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Preproduction Silicon Strip-pixel Sensor Testing

for the Phenix VTX upgrade

C.Hägemann, M.Hoeferkamp, D.E.Fields,
M.D.Malik, J.Turner, A.Zimmerman

New Mexico Center for Particle Physics
University of New Mexico, Albuquerque

April 14, 2006

Abstract

This document describes in detail the testing performed on some of
the preproduction silicon sensors for the Phenix VTX upgrade. The re-
sults obtained at the University of New Mexico between May 2005 and
March 2006 are presented. Experimental results of static measurements of
leakage current and depletion voltage, as well as laser induced pulseheight
are presented. Measurements were made before and after irradiation with
fluences relevant to RHIC experiments.

1 Introduction

The University of New Mexico (UNM) group joined the Phenix VTX upgrade
effort to help in the quality assurance (QA) testing of the production sensors.
The other groups involved in the testing are at Brookhaven National Lab (BNL)
and Stony Brook University (SBU). As part of the QA team, some preproduction
sensors were given to the group to setup a teststand and identify any neccessary
design changes for the production. One wafer with 3 sensors and 6 test photo
diodes was received by the group in May 2005 and all the testing described in
the following was performed on these sensors (diodes).
Initially the testing was focused on the sensors at hand, which were diced out
of the wafer by Micro Dicing Technology Inc. in California. After all the
neccessary measurements were performed, UNM lead the effort of studying the
effect of irradiation on the sensors. Two sensors and two diodes were irradiated
at the Indiana University Cyclotron Facility (IUCF). All the post irradiation
measurements were performed at UNM.
The goal of all the studies performed was to understand the sensors in full detail,
to identify any design changes to the sensors and to set up a detailed QA testing
plan for the production sensors.
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2 Prototype Sensors

All the measuremts presented were performed on a 500μm preproduction sensor
with identification B2W15 sensor 1 (s1), sensor 2 (s2) and sensor 3 (s3). The
sensors were fabricated by Hamamatsu Photonics/Japan. A schematic of the
sensor is shown in figure (1). The number of readout strips per sensor is 128

Figure 1: The VTX preproduction Si sensor
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Figure 2: Detail of the design of the readout pads
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Figure 3: Detail of the design of the pixel
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strip-pixels per set of read-out pads x 12 sets per sensor = 1536 strips [1].

3 The Testing Program

The complete testing program for the VTX Phenix upgrade preproduction Si
strip-pixel sensors is described in the following. The testing of the sensors
consisted of:

1. Visual inspection

2. Mechanical measurements

3. Electrical Measurement

3.1 Visual Inspection

The visual inspection of all received sensors/wafers ensures that the sensor is
free from physical defects and scratches. The results of the visual inspection
should point out defects in the region of the pads, strip region, guard ring and
edges (if sensors have already been diced out of the wafer). This is to ensure
further electrical testing on these regions to determine the effect, if any, of the
physical defect on the sensor performance. The visual inspection is conducted
on a x-y moving table with a microscope having at least 1:60 magnifying optics.
A camera is hooked up to the microscope to enable recording of the defects in
a file for future reference. The sensor would not have been measured if severe
scratching is discovered or the dicing has inflicted major damage to the sensor.
On the wafer at hand, wafer B2W15, no major damage or severe scratching was
found by the visual inspection; neither before nor after the dicing procedure.

3.2 Mechanical Measurements

Mechanical Measurements of the wafer B2W15 were performed using an Eich-
horn + Hausmann MX 203-6-33 contactless wafer thickness and geometry gauge.
This instrument uses 17 no contact probes to measure the local thickness and
the local warp of the wafer. The results are summarized in the following table
and are also shown in fig.(4):

Thickness (μm): Average Maximum Minimum
499.1 501.8 496.7

Warp (μm): Average Maximum Minimum
0.001 17.7 -17.3

The results indicate that the wafer is very smooth and there should not be any
problems with measuring this sensor with the probecard. As a general measure,
a maximum deviation of 5% from the average thickness and the average warp
should not be exceeded for a wafer to pass the mechanical measurement.
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Figure 4: Local Warp and Local Thickness of wafer B2W15
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3.3 Electrical Measurements

