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Abstract

In this paper we show how a number of interesting linear control system analysis and design problems can be
reduced to Quanti�er Elimination (QE) problems. We assume a �xed structure for the compensator, with
design parameters qi. The problems considered are problems that currently have no general solution, e.g.
the output stabilization problem, the simultaneous stabilization problem, the robust multiobjective problem,
etc. However, the problems must be of modest complexity if existing QE software packages are to produce
answers. The software package QEPCAD is used to solve some numerical design examples.



Chapter 1

Introduction

As will be demonstrated in this paper, many interesting control system design and analysis problems can
be reduced to Quanti�er Elimination or QE problems. In particular, for linear time-invariant systems,
important control issues such as stability, robust stability, and robust performance can be reduced to systems
of multivariable-polynomial inequalities with logic quanti�ers such as \there exits" (9) and \for all" (8).
For simplicity we will refer to multivariable-polynomials as simply polynomials in the sequel. Typically the
variables in the polynomials are real variables that come from plant (controlled system) and compensator
(controller) parameters. The �nal design objective is to obtain quanti�er-free formulas for the compensator
parameters or, for the existence problem, to obtain a \true" or \false" output when compensator parameters
are quanti�ed with the existence quanti�er QE methods are especially attractive for control problems where
there are no general analytical design algorithms and where, for practical reasons, one would like to have the
simplest possible compensator. An example of this is the static output-feedback stabilization problem, which
we will refer to as simply the output-feedback stabilization problem. This is the problem of �nding a \zero-
order" compensator, or what is commonly referred to simple proportional feedback, such that the closed-loop
system is stabilized. Proportional feedback is the simplest possible type of feedback that can be used, yet
this problem remains an open analytical problem. Indeed one of the �rst attempts to use QE methods, also
referred to as Decision Methods to solve control system design problems, was to solve the output-feedback
stabilization problem, as reported in the paper by Anderson et. al. [2] in 1975. Unfortunately at the
time the available QE algorithms were very complex and no software was available for computer solutions.
Since then, improved QE algorithms have been developed, see for example [8, 9], and software packages
have been written to implement the new algorithms, for example the software package QEPCAD Quanti�er

Elimination by Partial Cylindrical Algebraic Decomposition package [12, 13]. It seems appropriate then to
re-examine the application of QE methods to control system design problems.

This paper is organized as follows. Section 2 contains a discussion of the control problems we studied
using QE. It is divided into stabilization problems and performance problems. Section 3 contains an overview
of the mathematical theory of QE, with special emphasis on issues arising in control problems. Examples of
using QE to solve control problems are given in chapter 4. Our conclusions and directions for future research
are included in chapter 5.
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Chapter 2

Control Design Problems

In this chapter, we review a few control problems divided into two categories: The �rst contains problems
where the main objective is to stabilize one or a family of systems. The second category contains in addition
to stabilizability, some performance requirements. In the sequel, we refer to Figure 2.0.1 for the closed-loop
block diagram used in control theory. The functions C(s; q) and G(s; p) are the Laplace-transform transfer
functions of the compensator and the plant, respectively. We assume here that our system is linear, time-
invariant, and lumped, so that these two functions are rational functions in the transform variable s. The
plant may also be characterized in state-space form, i.e.

_x = A(p)x +B(p)u; y = C(p)x (2.0.1)

with the usual relation G(s; p) = C(p)[sI �A(p)]�1B(p).

2.1 Stability

For feedback control systems, as shown in Figure 2.0.1, the �rst design problem one must address is that
of stability of the closed-loop system. Stability requires that all the zeros of the numerator polynomial
(closed-loop characteristic polynomial) of the rational function 1+C(s; q)G(s; p) have negative real parts. If
the closed loop characteristic polynomial is denoted f(s) = a0s

n + a1s
n�1 + ::: + an; a0 > 0 the Li�enard-

Chipart criterion [11] then states that all the roots of f(s) = 0 have negative real parts if and only if

+
−

r e u y
C(s,q) G(s,p)

Figure 2.0.1: Block Diagram Of Feedback System
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an > 0; an�2 > 0; � � � ; �1 > 0;�3 > 0; � � � where �i is the Hurwitz determinant of order i, i.e.

