
University of New Mexico
UNM Digital Repository
Electrical & Computer Engineering Technical
Reports Engineering Publications

11-1-1998

A Randomized Parallel Sorting Algorithm With an
Experimental Study
D.R. Helman

D.A. Bader

J. JáJá

Follow this and additional works at: https://digitalrepository.unm.edu/ece_rpts

This Technical Report is brought to you for free and open access by the Engineering Publications at UNM Digital Repository. It has been accepted for
inclusion in Electrical & Computer Engineering Technical Reports by an authorized administrator of UNM Digital Repository. For more information,
please contact disc@unm.edu.

Recommended Citation
Helman, D.R.; D.A. Bader; and J. JáJá. "A Randomized Parallel Sorting Algorithm With an Experimental Study." (1998).
https://digitalrepository.unm.edu/ece_rpts/7

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_fsp?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/ece_rpts/7?utm_source=digitalrepository.unm.edu%2Fece_rpts%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:disc@unm.edu

DEPARTMENT OFELECTRICAL AND

COMPUTER ENGINEERING

SCHOOL OFENGINEERING

UNIVERSITY OF NEW MEXICO

A New Deterministic Parallel Sorting Algorithm With an Experimental
Evaluation

David R. Helman
Institute for Advanced Computer Studies
& Department of Electrical Engineering

The University of Maryland
College Park, MD 20742

e-mail: helman@umiacs.umd.edu

Joseph J´aJá 1

Institute for Advanced Computer Studies
& Department of Electrical Engineering

The University of Maryland
College Park, MD 20742

e-mail: joseph@umiacs.umd.edu

David A. Bader2

Department of Electrical and Computer Engineering
The University of New Mexico

Albuquerque, NM 87131
e-mail: dbader@eece.unm.edu

UNM Technical Report: EECE-TR-98-008

Report Date: November 1998

1This work was supported by NSF Grants No. CCR-9627210 and No. BIR-9318183.
2Supported by NSF CISE Postdoctoral Research Associate in Experimental Computer Science No. 96-25668 and NASA

Graduate Student Researcher Fellowship No. NGT-50951.

Abstract

We introduce a new deterministic parallel sorting algorithm for distributed memory machines based on the regu-
lar sampling approach. The algorithm uses only two rounds of regular all-to-all personalized communication in
a scheme that yields very good load balancing with virtually no overhead. Moreover, unlike previous variations,
our algorithm efficiently handles the presence of duplicate values without the overhead of tagging each element
with a unique identifier. This algorithm was implemented in SPLIT-C and run on a variety of platforms, including
the Thinking Machines CM-5, the IBM SP-2-WN, and the Cray Research T3D. We ran our code using widely
different benchmarks to examine the dependence of our algorithm on the input distribution. Our experimental
results illustrate the efficiency and scalability of our algorithm across different platforms. In fact, the perfor-
mance compares closely to that of our random sample sort algorithm, which seems to outperform all similar
algorithms known to the authors on these platforms. Together, their performance is nearly invariant over the set
of input distributions, unlike previous efficient algorithms. However, unlike our randomized sorting algorithm,
the performance and memory requirements of our regular sorting algorithm can be deterministically guaranteed.

UNM Technical Report: EECE-TR-98-008

1 Introduction

We present a novel variation on the approach of sorting by regular sampling which leads to a new deterministic
sorting algorithm that achieves optimal computational speedup with very little communication. Our algorithm
exchanges the single step of irregular communication used by previous implementations for two steps of regular
communication. In return, our algorithm mitigates the problem of poor load balancing because it is able to sustain
a high sampling rate at substantially less cost. In addition, our algorithm efficiently accommodates the presence
of duplicates without the overhead of tagging each element. And our algorithm achieves predictable, regular
communication requirements which are essentially invariant with respect to the input distribution. Utilizing
regular communication has become more important with the advent of message passing standards, such as MPI
[16], which seek to guarantee the availability of very efficient (often machine specific) implementations of certain
basic collective communication routines.

Our algorithm was implemented in a high-level language and run on a variety of platforms, including the
Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code using a variety of bench-
marks that we identified to examine the dependence of our algorithm on the input distribution. Our experimental
results are consistent with the theoretical analysis and illustrate the efficiency and scalability of our algorithm
across different platforms. In fact, the performance compares closely to that of our random sample sort algo-
rithm, which seems to outperform all similar algorithms known to the authors on these platforms. Together, their
performance is nearly indifferent to the set of input distributions, unlike previous efficient algorithms. How-
ever, unlike our randomized sorting algorithm, the performance and memory requirements of our regular sorting
algorithm can be guaranteed with deterministically.

The high-level language used in our studies is SPLIT-C [10], an extension of C for distributed memory ma-
chines. The algorithm makes use of MPI-like communication primitives but does not make any assumptions as
to how these primitives are actually implemented. The basic data transport is aread or write operation. The re-
mote read and write typically have both blocking and non-blocking versions. Also, when reading or writing more
than a single element, bulk data transports are provided with correspondingbulk read andbulk write primi-
tives. Our collective communication primitives, described in detail in [4], are similar to those of the MPI [16], the
IBM POWERparallel [6], and the Cray MPP systems [9] and, for example, include the following:transpose ,
bcast , gather , andscatter . Brief descriptions of these are as follows. Thetranspose primitive is an all-to-all
personalized communication in which each processor has to send a unique block of data to every processor, and
all the blocks are of the same size. Thebcast primitive is used to copy a block of data from a single source
to all the other processors. The primitivesgather andscatter are companion primitives.Scatter divides a
single array residing on a processor into equal-sized blocks, each of which is distributed to a unique processor,
andgather coalesces these blocks back into a single array at a particular processor. See [3, 4, 5] for algorithmic
details, performance analyses, and empirical results for these communication primitives.

The organization of this paper is as follows. Section 2 presents our computation model for analyzing parallel
algorithms. Section 3 describes in detail our improved sample sort algorithm. Finally, Section 4 describes our
data sets and the experimental performance of our sorting algorithm.

2 The Parallel Computation Model

We use a simple model to analyze the performance of our parallel algorithms. Our model is based on the fact that
current hardware platforms can be viewed as a collection of powerful processors connected by a communication
network. This network can be modeled as a complete graph on which communication is subject to the restrictions
imposed by the latency and the bandwidth properties of the network. We view a parallel algorithm as a sequence
of local computations interleaved with communication steps, where we allow computation and communication
to overlap. We account for communication costs as follows.

Assuming no congestion, the transfer of a block consisting ofm contiguous words between two processors

1

UNM Technical Report: EECE-TR-98-008

takes(τ+σm) time, whereτ is the latency of the network andσ is the time per word at which a processor can
inject or receive data from the network. Note that the bandwidth per processor is inversely proportional toσ.
We assume that the bisection bandwidth is sufficiently high to support block permutation routing amongst the
p processors at the rate of1

σ . In particular, for any subset ofq processors, a block permutation amongst theq
processors takes(τ+σm) time, wherem is the size of the largest block.