There are four different electrical measurements performed on the silicon sen-
sors. A measurement of the leakage current ILeak and the capacitance CStrip

is performed at a fixed bias voltage VBias on every channel out of a set of 128.
These measurements determine the leakage current and capacitance values of
the sensor and enable the identification of bad channels. The second set mea-
sures the leakage current and the capacitance versus bias voltage VBias. From
these measurements the breakdown VBreak and the depletion voltage VDepl are
found.
The IV and CV measurements are also performed on the diodes and give an es-
timate of what to expect for Breakdown and Depletion Voltage when measuring
the sensors. These results are not discussed in detail as the interest is focused
on the behaviour of the sensors, not the diodes. Two characteristic IV and CV
plots are nevertheless shown in fig.(5) and (6).

Leakage Current, B2W15, Diode 3D, at roomtemp
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Figure 5: Characteristic IV measurement on the Testdiode

The probestation setup for the sensor measurements is shown in fig.(7).

The LCR meter is connected to the scanner when measuring capacitance, the
ammeter when measuring current. The different scanner channels are connected
via a ribbon cable to the probecard. The probecard has 128 needles to readout
one set of pads at a time from the sensor. The scanner closes a certain channel
and therefore reads out only one strip-pixel of the sensor at a time. During this
measurement the other 127 channels are connected to ground. As the sensor is
DC coupled, without any bias resistors on the sensor, only the area of the sensor
that is probed is grounded and therefore depleted of charge carriers. The rest of
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Capacitance, B2W15, Diode  3D, at roomtemp
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Figure 6: Characteristic CV measurement on the Testdiode
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Figure 7: Setup of the Probestation

the sensor is ”floating” as it is not biased. This is an issue that was addressed
and is discussed in detail in section 4.1.
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3.3.1 Finding the Breakdown Voltage VBreak

The Breakdown Voltage of the sensor needed to be determined first, to make
sure that the capacitance measurements were only performed at VBias < VBreak.
To find VBreak, the leakage current was measured as a function of VBias on one
channel out of 128 at a time. 4 out of the 128 channels per set of pads were
chosen to be measured. A characteristic measurement is shown in fig.(8). The

Leakage Current, B2W15, s1, u1L, channel #64
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Figure 8: Characteristic plot of leakage current vs bias voltage.

highest possible VBias being supplied by the power supply was 500V, wheras the
voltage is not increased further if the current exceeds a set compliance limit,
in this case 2.5 mA (this is the highest possible compliance limit in the 500V
range). During the IV measurement on one channel, the other 127 channels are
connected to ground.
Doing this for 4 channels per set of pads (48 channels per sensor) gives us the
breakdown voltage for all sensors to be

VBreak > 500V (1)

No channels on either sensor were found to have a Breakdown Voltage lower
then 500V.

3.3.2 Finding the Depletion Voltage VDepl

To find the bias voltage at which the bulk material is depleted of all free charge
carriers, the capacitance is measured as a function of VBias. A characteristic
plot for this is shown in fig.(9). To determine the depletion voltage from this
measurement, 1/C2 is plotted via VBias and the Depletion voltage is the voltage
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Capacitance, B2W15, s1, u1L, channel #71
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Figure 9: Characteristic plot capacitance vs bias voltage.

at which the curve reaches a constant value. The corresponding plot to fig.(9) is
shown in fig.(10). In this case one can see that the depletion Voltage would be

Capacitance, B2W15, s1, u1L, channel #71
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Figure 10: Plot 1/C2 vs bias voltage to determine VDepl

VDepl � 95V . Nevertheless it should be pointed out that this way of determining
the depletion voltage is not defined very well. To find the exact value of the



3 THE TESTING PROGRAM 11

depletion voltage a different measurement needs to be made in which the sensor
is pulsed with a laser. An in depth description of this method is provided in
section 4.2.1. Averaging over all VDepl’s for all sensors it is found to be

< VDepl >= 95.6V , σDepl = 30.3V (2)

