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THE APPROXIMATE FUNCTIONAL FORMULA FOR THE 
THETA FUNCTION AND DIOPHANTINE GAUSS SUMS 

E. A. COUTSIAS AND N. D. KAZARINOFF 

ABSTRACT. We consider the polygonal lines in the complex plane C whose N

th vertex is defined by SN = I:;;~o exp(iw1fn2) (with wEIR), where the prime 
means that the first and last terms in the sum are halved. By introducing the 
discrete curvature of the polygonal line, and by exploiting the similarity of 
segments of the line, for small w, to Cornu spirals (C-spirals), we prove the 
precise renormalization formula 

(1) 
I ~ I (. k2) exp(sgn(w)i1f/4) ~ I (.1f k2)1 
~ exp %W1f - ~ exp -%-

k=O ~ k=O w 

:"::c[wNw-n[,O<lwl <l, 

where N = [[n/w]], the nearest integer to n/w and 1 < C < 3.14 . 
This formula, which sharpens Hardy and Littlewood's approximate func

tional formula for the theta function, generalizes to irrationals, as a Diophan
tine inequality, the well-known sum formula of Gauss. The geometrical mean
ing of the relation between the two limits is that the first sum is taken to a 
point of inflection of the corresponding C-spirals. The second sum replaces 
whole C-spirals of the first by unit vectors times scale and phase factors. The 
block renormalization procedure implied by this replacement is governed by 
the circle map 

1 
(2) w -> -- (mod 2) , wE] - 1, +1[ \{O}, 

w 
whose orbits are analyzed by expressing w as an even continued fraction. 

1. INTRODUCTION 

The quadratic Gauss sum formula 

(3) t I e27fik2 /q = jKei7f / 4 (1 + e-i7rq / 2 ) 

can be easily generalized to the Cauchy-Kronecker formula [1], [5] 

(4) t 'ei7r(~)k2 = ei7f / 4 ff.. t 'e-i7r(~)k2, pq == 0 
o Vp 0 

(mod 2). 

Here a primed sum indicates that the first and last terms are halved. Gauss used 
(3) for one of his shorter proofs of the law of quadratic reciprocity ([1], p. 200). 
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616 E. A. COUTSIAS AND N. D. KAZARINOFF 

Formula (4) is related to the Jacobi imaginary transformation giving a functional 
equation satisfied by the theta function 'l93(v, T). As is well known, for 

00 

(5) 'l93(V,T) := 2:::ei1fTk2+21fikV (8'(T) > 0) 
-00 

we have [5], for v = 0, 

(6) 

or 

(7) 
-00 -00 

This formula is useful, e.g. for estimating 'l93 for small 8'T. Obviously, (5) diverges 
if 8'T -+ O. A limit process, setting z = pjq + iE in (7) with E > 0 and letting 
E -+ 0+, can be used to establish the validity of (4) [5]. For z = w + iE, w E lR \ Q, 
however, the problem of determining the limiting behavior of'l93 near the real axis 
is considerably more difficult. Setting w = ~T, one has instead the approximate 
formula ([11], Thm. 2.128, p. 209, given here in a slightly sharper form, due to 
J.R. Wilton [23]), adapted to our case: 

N [Nw] 

L 'ei1fwk2 = (ijw)1/2 L 'e-i1fk2/w + R, 
o 0 (8) 

IRI < 2.426 + 1.577Iwl-~· 
Hardy and Littlewood stated and proved a slightly less precise form of this result, 
which became known as "the approximate functional formula for the theta func
tion". For their original proof they used a rather lengthy contour integral method, 
akin to a method introduced by Kronecker [15] for his proof of (3). Their esti
mate was improved by Mordell [21] using a simpler variant of the contour integral 
method. Wilton's proof of the sharp form (8) uses the Poisson sum formula. This 
latter proof is the basis for our Diophantine estimates (14), derived in Section 2. 
Formula (8) was extended by van der Corput [6] to a wide range of sums of the 
type'L.g(k)e21fiJCk). Sums ofthis type arise, e.g., in the analysis of the distribution 
of fractional parts of functions [22], [9], and can be useful in deriving estimates for 
the number of integral lattice points in multidimensional domains [7], [13]. 

In [11], Hardy and Littlewood related the properties of the sums (8) to the 
Euclidean continued fraction expansion of w. As we showed in [8], however, the 
continued fraction expansion of w in even integers gives a direct interpretation, and 
in Sec. 3 we study some of the properties of such expansions. Berry and Goldberg [2] 
gave an analysis of the renormalization using Euclidean continued fractions. Their 
work was overviewed in [20], where even continued fractions were also mentioned 
but not analyzed. 

Hardy and Littlewood's estimate was derived by them as part of their work on 
studying the convergence properties of Fourier series. Their asymptotic analysis 
applies for N -+ 00, w kept fixed. This somewhat masks the renormalization and 
selfsimilarity properties of sums of this type which are the motivation of our work. 
Indeed, formula (8), viewed as an approximate identity, applicable for arbitrary (but 
fixed) N, has the disadvantage that the error term diverges as w -+ O. Thus, this 
form of the formula, although suggestive, does not elucidate the detailed properties 
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FIGURE 1. The partial sums for 1[' (top) and the golden ratio (bot
tom); in both cases N = 2 X 106 
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618 E. A. COUTSIAS AND N. D. KAZARINOFF 

of the pattern, such as its self-similarity and scalings, quite satisfactorily, and the 
deductions drawn from it must rely as much on this formula as on computations for 
their substantiation. In order to deduce the self-similarity of the pattern for finite 
values of n as well as for small w, one needs a more detailed argument, and a careful 
discussion of the appropriate limits in the sums. Our renormalization argument, 
given heuristically in [8], shows that the expression in (8) can be thought of as the 
result of summing the left hand side in blocks and should be increasingly accurate 
as W ---> O. 