Using this cost model, we can evaluate the communication timeTcomm of an algorithm as a function of the
input sizen, the number of processorsp , and the parametersτ andσ. The coefficient ofτ gives the total number
of times collective communication primitives are used, and the coefficient ofσ gives the maximum total amount
of data exchanged between a processor and the remaining processors.

This communication model is close to a number of similar models (e.g. [1, 11, 18]) that have recently ap-
peared in the literature and seems to be well-suited for designing parallel algorithms on current high performance
platforms.

We define the computation timeTcomp as the maximum time it takes a processor to perform all the local
computation steps. In general, the overall performanceTcomp+Tcomm involves a tradeoff betweenTcomp and
Tcomm. In many cases, it is possible to minimize bothTcompandTcommsimultaneously, and sorting is such a case.

3 A New Sorting Algorithm by Regular Sampling

Consider the problem of sortingn elements equally distributed amongstp processors, where we assume without
loss of generality thatp dividesn evenly. The idea behind sorting by regular sampling is to find a set ofp�1
splitters to partition then input elements intop groups indexed from 1 up top such that every element in the
ith group is less than or equal to each of the elements in the(i +1)th group, for(1� i � p�1). Then the task
of sorting each of thep groups can be turned over to the correspondingly indexed processor, after which then
elements will be arranged in sorted order. The efficiency of this algorithm obviously depends on how well we
divide the input, and this in turn depends on how evenly we choose the splitters. One way to choose the samples
is by random selection. Examples of this approach include the sample sort algorithm of Blelloch et al. [7] and
our own random sample sort algorithm [14]. Alternatively, the splitters may be chosen as we have for this paper
by regularly sampling the sorted input elements at each processor - hence the name Sorting by Regular Sampling.

A previous version of regular sample sort [15, 17], known as Parallel Sorting by Regular Sampling (PSRS),

first sorts then
p elements at each processor and then selects every

�
n
p2

�th
element as asample. These samples

are then routed to a single processor, where they are sorted and everypth sample is selected as a splitter. Each
processor then uses these splitters to partition the sorted input values and then routes the resulting subsequences
to the appropriate destinations, after which local merging of these subsequences is done to complete the sorting
process. The first difficulty with this approach is the load balance. There exist inputs for which at least one

processor will be left with as many as
�

2n
p� n

p2 � p+1
�

elements at the completion of sorting [15, 17]. This

could be reduced by choosing more samples, but this would also increase the overhead. And no matter how many
samples are chosen, previous studies have shown that the load balance would still deteriorate linearly with the
number of duplicates [15]. One could, of course, tag each item with a unique value, but this would also double
the cost of both memory access and interprocessor communication. The other difficulty is that no matter how the
routing is scheduled, there exist inputs that give rise to large variations in the number of elements destined for
different processors, and this in turn results in an inefficient use of the communication bandwidth. Moreover, such
an irregular communication scheme cannot take advantage of the regular communication primitives proposed
under the MPI standard [16].

In our algorithm, which is parameterized by the number of sampless
�

p� s� n
p2

�
, we guarantee that, at the

completion of sorting, each processor will have at most
�

n
p +

n
s� p

�
elements, while incurring no overhead in

gathering the set of samples used to identify the splitters. This bound holds regardless of the number of duplicate

2

UNM Technical Report: EECE-TR-98-008

elements present in the input. Moreover, we are able to replace the irregular routing with exactly two calls to our
transpose primitive.

The pseudocode for our algorithm is as follows. Note that since our algorithm involves three phases of
computation punctuated by two rounds of balanced data rearrangement, we distinguish the work of the processors
in the three phases by the indicesi, j, andk (for initial, intermediate, and final phases of computation). Further, the
movement of data between these three phases is distinguished by the same set of indices, so that an arbitrary set
of dataA indexed with(i; j;k) can be understood as originating at processorPi in the first round of computation,
moving to processorPj for the intermediate round of computation, and finishing at processorPk for the final round
of computation. While this distinctions might at first appear burdensome, a proper appreciation of the data flow
is essential to establishing the correctness of the algorithm.

� Step (1): Each processorPi (0� i � p�1) sorts itsn
p input values using an appropriate sequential sorting

algorithm. For integers we use the radix sort algorithm, whereas for floating point numbers we use the
merge sort algorithm. Each processorPi then “deals out” its sorted input values amongst a set ofp bins so

that the element with indexx is placed into position
j

x
p

k
of bin (x mod p).

� Step (2): Each processorPi routesI(i; j), the contents of binj, to processorPj , for (0� j � p�1). This is
equivalent to performing atranspose operation with block sizen

p2 .

� Step (3): From each of thep sorted subsequences received inStep (2), processorP(p�1) selects each�
(x+1) n

p2s

�th
element as asample, for (0� x� s�1) and a given value ofs

�
p� s� n

p2

�
.

� Step (4): ProcessorP(p�1) merges thep sorted subsequences of samples and then selects each((k+1)s)th

sample as Splitter[k], for (0� k� p�2). By default, thepth splitter is the largest value allowed by the data
type used. Additionally, binary search is used to compute, for the set of samples with indices(ks) through
((k+1)s�1), the number Est[k] of samples which share the same value as Splitter[k].

� Step (5): ProcessorP(p�1) broadcasts the two arrays Splitter[] and Est[] to the otherp�1 processors.

� Step (6): Each processorPj uses binary search to define for each sorted sequenceI(i; j) and each Splitter[k]
a subsequenceT(i; j ;k), for (0� i;k� p�1). The p subsequencesfT(0; j ;k);T(1; j ;k); :::;T(p�1; j ;k)g associated
with Splitter[k] all contain values which are greater than or equal to Splitter[k�1] and less than or equal to

Splitter[k], and they collectively includeat most
�

Est[k]� n
p2s

�
elements with the same value as Splitter[k].

The termat mostis used because there may not actually be this number of elements with the same value as
Splitter[k].

� Step (7): Each processorPj routes the set ofp subsequences
fT(0; j ;k);T(1; j ;k); :::;T(p�1; j ;k)g associated with Splitter[k] to processorPj , for (0� k� p�1). Since no two

processors will exchange more than
�

n
p2 +

n
sp

�
elements, this is equivalent to performing atranspose

operation with block size
�

n
p2 +

n
sp

�
.

� Step (8): Each processorPk merges the set ofp2 subsequences received in Step (7) to produce thekth

column of the sorted array.

In order to establish the complexity, we need to establish four lemmas, all of which make use of the following
set of definitions. LetSk be the set of samples in the sorted array of samples in Step (4) with indices 0 though
((k+1)s�1), inclusively. The last element inSk is the element chosen as Splitter[k] and is said to have value
Vk. Let L(i;k) be the number of samples strictly less thanVk in Sk which originate from the input at processorPi .
Similarly, let E(i;k) be the number of samples equal toVk in Sk which originate from the input at processorPi .

Note that by definition any particular value ofL(i;k) or E(i;k) may be equal to zero, and that∑p�1
u=0

�
L(u;k)+E(u;k)

�
=

3

UNM Technical Report: EECE-TR-98-008

(k+1)s. Note also that∑p�1
u=0 E(u;k) = ∑k

w=t Est[w], wheret is the smallest index less then or equal tok such that

Splitter[t] =Vk. Finally, we require throughout this discussion thatn� p3 and that
�

p� s� n
p2

�
.

