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Figure 8.2: The figure on the left shows the probability of detection map M(q) which
reflects the likelihood of detecting “good” information in the region. The figure on
the right shows the probability of detection map after 30 iterations of the control
algorithm for the multi-sensing behavior. Notice that the probability of detection
has been reduced significantly, from about 0.95 to nearly 0.5.

Figure 8.3: The figure on the left shows the magnetic intensity map after 30 iterations
of the cooperative control algorithm. We see that the highest concentration of the
magnetic field is near (.5m,-1.5m). The figure on the right shows the light intensity
map after 30 iterations of the cooperative control algorithm. We see that the light
is concentrated near (0m,2m).
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Figure 8.4: The robot trajectories during the multi-sensing experiment. The red
dots correspond with the robots initial positions and the yellow, blue, and green
dots represent the goal points the robots navigated to.
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Chapter 9

Centroidal Motion Constraint Set

Configurations: Heterogeneous

Sensor Network

In this chapter we implement the centroidal heterogeneous motion constraint set

configurations presented in Section 5.7. This hardware experiment was conducted to

validate the claims of Theorem 5.6.4 and Theorem 5.6.5.

9.1 Experimental Results

This section looks at the particular situation when the relay agent of the heteroge-

neous team moves towards its centroid of its feasible motion set. The rest of the

heterogeneous network consists of two sensing agents. In this particular network

configuration the relay robots behavior mimics that of balancing the network in the

form of keeping equidistance between the two sensing agents. In this sense, the relay

agent is trying to give equal network considerations to each sensing agent.
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Figure 9.1: Diagram of hardware experiments using the centroid seeking behavior.

For the hardware implementation of the communication constraints, we chose to

implement Algorithm 1 on a single relay robot. Two sensing robots were given pre-

defined trajectories and were tasked with taking light intensity measurements along

these trajectories. The relay robot calculates its feasible motion set based on the

positions of the sensing agents and then moves towards its centroid. Position infor-

mation of the sensing agents were updated every 0.5 seconds. For this experiment

we used Rrc = 3.2m and Rc = 1.0m for the communication radius of the relay and

sensing agents respectively. Figure 9.1 shows a diagram of how the experiment was

implemented and Figure 9.2 shows a snapshot of the hardware setup. The ad-hoc

network consisting of three XBee wireless RF Modules was used to communicate

sensing data between robots. This allowed for the light intensity map to be built

103



Chapter 9. Centroidal Motion Constraint Set Configurations: Heterogeneous Sensor Network

Figure 9.2: Experimental snapshot showing the two sensing agents and a single relay
agent.

in a distributed fashion. A wireless local area network (WLAN) was used to send

a real-time light intensity map from the relay robot to an end user using a laptop

outside the experimental area. Figure 9.3 shows the evolution of the second smallest

eigenvalue of the Gdisk(r(p)) graph and shows that the heterogeneous network stays

connected for the entire experiment.
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Figure 9.3: The second smallest eigenvalue of the Gdisk(r(p)) graph during experi-
ments of the centroidal behavior. The network remains connected throughout the
experiment.
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Chapter 10

Conclusion and Future Work

In this dissertation we addressed prioritized sensing behaviors with communication

constraints for a heterogeneous sensor network made up of sensing agents and mobile

communication relays. First we provided a collision free motion controller that drives

sensing agents to areas within their search area that contain the highest probabil-

ity of containing “good information.” We also provided a technique for combining

different sensing objectives which relied on logistic regression. Secondly, we derived

connectivity constraints for a heterogeneous sensor network which allowed for the

development of feasible motion sets that guarantee network connectivity for agents

within the network. Lastly, we showed how to reduce the number of communica-

tion constraints to allow the sensing agents to maximize their feasible motion sets

and thus allow for a larger search area while maintaining network connectivity. A

technique for shaping the network configuration was also presented that allows for

biasing particular communication links within the network which shapes the flow of

information within the sensor network.

Future research directions include formulating network connectivity in a proba-

bilistic sense, i.e., assign a probability of becoming disconnected given certain con-
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figurations rather than a strick geometric approach to connectivity maintenance.

Another area for extending this framework lies in relaxing the assumption that the

sending and receiving range of each agent is symmetric. One question that can be

asked is, how does having a larger sending range than receiving range change the

heterogeneous proximity graph construction and what are the implications to the

efficiency of the prioritized search? Also a more in depth investigation is needed

to understand the robustness of the network to node failures and how it may be

incorporated in our current framework.
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