The key idea, given in [8], is that the partial sums of (8) form Cornu-like spirals 
in the complex plane (C); see Figure la, in which the first 44,000 points in the 
sequence {Sn} are plotted for w = 1f, and Figure 1b, in which the first 30,000 
points in the sequence {Sn} are plotted for w = (V5 - 1)/2, the Golden Mean. If 
we define the discrete radius of curvature RN of the pattern at a point SN as the 
radius of the circle defined by the point and its successor and predecessor in the 
sequence, it is straightforward to show that it has maxima (inflection points of the 
pattern) at the points SN, where 

N 

(9) SN = L ei7fwk2, 

k=O 

for N = n2£, and minima (cusps of the pattern) at the points SN, for N = n2H1, 
with nk given by 

(10) 

Here [[a]] denotes as usual the closest integer to a. 
This is a consequence of the following definition: The discrete curvature KN of 

the graph of {S N} at N (except at cusps) is the average of the curvatures of the 
circles passing through the points {SN-2, SN-1, SN} and {SN-1, SN, SN+1}. Thus 

(11) 

with 

(12) 

111 
KN = -(-- + -), 

2 RN-1 RN 

where '¢N is the change in argument between the (N + l)-st and N-th term in the 
sum, that is, 

(13) 

From this it follows that minima of KN are found at points of inflection, where '¢N 
is closest to U1f for some integer e (see [8], p. 301). For w irrational, RN never 
becomes 00 or O. 

Numerical computations of the finite sum (9) indicated a haunting selfsimilar
ity between the patterns generated by various partial sums of this form. In [8] 
our heuristic discussion led to a renormalization argument. We related the vector 
Sn2i+l - Sn2e_l which joins the two successive cusps delimiting the l-th spiral to the 
vector Zn2i = exp(i1fwn~£) ("mid-vector"ofthe l-th spiral), observing that as w ---> 0 
the pattern between consecutive cusps closely resembles a Cornu spiral. Thus, the 
vector joining successive cusps is at approximately 1f / 4 radians to the mid-vector, 
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to the left or right according to whether -1/w (mod 2) lies in the positive or neg
ative half of the interval (-1, 1), and its length is approximately VIwT in agreement 
to the value of the Fresnel integral between -00 and +00, scaled appropriately. 

One notices that practically all of the points in the graphs of Sn lie near to cusps. 
Moreover, because I Sn+ 1 - Sn I = I Zn+ 11 = 1, the sums Sn inaccurately approximate 
the values of integrals corresponding to full spirals, although the error is reduced by 
halving the first and last terms. The sharp error bound claimed above is found if 
we consider the block sums between successive cusps together with a refinement of 
Wilton's [23] method which replaces his use of the triangle inequality by a detailed 
cancellation of terms in the remainder. This reasoning led us to the Diophantine 
approximate functional formula, if n E Z+ and N = [[n/wll, 

(14) L 'ei7rwk2 - e 4 L 'e-i~k2 s.C w n, C < 3.14. IN i 2I sgn(w) n I I N - I 
o VIwT 0 w 

The resolution of the apparent contradiction between our result, which becomes 
arbitrarily precise as w --t 0 (for N = [[n/wll, Iwl < 1, which implies, but is 
not equivalent to the relation n = [[Nw]]) and Hardy and Littlewood's, in which 
the error term blows up as w -> 0, is now clear: since they are not summing 
over integral numbers of spirals, their error term is comparable to the size of one 
spiral in the renormalized sum, or O(1/VIwT). Our estimate, as given by (14), is 
uniform in w. Hence, it results in arbitrarily precise formulas if we let N (and 
n) approach infinity through the sequence of denominators qk (numerators Pk) of 
partial convergents of the irrational w. For it is in this case that lEn I = IwN - nl 
and lEn/wi = IN - n/wl are smallest and both tend to zero. In the worst case, if 
Iw I is small and n / N is not a partial convergent of the Euclidean continued fraction 
for w, our error term is not large because lEn/wi < 1/2, since N == [[n/wll. Of 
course, the smallest values of IEnl are found if N is a denominator and n is the 
corresponding numerator of a convergent of w. Examining (14), we see that a 
repetition of the process to further reduce the sum would not necessarily produce a 
small error, since n is not necessarily a convergent denominator of -1/w (mod 2). 
Only if it is, can a repeated renormalization be performed; hence in Sec. 3 we 
give a careful analysis of the renormalization map w --t -1/w (mod 2) defined 
in ] - 1, 1 [ \ {O}. Alternative discussions of the scale invariance properties of the 
pattern using the Euclidean continued fraction expansion of w were given also by 
Loxton [17], Deshouillers [10], Callot and Diener [4] and Berry and Goldberg [2]. 
The latter also make the connection to renormalization, from a slightly different 
viewpoint than the one presented in [8]. For an analysis from the point of view of 
dimension theory, see [9] and [18] where a theory for the dimension of plane curves 
is developed. Its results are applied, among other things, to curves defined using 
the left hand side of (8), with interesting conclusions relating the dimension to the 
Diophantine properties of the irrational w. Among the interesting applications of 
that work we mention its connection between the properties of the graph and the 
theory of uniform distributions for arithmetic sequences. A qualitative discussion 
of the properties of the sums was given recently in [20], following the ideas of [18] 
and [2]. Up to date reviews of the method of exponential sums and its applications 
can be found in the monographs by Korobov [14] and Montgomery [19]. 

This article is organized as follows: In Sec. 2 and App. A we give a proof of the 
Diophantine error estimate. In Sec. 3 we examine the expansion of the irrational 
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number w in terms of a continued fraction with even, positive or negative, entries, 
and we relate its properties to the main estimate in Theorem 2.1 below. 

2. THE DIOPHANTINE ERROR ESTIMATE 

Consider the generalized Gauss sum 

b 

(15) S(a, bi w) := L I ei7rwk2, Iwl E ]0,1[, 
a 

where the prime means that the first and last terms in the sum are halved. Our 
main result is the following. 

Theorem 2.1. There exists a C with 1.0 < C < 3.14 (whose upper bound is inde
pendent of nand wE ]- 1, +1[ \{O}) such that 

e' 4 

I .~ I 
S(O,NiW)- vIwT S(0,ni- 1/ w) 

(16) 
:s; I ~ I (1.00 + Iwl1.116081 + IwI21.023237) 

:S;CI~I, 
where N = [[n/w]L the closest integer to n/w, and En = Nw - n. 

Remark 2.1. If w is rational, then n can be found so that En = 0, and our result 
reduces to the classical formula (4). 

Proof. It is convenient to consider 

(17) S(-N, NiW) = 2S(0,NiW). 

