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Optimized preparation of quantum states by conditional measurements

G. Harel and G. Kurizki
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

J. K. McIver1 and E. Coutsias2
1Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131

2Department of Mathematics, University of New Mexico, Albuquerque, New Mexico 87131
~Received 28 July 1995!

We introduce a general strategy for preparation of arbitrary quantum states via optimal control of repeated
conditional measurements. The effectiveness of this strategy in generating finite Fock-state superpositions with
a high level of confidence from experimentally accessible coherent states is demonstrated for the simple and
well known Jaynes-Cummings model dynamics.@S1050-2947~96!07406-9#

PACS number~s!: 42.50.Dv, 32.80.2t

State preparation of quantum systems is a prerequisite for
studying fundamental aspects of quantum measurement
theory @1#, as well as for encoding quantum information@2#
and its processing~computing! @3#. Problems of state prepa-
ration have been dealt with most extensively in the realm of
cavity quantum electrodynamics@4–8#. One proposal for
state preparation of a cavity field mode@8# relies entirely on
its unitary evolution, via coupling with a rather complex sys-
tem, an atom having several Zeeman sublevels. This cou-
pling results~underperfectly adiabatic conditions! in a one-
to-one mapping of the initial sublevel superposition to a
superposition of Fock~photon-number! states. Can one alter-
natively use asimplefield-atom interaction, e.g., the resonant
Jaynes-Cummings~JC! model @4# or the off-resonant Kerr-
like interaction@5#, followed by a measurement on the atom
leaving the cavity, and repeat the process over and over
again until the desired state of the field is attained?

In general, measurements of atomic observables after the
interaction would yieldrandomresults for the prepared field
state@4,5#. In order to preparepredeterminedfield states, the
conditional measurement~CM! approach has been suggested
@6#. In this approach, only those sequences of atoms in which
each atom is found after the interaction to be in a chosen
state are used to guide the field evolution to the desired state,
whereas all other measurement sequences are discarded, at
the price of atomic post selection probability, which is less
than unity at each step of the sequence. The CM approach
has been significantly enriched by a recipe for constructing
anarbitrary superpositionof Fock states@7#. It is based on a
recurrence relation, which allows one to retract the desired
superposition back to the starting vacuum state, by determin-
ing the possible initial atomic states and interaction times~in
the JC model! at each step of the CM sequence. The practical
restriction on this recipe is that the probability of the result-
ing CM sequences falls off rapidly with the maximal photon
number in the superposition.

Our aim here is to address the basic questions of state
preparation via quantum measurements:~a! Given a simple
field-atom interaction, as in the JC model, and a choice of
experimentally realizable initial field states~e.g., coherent
states!, can the field converge to any desired ‘‘target’’ state
to within the required accuracy via afinite number of mea-

surements? Hilbert space topology arguments supported by
numerical calculations are given to show that such conver-
gence is in general attained, provided that the number of
control parameters per CM is comparable to the dimension-
ality of the target-state subspace.~b! How can one choose a
CM sequence connecting the initial and ‘‘target’’ states, so
as to maximize its success probability and minimize its
length~the required number of CMs!? Although in principle
it should be possible to choose the CM sequence with the
highest ratio of probability to length, in practice such opti-
mization amounts to the formidable task of a global search
over a huge parameter space~whose dimensionality is the
number of parameters per CM times the maximal admissible
number of CMs!. We demonstrate that there is a simple and
computationally fast alternative, namely, stepwise optimiza-
tion by search over the parameter space of one CM at a time,
allowing one to choose a high-probability CM sequence
from among those that converge to the target state monotoni-
cally.

Let us first formulate our strategy in general terms, suit-
able for any dynamical model. Suppose that we have started
from the field stateuc0&5SnCn,0un&. After K21 CMs the
field state isucK21&5SnCn,K21un& and we are trying to ob-
tain the ‘‘target’’ stateuc t&5Sn5nmin

n max Cn,tun& via an optimal

route in Hilbert space. Choosing the next atom to be in initial
stateufK

( i )&, we unitarily evolve the initial field-atom product
stateucK21& ^ ufK

( i )& over timetK by the operatorU(tK) and
perform a CM by projecting the resulting entangled state
onto a postselected final atomic stateufK

( f )&. This choice of
initial and final atomic states and oftK corresponds to choos-
ing a field-stateCM transformation

ucK21&→ucK&5PK
21/2^fK

~ f !uU~tK!@ ucK21& ^ ufK
~ i !&], ~1!

where PK5 z^fK
( f )uU(tK)@ ucK21& ^ ufK

( i )&# z2 is the success
probability of the corresponding CM.