How VDepl scales for the different sensors is summarized in the following table

< VDepl > (V) σDepl (V)
Sensor 1 89.4 14.1
Sensor 2 65.8 8.8
Sensor 3 131.7 21.4

The reason for the big spread of the depletion voltage is that there are no bias
resistors in the design of the sensor. Without these bias resistors and no other
channels grounded but the ones connected by the probecard, especially channels
1-25 and 103 - 128 have a higher depletion voltage then those in the middle of the
set. As two channels were usually closer to the ”outside” of the area measured,
these would have higher depletion voltages and two closer to the inside would
have lower VDepl.
Taking this effect into account, none of the sensors will be measured for leakage
current of capacitance below VDepl + 50V , to ensure VBias > VDepl for every
channel.

3.3.3 Determining Leakage Current and Capacitance

To determine the leakage current and the capacitance of the sensor under fully
depleted conditions, the current and capacitance are measured at an operating
voltage of Voper which is chosen as

VDepl + 50V < Voper < VBreak (3)

In the following measurements the operating Voltage was chosen as 200V, putting
the sensor well into the fully depleted region of operation but also far away from
breakdown conditions. The measurements yielded characteristic plots for the
leakage current and capacitance vs channel # as shown in fig.s (11) and (12).
To measure the capacitance of the sensor, two correction measurements needed
to be conducted. The first correction was done by the LCR meter (the open
correction). This correction measures the extra capacitance due to the attached
test fixture. The second correction was obtained by measuring the capacitance
of the cables from the LCR meter to the end of the probeneedles. To do this,
the probecard was lifted off the sensor and then an AC Scan was run, therefore
measuring the correction factor for every channel. This correction was sub-
stracted from the measurements later on. The second correction measurement
is shown in the following plot, fig.(13): The shape of the correction is due to
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Leakage current, B2W15, s2, x3L, VBias = 200V,norm to T = 20
oC
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Figure 11: Characteristic leakage current vs channel # plot

Capacitance, B2W15, s2, x3L, VBias = 200V
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Figure 12: Characteristic capacitance vs channel # plot

the way the connections are made on the probecard. The measurements of
the leakage current ILeak and capacitance C are performed on each set of 128
channels, 12 measurements per sensor, on each sensor. All the channels should
have approximately the same amount of leakage current and capacitance. This
is not the case as can be seen in figures (11) and (12). The first and the last 20
to 30 channels are not on a flat line, but show an increase in leakage current.
This is due to these channels bordering the unbiased region of the sensor. This
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Figure 13: Correction needed to determine the real capacitance of the sensor

means that the parts of the sensor right next to the outside lying channels that
are measured, are not depleted of free charge carriers, therefore increasing the
leakage current in the channels that are closest to these regions. This situation
was resolved as discussed in section 4.1. To get a measure of the leakage current,
all the channels that were in the flat part of the curve, between channels 25 and
105 were used to calculate average Leakage current and Capacitance.
Their values were found to be:

ILeak = 11.8nA , σI = 5.5nA (4)

C = 1.7pF , σC = 0.3pF (5)

The standard deviations are very high, because it was not clear which channels
not to use for determining ILeak and C. Again, the individually found leakage
currents and capacitances per sensor can be found in the follwing table

ILeak (nA) σI (nA) C (pF) σC (pF)
Sensor 1 12.7 11.2 1.8 0.5
Sensor 2 11.2 5.8 1.6 0.2
Sensor 3 11.6 5.5 1.6 0.2

In the following the same measurements were performed with the sensor fully
depleted by wirebonding the unmeasured pads to the guardring. This led to
major changes in the results.
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4 Prototype Characterization Studies

4.1 Electrical Measurements with all sensor channels bi-
ased

The left sides of s1 and s2 were grounded by connecting 5 out of the six set
of pads to the guardring which is connected to ground through the probecard.
To make the wirebonds a wedge type wirebonder was used. The wires have a
diameter of 25μm and are Aluminum 1% Silicon wires. The wedge has dimen-
sions of 64 μm by 102 μm. Due to the size of the wedge, the wirebonds were
hard to make precisely, because the size of one pad is only 69 μm by 104μm.
A different technique of connecting the pads to the guardring was used. By
applying a graphite resistance coating (Aerodag G), a connection between the
guardring and the pads was made. The graphite could be easily removed with
alcohol after the measurements without damaging the sensor.