We apply the Poisson summation formula [12] to (15), to find 

(18) 
00 b 

S(a,biw) = PV L 1 ei7rwt2+2niktdt, 
k=-oo a 

where the infinite series must be understood in the principal value sense, PV L:~oo 

= limK-+oo L:~K' 
The sum can be decomposed into the pieces which offer the significant contri

bution and an error term. The decomposition, which follows Wilton [23], can be 
understood if we let (/>k(t) = ~wt2 + kt, ¢~ = wt + k. With Berry and Goldberg 
[2] (see also Montgomery [19]), we note that the phase ¢k(t) of the k-th integrand 
becomes stationary at the point tk = -k/w (Le. ¢~(tk) = 0). Choosing N so that 
it is equal to [[E;]] for some integer n (and hence n = [[Nw]], the nearest integer 
to the irrational N w), we decompose the sum 

(19) 
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according to how the stationary point tk of the phase of the k-th term is situated 
with respect to the interval (-N, N): 

(20) 

where 

(21) 

S(-N,N;w) = C-~~ + k=~+l + kE) I: exp(27ricpk(t))dt 

+ I: exp(27ricp_n)dt + I: exp(27ricpn)dt 

= (T1 + (T2 82 + (T3 - 83 - 84 , 

(T1 = C-~~ + kE1') I: exp(27ricpk)dt 

(terms with stationary phase point outside interval of integration are left un
changed), 

n-1 00 

(T2 = L j exp(27ricpk)dt 
k=-n+1 -00 

(22) 

(terms with stationary phase point in the interval (-N, N) have their domain of 
integration extended to infinity), 

(23) 

(compensation for extended domains of integration in (T2), 

j n/w joo 
(T3 = exp(27ricp_n)dt + exp(27ricpn)dt 

-00 -n~ 

(24) 

(terms with stationary phase point at t±n = Tn/w lie within distance less than 
1/2 from the endpoint TN of the domain of integration, respectively and they have 
their domains modified as follows: move the opposite endpoint from ±N to ±oo, 
and move the near endpoint from TN to the respective stationary phase point 
Tn/w; 83 , 84 give the corresponding compensations), 

(25) 83 = I: exp(27ricp_n)dt + Loo 
exp(27ricpn)dt, 

(26) I n/w j-N 
84 = exp(27ricp_n)dt + exp(27ricpn)dt. 

N -n/w 

We now produce, in a series of lemmas, the expressions and estimates necesary 
for our estimation of C, claimed in Theorem 2.l. 

Lemma 2.1. 

(27) 

Proof. 

o 
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Note: this term must be compared to the term 1.577w- 1/ 2 in the error term of 
Wilton. Our estimate is smaller, since the length of our interval of integration is 
IE/wi < 1/2. Wilton needs to use his larger estimate since his domain of integration 
can be considerably larger, involving several cycles of the integrand. Indeed, since 
n = [[NwJ], we have that In/w - NI ::; 1/(2w), which can be quite large. 

Lemma 2.2. 

(28) 

Proof. We have 

and 

and the desired expression follows. D 

Our task now is to estimate the error term 0"1 - 82 - 83 . We will show that it is 
bounded by a quantity similar to the bound found for 84 . We have 

Lemma 2.3. 

where 1/;(s) = 1fcot1fS - ~ is regular for lsi < 1 and 

(30) 

_ (2m + l)!!wm+1 { (-n-1 00) jN 
I - (21fi)m+1 L + L N 

k=-oo k=n+1 -

Proof. Integrating by parts m + 1 times, one finds that 

7ri(wt2+2kt) { 1 ~ (2£ - l)!!wR } IY 

e 21fi(wt + k) + ~ (21fi)H1(wt + k)2R+1 
R-1 x 

+ 
(2m + 1)!!wm+1 l Y e7ri(wt2+2kt) 

(21fi)m+1 x (wt + k)2m+2 dt . 
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00 ) IN { n-1 J-N n rOO} 

k~l -N e
27ri q, k dt - k~n -00 + k=~+l iN e

27riq, k dt 

7riwN2 ~ { 1 ~ (2£ - l)!!w£ } 
e k~OO 27ri(wN + k) + ~ (27ri)H1(wN + k)2H1 

k#-n 

7riwN2 ~ { 1 ~ (2£ - l)!!w£ } 
e k~OO 27ri( -wN + k) + ~ (27ri)H1( -wN + k)2H1 

k#+n 

+ f 

81 + 82 + f. 

623 

Here, in accordance with the application of the Poisson sum formula, divergent 
sums of the form 2:~=-00 l/(x + k) are considered in the sense 

K K 

lim "l/(x + k) - l/x = lim "2x/(x2 - k2 ), K~oo ~ K~oo~ 
k=-K k=l 

which is defined and converges uniformly for Ixl :::; lEI < 1/2. 
The first two terms, 81 and 82 , are rearranged by exchanging the order of the 

two summations to give (we work with 81 only; 82 follows similarly): 

7riwN2 00 1 . m (20 _ 1)" £ 00 1 
8 __ e _ " 7r2wN2 " {. .. w" 

1 - 27ri ~ wN + k + e ~ (27ri)H1 ~ (wN + k)2H1' 
k=-oo £=1 k=-oo 
k#-n k#-n 

We observe that 

__ 1 ___ 2£2£, 1 d2£ 00 I 00 I 
dt2£ k~OO wt + k t=N - ( 1) w (2£). k~OO (wt + k)2£+1 t=N 

k#-n k#-n 

since the series can be differentiated term by term (this is obvious since, away from 
poles, convergence of series is guaranteed by comparison to 2:~ -b). So, if we 
observe that 

(31) 

PV ~ ( 1 ) _ PV ~ ( 1) 1 
~ wN + k - ~ wN + k - wN - n 

k=-oo k=-oo 
k#-n 

1 = 7rCot(7rE) - -- == 'Ij;(E) 
E 

with 'Ij;(z) analytic for Izl < 1, this term can be written compactly as 

00 1 1 d2£ I 
(32) k~OO (wN + k)2H1 = (2£)! ds2£'Ij;(s) s=€' 

k#-n 

Here we used the fact IwN - nl = lEI < Iwl/2 < 1/2, which follows from N = [[n/wlJ. 
Now 
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and similarly 
niwN2 m R rf}£ I 

82 = - e 27ri t; (27riY(2f)!! ds2£'¢(S) S=-E • 

Since ,¢(s) and its derivatives of even order are odd functions of s E [-1/2,1/2]' 
the proof of Lemma 2.3 is complete. 0 

We note that this part of the proof closely follows Wilton [23]. The main dif
ference here is in our restrictions on the limits of the sums. At this stage, Wilton 
carries out a single integration by parts and estimates the remainder by using a 
triangle inequality. In our case, by carefully summing to upper limits related to the 
Diophantine approximations to w, we can arrange, as we shall see, near cancella
tions in the remainder terms, which will allow us to arrive at the Diophantine error 
estimate. 