Lemma (1): The following three assertions can be made about the composition of the sorted subsequenceI(i; j)
received by processorPj from processorPi at the end of Step (2):

� (A): At least the first
�
L(i;k)+E(i;k)

�
n

p2s
elements inI(i; j) are less than or equal toVk .

� (B): At least the first
�
L(i;k)

�
n

p2s
elements inI(i; j) are strictly less thanVk.

� (C): The maximum number of elements inI(i; j) which are strictly less thanVk is��
L(i;k)+1

�
n

p2s
�1

�
if (j = p�1) and

�
L(i;k)+1

�
n

p2s
otherwise.

Proof: The effect of Steps (1) and (2) is to “deal out” the sorted input at processorPi amongst the set of sequences�
I(i;0); I(i;1); :::; I(i;p�1)

	
. More precisely, the element with indexx in the sorted input at processorPi is mapped to

position
j

x
p

k
of sequenceI(i;(x mod p)). Conversely, the element with indexy in sequenceI(i; j) originates as the

element with index(yp+ j) in the sorted input at processorPi . Hence, thezth element to be chosen as a sample

from the elements originating at processorPi , which is actually the element with index
�

z n
p2s
�1

�
in I(i;p�1) ,

originated as the element with index
�

z n
ps�1

�
in the sorted input at processorPi .

By definition, there are at least
�
L(i;k)+E(i;k)

�
samples originating from processorPi whose values are less

than or equal toVk. We sayat leastsince it is possible that there are samples originating from processorPi whose
value is equal toVk but who fall after Splitter[k] in the sorted array of samples. Hence, it follows that at least
the first

�
L(i;k)+E(i;k)

�
n
ps elements in the sorted input at processorPi in Step (1) had to be less than or equal

to Vk. Since these elements are mapped as described above to the set of sequences
�

I(i;0); I(i;1); :::; I(i;p�1)
	

, it
follows that at least the first

�
L(i;k)+E(i;k)

�
n

p2s
elements in each of these sequences are less than or equal toVk

and statement (A) follows.

Next, by definition, there are exactlyL(i;k) samples originating from processorPi whose values are strictly
less thanVk. Hence, it follows that at least the firstL(i;k)

n
ps elements in the sorted input at processorPi in Step

(1) had to be strictly less thanVk. Since these elements are mapped as described above to the set of sequences�
I(i;0); I(i;1); :::; I(i;p�1)

	
, it follows that at least the firstL(i;k)

n
p2s

elements in each of these sequences are strictly
less thanVk and statement (B) follows.

Finally, since by definition there are exactlyL(i;k) samples originating from processorPi whose values are

strictly less thanVk, it follows that the
�
L(i;k)+1

�th
sample originating from processorPi must be greater than

or equal toVk. Hence, it follows that the element with index
�
L(i;k)

�
n
ps in the sorted input at processorPi in

Step (1) had to be greater than or equal toVk, and that at most
��

L(i;k)
�

n
ps�1

�
elements in this sorted in-

put were strictly less thanVk. Since these elements were mapped as described above to the set of sequences�
I(i;0); I(i;1); :::; I(i;p�1)

	
, it follows that the maximum number of elements in each of these sequences which are

strictly less thanVk are
��

L(i;k)+1
�

n
p2s
�1

�
if (j = p�1) and

�
L(i;k)+1

�
n

p2s
otherwise and statement (C) fol-

lows.2

In order to establish the complexity of our algorithm, we need to establish an upper bound in Step (6) on
∑p�1

u=0

��T(u; j ;k)

��, the number of elements selected by processorPj for routing to processorPk. However, instead
of trying to determine this bound directly, it turns out to be easier if we consider an alternative approach. Let
R(j ;k) =

�S
T(u; j ;w) : 0� u� p�1;0�w� k

	
be the number of elements selected by processorPj for routing

4

UNM Technical Report: EECE-TR-98-008

to processorsP0 throughPk. Clearly,R(j ;k) includes all those elements that are strictly less thanVk, plus up to

∑k
w=t Est[w] n

p2s
elements equal in value toVk (if they can be found), where as beforet is the smallest index less

than or equal tok such that Splitter[t] =Vk. Then, an equivalent statement of our objective is to establish an upper
bound on the difference between Min(j ;k), the minimum possible size ofR(j ;k�1), and Max(j ;k), the maximum
possible size ofR(j ;k).

Lemma (2): The number of elements in Step (6) which will be selected by processorPj for routing to processors
P0 throughPk is at least Min(j ;k) = (k+1) n

p2 .

Proof: Assertion (A) in Lemma (1) states that at least the first
�
L(i;k)+E(i;k)

�
n

p2s
elements in the sorted sequence

I(i; j) are less than or equal toVk. Assertion (B) in Lemma (1) states that at least the firstL(i;k)
n

p2s
elements

in the sorted sequenceI(i; j) are strictly less thanVk. Hence, at mostE(i;k)
n

p2s
of the first

�
L(i;k)+E(i;k)

�
n

p2s
elements in the sequenceI(i; j) are equal toVk. Hence, since our algorithm will select all those elements in the

set
�

I(0; j); I(1; j); :::; I(p�1; j)
	

which are strictly less thanVk, plus up to∑p�1
u=0 E(u;k)

n
p2s

elements which are equal in
value toVk (if they can be found), if follows that it will always be able to select at least

Min(j ;k) =
p�1

∑
u=0

�
L(u;k)+E(u;k)

� n
p2s

= (k+1)s
n

p2s

= (k+1)
n
p2

elements for routing to processorsP0 throughPk and Lemma (2) follows.2

Lemma (3): The number of elements in Step (6) which will be selected by processorPj for routing to processors
P0 throughPk is at most

Max(i;r) =

(�
(ks+ p) n

p2s
� p

�
if k= p�1

(ks+ p) n
p2s

otherwise

Proof: Assertion (C) in Lemma (1) states that the maximum number of elements inI(i; j) which are strictly

less thanVk is at most
��

L(i;k)+1
�

n
p2s
�1

�
if (j = p� 1) and

�
L(i;k)+1

�
n

p2s
otherwise. Hence, since our

algorithm will select all those elements in the set
�

I(i;0); I(i;1); :::; I(i;p�1)
	

which are strictly less thanVk, plus up

to ∑p�1
u=0 E(u;k)

n
p2s

elements which are equal in value toVk (if they can be found), if follows that it will always be
able to select at most

Max(j ;k) =

8>>>>><
>>>>>:

∑p�1
u=0

��
L(u;k)+1+E(u;k)

�
n

p2s
�1

�
=�

((k+1)s+ p) n
p2s
� p

�
if k= p�1

∑p�1
u=0

�
L(u;k)+1+E(u;k)

�
n

p2s
=

((k+1)s+ p) n
p2s

otherwise

elements for routing to processorsP0 throughPk and Lemma (3) follows.2

Lemma (4): The number of elements sent by processorPj to processorPk is at most
�

n
p2 +

n
sp� p

�
for j = p�1

and
�

n
p2 +

n
sp

�
otherwise.