The application of a sequence of CM transformations to
an initial coherent state effects convergence to the target
state via two processes taking place in parallel:~a! gradual
elimination ~filtering out! of all undesired Fock statesun&
from the starting coherent state, while leaving the amplitudes
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of the Fock statesnmin<n<n max almost intact—this is
achievable by adjusting the control parameters so as to leave
the CM transformationnear unity for nmin<n<nmax and
considerably less than unity for all othern ~see below!; ~b!
amplitudefine tuning in the Hilbert subspacespanned by
Fock statesun&, nmin<n<n max, wherein the target state is
contained—after the first few CMs the field state remains
confined to this subspace by the filtering action of the first
process.

The physical states within the above (N5n max
2nmin11)-dimensional Hilbert subspace are represented by
unit norm vectors with global phase factors ignored. They
constitute a manifold ofDN52(N21) real dimensions. An
important part of the optimization is to fix adistancefunc-
tion on this manifold, in terms of which proximity to the
target site is to be measured. A particularly useful family of
such distances

du,K5$udmo,K
2 1dph,K

2 %1/2 ~2!

is obtained by assigning anadjustableweightu to themoduli
distancefrom the target

dmo,K5H(
n

zuCn,Ku22uCn,tu2z2J 1/2 ~3!

relative to thephase-factor distance

dph,K5H(
n

zeixKCn,K /uCn,Ku2Cn,t /uCn,tuz2J 1/2. ~4!

The phase factoreixK is chosen to be such that
xK1arg(Cn,K)5arg(Cn,t) for a chosenn, thus eliminating
the arbitrariness in the overall phases ofucK& and uc t&. The
current field stateucK& can then be viewed as lying on the
(DN21)-dimensional hypersurface of statesequidistant~in
terms ofdu) from the target state@Fig. 1~a!#. The family of
all possible CM transformations acting on the field statein-
cludestransformations close to the identity, whence it spans
asubmanifoldcontainingucK&, whose real dimensionality is,
normally, the number of control parametersDc @Fig. 1~a!#.

Assuming thatDc<DN , how can we achieve optimized
convergence to the target? The answer is that, generically,
the intersection of the spanned submanifold with the
equidistant-state hypersurface, which occurs atucK&, is
transversalfor anyDc>1. Hence the spanned submanifold
contains statescloser to the target thanucK&, as well as
states further away from it. Among those statescloserto the
target thanucK&, we may choose anoptimal one, having
high success probabilityPK11 for the corresponding CM
transformation. The chosenucK11& minimizes acost func-
tion GK11 , which, albeit arbitrary, must increase with
du,K11 and be reduced with success probabilityPK11 . The
simplest choice, which has proven to be highly effective is

GK115
du,K11
2

PK11
r . ~5!

Here the adjustable exponentr.0 determines the sensitivity
to success probability: The maximization ofPK11 is most

drastic when r is large, but excessiver values render
GK11 insensitive to distance, thus hampering convergence.

Repeating this process, again and again, we obtain a se-
quence of field states withmonotonicallydecreasing dis-
tances to the target along with maximized probabilities. This
holds true for arbitraryDN andDc>1, but asDc increases,
so does the choice of optimized statesucK&, allowing higher
CM success probabilities. Moreover, whenDc approaches
DN we may expect the residual distance limk→`du,K to be
small, allowing good proximity to the target.

We shall now apply this general optimization strategy to
experimental setups which realize the resonant JC model@4#,
where convergenceis successfulfor N<4 (DN<6) since
Dc55 ~see below!. For convenience, the quantum states of
the cavity field and atomic systems are written in theinter-
action picture.