�i = det

2
66666664

a1 a3 a5 � � �
a0 a2 a4 � � �
0 a1 a3 � � �
0 a0 a2 � � �
...

...
...

...
� � � � � � � � � ai

3
77777775

ak = 0; k > n (2.1.2)

See section 13, chapter XV of reference [11] for more details. We list next four stabilizability problems which
will later be framed as QE problems, and solved using the software package QEPCAD.

Problem 1: Output Feedback Stabilization

The output feedback problem is probably the most important open question in control engineering. Simply
stated, the problem is as follows: Given the linear, time-invariant system (2.0.1), �nd a static output feed-
back u(t) = �Ky(t) so that the closed-loop system has some desirable characteristics, or determine that
such a feedback does not exist. The problem is important in its own right, but also because many other
problems, e.g. �xed-order compensation, are reducible to some variation of it. A recent survey of the state of
the art into this problem may be found in [19]. For multi-input-multi-output (MIMO) systems, this problem
has no analytical solution, even when all the plant parameter values are known.

Problem 2: Simultaneous Stabilization

The problem of stabilizing n di�erent plants is a longstanding problem in the robust control literature. The
problem is stated as one of �nding conditions for the existence and a method of designing one controller to
stabilize a set of n plants: G1; G2; :::; Gn, or determining that such a controller can not exist. The controller
should be exhibited once its existence conditions are satis�ed. The problem is relevant in applications where
the plant is only known to belong to a set of n di�erent plants, or where the failure of sensors or actuators
will drastically change the plant from its current description. More recently, the problem has been studied in
conjunction with the problem of stabilizing a nonlinear plant, which is linearized about n operating points.
The simultaneous-stabilization has no analytical solution if n � 2.

Problem 3: Robust Stabilization

In many situations, the mathematical description of a physical plant is not exactly known. In special but
important situations, the uncertainty of the plant is in the values of its parameters, which are assumed to
appear as polynomials in the coe�cients of s in the plant transfer function G(s; p) or as polynomial functions
in the entries of the A;B, and C matrices. For example

G(s; p) =
an�1(p)s

n�1 + � � �+ a0(p)

bn(p)sn + � � �+ b0(p)

where the ai; bi are polynomials in the entries of the vector p. or

A(p) = A+ �1(p)A1 + :::+ �n(p)An (2.1.3)

where Ai are known matrices, and �i(p) are polynomial in the entries of the vector p. The robust stabiliza-
tion problem is to determine if a compensator vector q exists which stabilizes the closed-loop system, given
the uncertainty in plant vector p; and when one does exist to compute a value for q, or characterize the set
of vectors q that preserve stability. It has been shown that for the transfer function model, using Kharitonov
theory, that some problems of this type can be reduced to the problem of simultaneous stabilization of a
�nite collection of plants. See, for example chapter 11 in [3] and [5].
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2.2 Performance

In general, stability is but one of many requirements of a closed-loop control system. We will focus here
on performance measures speci�ed in the frequency domain, since measures of this type �t the QE problem
formulation very nicely.

Problem 4: Frequency Domain Multiobjective Design

With respect to the feedback system of Figure 2.0.1, some typical performance objectives to be met (simul-
taneously) are represented by the inequalities

� Tracking Error

jS(j!)j � �; 0 < ! � !1

� Control E�ort

jW (j!)j < �; for all !

where the function S(s) represents the transfer function between the command signal r and the error signal
e, and the function W (s) represents the transfer function between the command signal r and the control
signal u. These two functions may be computed from

S(s) =
1

1 + C(s; q)G(s; p)
; W (s) =

C(s; q)

1 + C(s; q)G(s; q)
(2.2.4)

By computing the magnitude squared and clearing fractions, these two speci�cations can be reduced to poly-
nomial inequalities in the variables qi; pi, and !, with integer coe�cients if �2 and �2 are rational numbers.
For robust performance the various performance speci�cations must be met for all admissible plant vectors
p. For nominal performance, the speci�cation must be met only for a �xed vector p. For QE to apply, the
entries of the vector p must be rational numbers.