4.1.1 Determining VBreak and VDepl

The breakdown voltage and the depletion voltage were determined as shown
before. The breakdown voltage did not change and the depletion voltage did
not change significantly either. To support this, two plots are shown, one for
the capacitance and the other for current vs. bias voltage, comparing before
and after wirebonding. It can be seen that in fig.(14) the current decreased

Leakage Current, B2W15, s1, u1L, channel #64, norm to 20C
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Figure 14: Leakage current vs. VBias on the fully depleted sensor compared to
the results of the sensor without any wirebonds

from the non grounded sensor when wirebonding. But there is no change in the
breakdown voltage. In fig.(15) it can be found that the depletion voltage does
not change significantly either, but the capacitance decreased when attaching
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Capacitance, B2W15, s3, u1R, channel #81, at roomtemp
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Figure 15: Capacitance vs. VBias on the fully depleted sensor compared to the
results of the sensor without any wirebonds

the wirebonds. Therefore both, VBreak and VDepl, were still

VBreak ≥ 500V (6)

VDepl � 100.2V , σC = 26.0V (7)

4.1.2 Determining Leakage Current and Capacitance

The leakage current and the capacitance were determined as described before.
This time, only two measurements per sensor contributed to the calculation of
the average, as the other pads on the sensor were permanently connected to
the guardring (not permanently in the case of the graphite, but the connections
were not removed either). With these connections in place the typical change of
the Leakage Current measurement can be seen in figure (16). This measurement
shows the impact of the biasing of the whole sensor on the leakage current. Using
all the five measurements taken, one obtains the following value for ILeak:

ILeak,allbiased = 3.6nA , σI = 3.9nA (8)

ILeak,original = 11.8nA , σI = 5.5nA (9)
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Leakage current, wafer B2W15, s2, x3L, norm to 20°C
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Figure 16: Leakage current vs. channel number on the fully depleted sensor
compared to the results of the sensor without any wirebonds

The same is true for the capacitance measurement. Here it is also observed that
the complete depletion of the sensor has a significant impact in lowering the
value of capacitance. A representative plot is shown in figure (17). With this
the average capacitance of the sensor is found to be

Callbiased = 1.3pF , σC = 1.9pF (10)

Coriginal = 1.7pF , σC = 0.3pF (11)

Both of the values, for the leakage current and the capacitance, are a lot better
defined than the previously measured. The leakage current at room temperature
is small enough to leave room for irradiation damage (in the case that the
detector is kept at 0C.

4.2 Radiation tests

The purpose of the radiation tests was to study the effects of radiation damage
on the strip-pixel sensor. In particular on the breakdown voltage, the depletion
voltage, the leakage current and the capacitance.
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Capacitance, B2W15, s2, x3L, VBias = 200V
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Figure 17: Capacitance vs. channel number on the fully depleted sensor com-
pared to the results of the sensor without any wirebonds

Two of the three available sensors and two of the six testdiodes were irradiated.
The sensors/diodes were irradiated at the Indiana University Cyclotron Facility
(IUCF) with 200MeV protons. The sensors as well as the diodes were completely
emerged in the beam, as the IUCF has the capability to irradiate areas from
less than 2cm to 30cm in diameter with a smaller then 30 percent variation of
the radiation over the chosen area. The dosimetry at IUCF is routinely better
than 10 percent ensuring the accuracy of the chosen doses. Further details of
the irradiation are summarized in the following table.