5

UNM Technical Report: EECE-TR-98-008

Proof: As noted earlier, the maximum number of elements selected by processorPj for processorPk is simply
the difference between Min(j ;k�1), the minimum possible number of elements selected for processorsP0 through
P(k�1), and Max(j ;k), the maximum possible number of elements selected for processorsP0 throughPk. Subtract-
ing the lower bound of Lemma (2) from the upper bound of Lemma(3), we get:

Max(j ;k)�Min(j ;k�1) =

8>>>>><
>>>>>:

�
((k+1)s+ p) n

p2s
� p

�
�ks n

p2s
=�

n
p2 +

n
ps� p

�
if j = p�1

((k+1)s+ p) n
p2s
�ks n

p2s
=�

n
p2 +

n
ps

�
otherwise

2

Theorem 1: The overall complexity of our algorithm for sorting by regular sampling is

O
�

n
p log n

p + τ+ n
pσ
�

, for n� p3 and
�

p� s� n
p2

�
.

Analysis: The cost of sequential sorting in Step (1) depends on the data type - sorting integers using radix sort

requiresO
�

n
p

�
time, whereas sorting floating point numbers using merge sort requiresO

�
n
p log

�
n
p

��
time.

Step (3) involves selectingsp samples, and Step (4) involves mergingp sorted sequences followed byp bi-
nary searches. Since only processorP(p�1) is active in these two steps, they requireO(sp) and O(splogp)
time, respectively. Step (6) involves a total ofO(p2) binary searches on sequences of sizen

p2 and therefore

requiresO(p2 log n
p2) time. Lemma (4) guarantees that at the end of Step (7) no processor holds more than�

n
p +

n
s� p

�
elements. Hence, the consolidation of Step (8) and the comparison-based merge of Step (9) re-

quire O
�

n
p +

n
s + p2� p

�
, andO

��
n
p +

n
s� p

�
logp

�
time, respectively. Steps (2), (5), and (7) call the com-

munication primitivestranspose , bcast , and transpose , respectively. The analysis of these primitives in

[4] shows that these three steps requireTcomm(n; p) �
�

τ+ n
p2 (p�1)σ

�
, Tcomm(n; p) � (τ + 2(p� 1)σ), and

Tcomm(n; p) �
�

τ+
�

n
p2 +

n
sp

�
(p�1)σ

�
, respectively. Hence, with high probability, the overall complexity of

our sorting algorithm is given (for floating point numbers) by

T(n; p) = Tcomp(n; p)+Tcomm(n; p)

= O

�
n
p

log
n
p
+ τ+

n
p

σ
�

(1)

for n� p3 and
�

p� s� n
p2

�
. 2

Clearly, our algorithm is asymptotically optimal and appears to have very small coefficients. But a theoretical
comparison of our running time with previous sorting algorithms is difficult, since there is no consensus on how to
model the cost of the irregular communication used by the most efficient algorithms. Hence, it is very important
to perform an empirical evaluation of an algorithm using a wide variety of benchmarks.

Before proceeding to this discussion, however, we describe first a modification of our algorithm which we
used in the actual implementation. This modification has has no impact on the overall complexity, but it does
result in a more efficient implementation. The basis for the modification is the observation that, in Step (8),
the p2 subsequences to be merged at each processor can be reduced top subsequences based simply on the
initial origin of their elements. Specifically, the set ofp subsequencesfT(i;0;k);T(i;1;k); :::;T(i;p�1;k)g at processor
Pk share a a common origin in the sorted input at processorPi in Step (1). They are the elements form the set
of sorted sequencesfI(i;0); I(i;1); :::; I(i;p�1)g which fall between Splitter[k� 1] and Splitter[k]. Recall also that
the set of of sequencesfI(i;0); I(i;1); :::; I(i;p�1)g were generated by “dealing out” the sorted input at processor

6

UNM Technical Report: EECE-TR-98-008

Pi, and that this mapping is clearly reversible. Hence, with a little bit of information, it is possible to reverse
this mapping and reassemble thep subsequencesfT(i;0;k);T(i;1;k); :::;T(i;p�1;k)g into a single sorted sequenceU(i;k)
without actually making any comparison between the values. The advantage of this process of reassembling is

that it can be done inO
�

n
p

�
time instead of timeO

�
n
p logp

�
required for binary merge. Note that, while this has

no effect on the overall complexity as binary merging is still required to merge the resulting set ofp sequences
fU(i;0);U(i;1); :::;U(i;p�1)g, it does make an appreciable difference in the experimentally measured performance.

More specifically, in Step (5), each sequenceT(i; j ;k) is tagged with a set of values< a;b;c;d >, wherea(i; j ;k)
specifies the number of elements inT(i; j ;k) with the same value as Splitter[k�1], b(i; j;k) is the starting index in
I(i; j) of thec(i; j;k) values inT(i; j ;k) which are strictly greater than Splitter[k�1] and strictly less than Splitter[k],
andd(i; j;k) specifies the number of elements inT(i; j ;k) with the same value as Splitter[k]. Then, Step (8) can be
rewritten into two steps as follows.

� Step (8*): Each processorPk “unshuffles” the set ofp subsequences
fT(i;0;k);T(i;1;k); :::;T(i;p�1;k)g originating with the sorted input at processorPi in Step (1) to form the se-
quenceU(i;k), for (0� i � p�1). This procedure involves the following three substeps, in which both
T(i; j ;k) andU(i;k) are most easily thought of as stack data structures:

– (A): For each subsequence in the setfT(i;0;k);T(i;1;k); :::;T(i;p�1;k)g, pop the firsta(i; j ;k) elements (which
have the same value as Splitter[k�1]) and push them ontoU(i;k).

– (B): Identify the smallest-indexed subsequence from the set whose associated value ofb(i; j ;k) is also
less than or equal to all the other values ofb(i; j ;k) in the set. Beginning at this subsequence and
proceeding in ascending order of indexj (with wrap around), pop one element off each subsequence
and push it ontoU(i;k). The procedure continues in this round-robin fashion until allc(i; j ;k) elements
which are strictly between Splitter[k�1] and Splitter[k] have been removed from each subsequence
T(i; j ;k).

– (C): For each subsequence in the setfT(i;0;k);T(i;1;k); :::;T(i;p�1;k)g, pop the remainingd(i; j ;k) elements
(which have the same value as Splitter[k]) and push them ontoU(i;k).

� Step (9*): Each processorPk merges the set ofp consolidated subsequences
fU(0;k);U(1;k); :::;U(p�1;k)g to produce thekth column of the sorted array.

4 Performance Evaluation

Our sample sort algorithm was implemented using SPLIT-C [10] and run on a variety of machines and processors,
including the Cray Research T3D, the IBM SP-2-WN, and the Thinking Machines CM-5. For every platform, we
tested our code on nine different benchmarks, each of which had both a 32-bitintegerversion (64-bit on the Cray
T3D) and a 64-bit double precision floating point number (double) version.