In the next chapter, we review the QE problem as it relates to control, and discuss the availability of
software packages for the purpose of solving QE problems.

5



Chapter 3

QE Methods and QEPCAD Software

In this chapter, we review the general QE problem and introduce the software package QEPCAD which we
use to solve our control problems. A more detailed treatment may be found in [20, 4].

Given the set of polynomials with integer coe�cients Pi(X;Y ); 1 � i � s where X represents a k
dimensional vector of quanti�ed real variables and Y represents a l dimensional vector of unquanti�ed real
variables, let X [i] be a block of ki quanti�ed variables, Qi be one of the quanti�ers 9 (there exists) or 8 (for
all), and let �(Y ) be the quanti�ed formula

�(Y ) = (Q1X
[1]; :::; QwX

[w])F (P1; :::; Ps); (3.0.1)

where F (P1; :::; Ps) is a quanti�er free Boolean formula, that is a formula containing the Boolean operators
^ (and) and _ (or), operating on atomic predicates of the form

Pi(Y;X
[1]; :::; X [w]) � 0 (3.0.2)

Pi(Y;X
[1]; :::; X [w]) > 0 (3.0.3)

Pi(Y;X
[1]; :::; X [w]) = 0 (3.0.4)

We can now state the general quanti�er elimination problem

General Quanti�er Elimination Problem: Find a quanti�er-free Boolean formula 	(Y ) such that
�(Y ) is true if and only if 	(Y ) is true. In control problems, the unquanti�ed variables are generally the
compensator parameters, represented by the parameter vector Y = q, and the quanti�ed variables are the
plant parameters, represented by the plant parameter vector p, and the frequency variable !. Uncertainty
in plant parameters are characterized by quanti�ed formulas of the type 8(pi) [pi � pi � pi] where pi and pi
are rational numbers. The quanti�er-free formula 	(q) then represents a characterization of the compensator

design.
An important special problem is the QE problem with no unquanti�ed variables (free variables), i.e. l = 0.
This problem is referred to as the General Decision Problem.

General Decision Problem: With no unquanti�ed variables, i.e. l = 0, determine if the quanti�ed
formula given in 3.0.1 is true or false.

The general decision problem may be applied to the problem of existence of compensators that meet
given speci�cations, in which case an \existence" quanti�er is applied to the compensator parameter q.

Algorithms for solving general QE problems were �rst given by Tarski [20] and Seidenberg [18], and
are commonly called Seidenberg-Tarski decision procedures. Tarski showed that QE is solvable, but his

6
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algorithm and later modi�cations are exponential in the size of the problem. Researchers in Control Theory
have been aware of Tarski's results and their applicability to Control problems since the 1970's but the tedious
operations made the technique very limited [2]. Later, Collins [8] introduced a theoretically more e�cient
QE algorithm that uses a cylindrical algebraic decomposition (CAD) approach. However, this algorithm was
not capable of e�ectively handling nontrivial problems. More recently Hong [12], Collins and Hong [9], Hong
[13] have introduced a signi�cantly more e�cient partial CAD QE algorithm. In our work we use the Hong's
implementation of the CAD algorithm called QEPCAD. The CAD algorithm always completely solves any
QE problem. However, the computational cost is extremely high. Our experience (see [14, 15]) indicates
that QEPCAD can always solve, in a few seconds on a large workstation, most textbook examples. It can
also solve some signi�cantly harder problems and a few non-trivial problems. However the problem with
this general implementation of CAD quanti�er elimination is that its time complexity is double exponential
which means that for many problems, current computer resources are not su�cient. It is very important to
simplify the QE problem as much as possible before using QEPCAD.

7



Chapter 4

Control System Design Examples

The general control structure we use was shown in Figure 2.0.1. The controller C(s; q) is designed so
that the closed-loop system satis�es some design requirements in the face of signi�cant uncertainties in the
description of G(s; p). This leads to the question of robust control design. First and foremost however, the
controller should be chosen to make the closed-loop system stable. The examples in this section illustrate
the application of QE methods to stability problems.

4.1 Stability

As noted in the introduction, stability is for linear time-invariant systems is generally checked by a criterion
such as the Li�enard-Chipart criterion, applied to a closed-loop characteristic polynomial.

