Gillooly et al. (2002).

15 4 Fish, Amphibians, Zooplankton

I
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Fig. 6. The lower developmental threshold temperature, 7}, versus the mean temperature of develop-
ment, 7T,, for the fish, amphibian and zooplankton data presented in Figs 4 and 5. Data include

both embryonic and post-embryonic development rates. Note that 7} is about 10°C below T, (the
‘10°C rule’).

possible; yet time intervals often increase with m"”>

dm/dt e« m"”.

Although body size and temperature explain the majority of variation, residual variation

, the integral form of something like



50 Charnov and Gillooly
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Fig. 7. When corrected for body size and food quality, the exponential curve describing development
rate is expected to be similar for all animals. A given species (populations) occupies only a certain
interval along the curve (three species shown here), resulting in an approximately linear relation for
each.

in developmental intervals for free-feeding zooplankton are strongly correlated with whole-
body stoichometry, specifically the whole-body carbon-to-phosphorus ratio (Gillooly et al.,
2002). Zooplankton individuals with more phosphorus are growing faster, having invested in
the phosphorus-rich molecular machinery needed for fast growth (Elser ez al., 1996); they
clearly do this because of the availability of phosphorus-rich (and nitrogen-rich) food
sources. Food quality may be expected to affect growth rates similarly in other species. Of
course, anti-herbivore factors (e.g. toxins, toughness) may also play a role here. Interestingly,
the ‘10°C rule’ for T, may well be independent of food type, just as it is for body size, because
food type is expected to affect the height, but not the exponent, of the exponential in Fig. 2.

Figure 7 is a schematic representation of our hypothesis. This exponential is body size
and food-quality corrected, and so it is expected to look the same for all species. Populations
(species) 1, 2 and 3 live in different thermal environments and their development (time) rates
are approximately linear. Temperature impairs development at the upper temperature for
each population as biochemical adaptations allow each to develop in only a restricted
temperature range. What determines that range is perhaps as interesting as our suggestion
that the successive lines approximate the same underlying exponential function.
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