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Abstract

We introduce a new deterministic parallel sorting algorithm for distributed memory machines based on the regu-
lar sampling approach. The algorithm uses only two rounds of regular all-to-all personalized communication in
a scheme that yields very good load balancing with virtually no overhead. Moreover, unlike previous variations,
our algorithm efficiently handles the presence of duplicate values without the overhead of tagging each element
with a unique identifier. This algorithm was implemented rL8-C and run on a variety of platforms, including

the Thinking Machines CM-5, the IBM SP-2-WN, and the Cray Research T3D. We ran our code using widely
different benchmarks to examine the dependence of our algorithm on the input distribution. Our experimental
results illustrate the efficiency and scalability of our algorithm across different platforms. In fact, the perfor-
mance compares closely to that of our random sample sort algorithm, which seems to outperform all similar
algorithms known to the authors on these platforms. Together, their performance is nearly invariant over the set
of input distributions, unlike previous efficient algorithms. However, unlike our randomized sorting algorithm,
the performance and memory requirements of our regular sorting algorithm can be deterministically guaranteed.
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1 Introduction

We present a novel variation on the approach of sorting by regular sampling which leads to a new deterministic
sorting algorithm that achieves optimal computational speedup with very little communication. Our algorithm
exchanges the single step of irregular communication used by previous implementations for two steps of regular
communication. In return, our algorithm mitigates the problem of poor load balancing because it is able to sustain
a high sampling rate at substantially less cost. In addition, our algorithm efficiently accommodates the presence
of duplicates without the overhead of tagging each element. And our algorithm achieves predictable, regular
communication requirements which are essentially invariant with respect to the input distribution. Ultilizing
regular communication has become more important with the advent of message passing standards, such as MPI
[16], which seek to guarantee the availability of very efficient (often machine specific) implementations of certain
basic collective communication routines.

Our algorithm was implemented in a high-level language and run on a variety of platforms, including the
Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code using a variety of bench-
marks that we identified to examine the dependence of our algorithm on the input distribution. Our experimental
results are consistent with the theoretical analysis and illustrate the efficiency and scalability of our algorithm
across different platforms. In fact, the performance compares closely to that of our random sample sort algo-
rithm, which seems to outperform all similar algorithms known to the authors on these platforms. Together, their
performance is nearly indifferent to the set of input distributions, unlike previous efficient algorithms. How-
ever, unlike our randomized sorting algorithm, the performance and memory requirements of our regular sorting
algorithm can be guaranteed with deterministically.

The high-level language used in our studies #1$-C [10], an extension of C for distributed memory ma-
chines. The algorithm makes use of MPI-like communication primitives but does not make any assumptions as
to how these primitives are actually implemented. The basic data transpoetis arwrite  operation. The re-
mote read and write typically have both blocking and non-blocking versions. Also, when reading or writing more
than a single element, bulk data transports are provided with correspdntkingead andbulk _write primi-
tives. Our collective communication primitives, described in detail in [4], are similar to those of the MPI [16], the
IBM POWERparallel [6], and the Cray MPP systems [9] and, for example, include the followangpose
bcast , gather , andscatter . Brief descriptions of these are as follows. Tia@spose primitive is an all-to-all
personalized communication in which each processor has to send a unique block of data to every processor, and
all the blocks are of the same size. Thoast primitive is used to copy a block of data from a single source
to all the other processors. The primitivgsther andscatter are companion primitivesScatter  divides a
single array residing on a processor into equal-sized blocks, each of which is distributed to a unique processor,
andgather coalesces these blocks back into a single array at a particular processor. See [3, 4, 5] for algorithmic
details, performance analyses, and empirical results for these communication primitives.

The organization of this paper is as follows. Section 2 presents our computation model for analyzing parallel
algorithms. Section 3 describes in detail our improved sample sort algorithm. Finally, Section 4 describes our
data sets and the experimental performance of our sorting algorithm.

2 The Parallel Computation Model

We use a simple model to analyze the performance of our parallel algorithms. Our model is based on the fact that
current hardware platforms can be viewed as a collection of powerful processors connected by a communication
network. This network can be modeled as a complete graph on which communication is subject to the restrictions
imposed by the latency and the bandwidth properties of the network. We view a parallel algorithm as a sequence
of local computations interleaved with communication steps, where we allow computation and communication
to overlap. We account for communication costs as follows.

Assuming no congestion, the transfer of a block consistingyr abntiguous words between two processors
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takes(t + om) time, wheret is the latency of the network aralis the time per word at which a processor can
inject or receive data from the network. Note that the bandwidth per processor is inversely proportimnal to
We assume that the bisection bandwidth is sufficiently high to support block permutation routing amongst the
p processors at the rate éf. In particular, for any subset @f processors, a block permutation amongstdghe
processors takes + om) time, wherem s the size of the largest block.