4.1.1 Robust Stability Analysis Example

Here we consider the problem from [21] which deals with robust stability analysis for systems with nonlinearly
correlated parametric uncertainties. The closed-loop system, with given state-feedback u = �Kx, has a
system matrix given by

A�BK =

�
1:5 3:25
�1:5 �2:25

�
+ p1

�
�1 �2
1 2

�
+ p2

�
�0:5 �1:5
0:5 1:5

�
+ p1p2

�
0 1
0 �1

�
(4.1.1)

with plant parameters p1; p2 constrained to the uncertainty set

B(�) = f0 � p1 � �; 0 � p2 � �g

and the task is to �nd maximal � for which the system is stable for all p1; p2 from B(�).

The characteristic polynomial of the matrix (4.1.1) is

s2 + (p1p2 � p1 � p2 + 0:75)s+ (�p1 � 0:5p2 + 1:5) :

For a second oder polynomial stability requires only that all the coe�cients have the same sign. In this case,

�2p1 � p2 + 3 > 0; 4(p2 � 1)p1 � 4p2 + 3 > 0 :

8
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After making substitutions pi = �!i; i = 1; 2 we have formulated the quanti�er elimination problem which
solves this example as

8!1;8!2; �2�!1 � �!2 + 3 > 0; 4(�!2 � 1)�!1 � 4�!2 + 3 > 0 :

The QEPCAD code eliminates the quanti�ed variables !i; i = 1; 2 and give us the quanti�er free formula
equivalent to the above quanti�ed formula

2�� 1 < 0

in 1.033 s. So the result is that if � < 0:5 then our system is stable for all parameters from B(�) (compare
this precise result with several numerical testing in [21]).

4.1.2 Output Feedback Stabilization Example

Consider the static output feedback example in Anderson et.al. [2] where the Tarski-Seidenberg theory was
applied manually. We have the plant

_x =

2
4 0 1 0

0 0 1
0 13 0

3
5 x+

2
4 0

0
1

3
5 u; y =

�
0 5 �1
�1 �1 0

�
x (4.1.2)

with the static output feedback, u = �Kx where K = [q1; q2] = [v; w] so that the closed-loop system matrix
is

A�BK =

2
4 0 1 0

0 0 1
�w 13 + 5v � w �v

3
5 (4.1.3)

with a closed-loop characteristic polynomial s3 + vs2 + (w � 5v � 13)s+ w. The Li�enard-Chipart criterion
gives us the conditions

v > 0; w > 0; �5v2 � 13v + vw � w > 0 (4.1.4)

for the polynomial to be stable, i.e. to have all roots with negative real part. The solution of the inequalities
(4.1.4) can be stated as the quanti�er elimination problem. We have stated it as

9w; (v > 0) ^ (w > 0) ^ (�5v2 � 13v + vw � w > 0):

The QEPCAD code eliminated w gave us the unquanti�ed equivalent formula

v � 1 > 0 ^ v > 0

in 0.034 seconds (compared to about 2 pages in [2]). Now we can choose v > 1, e.g v0 = 2, and the
inequalities (4.1.4) give us restrictions on w, namely for v0, we obtain that w > 0 ^ w � 46 > 0 so that one
parameterization of stabilizing controllers is, v0 = 2; w > 46 .

4.1.3 Simultaneous Stabilization Example

The problem here is to �nd a (stable) compensator which simultaneously stabilize three di�erent plants with
transfer functions

G1(s) =
2� s

(s2 � 1)(s+ 2)
;

G2(s) =
2� s

s2(s+ 2)
; (4.1.5)

G3s) =
2� s

(s2 + 1)(s+ 2)
:

9
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This problem is taken form [1] where it is shown, using certain su�cient conditions, that the problem can
be solved using a third-order compensator. We wish to use QE methods to explore the possibility of si-
multaneously stabilizing these three plants with a lower order compensator. So the problem is to explore
�rst and second order (stable) compensators C(s) such that the numerators of all the transfer functions
Qi = 1 + CPi; ; i = 1; 2; 3 are stable.