Irradiation Dose p/cm2 n-equivalent dose
Sensor 1 / Diode 1U 5 · 1012 4.945 · 1012 ± 4%
Sensor 2 / Diode 1D 5 · 1011 4.945 · 1011 ± 4%

To calculate the 1MeV neutron equivalent radiation dose, the hardness factor
κ200MeV,p = 0.989 ± 4% for 200MeV protons was used [2].
The specific doses were chosen as they are a good estimate to the expected radi-
ation dose that the detector will experience over the next ten years in RHIC and
RHIC II. This was taken from and further measurements of expected radiation
doses in the PHENIX IR are currently performed during
RHIC Run 6.
The irradiations were performed at room temperature and no bias was applied
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to the sensors and diodes during irradiation. After the irradiation, the sen-
sors/diodes were kept in a −17◦ freezer, shipped to UNM in dry ice and again
kept in a −20◦ freezer until measured. During the measurements a thermal
chuck was used, keeping the sensors/diodes at about −1◦C. The setup for the
measurements was the same, but the cold chuck was added between the sensor
and the bottom chuck (see fig(13)).

Figure 18: Setup of the Probestation with thermal chuck

The diodes were measured first. The purpose of measuring the diodes was to use
them as a control to find the actual fluence levels obtained during irradiation.
IV measurements were made at −1◦C and the results were normalized to 20◦C
according to the equation I(T ) ∝ T 2 · e− E

2kT . E is the effective energy gap, T is
the measured temperature and k is Boltzmann’s constant.

4.2.1 Irradiated Diodes

To measure the diodes the probecard was replaced with a single probe (the
scanner was not used) and IV and CV curves were measured. As before, VBreak

was determined from IV and the CV measurements were used to find VDepl.
After the initial measurements the diodes were annealed at 60◦C for 80min and
the measurements were repeated. The results from the annealed diodes are pre-
sented first, because they are used to identify the real equivalent flux from the
results of the non annealed diodes.
The results from the CV measurements were inconclusive for the annealed and
pre-annealed diodes, because of the missing guard ring on the diodes. The re-
sults of the CV measurements are shown in fig.(19) and it is seen that they keep
rising with increasing VBias due to the lateral depletion that exists because of
the non-contained electric field.
A different technique to determine the depletion voltage for the diodes was used.
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Figure 19: Capacitance of the diodes, measured at 0◦C

The setup for this measurement is shown in fig.(20). For this measurement a

Oscilloscope

Laser

Thermal Chuck

Diode

Fast Pulser

VBias

Probe 
needle

Figure 20: Setup for measuring the Depletion voltage of the Diodes

1064nm wavelength laser beam with a spot diameter of about 1mm is was shone
onto the middle of the diode. The signal was then readout with a probeneedle
connected to an oscilloscope. The output of the fast pulser was also read out to
the oscilloscope to show the trigger signal. Then the pulseheight was measured
on the oscilloscope while the bias voltage VBias was increased. The depletion
voltage is defined here as the value of VBias when the pulse height stops increas-
ing.
The results from this measurement are shown in fig.(21) and it is clear that

the depletion voltage result is much more clear. It is about the same for all the
three diodes independent of their received radiation dose, namely
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Find V_Depl, B2W15, diodes, at 0°C
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Figure 21: Measuring the pulseheight of the signal from the diode being pulsed
by a laser

VDepl,Diodes � 120V (12)

Next the leakage current on the annealed diodes was measured and the results
are presented in fig.(20).
The damage parameter α after annealing at 60◦C for 80min is constant [3] at

α80/60 = 4.0 · 10−17A/cm ± 4%. (13)

Using the leakage currents at VBias = 200V (> VDepl), the constant α and the
Volume of the diodes (Vol = 4mm ·4mm ·0.5mm±10%), the equivalent fluences
can be calculated using

α =
ΔI

V ol · Φequ
(14)

This gives the following values for the equivalent fluences

Φequ,1 = (4.251± 0.458) · 1011cm−2 (15)
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Leakage Current, diodes, annealed, T_measu
norm to 20°C
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Figure 22: Measuring the leakage current of the annealed diodes

Φequ,2 = (3.472± 0.374) · 1012cm−2 (16)

Φproton is then calculated via Φproton · κ200MeV,p = Φequ and all the different
fluences compare as follows

Measured (cm−2) Target (cm−2) Irrad. Lab Dosimetry (cm−2)
Φproton,1 (4.298 ± 0.494) ·1011 5.0 · 1011 5.004 · 1011 ± 10%
Φproton,2 (3.511 ± 0.403) ·1012 5.0 · 1012 5.001 · 1012 ± 10%

Now it is known how the fluences really scaled and these numbers will be used
instead of the ones that were given by the irradiation Lab.
The IV curve for the pre-annealed diodes was also measured and is shown in
fig.(21). From this, the damage parameter α was also calculated (using the
currents at VBias = 200V). This α is found to be

α0/60 = (4.589 ± 0.254) · 10−17V/cm (17)

As expected, the α0/60 is larger than the post-annealing α80/60.