~1! The first stage of the considered setup is the atomic
preparation region: each atom enters the region in its ground
stateug& and with controllable velocity, then interacts with
classical fields which transformug& into a superposition of
excited and ground states with two independent parameters

ufK
~ i !&5aK

~ i !ue&1bK
~ i !ug&, ~6!

the superscript signifying the initial atomic state.
~2! The second stage of the setup is the cavity, in which

the atom interacts for a timetK ~determined by its velocity!
with the resonant field mode. The starting field state
uc0&5SnCn,0un& is a coherent~or squeezed! state prepared
by means of a classical oscillator that is phase locked~syn-
chronized! with the resonant classical field in stage 1. The
second stage is described by the unitary evolution operator of
the resonant JC model,U(tK), which entangles the field and
atom states according to

un&ue&→cosun,Kun&ue&2 i sinun,Kun11&ug&,

un&ug&→cosun21,Kun&ug&2 i sinun21,Kun21&ue&, ~7!

where un5ltKAn11, 2l being the vacuum Rabi fre-
quency~and u21& is formally defined to be zero!.

~3! Upon exiting the cavity, the atom encounters the last
stage, in which it interacts again with classical fields. This
last stage is aimed at projecting the entangled field-atom
state onto the atomic state

ufK
~ f&5aK

~ f !ue&1bK
~ f !ug&. ~8!

HereaK
( f ) andbK

( f ) are the final~postselected! counterparts of
the initial atomic parameters in Eq.~6!. The classical fields
in this stage are so set as to unitarily transform the state
ufK

( f )& into ug&, whence successful detection of the atoms in
the stateug& then corresponds to projection ontoufK

( f )&,
whereas detection of theue& state corresponds to projection
onto the state orthogonal toufK

( f )&.
The three consecutive stages described above: preparation

of ufK
( i )&, then resonant JC unitary evolutionU(tK), fol-

lowed by projection ontoufK
( f )&, effect the field-state trans-

formation
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ucK21&5(
n

Cn,K21un&→ucK&5(
n

Cn,Kun&,

Cn,K5PK
21/2$~aK

~ f !*aK
~ i !cosun,K

1bK
~ f !*bK

~ i !cosun21,K!Cn,K21

2 ibK
~ f !*aK

~ i !sinun21,KCn21,K21

2 iaK
~ f !*bK

~ i !sinuN,KCn11,K21% ~9!

~where we defineC21,K2150). There are five controllable
parameters of this CM transformation that should be deter-
mined by minimizingGK @Eq. ~5!# for eachK: the two com-
plex pairsaK

( i ) andbK
( i ), andaK

( f ) andbK
( f ) ~each pair having

two independent parameters due to normalization and global-

phase redundancy!, as well asltK . The accuracy to which
the target state can be attained is~at best! that of controlling
the above five parameters.

From numerous computations based on the present strat-
egy we can infer that the success probability of the optimized
sequence is close to, and oftenhigher than the squared pro-
jection z^c0uc t& z2 of the starting coherent state on the target
state. This implies that convergence to the target state is
genuine optimization, and not merely the filtering-out~era-
sure! of unwanted parts of the initial Fock-state distribution.
The filtering out is effected by the diagonal terms (Cn,K21)
in ~9!, for which ltK is such thatucosun,Ku!1, whereas for
nmin<n<nmax, ucosun,Ku'1. By contrast, the off-diagonal
terms (Cn61,K21) in ~9! are responsible for thefine tuning
~reshaping! of the Fock-state distribution.

The results of the optimization strategy outlined in Eqs.
~5!–~9! are illustrated in Figs. 1 and 2. In Fig. 1 we explore

FIG. 1. ~a! Schematic Hilbert-space
map of the optimized convergence to
the target statec t . The successive field
states c0 , . . . ,c2 , reached in the
process of optimization, lie on the
hypersurfacesH0 , . . . ,H2 of equi-
distant points.M0 , . . . ,M2 are the
submanifolds spanned by CM trans-
formations applied to c0 , . . . ,c2 .
~b!–~d! Optimized convergence of
field state as a function of the
number of CMs, K ~dots!, to
target stateuc t&5(5u3&17e(5/6)p i u4&
13e(7/6)p i u5&)/(52172132)(1/2), in
the resonant JC model, from coherent
state uc0&5Sn50