4.1 Sorting Benchmarks

Our nine sorting benchmarks are defined as follows, in whichn and p are assumed for simplicity but without
loss of generality to be powers of two and MAXD, the maximum value allowed fordoubles, is approximately
1:8�10308.

1. Uniform [U] , a uniformly distributed random input, obtained by calling the C library random number
generatorrandom() . This function, which returns integers in the range 0 to

�
231�1

�
, is seeded by each

processorPi with the value(21+1001i). For the double data type, we “normalize” the integer benchmark
values by first subtracting the value 230 and then scaling the result by

�
2�30�MAX D

�
. Note that the same

procedure is used throughout to generate the double benchmark from the integer benchmark.

7

UNM Technical Report: EECE-TR-98-008

2. Gaussian [G], a Gaussian distributed random input, approximated by adding four calls torandom() and
then dividing the result by four.

3. Zero [Z] , a zero entropy input, created by setting every value to a constant such as zero.

4. Bucket Sorted [B], an input that is sorted intop buckets, obtained by setting the firstn
p2 elements at each

processor to be random numbers between 0 and(231

p �1), the secondn
p2 elements at each processor to be

random numbers between2
31

p and(232

p �1), and so forth.

5. g-Group [g-G], an input created by first dividing the processors into groups of consecutive processors of
size g, whereg can be any integer which partitionsp evenly. If we index these groups in consecutive

order from 0 up to
�

p
g �1

�
, then for groupj we set the firstn

pg elements to be random numbers between���
jg+ p

2 �1
�

mod p
�
+1

�
231

p and
����

jg+ p
2

�
mod p

�
+1

�
231

p �1
�

, the secondn
pg elements at each

processor to be random numbers between���
jg+ p

2

�
mod p

�
+1

� 231

p and
����

jg+ p
2 +1

�
mod p

�
+1

� 231

p �1
�

, and so forth.

6. Staggered [S], created as follows: if the processor indexi is less than or equal to
� p

2 �1
�
, then we set allnp

elements at that processor to be random numbers between
�
(2i +1) 231

p

�
and

�
(2i +2) 231

p �1
�

. Otherwise,

we set allnp elements to be random numbers between
�
(2i� p) 231

p

�
and

�
(2i� p+1) 231

p �1
�

.

7. Worst-Load Regular [WR] - an input consisting of values between 0 and(231�1) designed to induce the
worst possible load balance at the completion of our regular sample sorting algorithm described in Section
3. Specifically, at the completion of sorting, the even-indexed processors will hold(n

p +
n
s � p) elements,

whereas the odd-indexed processors will hold(n
p� n

s + p) elements. See the available code for generating
this benchmarks.

8. Deterministic Duplicates [DD], an input of duplicates in which we set alln
p elements at each of the first

p
2 processors to be logn, all n

p elements at each of the nextp
4 processors to be log

�
n
2

�
, and so forth. At

processorPp, we set the firstn2p elements to be log
�

n
p

�
, the next n

4p elements to be log
�

n
2p

�
, and so forth.

9. Randomized Duplicates [RD], an input of duplicates in which each processor fills an arrayT with some
constant numberrange(rangeis 32 for our work) of random values between 0 and(range�1) whose sum

is S. The first T[1]
S � n

p values of the input are then set to a random value between 0 and(range�1), the

next T[2]
S � n

p values of the input are then set to another random value between 0 and(range�1), and so
forth.

We selected these nine benchmarks for a variety of reasons. Previous researchers have used the Uniform,
Gaussian, and Zero benchmarks, and so we too included them for purposes of comparison. But benchmarks
should be designed to illicit the worst case behavior from an algorithm, and in this sense the Uniform benchmark
is not appropriate. For example, forn� p, one would expect that the optimal choice of the splitters in the Uniform
benchmark would be those which partition the range of possible values into equal intervals. Thus, algorithms
which try to guess the splitters might perform misleadingly well on such an input. In this respect, the Gaussian
benchmark is more telling. But we also wanted to find benchmarks which would evaluate the cost of irregular
communication. Thus, we wanted to include benchmarks for which an algorithm which uses a single phase
of routing would find contention difficult or even impossible to avoid. A naive approach to rearranging the data
would perform poorly on the Bucket Sorted benchmark. Here, every processor would try to route data to the same
processor at the same time, resulting in poor utilization of communication bandwidth. This problem might be
avoided by an algorithm in which at each processor the elements are first grouped by destination and then routed
according to the specifications of a sequence ofp destination permutations. Perhaps the most straightforward

8

UNM Technical Report: EECE-TR-98-008

way to do this is by iterating over the possible communication strides. But such a strategy would perform poorly
with theg-Group benchmark, for a suitably chosen value ofg. In this case, using stride iteration, those processors
which belong to a particular group all route data to the same subset ofg destination processors. This subset of
destinations is selected so that, when theg processors route to this subset, they choose the processors in exactly
the same order, producing contention and possibly stalling. Alternatively, one can synchronize the processors
after each permutation, but this in turn will reduce the communication bandwidth by a factor ofp

g . In the worst
case scenario, each processor needs to send data to a single processor a unique stride away. This is the case of the
Staggered benchmark, and the result is a reduction of the communication bandwidth by a factor ofp. Of course,
one can correctly object that both the g-Group benchmark and the Staggered benchmark have been tailored to
thwart a routing scheme which iterates over the possible strides, and that another sequences of permutations
might be found which performs better. This is possible, but at the same time we are unaware of any single phase
deterministic algorithm which could avoid an equivalent challenge. The Worst-Load Regular benchmark was
developed to induce the worst possible load distribution at the completion of sorting and was included to study
the behavior of our algorithm in the guaranteed worst-case scenario. Finally, the Deterministic Duplicates and the
Randomized Duplicates benchmarks were included to assess the performance of the algorithms in the presence
of duplicate values.

4.2 Experimental Results

For each experiment, the input is evenly distributed amongst the processors. The output consists of the elements
in non-descending order arranged amongst the processors so that the elements at each processor are in sorted
order and no element at processorPi is greater than any element at processorPj , for all i < j.

Two variations were allowed in our experiments. First, radix sort was used to sequentially sort integers,
whereas merge sort was used to sort double precision floating point numbers (doubles). Second, different imple-
mentations of the communication primitives were allowed for each machine. Wherever possible, we tried to use
the vendor supplied implementations. In fact, IBM does provide all of our communication primitives as part of its
machine specific Collective Communication Library (CCL) [6] and MPI. As one might expect, they were faster
than the high level SPLIT-C implementation.

Optimal Number of Sampless for Sorting on T3D
Number of Processors

int./proc. 8 16 32 64 128
16K 128 128 128 128 128
32K 128 128 128 128 128
64K 256 256 256 256 128
128K 256 256 256 256 256
256K 512 512 512 256 512
512K 512 512 512 512 512
1M 1024 512 512 512 1024

Table I: Optimal number of sampless for sorting the [WR] integer benchmark on the Cray T3D, for a variety of
processors and input sizes.