Using this cost model, we can evaluate the communication Tgggm of an algorithm as a function of the
input sizen, the number of processops, and the parametersando. The coefficient oft gives the total number
of times collective communication primitives are used, and the coefficiempdfes the maximum total amount
of data exchanged between a processor and the remaining processors.

This communication model is close to a number of similar models (e.g. [1, 11, 18]) that have recently ap-
peared in the literature and seems to be well-suited for designing parallel algorithms on current high performance
platforms.

We define the computation tim&oemp as the maximum time it takes a processor to perform all the local
computation steps. In general, the overall performahggp+ Tcomm involves a tradeoff betweelomp and
Teomm INn Many cases, it is possible to minimize bdthmpandTcommsimultaneously, and sorting is such a case.

3 A New Sorting Algorithm by Regular Sampling

Consider the problem of sortingelements equally distributed amongsprocessors, where we assume without

loss of generality thap dividesn evenly. The idea behind sorting by regular sampling is to find a spt-ol
splittersto partition then input elements int@ groups indexed from 1 up tp such that every element in the

it group is less than or equal to each of the elements irfithel)" group, for(1 <i < p—1). Then the task

of sorting each of thg groups can be turned over to the correspondingly indexed processor, after whith the
elements will be arranged in sorted order. The efficiency of this algorithm obviously depends on how well we
divide the input, and this in turn depends on how evenly we choose the splitters. One way to choose the samples
is by random selection. Examples of this approach include the sample sort algorithm of Blelloch et al. [7] and
our own random sample sort algorithm [14]. Alternatively, the splitters may be chosen as we have for this paper
by regularly sampling the sorted input elements at each processor - hence the name Sorting by Regular Sampling.

A previous version of regular sample sort [15, 17], known as Parallel Sorting by Regular Sampling (PSRS),
th
first sorts the% elements at each processor and then selects ({vér)/ element as dample These samples

are then routed to a single processor, where they are sorted andpfveample is selected as a splitter. Each
processor then uses these splitters to partition the sorted input values and then routes the resulting subsequences
to the appropriate destinations, after which local merging of these subsequences is done to complete the sorting
process. The first difficulty with this approach is the load balance. There exist inputs for which at least one

processor will be left with as many a(é% — % —p+ 1) elements at the completion of sorting [15, 17]. This

could be reduced by choosing more samples, but this would also increase the overhead. And no matter how many
samples are chosen, previous studies have shown that the load balance would still deteriorate linearly with the
number of duplicates [15]. One could, of course, tag each item with a unique value, but this would also double
the cost of both memory access and interprocessor communication. The other difficulty is that no matter how the
routing is scheduled, there exist inputs that give rise to large variations in the number of elements destined for
different processors, and this in turn results in an inefficient use of the communication bandwidth. Moreover, such
an irregular communication scheme cannot take advantage of the regular communication primitives proposed
under the MPI standard [16].

In our algorithm, which is parameterized by the number of samp(epsg s< #) , We guarantee that, at the

completion of sorting, each processor will have at r(o%& - p) elements, while incurring no overhead in
gathering the set of samples used to identify the splitters. This bound holds regardless of the number of duplicate
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elements present in the input. Moreover, we are able to replace the irregular routing with exactly two calls to our
transpose  primitive.

The pseudocode for our algorithm is as follows. Note that since our algorithm involves three phases of
computation punctuated by two rounds of balanced data rearrangement, we distinguish the work of the processors
in the three phases by the indigeg, andk (for initial, intermediate, and final phases of computation). Further, the
movement of data between these three phases is distinguished by the same set of indices, so that an arbitrary set
of dataA indexed with(i, j,k) can be understood as originating at proce$sar the first round of computation,
moving to processd?; for the intermediate round of computation, and finishing at procékdor the final round
of computation. While this distinctions might at first appear burdensome, a proper appreciation of the data flow
is essential to establishing the correctness of the algorithm.

e Step (1): Each processBr (0 <i < p—1) sorts its® input values using an appropriate sequential sorting
algorithm. For integers we use the radlx sort afz;orithm, whereas for floating point numbers we use the
merge sort algorithm. Each procespthen “deals out” its sorted input values amongst a se¢tlohs so

that the element with indexis placed into posmor{ J of bin (x mod p).

e Step (2): Each processByroutesl ;), the contents of birj, to processoP;, for (0< j < p—1). Thisis
equivalent to performing tanspose  operation with block siz%%.