Following the conclusion of the previous lemma, we see that in the expression 

(33) 

18(-N,N;W) - e~4 8(-n,n; -l/W)1 :S 21~1 + 10-1 - 82 - 83 - II + III 

we can easily estimate the second part of the bound, if we take into account the fact 
that I'¢C2e)(s)1 is increasing and convex in [0,1/2]' so that '¢(21) (E) :S 2E'¢C2l)(1/2). 

The estimate is 

10-1 - 82 - 83 - II:S (4 ~ (27r)1~r(2g)!! I,¢C2R)(1/2)1) lEI· 

For m = 1 this gives 

(34) 
4 2w h - 82 - 83 - II:S -(1 + - )IEI :S (1.273240 + .810570w) lEI· 
7r 7r 

Clearly, the above expression is of the form Cl kl with Cl some constant, independent 
of nand w. We now show that the term I obeys a similar Diophantine bound. First, 
we rewrite I in a form suitable for estimation. We have 

Lemma 2.4. If K = 2(2m + 1)!! wm+1 /(27ri)m+l and E = wN - n, then 

00 n iN 
1/ K = ~ R=~+l -N ein [wt2+2CH2pn)tJ 

{ 
1 e4PinECHPN)} 

x . - dt 
(wt + g + 2pn)2m+2 (wt + g + 2pn + 2pE)2m+2 . 

(35) 

Proof. Taking advantage ofthe invariance of the integrand in (30) under the change 
of variables k --+ -k, t --+ -t, we see that I can be written as 

I=2(2m+1)!!wm+1 { 00 iN _ n rOO} eniCwt2+2kt) dt. 
(27ri)m+l L -N L iN (wt + k)2m+2 

k=n+l k=-n+l 

We adjust the first sum I::r.l by k = g + 2np (p = 1,2, ... ; -n + 1 :S g :S n), and 
we adjust the second integral J: by t = s + 2pN (p = 1,2, ... j -N :S s :S N). 
Renaming indices appropriately, we get the form claimed above. 0 

If we let 
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we notice that for integers £ E [·-n+ 1,n] and t E [-N,N] the denominator 
is bounded away from zero. That all the integrals in I have stationary phase 
points outside the domain of integration, of course, guaranteed this. The sum 

I:;1 J!'!N Fn,p(t; E) is absolutely, and hence uniformly, convergent. Thus we can 
apply the first theorem of the mean and differentiate term by term to find, for B 
between 0 and E, 

Thus, 

[IIK[ < [E[f4P t 1: {7r(t+pN) [wt+£+2p(n+B)]-2m-2 
p=l £=-·n+l 

+ (m + 1) [wt + £ + 2p(n + BW·2m- 3 } dt. 

The sum converges for m ~ 1. Integrating, we find the following expression for 
11K: 

I I loon 
K ~ 4[E[~I=~+1 

(36) 2~:2 { -[wN + 1 + ;p(n + B)]2m + [-wN + 1 + ~p(n + B)]2m } 

(37) 

+ p7r {_ [P(wN - 2(n + B)) -l] + [P(wN - 2(n + B)) -l] } 
(2m + 1)w2 [wN + I + 2p(n + B)](2m+l) [-wN + 1 + 2p(n + B)](2m+l) 

(38) 

+ (2m: 2)w { - [wN + l + 2p~n + B)](2m+2) + [-wN + 1 + 2;(n + B)](2m+2) } . 

Next we could put each pair of fractions enclosed in curly brackets over a common 
denominator. After cancellation in the numerators, one determines that these three 
terms are each as small as clp(2m+l) for some c independent of p. Thus, [I I K[ is 
bounded by [E[e for some e independent of p for any m ~ 1, and this establishes 
the existence of an upper bound for C in our theorem. However, this would result 
in an overestimate. The bound claimed in Theorem 2.1 is found for m = 1 by 
carefully balancing the terms in I. The details of this calculation are given in the 
~~. 0 
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3. THE RENORMALIZATION MAP 

In the previous section we discussed how the summation of (15) in blocks leads 
to a new sum over a lesser range, characterized by a new parameter in the exponent 
(16): 

1 
(39) W -+ -- (mod 2) , wE] - 1, 1[ \{o}. 

W 

Hardy and Littlewood [11] utilized this mapping to give an estimate of the growth 
of (15) in terms of the entries in the Euclidean, or regular, continued fraction 
(abbreviated in the sequel by ref) expansion of w. We write 

W = b:~ b::'" == [~:] ~=l == [~~ , ... , ~: ' ... ] == [~~ , ... , ~: ' W n ] 

and we define the n-th convergent an and remainder Wn by 

[ak]n Pn [ak]OO 
an == bk k=l == qn ' Wn == bk k=n+l 

The (relatively prime) integers Pk (qk) are the k-th convergent numerators (respec
tively, denominators) of the continued fraction representation of w. The ref for 
wE] - 1, 1[ is found if we set ak = 1, bk E IZ+, for which we write 

w= -b1 -b1 ... b 1 == [bk]%"=l == [b1 ,··· ,bk,···] == [b1,··· ,bn-1,bn+wn] 1+ 2+ n+wn 
Clearly, convergence of the above expressions needs to be established before we 

can employ the equality signs. However that is assured for ref, for which optimal 
two-sided convergence of the partial convergents an to the irrational W is well known 
[12]. Other expansion algorithms are possible. In our discussion we shall employ 
even continued fractions (eef), for which ak = 1, bk E 21Z. Convergence of eef is 
proved below. In the sequel, we shall freely interchange between a number and its 
(convergent) continued fraction expansion. 

In terms of the ref, applying (39) to W we have, if w(k) is the k-th iterate, 

W = weD) = 1 -+ __ 1_ (mod 2) = w(1) 
- b1 + WI weD) 

{
-WI 

= (-b1 -WI) (mod 2) = ' 
I-WI, 

(40) 
if b1 is even, 

if b1 is odd. 

It is not too difficult to devise simple transformation rules to produce the ref of 
1 - Wk from that of Wk, and thus construct a recursive algorithm to compute the 
successive iterates of the map. However, the orbit of the mapping is unknown even 
if the ref expansion of W is known in advance. The ergodic properties of (39) were 
explored more recently by Berry and Goldberg [2], using the ref. 