4.2.2 Irradiated Sensors

The measurements performed on the sensor are going to reveal the effects of the
irradiation on breakdown and depletion voltage as well as leakage current and
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Figure 23: Measuring the leakage current of the irradiated diodes pre-annealing

capacitance. One would expect to see similar results to the ones obtained on
the diodes. Similiar to the diodes, the sensors were annealed for 80min at 60◦C
and measurements were taken before and after annealing. This time, sensor 1,
which was irradiated to 5 · 1012cm−2, was not measured pre-annealing because
the currents were too high and the thermal chuck used could only cool the sensor
to −1◦C. Therefore, only the measurements post annealing are discussed.
To measure the sensors, all the readout pads were again biased. Measurements
without grounding the other areas of the sensors were not taken as the leakage
current was too high in this case.
The measurements performed were the same as on the non-irradiated sensors,
an IV-scan to find VBreak, a CV-scan to find VDepl and a complete current and
capacitance scan at fixed VBias. The results are presented and discussed in the
following. All the measurements were taken at 0◦C for the 5 · 1011cm−2 sensor
and at −10◦C for the 5 · 1012cm−2 sensor, the IV results normalized to +20◦C
as discussed in section 3.5.

Breakdown Voltage The IV-measurements to find the breakdown voltage
were performed on individual strips. All the other sensor channels were biased
(with wirebonds or graphite). The IV-curves for all three sensors are plotted
below in fig.(24). It is already known that the breakdown voltage for the non
irradiated sensor is > 500V . From the IV measurements it can be seen that the
breakdown voltage for s2 (5 · 1011) is at VBreak � 280V . The measurement
for s2 stops at 280V, because the whole sensor breaks down at this voltage
and exceeds the highest possible compliance limit on the ammeter. The same
happens for s1 (5·1012) at ∼ 250V . The difference for s1 is, that no rise in the IV
curve is seen at 250V, so the breakdown voltage stays unknown for this sensor.



4 PROTOTYPE CHARACTERIZATION STUDIES 23

Leakage current, annealed, norm t

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0 50 100 150 200 250

V_Bias (V)

C
u
r
r
e
n
t
 
(
n
A
)

5x10^12, sensor1
5x10^11, sensor 2
non irradiated

Figure 24: Measuring the leakage current of the irradiated sensors post-
annealing

The IV curve for the entire sensor can be plotted as well, showing the breakdown
at 250V (see fig.(25)): The ”bump” in the data between 50 and 120V is due to
noise induced by the thermal chuck. Any measurement performed showed some
effect of the noise on the measurements, so no results without the disturbances
are presented. It should be noted here, that the currents drawn by the entire
sensors are particularly high. Even at very low bias voltages, the current already
exceeds 1mA.

Depletion Voltage The Depletion Voltage is measured using the two meth-
ods discussed earlier: By measuring the CV curve with an LCR meter and by
measuring the signal pulse height on the oscilloscope while laser pulsing the
sensor. Again, the measurements are performed on a single strip with all the
other sensor channels biased. The results for the CV measurements are shown
in fig.(26). From this, the depletion voltage for s2 is VDepl � 100V and for

the non-irradiated sensor VDepl � 120V . The depletion voltage for the highly
irradiated sensor can not be determined using this method, due to the same
reasons that the IV measurement had to be stopped early.
Using the laser setup with the unfocused beam of about 1mm diameter and the
oscilloscope to read out the pulse height, the measurements shown in fig.(27)
were taken: It can be seen that the depletion voltage can be easily found using
this method: s2 has depletion Voltage of VDepl � 95V , s1 has VDepl � 160V
and the non irradiated sensor has VDepl � 110V .
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Figure 25: Measuring the leakage current of entire sensor 1 post-annealing