The results inTables I andII together with their graphs inFigures 1and2 examine the preliminary question
of the optimal number of sampless for sorting on the Cray T3D and the IBM SP-2-WN. They show the value of
s which achieved the best performance on the Worst-Load Regular [WR] benchmark, as a function of both the
number of processorsp and the number of keys per processorn

p. The results suggest that a good rule for choosing

s is to set it to 2b 1
2 log(n=p)c �

q
n
p, which is what we do for the remainder of this discussion. To compare this

choice fors with the theoretical expectation, we recall that the complexity of Steps (3) and (4) are respectively

O(sp) andO(splogp), whereas the complexity of Step (9) isO
��

n
p +

n
s� p

�
logp

�
. Hence, the first terms are

9

UNM Technical Report: EECE-TR-98-008

Optimal Number of Sampless for Sorting on SP2
Number of Processors

int./proc. 8 16 32 64 128
16K 256 128 128 128 128
32K 256 256 256 256 256
64K 512 256 256 256 512
128K 512 512 512 512 512
256K 512 512 512 256 512
512K 1024 1024 1024 1024 1024
1M 1024 1024 1024 1024 1024

Table II: Optimal number of sampless for sorting the [WR] integer benchmark on the IBM SP-2-WN, for a
variety of processors and input sizes.

an increasing function ofs, whereas the second term is a decreasing function ofs. It is easy to verify that the

expression for the sum of these two complexities is minimized fors = O
�q

n
p

�
, and, hence, the theoretical

expectation for the optimal value ofsagrees with what we observe experimentally.

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]

256K 0.047 0.046 0.040 0.040 0.046 0.042 0.036 0.051 0.037 0.042
1M 0.104 0.102 0.094 0.092 0.103 0.094 0.080 0.113 0.081 0.089
4M 0.309 0.305 0.299 0.291 0.310 0.303 0.245 0.325 0.250 0.261
16M 1.09 1.08 1.09 1.06 1.10 1.11 0.903 1.13 0.904 0.930
64M 4.18 4.11 4.22 4.09 4.15 4.31 3.52 4.21 3.52 3.59

Table III: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node Cray
T3D.

Figure 1: Optimal number of sampless for sorting the [WR] integer benchmark on the Cray T3D, for a variety of
processors and input sizes.

10

UNM Technical Report: EECE-TR-98-008

Figure 2: Optimal number of sampless for sorting the [WR] integer benchmark on the IBM SP-2-WN, for a
variety of processors and input sizes.

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]
256K 0.055 0.055 0.050 0.048 0.051 0.049 0.046 0.056 0.047 0.050
1M 0.091 0.094 0.085 0.086 0.089 0.087 0.083 0.099 0.087 0.089
4M 0.237 0.236 0.229 0.223 0.224 0.228 0.222 0.253 0.231 0.239
16M 0.873 0.878 0.974 0.886 0.868 0.969 0.819 0.904 0.835 0.851
64M 3.45 3.46 3.83 3.86 3.38 3.79 3.09 3.45 3.11 3.12

Table IV: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node IBM
SP-2-WN.

The results inTables III throughVI together with their graphs inFigures 3through6 display the performance
of our sample sort as a function of input distribution for a variety of input sizes. In each case, the performance
is essentially independent of the input distribution. These figures present results obtained on a 64 node Cray
T3D and a 64 node IBM SP-2; results obtained from other platforms validate this claim as well. Because of
this independence, the remainder of this section will only discuss the performance of our sample sort on the
Worst-Load Regular benchmark [WR].

The results inTables VII andVIII together with their graphs inFigure 7 examine the scalability of our
sample sort as a function of machine size. Results are shown for the T3D, the SP-2-WN, and the CM-5. Bearing

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]
256K 0.056 0.056 0.046 0.046 0.055 0.045 0.044 0.060 0.043 0.050
1M 0.126 0.126 0.113 0.113 0.131 0.111 0.107 0.136 0.018 0.115
4M 0.411 0.411 0.387 0.394 0.416 0.389 0.376 0.435 0.383 0.384
16M 1.60 1.59 1.55 1.55 1.58 1.55 1.49 1.60 1.50 1.49
64M 6.53 6.57 6.44 6.45 6.55 6.49 6.26 6.61 6.26 6.14

Table V: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node Cray
T3D.

11

UNM Technical Report: EECE-TR-98-008

Size [U] [G] [2-G] [4-G] [B] [S] [Z] [WR] [DD] [RD]

256K 0.090 0.087 0.082 0.080 0.084 0.080 0.077 0.093 0.081 0.084
1M 0.181 0.184 0.176 0.186 0.176 0.176 0.168 0.198 0.187 0.188
4M 0.598 0.590 0.580 0.576 0.578 0.600 0.570 0.614 0.584 0.589
16M 2.26 2.25 2.35 2.35 2.26 2.40 2.25 2.34 2.29 2.33
64M 9.61 9.61 10.0 10.0 9.57 10.00 9.57 9.74 9.49 9.55

Table VI: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node IBM
SP-2-WN.

Figure 3: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node Cray
T3D.

in mind that these graphs are log-log plots, they show that, for a given input sizen, the execution time scales
inversely with the number of processorsp for (p� 64). While this is certainly the expectation of our analytical

model for doubles, it might at first appear to exceed our prediction of anO
�

n
p logp

�
computational complexity

for integers. However, the appearance of an inverse relationship is still quite reasonable when we note that,

Figure 4: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node IBM
SP-2-WN.

12

UNM Technical Report: EECE-TR-98-008

Figure 5: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node Cray
T3D.

Figure 6: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node IBM
SP-2-WN.

for values ofp between 8 and 64, logp varies by only a factor of two. Moreover, thisO
�

n
p logp

�
complexity is

entirely due to the merging in Step (9), and in practice, Step (9) never accounts for more than 30% of the observed

execution time. Note that the complexity of Step (9) could be reduced toO
�

n
p

�
for integers using radix sort, but

the resulting execution time would, in most cases, be slower.

Regular Sorting of 8M Integers [WR]
Number of Processors

Machine 8 16 32 64 128
CRAY T3D 3.23 1.73 0.976 0.594 0.496

IBM SP2-WN 2.73 1.38 0.761 0.472 0.410
TMC CM-5 - 7.83 3.99 2.29 2.55

Table VII: Total execution time (in seconds) required to sort 8M integers on a variety of machines and processors
using the [WR] benchmark. A hyphen indicates that particular platform was unavailable to us.

13

UNM Technical Report: EECE-TR-98-008

Regular Sorting of 8M Doubles [WR]
Number of Processors

Machine 8 16 32 64 128
CRAY T3D 5.25 2.65 1.41 0.827 0.619

IBM SP2-WN 7.95 4.05 2.09 1.18 0.870
TMC CM-5 - - 6.89 4.39 4.24

Table VIII: Total execution time (in seconds) required to sort 8M doubles on a variety of machines and processors
using the [WR] benchmark. A hyphen indicates that particular platform was unavailable to us.

Figure 7: Scalability of sorting integers and doubles with respect to machine size.