As we showed in [8], the natural representation which unfolds the orbits of (39) 
involves expressing the irrational W in terms of even continued fractions, namely 
continued fractions with even (positive or negative) entries. Thus, consider the 
expansion 

(41) 

with dj E IZ , j = 1,2,3, .... Assuming the first k entries are known, we have 

(42) W == WD = [2d1 , 2d2, .. · ,2dk + Wk] 
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with -1 < Wk :::; 1. The k + 1-st entry is found as follows: (i) If Wk = 0 or Wk = 1 
the fraction terminates. (ii) Else, 1 < I~k I < 00 and we let r = l~k J. If r is even, 
set dk+l = r/2; then 0 < Wk+l = l/wk - r < 1. Alternatively, with odd r, set 
dk+l = (r + 1)/2 and -1 < Wk+1 = l/wk - r - 1 < O. We observe that successive 
remainders are related via the Mobius transformation, 

1 
Wk-l = 2dk + Wk . 

Thus, for rational W = p/q, when the fraction terminates and all the partial re
mainders are rational as well, we have that 

Pk- l 1 Qk 
Wk-l == Qk-l = 2dk + Wk 2dkQk + Pk . 

Since the fractions Pk/Qk are assumed irreducible (and Pk :::; Qk)' we deduce that 

(43) Qk = Pk-l, Pk = Qk-l - 2dkPk- l . 

The orbit of the map (39) is found simply from the remainders Wk in (42), 

w(k-l) = (-l)k-lwk_l = (_l)k-l 1 
~ ~+~ 

-7 (_l)k (2dk +Wk) (mod 2) = (-l)kwk = w(k). 

It follows from (43) that the action of the map (39) on rationals has the property 
that if 

then 

(45) 

This, in turn, implies that the orbit of the rational p/q will end in a zero or one 
according to the parity of the product pq. 

The following lemma gives the relationship between the even and Euclidean 
continued fraction expansions of an irrational w. 

Lemma 3.1. Suppose that the Euclidean continued fraction for an irrational num
ber W = Wo is given by 

Wo = [a,b,c+w3] , a,b,c E 2+,0 < W3 < 1. 

Then W has the equivalent continued fraction 

W = [a + 1, -2,2,··· , -( -1)b2, (-l)b(c + 1 + W3)]. , , ... 
b -1 terms 

Proof. We write 

Now, 

(46) 
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Note that for b = 1 we get 1-Wl = [1,0, C+W3] = [1 +C+W3], since [ ... , x, 0, y, ... ] = 
[ ... , x + y, ... ] in general. Using the obvious identities 

-[k, l, m,···] = [-k, -l, -m,···] and [a, [b, c,···J] = [a, b, c,···], 

we find that 

(47) W = [a + WI] = [a + 1 - (1 - WI)] = [a + 1, -1, -(b - 1 + W2)]. 

Applying (47) to the continued fraction for 1 - WI in (46) in turn, we get 

1 - WI = [1, b - 1 + W2] = [2, -1, -(b - 2 + W2)] = [2, -2, 1, (b - 3 + W2)], etc. 

Clearly, this process can be repeated b - 1 times. Incorporating the result in the 
continued fraction for w, we find that 

W = [a + 1, -[1, b - 1 + W2]] = ... = [a + 1, -2,2, .. · , -( -1)b2, (-1)b(1 + C + W3)], 
, J .., 

b -1 terms 

which completes the proof. o 
With the use of the above lemma we can now give an algorithm for the conversion 

of an ref to an eef. We have 

Corollary 3.1. Given an irrational W E]-1, +1[\{0} and the rcf 

W = [bl, b2, ... , bk , bk+l , bk+2 + Wk+2], 

where the first odd entry occurs at the k-th place (i.e. bi is even, i = 1, ... , k - 1, 
while bk is odd). Then there is an equivalent continued fraction, in which the first 
odd entry cannot occur before the k + bk+l-st place (and which may have negative 
entries), namely 

(48) 
W = [bl, b2, ... , bk + 1, -2,2,··· , -( _1)bk+1 , (_1)bk+ 1 (bk+2 + 1 + Wk+2)]. 

, # 
'V 

bk+1 - 1 terms 

In this new fraction, the k-th entry has been increased by one, while the k + I-st 
entry has been replaced by a sequence of bk+l - 1 2 's with alternating signs. The 
first possibly odd entry may only occur past that sequence. 

This recursive algorithm for constructing the ecf from the known ref of a number 
is of course no different (apart from signs) from the algorithm alluded to earlier for 
computing the orbits of (39) from the ref of w. 

The convergence of fractions of form (41) is guaranteed. 

Lemma 3.2. Ecf of form (41) always converge to some number W E]- 1, +1[, so 
that, if Wn is the n-th convergent then Iw - wnl < 1/(2n + 1). 

Proof Let 
1 1 

C == 2,61 + 2,62+ ... , 

where ,6k E Z \ {O}. This can be transformed via an equivalence transformation to 
the form 

c = cl/2 ClC2 Cn-lCn 
- c12,6l + c22,62+ ... cn2,6n+ ... , 
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which for Cn = 1/(2(3n) becomes 

C == 1/(4(3d ... 1/(4~n-l(3n) ... 
1+ + 

The assertion then follows from Worpitzky's theorem [12]. D 

As this lemma suggests, eef always converge, but in some cases the convergence 
might be only linear. However, it is evident from the form of (48) that the remain
ders of the ref and eef are closely related, so that, if the eef is truncated at the 
end of any of the possible long alternating sequences of ±2's, it will provide similar 
partial convergents as the ref, sharing some of the same optimality properties. 

We consider now the question of successive renormalizations of the sum (15), 
that is, of successive applications of the approximate functional formula (16). The 
connection with Lehmer's result [16] is instructive in this context; in his discussion 
of "incomplete" gauss sums, he observes that the basic building blocks of the pattern 
for a special case (which characterizes the first step in the renormalization process) 
are given by the following four cases: 

(49) { 
(1 + i)VN, -t 'ei11"k2(~) = VN, 

0, 
k=O I7\T 

iyN, 

N=4l, 
N = 4l + 1, 
N = 4l +2, 
N = 4k +3, 

The pattern corresponding to each one of these cases is shown in Figure 4 on page 
633. Now, in our irrational-exponent sums, the eef of the exponent w unfolds the 
orbits of the renormalization map. But what is the appearance of the basic building 
blocks ("O-level spirals") of the graph of the partial sums? It is clear that truncation 
in this. form does not reveal the structure of the graph (i.e. the rational number 
that results when the ecf for the irrational w is truncated is not the appropriate 
exponent that governs the graph). But defining C2k = 1, C2k-l = 2, we introduce 
the equivalence transformation ak = 1 -+ Ck-lCkak = 2, bk = 2dk -+ 2Ckdk, to 
obtain the equivalent fraction 

2 2 2 2 
w = ----- --- --- ... < +1. 