Capacitance, B2W!5, norm to 20C, annealed, channel 58
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Figure 26: Measuring the capacitance of the irradiated sensors post-annealing

Summarizing the results from IV and CV/laser measurements:



4 PROTOTYPE CHARACTERIZATION STUDIES 25

Find V_Depl using un-focused laser

0

5

10

15

20

25

0 50 100 150 200

V_Bias (V)

P
u
l
s
e
 
H
e
i
g
h
t
 
(
a
u
)

5x10^12
5x10^11
none

Figure 27: Finding VDepl using the readout pulseheight of an IR laser

Radiation Dose VBreak VDepl (CV Scan) VDepl (Laser Probing)
s3, non irradiated ≥ 500V 120V 110V

s2, 4.298 · 1011cm−2 � 250 V 100V 95V
s1, 3.511 · 1012cm−2 no measurement no measurement 160V

The obtained values for the depletion Voltage can also be plotted versus the
radiation fluence which is shown in fig.(28). This result implies that the highly
irradiated sensor went through type inversion, increasing the depletion voltage
from the non irradiated sensor. The sensor that was irradiated with the lower
dose is still on the beneficial side of the annealing [3].

Leakage Current The Leakage current scan was performed on a different
cold chuck than the single channel measurements, so that the measurement
temperature is 0◦C. One whole set of 128 channels is measured and all other
sensor channels are again biased. The results of these measurements are plotted
in fig.(29). Only the channels from 40 to 100 are considered for determining
the leakage current ILeak, because the other channels are too noisy or showing
abnormal features. With this the 20◦C normalized leakage currents are found
to be:

Radiation Dose ILeak (nA)
non irradiated � 1.5

4.298 · 1011cm−2 � 4.3
3.511 · 1012cm−2 � 60.8
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Figure 28: Plotting VDepl vs the radiation fluence

When plotting ILeak vs the radiation fluence, the slope of the line should be
equal the damage parameter α divided by the volume under one strip V olStrip.
This volume can be estimated and also found from the plot of Φequ vs ΔI/V ol,
because as the measurements were performed after annealing the sensors, α
again has to be 4 · 10−17A/cm.
The volume under one strip can be estimated as follows. One pixel has two
spirals of p+ implant interleaving. They are identical to each other, but one is
rotated by 180◦ with respect to the other. So half of the volume of one pixel
should correspond to the volume of one pixel for one strip. The volume of
one pixel is calculated from its width w = 0.08mm, its length l = 1mm and
its thickness of d = 0.5mm. It also has to be considered that 30 pixels are
connected together to give one strip-pixel, so the volume can be estimated as:

V olstrip,est =
1
2
· 0.08mm · 1mm · 0.5mm · 30 = 0.6 · 10−4cm3 (18)

Accounting for the gaps between the p+ implants, this value for the volume
should approximately be devided by a factor of 2. Then the estimated volume
will be

V olstrip,est � 0.3 · 10−4cm3 (19)
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Figure 29: Leakage current vs channel number at VBias = 200V

Using the calculated volume V olstrip,calc, ΔI/V olStrip,calc vs Φequ can be plot-
ted to see if it corresponds to the universally found plot [3]. This is shown in
fig.(30).
To a good approximation, the data points lie on the universal line, therefore
confirming that the measurements agree with the universal idea.

Capacitance As already done in the Leakage Current section, the capaci-
tances before and after irradiation will be compared. Again, one set of pads
was measured on the thermal chuck at 0◦C. For the same reasons as discussed
before, only channels 40-100 are considered in finding the average capacitance.
The measurement results are shown in fig.(31).