First-order compensator: As a �rst attempt we have chosen the stable compensator of the form

C =
as+ b

s+ d
(4.1.6)

with d > 0. In this case the numerators of Qi are

f1(s) = s4 + s3(d+ 2) + s2(�a+ 2d� 1) + s(2a� b� d� 2) + 2(b� d);

f2(s) = s4 + s3(d+ 2) + s2(�a+ 2d) + s(2a� b) + 2b;

f3(s) = s4 + s3(d+ 2) + s2(�a+ 2d+ 1) + s(2a� b+ d+ 2) + 2(b+ d);

and we need to choose such a; b; d so that the polynomials �i are stable. By using the Li�enard-Chipart
criterion, we obtain a set of inequalities in parameters a; b; d . After simpli�cation, these inequalities become

�2a2d� 8a2 + abd+ 6ab+ 5ad2 + 14ad+ 8a� b2 � 4bd2 � 13bd� 10b > 0

�ad� 4a+ b+ 2d2 + 4d > 0

b� d > 0

2a� b� d� 2 > 0 (4.1.7)

�a+ 2d� 1 > 0

�2a2d� 8a2 + abd+ 6ab+ 4ad2 + 8ad� b2 � 4bd2 � 12bd� 8b > 0

�2a2d� 8a2 + abd+ 6ab+ 3ad2 + 2ad� 8a� b2 � 4bd2 � 11bd� 6b > 0

The quanti�er elimination problem stated with these inequalities connected by logical conjunction and quan-
ti�ed by 9a; 9b; 9d was solved by the QEPCAD program. The result given by QEPCAD was "false" which
means that there does not exist any real a; b; d for which inequalities (4.1.7) hold. So we have proved that
there does not exist any stable �rst-order compensator (4.1.6) which stabilize simultaneously all three plants.
It should be noted that while the application of the stability criterion for fourth-order polynomials is straight-
forward, an direct analysis of all the inequalities in (4.1.7) is non-trivial.

Second-order compensator with three parameters: In order to reduce the number of parameters
to be considered we assume a second-order compensator of the form

C(s) =
A(s+B)2

(s+D)2
(4.1.8)

with D > 0, for stability of the compensator. The Li�enard-Chipart criterion gives us after some inequality
simpli�cation A > 0; B > 0 and

P1 > 0 ^ P2 > 0 ^ P3 > 0 ^ P4P5 > 0 ^A > 0 ^ BP6P7 > 0 ^ P8P9 > 0 (4.1.9)

where

P1 = AB2 �D2; (4.1.10)

P2 = �AB +A+D2 �D � 1; (4.1.11)

P3 = AB �AD � 2A+D3 + 4D2 + 4D; (4.1.12)

10
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P4 = AB � 2A�BD2 � 4BD � 4B + 2D2 + 5D + 2; (4.1.13)

P5 = AB3 �AB2D � 4AB2 + 2ABD + 4AB + 2BD3 + 5BD2 + 2BD �D3

�4D2 � 4D; (4.1.14)

P6 = AB � 2A�BD2 � 4BD � 4B + 2D2 + 4D; (4.1.15)

P7 = AB2 �ABD � 4AB + 2AD + 4A+ 2D3 + 4D2; (4.1.16)

P8 = AB � 2A�BD2 � 4BD � 4B + 2D2 + 3D � 2; (4.1.17)

P9 = AB3 �AB2D � 4AB2 + 2ABD + 4AB + 2BD3 + 3BD2 � 2BD +D3

+4D2 + 4D: (4.1.18)

By further \hand" simpli�cation of the inequality (4.1.9) may be written

P1 > 0 ^ P2 > 0 ^ P3 > 0 ^ P5 > 0 ^ P8 > 0 ^ A > 0 ^ B > 0 ^D > 0 (4.1.19)

where we have added the inequality on D. QEPCAD was able to solve the existence problem, but only after
2 hours of CPU time. The QEPCAD output indicated that a solution did indeed exist, so that a second
order stable stabilizing compensator does exist. To �nd a particular compensator and to reduce the CPU
time require to �nd a solution, the following supplementary techniques were used.
Note here that all polynomials in (4.1.19) are linear in A which allows us to apply Weispfenning's method [22]
to the elimination of 9A from (4.1.19). The result of the elimination has been simpli�ed using REDLOG [23]
package to eliminate equations (we are interested only in solutionsA0; B0; D0 for which exists neighborhood of
this point such that all point in the neighborhood are also solution and equations do not have such solutions)
from the result and put it into a disjunction normal form of six conjunctions. Each of the conjunctions has
been simpli�ed by our INEQ package and further simpli�ed manually. After eliminating the variable A, we
obtain the Boolean formula