` Ae244n/n! un&, using
r51.5 andu58 in Eq. ~5!. ~b! Con-
vergence of moduli squareduCn,Ku2 to
target’s squared moduliuCn,tu2 ~hori-
zontal lines!. ~c! Idem, for phase fac-
tors Cn,K /uCn,Ku ~scaled by K) in
the complex plane to directions of tar-
get’s phase factorsCn,t /uCn,tu ~radial
lines!. ~d! Sequence probability
Pseq,K5P l51

K Pl and squared projection
JK5 z^cKuc t& z2. Success probability of
the total sequence is 8%, double the ini-
tial squared projection of 4%.
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the difficult challenge of starting from a coherent state
and attaining a superposition of three successive number
~Fock! states whose amplitudes have prescribeddifferent
phases, as well as, moduli. Such a state can encode one
quantum ternary digit. The optimization yields a CM se-
quence whose success probabilityPseq is twice the squared
projection of the initial state on the target state,
Pseq;2z^c0uc t& z2 ~8% compared to 4% initially!. In Fig. 2
we optimize the generation of a superposition of four succes-
sive number states with different moduli butequal phasesof
the amplitudes. Such a state~with different phases allowed!
can encode two quantumbinary digits ~qubits! @3#. By opti-
mization we obtain for this statePseq; z^c0uc t& z2. Typically,
five to ten CMs suffice to attain 95% and higher overlap with
the target.

The outlined strategy for field-state preparation via
optimal control of repeated CMs is universal, in that it is
applicable toany field-atom interaction and starting-field
state~as long as it is pure!. The effectiveness of this strategy
in generatingfinite Fock-state superpositions, which has
been demonstrated in Figs. 1, and 2, is contingent on two
conditions:~a! The lifetime ~decoherence time! of the mode
divided by the photon number must be much longer than the
state preparation time. This is achievable at present in

high-Q microcavities@4,6#. ~b! High detection efficiency of
the final atomic states~90–95 %, according to our numerical
checks! is needed for high reliability of state preparation.

If these two conditions are satisfied, then the present
CM strategy allows one to ‘‘load’’ the cavity field with
quantum information~m qubits in superpositions of 2m Fock
states! at a rather high rate:M repetitions of the CM se-
quence, whose sizeKmax suffices for convergence to the tar-
get state~within the accuracy margin!, can guarantee the
state ‘‘loading’’ with confidence levelPcon ~desired success
probability!, if

M5 log~12Pcon!/ log~12Pseq!, ~10!

where Pseq is the success probability of a single CM se-
quence. ForPcon50.95 andPseq50.05 this yieldsM558,
whence a rather modest number of trials;MKmax;500 is
then required forKmax;10. Practically, the loading rate
1/M (Kmaxt̄1t reset) is determined by the average interaction
time t̄, the time to reset the field to its initial state after an
unsuccessful measurement sequence,t reset, and the require-
ment thatPcon be comparable with the atomic detection ef-
ficiency or the field-decoherence probability~during the state
preparation!. By comparison,Pcon in unitary nearly adiabatic

FIG. 2. ~a!, ~b!: Same as Fig. 1 for targetuc t&5(3u11&14u12&15u13&16u14&)/(32142152162)1/2, starting with coherent state
uc0&5Sn50

` Ae21313n/n! un&, usingr53 andu54 in Eq. ~5!. Success probability of the total sequence is 33%, comparable with the initial
squared projection of 40%.~c!, ~d!: Initial (K50) and final (K510) Fock-state distributions with reference lines as in~a!.
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schemes@8# is limited by the probability of intermediate-
level decay or field decoherence, whereas the loading rate is
determined by the duration of the miltilevel atomic-state
preparation and the subsequent nearly adiabatic coherence

transfer to the field. These estimates suggest that our opti-
mized CM strategy, based on simple dynamics, such as the
JC model, is aviable alternative to unitary evolution
schemes involving multilevel-atom dynamics.
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