4d1 + 2d2 + 4d3 + 2d4 + 
We see that truncation at the second level, 

2 
w ~ 2 

4d1 + 2d2 + 
reveals precisely the building blocks: Id2 1 > 1: spirals of type 1; d2 = ±1: cases 
2,4. After the first renormalization, 

1 1 
w -+ -- (mod 2) = -2d---

w 2 + ... 
Still, we must return to the original even representation for the clearest interpre
tation of the renormalization, while using the above equivalent form to classify the 
patterns. Naturally, any dk = ±1 contributes twists of type 2, 4, while other values 
contribute connections of type 1. An easy check shows that (49) can be deduced 
from (16) by properly choosing a rational w. 

We find that for general w, successive applications of the renormalization for
mula (14) do not preserve the Diophantine property of the error for arbitrary N. 
However, for a certain class of quadratic irrationals there are integers Nl (forming 
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a subsequence of the sequence of convergent denominators of w) such that if we 
consider the sum in (15) with upper limit N = Nl and lower limit 0, then it is 
possible to carry out successive renormalizations while preserving the Diophantine 
character of the error term. More specifically, if w has the form 

(1) _ 1 1 + 
(50) w£ - -0- ( )£ ... , 1 < £ E Z , 

2.(.+ -2 + 

namely, if w is a fixed point of the renormalization map, or the form 

(2) _ 1 1 + 
(51) w£ -2£+2£+ ... , £EZ, 

namely, if w is such a periodic point of the renormalization map of period 2, then 
we have 

Lemma 3.3. If w is a (quadratic) irrational whose ecf has the form (50) or (51) 
and Pn-r!qn-l and Pn/qn are its partial convergent approximations of order n - 1 
and n respectively, then Pn = qn-l. 

Proof. For w?) we have 

PI = 1, 

P2 = 2£, 

Pn+l = 2£pn + Pn-l, 

while for W~l), similarly, we have 

PI = 1, 

P2 = 2£, 

ql = 2£, 

q2 = 4£2 + 1, 

ql = 2£, 

q2 = 4£2 - 1, 

and the claim follows by induction in either case. D 

Remark 3.1. It is easy to see that the periodic orbits of period k > 1 are given by 

(52) (k) _ 1 1 
w - (2al) + '" 2ak + (_l)kw(k) .... 

An example of partial sums for a periodic point of period 3 is shown in Figure 2 
(with 0 :::; N :::; 90000 ). 

The following obvious lemma defines the self-similar patterns under renormal
ization: 

Lemma 3.4. The fixed points of the renormalization map, 

(1) _ 1 1 _ ~ + 
w£ - 2£ + (-2)£ + ... - £ - y £- - 1, 1 < £ E Z , 

have the classical continuous fraction 
(1) _ 1 1 1 1 1 

(53) w£ - (2£ _ 1) + 1 + (2£ - 2) + 1 + (2£ - 2) + ... , 
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Omega 0.0228659071196527; cfract(O, 44, -4, 4. -44. 4, -4, 44. -4. 4 .. -44. O .... ) 

(a) 

50.3r-----------------~~~---------------------------. 

-43.8 

-277.8 -183.7 -89.6 4.5 98.6 192.7 286.8 380.9 

Ome9a 0.0228659071196527; cfract(O. 44. -4. 4. -44, 4. -4. 44. -4, 4. -44. O .... ) 

(b) 

FIGURE 2. A period three pattern; top shows 4 levels (12,000 < 
n < 44,000) while bottom shows 6 levels (N = 428,000). 

631 
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172.3 r-----------

150.8 

129.2 

107.7 

86.2 

64.6 

43.1 

21.5 

-137.4 -115.9 -94.4 -73.0 -51.5 -30.1 -8.6 12.9 

0 •• 9a 0.0227390241640894 = cfract(O, 44, -44, 44, -44, 44, -44, 0, 0, 0, 0, 0, ... > 

(a) 

160.0 r---------------....,,-

138.5 

117.0 

95.5 

74.0 

52.4 

30.9 

9.4 

21.7 43.5 65.2 87.0 108.7 130.4 152.2 173.9 

0.e9a 0.0227155455452405 = cfract(O, 44, 44, 44, 44, 44, 44, 0, 0, 0, 0, 0, ... ) 

(b) 

FIGURE 3. The selfsimilar and anti-selfsimilar spirals for l 22, 
n = 44000 
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503.0 .,..------------_='1 r;;;:" 
439.8 ~ 

~ 
376.5 

313.3 

250.0 

186.8 

123.5 

60.3 

-3.0~----+-----+-----+-----+-----+-----+-----~----~ 
0.0 63.5 127.0 190.5 254.0 317.5 381.0 444.5 508.0 

Ome9a 0.0000500000000000 = cfract(O, 20000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ) 

(a), N = 40,000 

250.0 ,------------------------------------------------, 

187.5 

125.0 

62.5 

-0.0 

-62.5 

-125.0 

-187 .5 

-250.0'~----+-----+-----+-----+----"+-----+-----~----~ 
0.0 62.6 125.1 187.7 250.3 312.8 375.4 437.9 500.5 

Ome9' 0.0000499987500312 = cfract(o, 20000, 2, 0, 0, 0, O. 0, 0, 0, 0, O .... ) 

(b), N = 40,001 

FIGURE 4. The cases in (49). In each figure, 100,000 points were plotted 
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77.4,--------------------------------------------------, 

58.1 

38.7 

19.4 

0.0 

-19.4 

-38.7 

-58.1 

-77.4 +-----_----_-----+------~----_----_----_<_----__l 
-77.5 -58.0 -38.5 -19.0 0.5 20.0 39.5 59.0 78.5 

00.9' 0.0000499975001250 = cfr.ct(O, 20000, 2, 0, 0, 0, 0, 0, 0, 0, 0. 0, ••• ) 