D > 0 ^ B > 0 ^ (D2 �D � 1)B2 �BD2 +D2 > 0 ^

(D + 2)2B2 +BD �D2 � 2D > 0 ^ (4.1.20)

�((D2 + 4D + 2)B � (D2 + 3D + 1)B2 �D2 � 2D) > 0 ^

(2D � 1)(D + 2)B2 � (D + 2)2B3 +BD2 � 2D2 > 0:

The QEPCAD package solved the quanti�er elimination problem 9D in (4.1.20) with the result 1 < B < 2.
We chose B = 3=2, substituted into (4.1.20) and from the plot of the resulting polynomials in D we have
chosen D = 15 (any D > 13:01 would work �ne). These values of B;D are then substituted into (4.1.19)
which gives us a system of linear inequalities in A. This system was then simpli�ed by the package INEQ
which resulted in 100 < A < 119 from which we chose A = 110. Thus a particular second-order compensator
is given by A = 110; B = 3=2; D = 15.
It can be shown that the quanti�er-free formula in (4.1.20) is equivalent to the points above the curve in
Figure (4.1.3).

4.2 Performance

As noted in chapter 2, multiple frequency domain design objectives involving constraints on magnitude of
transfer functions, can be reduced to QE problems with the 8 quanti�er on the the frequency variable !.
The following example illustrates a problem of this type.

11
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Figure 4.1.1: The set of acceptable values of B;D

4.2.1 Robust Multiobjective Design Example

The problem considered here is a simpli�ed version of the problem in [10, 17]. The plant is assumed to be
an unstable �rst order system with transfer function

G(s; p) =
p1

1� s=p2
; 0:8 � p1 � 1:25 (4.2.21)

with simple output feedback C(s; q) = q1. The tracking error bound (See chapter 2) is assumed to be given by
� = 0:1, with !1 = 10, and the control e�ort bound is given to be � = 20. To solve the robust multiobjective
problem we must satisfy the following inequalities for all 16 � 20pi � 25. Note that the constraints on pi
have been re-written in terms of integers to satisfy the requirements of the QE theory, i.e. all numerical
polynomial coe�cients must be integers.
Robust stability: The stability criterion for the �rst order closed-loop characteristic polynomial is simply,

p2(1 + p1q1) < 0 (4.2.22)

Tracking error: If the magnitude-squared of S(j!) is computed, and the denominator polynomial is cleared
we obtain the condition,

99!2 + (p2)
2(100(1 + p1q1)

2 � 1) > 0; 0 � ! � 10 (4.2.23)

Control e�ort: With the same computations as for the tracking error, we obtain for control e�ort the
condition,

(400� q21)!
2 + (p2)

2(400(1 + p1q1)
2 � q21); all real ! (4.2.24)

The direct solution from QEPCAD, with no preliminary simpli�cations, yields the quanti�er-free formula

	(q1) = [(q1 + 20 � 0) ^ (q1 + 2 � 0] _ [(8q1 + 11 < 0) ^ (q1 + 2 � 0)] (4.2.25)

From (4.2.25) one obtains the following parameterization of output-feedback compensation which satis�es
the robust multiobjective problem.