However, the results in Tables VII and VIII together with their graphs in Figure 7 also show that forp
greater than 64, the inverse relationship between the execution time and the number of processors begins to
deteriorate.Table IX explains these results with a step by step breakdown of the execution times reported for

the sorting of integers on the T3D. Step (1) clearly displays theO
�

n
p

�
complexity expected for radix sort, and

it dominates the total execution time for small values ofp. The transpose operation in Step (2) displays the�
τ+ n

pσ
�

complexity we originally suggested. The dependence ofτ on p simply becomes more pronounced as

Step by Step Breakdown of Sorting 8M Integers
Number of Processors (Number of Samples)

Step 8 (1024) 16 (512) 32 (512) 64 (256) 128 (256)
1 2.320220 1.172284 0.591670 0.299310 0.151576
2 0.132129 0.069106 0.045686 0.029076 0.019693
3 0.008468 0.010606 0.026364 0.026372 0.053686
4 0.000015 0.000019 0.000028 0.000047 0.000085
5 0.000052 0.000078 0.000082 0.000128 0.000226
6 0.000390 0.001303 0.004339 0.012499 0.028225
7 0.130839 0.070650 0.050185 0.039518 0.076284
8 0.148714 0.077050 0.042443 0.034429 0.059114
9 0.485934 0.332238 0.215449 0.152325 0.107410

Total 3.226760 1.733333 0.976246 0.593705 0.496300
Table IX: Time required (in seconds) for each step of sorting 8M integers on the Cray T3D using the [WR]
benchmark.

14

UNM Technical Report: EECE-TR-98-008

p increases andnp decreases. Step (3) exhibits theO(sp) complexity we anticipated, since for 2b 1
2 log(n=p)c, s is

halved every other timep is doubled. Steps (6) and (9) display the expectedO
�
p2 logp

�
andO

��
n
p +

n
s

�
logp

�
�
�O

��
n
p +

p
np
�

logp
�

for s�
q

n
p

�
complexity, respectively. Steps (7) and (8) exhibit the most complicated

behavior. The reason for this is that in Step (7), each processor must exchangep subsequences with every other
processor and must include with each subsequence a record consisting of four integer values which will allow

the unshuffling in Step (8) to be performed efficiently. Hence, theO
�

n
p2 +

n
sp+4p

�
transpose block size in

the case of 128 processors is nearly half that of the the case of 64 processors (1280 vs. 2816). This, together
with the fact thatτ increases as a function ofp, explains why the time required for Step (7) actually increases

for 128 processors. Step (8) would also be expected to exhibitO
�

n
p +

n
s

� �
�O

�
n
p +

p
np
�

for s�
q

n
p

�
complexity. But the scheme chosen for unshuffling also involves anO(p) amount of overhead for each group ofp
subsequences to assess their relationship so that they can be efficiently unshuffled. For sufficiently large values of
p, this overhead begins to dominate the complexity. While the data of Table IX was collected for sortingintegers
on the T3D, the data from the SP-2-WN and the T3D support the same analysis for sorting both integers and
doubles.

The graphs inFigure 8 examine the scalability of our regular sample sort as a function of keys per processor�
n
p

�
, for differing numbers of processors. They show that for a fixed number of up to 64 processors there is an

almost linear dependence between the execution time andn
p. While this is certainly the expectation of our analytic

model for integers, it might at first appear to exceed our prediction of aO
�

n
p logn

�
computational complexity for

floating point values. However, this appearance of a linear relationship is still quite reasonable when we consider
that for the range of values shown logn differs by only a factor of 1:2. For p > 64, the relationship between
the execution time and andnp is no longer linear. But based on our discussion of the data in Table IX, for large

p and relatively smalln we would expect a sizeable contribution from those steps which exhibitO
�
p2 logp

�
,

O
�

n
p +

p
np
�

, andO
��

n
p +

p
np
�

logp
�

complexity, which would explain this loss of linearity.

Finally, the graphs inFigure 9examine the relative costs of the nine steps in our regular sample sort algorithm.
Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using both the integer and the double
versions of the [WR] benchmark. Notice that forn = 64M integers, the sequential sorting, unshuffling, and
merging performed in Steps (1), (8), and (9) consume approximately 85% of the execution time on the T3D and
approximately 75% of the execution time on the SP-2. By contrast, the twotranspose operations in Steps (2)
and (7) together consume only about 10% of the execution time on the T3D and about 20% of the execution
time on the SP-2. The difference in the distribution between these two platforms is likely due in part to the fact
that an integer is 64 bits on the T3D while only 32 bits on the SP-2. By contrast, doubles are 64 bits on both
platforms. Forn= 64M doubles, the sequential sorting, unshuffling, and merging performed in Steps (3), (8), and
(9) consume approximately 80% of the execution time on both platforms, whereas the twotranspose operations
in Steps (2) and (7) together consume only about 15% of the execution time. Together, these results show that
our algorithm is extremely efficient in its communication performance.

4.3 Comparison with Previous Results

Despite the theoretical interest in deterministic sorting algorithms, we were able to locate relatively few empirical
studies. All but one of these studies used machines which are no longer available. The single exception is the
recent work of Gerbessiotis and Siniolakis [12, 13].Table X compares the performance of their deterministic
algorithm with that of our regular sampling algorithm on an IBM SP-2.

15

UNM Technical Report: EECE-TR-98-008

Problem 2 Processors 4 Processors 8 Processors
Size HJB GS HJB GS HJB GS
128K 0.117 0.709 0.066 0.399 0.041 0.217
512K 0.499 2.87 0.285 1.54 0.144 0.844
1M 1.01 5.73 0.566 3.06 0.307 1.61

Table X: Total execution time (in seconds) to sort the [U] integer benchmark on the IBM SP-2, comparing our
results (HJB) with those reported by Gerbessiotis and Siniolakis (GS)
.

4.4 Comparison With Our Random Sample Sort Algorithm

Table XI compares the performance of our sorting by regular sampling algorithm with that of our random sample
sort algorithm [14] on both the T3D and the SP-2-WN using the [WR] benchmark. IfTRS(n; p) represents the
time required by our regular sample sort algorithm andTSS(n; p) represents the time required by our random
sample sort algorithm, then the corresponding entry in Table XI is(TRS(n; p)�TSS(n; p)) as a percentage of
TSS(n; p). Thus, a negative entry indicates that the regular sample sort runs faster than the random sample sort
algorithm. The results largely confirm what we would expect: large values ofp together with relatively small
values ofn make the performance of our regular sampling algorithm uncompetitive when compared with our
sample sort algorithm. The reason for this is that, unlike our regular sampling algorithm, none of the steps in
our sample sort algorithm exhibit such strong dependence onp. But aside from this subset of problems, the
performance of the two algorithms is comparable. Here, regular sampling would seem to have the advantage,
because it deterministically guarantees the performance bounds and the memory requirements for any input.