(c),]V= 40,0002 

492.0 

~ 430.5 

369.0 ~ 
307.5 I 

246.0 ~ 
184.5 ~~ 

~ 
123.0 I 

I 
61.5 

~ 
o.o~----+-----+-----+-----~==~+---------------~ 

-245.5 -184.0 -122.5 -61.0 0.5 62.0 123.5 185.0 246.5 

Oo.g. 0.0000499962502812 = cfr.ct<o, 20002, -2, 0, O. 0, 0, 0, 0, 0, 0, 0, ••• ) 

(d),]V =40,0003 

FIGURE 4. (continued) 
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261.9 ,-------------",---------------, 

223.6 

185.4 

147.2 

108.9 

70.7 

32.5 

-5.8 

23.5 61.5 99.5 137.5 175.5 213.6 251.6 289.6 

0'.9a 0.6180339644494809 = cfract(O, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, ... ) 

(a) 

740.5 

479.0 

217.5 

-44.0 +-----~--~---+---'----+-----+-----+------+-------< 
-897.5 -636.2 -374.9 -113.6 147.7 409.0 670.3 931.6 1192.9 

0'.9a 0.6180339644494909 = c,racHO, 2, -2, -2, 2, 2, -2, -2, 2, 2, -2, -2, ... ) 

(b) 

F 5 Th h e 1 1 1 1 1 1 1 1 1 1 1 1 1 2 (t) IGURE. e grap lor w = "2 -2 -2 "2 "2 -2 -2 "2 "2 -2 -2 "2 44 -=-44 . , • op 
46000 points, (bottom) 1900000 points 



636 E. A. COUTSIAS AND N. D. KAZARINOFF 

and the convergent numerators and denominators Pk and Qk, respectively, are given 
in terms of the Pn, qn defined in the proof of Lemma 3.1 by 

Q2n = qn, (54) 

(55) 
P2n = Pn, 

P2n- 1 = Pn - Pn-1, Q2n-1 = qn - qn-1' 

Note 1. Spirals of spirals are obtained either way. They differ only by one spiral of 
the lower order. The renormalizable one has En == wN - n > 0 (En < 0) depending 
on whether the sequence is even (self-similar) or odd (anti-selfsimilar). Examples, 
with e = 22 are shown in Figure 3a (self-similar) and Figure 3b (anti-selfsimilar), 
each with 44, 000 points. 

Thus it is seen that for the fixed points of the renormalization map, the sequence 
of partial convergents of the eef is the even subsequence of the sequence of the partial 
convergents of the ref. Hence it provides a monotonically increasing sequence of 
rational approximations of w~l) that satisfy the property 

IwCl) _ Pn 1-lwCl) _ P2n I < C 
i qn - '- Q2n Q2n-1 Q2n 

(56) 
c 

For the periodic points (49) of order two 

(2) _ 1 1 _ ~ 
(57) wi - 2e + 2e + .,. - v e-+ 1 - e, 1 < e E Z+; 

the entries are positive and the eef coincides with the ref. Repeated renormalizations 
can be also carried out in general, if we choose upper limits from the even convergent 
denominators of w. We state the rational case here. The extension to irrationals 
proceeds along similar lines. We have 

Theorem 3.1. Consider the rational number w = p/q, pq = 0 (mod 2). Let Wl = 
PdQl = <I>k=lH2d~' l = 0, ... ,n - 1, with Wo == wand (Pt, Ql) = 1. Then 

(58) 

Qo ( 1) 1/2 Q1 ( ( l)m ) 1/2 Q", L 'ei7rwok2 = :0 L 'ei7rW1k2 = ... = - L 'ei7rw",k2 

k=O k=O WO'" Wm -1 k=O 

= ... = ( (-l)n )1/2 
WO" 'Wn-1 

Proof. Apply the Cauchy-Kronecker formula (4) repeatedly, taking advantage of 
(43) and the fact that Ql+1 = Pt. Note that the numerators are chosen here 
as (-1) 's. This form is more convenient for the application of the map (39) since 
wCk ) = Wk; an equivalence transformation ak -7 Ck-1Ckak, bk -7 ckbk with C2k = -1, 
C2kH = 1 reduces this to the previously used form (41). 0 

This type of formula was of course known to Hardy and Littlewood; however, 
the use of ecf simplifies its statement dramatically. 

Finally, we note that the behavior of the partial sums (9) in the complex plane 
as N -7 00 is intermittent, in that they are governed by successively higher order 
entries in the continued fraction expansion of w. This means that as N increases one 
may observe ordered behavior becoming disordered or the reverse. However, in ac
cord with our main result, Theorem 2.1, the renormalization may proceed with ever 
increasing accuracy as n -7 00 over successive convergent denominators of w. An 
example of initially disordered behavior which becomes increasingly more ordered 
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as ever larger entries of the continued fraction are revealed by the renormalization 
map for increasing N is shown in Figure 5 (a, b). 
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ApPENDIX A. THE CONSTANT C IN THE DIOPHANTINE INEQUALITY 

We introduce the notation 

l+E 
z=2(n+0), Xl=--, 

z 
2n + E 2n + 20 - E E 

Yl=--=X2n, Y2= =l--=l- xo, 
z z z 

and rewrite (36)-(38), after some rearranging of the sums, as 

(59) I ~ I ::; Al + A2 

with 

(60) 

+ ~" ,,- P + Xl + Xl 2n-l (00 ( ) ) 
27r2 z4 f=t p~oo (p + Xl)4 

+ 2(n + E) 2~1 c~ _ (p+ Xl? + (1- 2Xl)(P+Xl) + Xl(XI -1)) 
7rZ3 L.J L.J (p + Xl)3 

1=1 =-00 

and 

(61) 

A2 = _1_ f (- (p + Yl) + Yl + (p + Y2) + 1 - Y2) 
7rZ2 p=o (p + Yl)2 (p + Y2)2 

+ ~ ~ (- (p + Yl) + Yl + (p + Y2) + 1 - Y2 ) 
27r2Z4 ~ (p + Yl)4 (p + Y2)4 

+ 2(n+ E) f (_ (P+Yl)2 + (1- 2Yl)(P+ Yl) + Yl(Yl -1) 
7rZ3 p=o (p + YIP 

+ (p + Y2)2 + (1 - 2Y2)(P + Y2) + Y2(Y2 - 1)) 
(p + Y2)3 . 