�20 � q1 < �1:375

12
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[33 CDC -Milanese et.al]

(q1,p1,p2,w1,w2)

1

(A p1)(A p2)(A w1)(A w2)

[

[16 <= 20 p1 /\ 20 p1 <= 25 /\

16 <= 20 p2 /\ 20 p2 <= 25 /\ 0 <= w1 /\ w1 <= 10 ]

==>

[p2 (1 + p1 q1) < 0 /\

99 w1^2 + p2^2 (100 (1 + p1 q1)^2 - 1 ) > 0 /\

(400 - q1^2) w2^2 + p2^2 (400 (1 + p1 q1)^2 - q1^2) > 0

]

].

go

go

go

go

Table 4.2.1: Input File for QEPCAD

To illustrate QEPCAD syntax we list for this particular example, the QEPCAD input �le in Table 4.2.1 and
the output �le in Table 4.2.1. Note that the �rst step in de�ning the inputs is to list all the variables, e.g.
(q1; p1; p2; w1; w2), with the un-quanti�ed variables listed �rst. The un-quanti�ed variables are identi�ed by
listing the number of such variables in the variable list. In this particular example the number one is listed
since there is only one un-quanti�ed variable, q1. Note also that the variable ! is speci�ed as two separate
variable w1 and w2, since the inequalities involving ! are for di�erent ranges of !.

13
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=======================================================

Quantifier Elimination

in

Elementary Algebra and Geometry

by

Partial Cylindrical Algebraic Decomposition

Version 12 (Interactive)

September 1993

by

Hoon Hong

(hhong@risc.uni-linz.ac.at)

Research Institute for Symbolic Computation

with contributions by

George E. Collins

Jeremy R. Johnson

Mark J. Encarnacion

=======================================================

Enter an informal description between '[' and ']':

[33 CDC -Milanese et.al]Enter a variable list:

(q1,p1,p2,w1,w2)Enter the number of free variables:

1

Enter a prenex formula:

(A p1)(A p2)(A w1)(A w2)

[

[16 <= 20 p1 /\ 20 p1 <= 25 /\

16 <= 20 p2 /\ 20 p2 <= 25 /\ 0 <= w1 /\ w1 <= 10 ]

==>

[p2 (1 + p1 q1) < 0 /\

99 w1^2 + p2^2 (100 (1 + p1 q1)^2 - 1 ) > 0 /\

(400 - q1^2) w2^2 + p2^2 (400 (1 + p1 q1)^2 - q1^2) > 0

]

].

=======================================================

Before Normalization >

go

Before Projection (w2) >

go

Before Choice >

go

Before Solution >

go

14
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=======================================================

An equivalent quantifier-free formula:

[ [ q1 + 20 >= 0 /\ q1 + 2 <= 0 ] \/ [ 8 q1 + 11 < 0 /\ q1 + 2 >= 0 ] ]

In other words,

[ [ P_1,1 >= 0 /\ P_1,19 <= 0 ] \/ [ P_1,7 < 0 /\ P_1,19 >= 0 ] ]

where

P_1,1 = q1 + 20

P_1,19 = q1 + 2

P_1,7 = 8 q1 + 11

========================================================================

===================== The End =======================

-----------------------------------------------------------------------------

0 Garbage collections, 0 Cells and 0 Arrays reclaimed, in 0 milliseconds.

1729490 Cells in AVAIL, 2000000 Cells in SPACE.

System time: 15384 milliseconds.

System time after the initialization: 11467 milliseconds.

-----------------------------------------------------------------------------

Table 4.2.2: Output File for QEPCAD
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Chapter 5

Conclusions

Quanti�er-elimination theory provides a method for the solution of control system design problems using
simple �xed-structure compensators. While the currently available software limits the application of QE
theory to modest size problems, the theory is valuable for the following reasons:

� One can solve problems for which there is no general analytical theory, e.g. problems of output feedback,
simultaneous stabilization, robust multiobjective design, etc.

� From a practical point of view it is important to keep the compensator as simple as possible, since
some on-line tuning of compensator parameters is almost always required.

� Even modest size practical problems cannot be e�ectively computed by hand because of the large
number of inequalities involved.

Finally it should be noted that discretization methods, both deterministic and random (Monte Carlo), where
all parameters are discretized, are alternate approaches to the solution of the class of problems consider here,
i.e. problems of modest complexity with no analytical solutions. However QE methods have the advantage of
leaving no \holes" in the parameter space in the deterministic discretization case, or of yielding \probability-
one" results in the random discretization case.

Acknowledgments Support for R. Liska and S. Steinberg was provided by the National Science Foun-
dation International Programs Grant INT-9212433.
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