Comparison of Regular Sampling with Sample sort
Machine Keys/ Number of Processors
(Type) Proc. 8 16 32 64 128

T3D 64K -1.9 % 0.4 % 6.2 % 24.5 % 74.6 %
(integers) 256K -2.2 % -1.2 % 0.8 % 10.8 % 29.1 %

1M -3.0 % -2.8 % -0.8 % 4.5 % 13.8 %

SP-2-WN 64K 1.2 % -1.2 % 5.8 % 16.6 % 39.3 %
(integers) 256K 12.5 % 8.9 % 9.5 % 10.8 % -1.6 %

1M 13.3 % 11.8 % 10.7 % 6.5 % -6.4 %

T3D 64K -2.8 % -3.2 % 3.0 % 19.5 % 57.1 %
(doubles) 256K -2.4 % -3.0 % 0.0 % 4.6 % 21.6 %

1M -3.0 % -2.7 % -1.7 % 1.5 % 8.2 %

SP-2-WN 64K -1.6 % -1.3 % -1.9 % 5.9 % 31.0 %
(doubles) 256K -1.1 % -0.5 % 0.5 % 4.0 % 9.6 %

1M 0.1 % 1.9 % 2.1 % 1.3 % 5.0 %
Table XI: Comparison of time required by our regular sampling algorithm with the time required by our sample
sort algorithm using our [WR] benchmark. IfTRS(n; p) represents the time required by our regular sampling
algorithm andTSS(n; p) represents the time required by our random sample sort algorithm, then the corresponding
entry is(TRS(n; p)�TSS(n; p)) as a percentage ofTSS(n; p). Thus, a negative entry indicates that the regular
sample sort runs faster than the random sample sort algorithm.

Acknowledgments

We would like to thank Ronald Greenberg of the Department of Mathematical and Computer Sciences at Loyola
University, Chicago, for his valuable comments and encouragement.

16

UNM Technical Report: EECE-TR-98-008

We would also like to thank the CASTLE/SPLIT-C group at The University of California, Berkeley, especially
for the help and encouragement from David Culler, Arvind Krishnamurthy, and Lok Tin Liu.

We acknowledge the use of the UMIACS 16-node IBM SP-2-TN2, which was provided by an IBM Shared
University Research award and an NSF Academic Research Infrastructure Grant No. CDA9401151.

Arvind Krishnamurthy provided additional help with his port of SPLIT-C to the Cray Research T3D [2]. The
Jet Propulsion Lab/Caltech 256-node Cray T3D Supercomputer used in this investigation was provided by fund-
ing from the NASA Offices of Mission to Planet Earth, Aeronautics, and Space Science. We also acknowledge
William Carlson and Jesse Draper from the Center for Computing Science (formerly Supercomputing Research
Center) for writing the parallel compiler AC (version 2.6) [8] on which the T3D port of SPLIT-C has been based.

We also thank the Numerical Aerodynamic Simulation Systems Division of NASA’s Ames Research Center
for use of their 160-node IBM SP-2-WN.

This work also utilized the CM-5 at National Center for Supercomputing Applications, University of Illinois
at Urbana-Champaign, under grant number ASC960008N.

Please seehttp://www.umiacs.umd.edu/research/EXPAR for related work by the authors.

17

UNM Technical Report: EECE-TR-98-008

Figure 8: Scalability of sorting integers with respect to the number of keys per processor(n
p), for differing

numbers of processors.

18

UNM Technical Report: EECE-TR-98-008

Figure 9: Distribution of execution time amongst the nine steps of regular sample sort. Times are obtained
for both a 64 node T3D and a 64 node SP-2-WN using both the integer and the double versions of the [WR]
benchmark.

19

UNM Technical Report: EECE-TR-98-008 References

References

[1] A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating Long Messages into
the LogP Model - One step closer towards a realistic model for parallel computation. In7th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 95–105, Santa Barbara, CA, July 1995.

[2] R.H. Arpaci, D.E. Culler, A. Krishnamurthy, S.G. Steinberg, and K. Yelick. Empirical Evaluation of the
CRAY-T3D: A Compiler Perspective. In ACM Press, editor,Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 320–331, Santa Margherita Ligure, Italy, June 1995.

[3] David A. Bader, David R. Helman, and J. J´aJá. Practical Parallel Algorithms for Personalized
Communication and Integer Sorting.ACM Journal of Experimental Algorithmics, 1(3):1–42, 1996.
http://www.jea.acm.org/1996/BaderPersonalized/.

[4] David A. Bader and J. J´aJá. Practical Parallel Algorithms for Dynamic Data Redistribution, Median Finding,
and Selection. Technical Report CS-TR-3494 and UMIACS-TR-95-74, UMIACS and Electrical Engineer-
ing, University of Maryland, College Park, MD, July 1995. Presented at the 10thInternational Parallel
Processing Symposium, pages 292-301, Honolulu, HI, April 15-19, 1996.

[5] David A. Bader and J. J´aJá. Parallel Algorithms for Image Histogramming and Connected Components
with an Experimental Study.Journal of Parallel and Distributed Computing, 35(2):173–190, June 1996.

[6] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis, and M. Snir. CCL: A Portable and
Tunable Collective Communication Library for Scalable Parallel Computers.IEEE Transactions on Parallel
and Distributed Systems, 6:154–164, 1995.

[7] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, and M. Zagha. A Comparison of
Sorting Algorithms for the Connection Machine CM-2. InProceedings of the ACM Symposium on Parallel
Algorithms and Architectures, pages 3–16, July 1991. To appear in theCommunications of the ACM.

[8] W.W. Carlson and J.M. Draper. AC for the T3D. Technical Report SRC-TR-95-141, Supercomputing
Research Center, Bowie, MD, February 1995.

[9] Cray Research, Inc.SHMEM Technical Note for C, October 1994. Revision 2.3.

[10] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel Programming in Split-C. InProceedings of Supercomputing ’93, pages 262–273, Portland, OR,
November 1993.

[11] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a Realistic Model of Parallel Computation. InFourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, May 1993.

[12] A.V. Gerbessiotis. Data for Regular Sorting. Personal Communication, July 1996.

[13] A.V. Gerbessiotis and C.J. Siniolakis. Deterministic Sorting and Randomized Median Finding on the BSP
Model. In Proceedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 223–232, Padua, Italy, June 1996.

[14] David R. Helman, David A. Bader, and J. J´aJá. A Randomized Parallel Sorting Algorithm With an Experi-
mental Study. Technical Report CS-TR-3669 and UMIACS-TR-96-53, UMIACS and Electrical Engineer-
ing, University of Maryland, College Park, MD, August 1996. To appear in theJournal of Parallel and
Distributed Computing.

[15] X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong, and H. Shi. On the Versatility of Parallel Sorting by
Regular Sampling.Parallel Computing, 19:1079–1103, 1993.

20

UNM Technical Report: EECE-TR-98-008 References

[16] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical Report CS-94-
230, University of Tennessee, Knoxville, TN, May 1994. Version 1.0.

[17] H. Shi and J. Schaeffer. Parallel Sorting by Regular Sampling.Journal of Parallel and Distributed Comput-
ing, 14:361–372, 1992.

[18] L.G. Valiant. A Bridging Model for Parallel Computation.Communications of the ACM, 33(8):103–111,
1990.

21

	University of New Mexico
	UNM Digital Repository
	11-1-1998

	A Randomized Parallel Sorting Algorithm With an Experimental Study
	D.R. Helman
	D.A. Bader
	J. JáJá
	Recommended Citation

	jea_eece.dvi