Estimate for AI- We introduce the functions 
00 00 

fk(X) = L (p + x)-k, JI(x) = L (p + X)-l = 7rCot(1rx), 
p=-oo p=-oo 
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(also, h = 7r2 CSC2 ( 7rX), !J = 7r3 cot ( 7rX) CSC2 (7rX), 14 = 7r4 CSC2 (7rX) [1+2 cot (7rx) ] ), 

<Pk(X) = Xlk(X) - Ik-l(X), <PI(X) = xft(X), 

qk(X) = (1- X)<pk(X) + <Pk-l(X), ql = (1- X)<pl(X). 

These satisfy (g stands for any of I, <P or q): 

g~ = -kgk+l. 

The <Pk, qk are analytic at x = O. Using these properties and the fact that the 
In are even (odd) about x = 1/2 whenever n is even (odd), and hn > 0 on (0,1) 
while hn+1 > 0 on (0,1/2), it follows easily that <P2 and <P4 are increasing convex 
functions on [0,1), while q3 is odd about x = 1/2 and has an increasing convex 
derivative (q~ = -3q4) on [1/2,1). Then, Al can be written 

(62) 

2n-1 2n-1 () 2n-1 
Al = ~ L <P2(Xl) + 2~ 4 L <P4(Xl) +2 n+3f ~ q3(Xl) 7rZ 7r Z 7rZ L....t 

1=1 1=1 1=1 

= c}?2(n, f, 0) + c}?4(n, f, 0) + Q3(n, f, 0). 

We discuss the cases E > 0, f < 0 separately. 
(i) E > 0: Now c}?k(n,E,e)~ c}?k(n, 1/2,0). Indeed, <P2, <P4 are convex, increasing 

functions in [0,1), and the Xl are maximized for e = 0, f = 1/2. Similarly, the 
factors z-k are maximized for e = O. Finally, we have that for k = 2,4, 

with a2 = l/Tf, a4 = 3w/(27r2). 

Also, using the properties of q3, it follows that 

Q3(n, f, e) ~ Q3(n, 1/2,0) 

= 2 (n + 1/2) (~[ (~ 1-1/2) (~ _ 1-1/2)] 
7r(2n)3 L....t q3 2 + 2n + q3 2 2n 

1=1 

+q3 (~+ n ~~/2)) 
n+ 1/2 ( 1 ) 

= 47rn3 q3 1 - 4n . 

Combining results, we find that, for E ~ 0 

(64) 

IAII ~_1_ 2~1 <P2 (I + 1/2) + 3w ~1 <P4 (I + 1/2) 
47rn2 L....t 2n 327r2n4 L....t 2n 

1=1 1=1 

n + 1/2 (1 1) +4 3 q3 --4 . 7rn n 

(ii) f < 0: Now decrease e to its minimum value, E ~ e ~ O. This majorizes all 
terms: 



DIOPHANTINE GAUSS SUMS 639 

Next, observe that this is majorized for € as small as possible, i.e. for € = -1/2. 
Indeed, now Xn = 1/2 and 

is positive (negative) for n > l (n < l). Since ¢k(Xn+l) > ¢k(Xn-I), while dXde+1 = 

_dxde-l, we majorize ¢k(Xn+l) - ¢k(Xn-I), and hence <Pk by letting € = -1/2, its 
smallest possible value. On the other hand, the term Q3 is now bounded above by 
Q3(n, -1/2, -1/2) ~ 0, so we neglect it to get, for € ~ 0, 

1 2n-l (l -1/2) 
47r(n - 1/2)2 t; ¢2 2n - 1 

3w 2n-l (l - 1/2) 
+ 327r2(n - 1/2)4 t; ¢4 2n - 1 . 

Estimate for A2 - We let (with a > ° arbitrary) 

We have 

00 

" P - f+ f+ - ~ (p + x)k - X k - k-l' 
p=o 

~ p(p + 1) _ ( ) + + - ~ ( + x)k - 1 - X ¢k + ¢k-l· 
p=o P 

1 (+( + +) A2 7rZ2 f2 Y2) + ¢2 (Yd - ¢2 (Y2) (= a2) 

+ 2:~Z4 Ut(Y2) + ¢t(Yl) - ¢t(Y2)) (= a4) 

(n + €) + 2~ (qt(Yl) - qt(Y2)) (= a3). 

We note that r: is positive and decreasing while ¢t, qt are negative and increasing 
for x > 0. Again, we consider the cases € > ° and € < ° separately. 

(i) For € > 0, we have Yl > Y2. Then, for a2, a4 we must maximize Yl and 
minimize Y2. This happens for € = 1/2, () = ° (i.e. Yl = 1 + 1/4n, Y2 = 1 - 1/4n), 
so 
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For CY3 we get, similarly, 

CY3(n, E, 8) ::; CY3(n, 1/2, 0) 

_ (n + 1/2) + + 1 + + 
- 2 1f(2n)3 (¢2 (Yl) - ¢2 (Y2) - 4n (¢3 (yd + ¢3 (Y2))) 

_ (n + 1/2) +( +) ( 1) 1 + + 
- 2 1f(2n)3 (12 Yl) - f2 (Y2 + ¢2 4n - 4n (¢3 (Yd + ¢3 (Y2))) 

_ (n + 1/2) + + 1 2 + 
- 2 1f(2n)3 (12 (Yl) - f2 (Y2) + ¢2(4n) - 4n ¢3 (Y2)) 

(n + 1/2) +( 1 + 1 1 1 + 
= 2 1f(2n)3 (12 yd - (1 - 2n)f2 (Y2) + ¢2(4n) - 2n (1 - 4n)f3 (Y2)) 

(ii) For E < 0, A2 is maximized at E = e = -1/2. Then 

CY2 + CY4 ::; 1 + -,----1 f+( 1) 
1f(2n - 1)2 2 2(2n - 1) 

+ 21f2(2~ _ 1)4 ft (1 + 2(2n1_ 1)) . 
Now, CY3 ::; 0, so it is neglected. 

It is easy to show that the error term IAl + A21 is maximal for n = 1. Using the 
integral test, it can be easily shown that this term is a decreasing function of n for n 
sufficiently large (say n > 100). The details, although lengthy, are elementary and 
they are ommitted. Numerical evaluation of the sums for 1 < n ::; 100 completes 
the proof. Thus we find that 

IAl + A21 ::; .958921 + 1.235903w ::; 2.20. 

This, used in (59), results in the bounds claimed in our theorem. 
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