5-1-2016

Imaging Appearances of Spinal Cavernous Malformations

Juliana Starcevich
Blaine Hallstron
Mary Bartlett
E Reese
Leslie Morrison

Follow this and additional works at: https://digitalrepository.unm.edu/rad_pubs

Recommended Citation
Starcevich, Juliana; Blaine Hallstron; Mary Bartlett; E Reese; and Leslie Morrison. "Imaging Appearances of Spinal Cavernous Malformations." (2016). https://digitalrepository.unm.edu/rad_pubs/7

This Poster is brought to you for free and open access by the Radiology at UNM Digital Repository. It has been accepted for inclusion in Radiology Research and Scholarship by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
Imaging Appearances of Spinal Cavernous Malformations

J Starcevic, B Hart, J Hallstrom, M Bartlett, E Reese, L Morrison
University of New Mexico School of Medicine, Departments of Radiology and Neurology

TYPICAL APPEARANCE

Multifocal lesions have internal low-signal intensity and peripheral heterogenous intensity. Unlike brain CMs, there is no typical pattern of localization. A large number of lesions are in the spinal cord, producing an unusual distribution in the spinal cord. Most are subependymal or in the posterior fossa (Figs. 2, 3).

ACUTE HEMORRHAGE

CMs that present with acute hemorrhage may be partially confluent. Patients often report worsening headache and focal symptoms due to a complex or MRl signal due to both T1 and T2 and hypointense solid material. Hemorrhage may be associated with significant symptoms. Free fluid may include both hemorrhages in brain, hypothalamus, and edema. Enhancement is variable but often not a prominent feature. Use of gradient echo techniques, attention to CE of fluoroquinolone, and CMs in familial cases (of the brain) including gradient-based techniques can be very helpful (Fig. 2). Holes may remain rare or extend to the CM or lesion extension shown on T2 (Fig. 3).

PERIS OF FAT SATURATION

The use of fat saturation in postcontrast T1 sequences may suggest an erroneous appearance of enhancement. The presence of a combination of a fat saturation sequence and a spin echo CM can be helpful (Fig. 14) without (B) and with (C) fat saturation shows multiple hyperintense foci in the cervical spinal cord. However, contrast enhancement was minimal, but T1 hyperintensity without enhancement is most likely due to methemoglobin.