Using these results, the capacitances pre- and post-irradiation are found as:

radiation dose Capacitance (pF) σC (pF)
no irradiation 0.4
5 ·1011cm−2 1.2
5 ·1012cm−2 1.3

The Capacitance seems to increase when the sensors are irradiated. This is
important to remember when considering the readout electronics, to make sure
they can handle the capacitance increase.
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Figure 30: Comparing the results of the universal line for leakage current per
volume vs. fluence

Capacitance, B2W15, annealed, corrected, V_Bias = 200V, T=20C
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Figure 31: Capacitance measurements on the non irradiated and the irradiated
sensors compared
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4.3 Laser Tests

The laser pulse studies were performed on the sensors pre and post irradiation.
The setup for the study is shown in fig.(32) The sensors are placed on a ther-

Chuck
x

y

Silicon Sensor

Focussing
Optics

Picoprobe 
Model 35

Oscilloscope

Pulser
(100ns)

Trigger

IR Laser

Figure 32: Setup of the laser test station

mal chuck and a collimated laser beam with a spotsize of about 5 - 10 microns
FWHM is focused on the sensor. The laser spot is focused using the microscope,
making it possible to exactly position the spot on the sensor. The probeneedles
used to read out the sensor both have preamplifiers attached to make the read-
out of a signal possible (the spot size is too small to create a signal that can be
read out without the amplifiers).
Two sensor channels are chosen to be read out and all the other channels are
biased during the measurement. The two channels are chosen so that they have
one pixel in common. This means that they have to have one pixel where the
first readout channel corresponds to the u strip and the second to the x strip.
This is also described in fig.(33), where a laser spot is shown as well.

x strip

u strip

Figure 33: Interleaving Pixel and Laser Spot

The laser spot is always positioned in the gap between the first pixel and the
guardring and then scanned in x direction over the first pixel (x being the di-
rection of the smaller width of the pixel). The Bias Voltage is set to 200V in all
the three different cases. The results for the non irradiated sensor and the two
irradiated sensors are shown in fig.s (34)-(36).
In fig.(35) it needs to be explained what bigger spot size means. As mentioned
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Figure 34: Laser pulse study, non irradiated sensor

before, s2 suffered some damage inflicted on the sensor after irradiation due to
problems with the probestation. It was necessary to increase the laser spot in
order to increase the signal on the readout strips. It should also be noted that
the sensor performs well after irradiation. A strong signal on both the x- and
u-strips is observed.
The position of the Aluminum strips can also be easily identified. Due to its
wavelength the laser is not able to penetrate the Al strips and a signal is only
observed when the laser is positioned in between the aluminum. It should be
noted here that these studies do not determine charge dispersion in the silicon
since other effects such as reflection of the laser light from the back side metal-
ization cannot be easily determined. Precise charge sharing studies are normally
done in beam with precise tracking.
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Laser Scan, S2, T = 0oC, larger laser spot diameter
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Figure 35: Laser pulse study, Φ200MeV,p = 4.251 · 1011

Laser Scan, S1,T=-10oC, small laser spot diameter
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Figure 36: Laser pulse study, Φ200MeV,p = 3.472 · 1012
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5 Conclusions

The irradiation studies at UNM have showed that the preproduction strip-pixel
sensors show an increase in leakage current as a functio of the radiation damage
which is consistent with expectations. These levels of increase in leakage cur-
rent may be a problem for the electronics if the detector is not cooled during
operation. The lack of bias resistors on the sensors makes meaningful testing
problematic and should be considered for the final design.

6 Recommendations

There are a couple of minor improvements that need to be made on the sensors
to enhance their usability. There needs to be a guardring added to the diodes
on the wafers and a second scratch pattern for sensor identification needs to
be added to the design of the sensor to ensure foolproof identification of each
sensor. There is also a need to include bias resistors on the sensor design. If
this is not possible, the information from strip-by-strip QA testing has limited
usefullness before bonding to the electronics. We recommend that Hamamatsu
perform the tests with the 128 needle probe card, and then, based upon the
pass rate determined from statistical sampling, a certain percentage of strips
should be re-tested. To determine the pass rate, more statistics are needed on
fully biased sensors.
In general, more tests need to be performed on the sensors available to confirm
testing programs and to give a better statistics on bad channels/ bad sensors
before the production sensors are tested.
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