e Step (3): From each of thp sorted subsequences receivedSiep (2) processoiP, 1) selects each

th
((x+ 1) 52_3) element as gample for (0 < x < s—1) and a given value of (p <s< E“Z)

e Step (4): Processd,_;) merges thep sorted subsequences of samples and then selects (#aeh)s)"

sample as Splitték], for (0 < k < p—2). By default, thep'" splitter is the largest value allowed by the data
type used. Additionally, binary search is used to compute, for the set of samples with ifidicésough
((k+1)s— 1), the number E§k] of samples which share the same value as Sgkfter

e Step (5): Process®, 1) broadcasts  the two arrays Splitter[] and Est[ ] to the other- 1 processors.

e Step (6): Each processBy uses binary search to define for each sorted sequgneand each Splitték]
a subsequencg;  x), for (0 <i,k < p—1). The p subsequenceSloj k), T(1,j k) T(p-1,jk } associated
with Splitterk] all contain values which are greater than or equal to Sgkttef] and less than or equal to
Splitterk], and they collectively includat most(Est[k] X 523) elements with the same value as Spl[iter

The termat mostis used because there may not actually be this number of elements with the same value as
Splitterk].

e Step (7): Each processBy routes the set op subsequences
{T0,i.k0> Tw,i k> Tp—1,j k } @ssociated with Splittgk] to processoP;, for (0 < k < p—1). Since no two
processors will exchange more thé%‘? + Sﬂp) elements, this is equivalent to performingdranspose

operation with block size{é‘z + s—”p)

e Step (8): Each process® merges the set of? subsequences received in Step (7) to producéithe
column of the sorted array.

In order to establish the complexity, we need to establish four lemmas, all of which make use of the following
set of definitions. Le& be the set of samples in the sorted array of samples in Step (4) with indices 0 though
((k+1)s—1), inclusively. The last element i is the element chosen as Splitter[k] and is said to have value
Vk. LetLx be the number of samples strictly less thann S which originate from the input at procesgar
Similarly, letE ) be the number of samples equaMpein S which originate from the input at process@r

Note that by definition any particular valuelof ) or E; vy may be equal to zero, and t@@;& (L(u,k) + E(u7k)) =
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(k+1)s. Note also tha‘gl‘j;é Euk = s & Esfw], wheret is the smallest index less then or equakuch that
Splitterft] = Vi. Finally, we require throughout this discussion that p* and that(p <s< 5“2) .

Lemma (1): The following three assertions can be made about the composition of the sorted subségyence
received by process; from processoP, at the end of Step (2):

e (A): At least the first(L; k) + Ejix)) p%s elements irl; ;) are less than or equal Y4 .
e (B): Atleast the first(L y)) 52—3 elements if; ;) are strictly less thaki.

e (C): The maximum number of elementslip;) which are strictly less thav is
((L(i,k) +1) 523 - 1) if (j=p—1)and(Ljx+1) Eg—s otherwise.

Proof: The effect of Steps (1) and (2) is to “deal out” the sorted input at proc€saarongst the set of sequences
{I(i,o), [i1)s e I(i,pfl)}- More precisely, the element with ind&in the sorted input at procesdaris mapped to
position [%J of sequencdz(h(X mod p))- Conversely, the element with indgxn sequencg; j) originates as the
element with indeXyp+ j) in the sorted input at process@r Hence, thex, element to be chosen as a sample
from the elements originating at processarwhich is actually the element with inde(xzp%S — 1) inlgp 1) .

originated as the element with indéxpﬂS — 1) in the sorted input at procesdar

By definition, there are at Ieaﬁt(i,k) + E(i,k)) samples originating from procesdgrwhose values are less
than or equal t&. We sayat leastsince it is possible that there are samples originating from procBsadmwse
value is equal td/ but who fall after Splittdk] in the sorted array of samples. Hence, it follows that at least
the first (L(Lk) + E(Lk)) pﬂs elements in the sorted input at procesBomn Step (1) had to be less than or equal
to Vk. Since these elements are mapped as described above to the set of se@q%¢g§¢),...,l(i7p,l)}, it
follows that at least the firs(tl_(i,k) + E(i,k)) p%s elements in each of these sequences are less than or eal to
and statement (A) follows.

Next, by definition, there are exactly; x) samples originating from process@rwhose values are strictly

less tharvk. Hence, it follows that at least the ﬁrlsp,k)pﬂS elements in the sorted input at procesBoin Step
(1) had to be strictly less thavk. Since these elements are mapped as described above to the set of sequences

{I(i,o), [i2)s e I(i,p,l)}, it follows that at least the firslt(hk)ag—s elements in each of these sequences are strictly
less than and statement (B) follows.

Finally, since by definition there are exactly ) samples originating from process@rwhose values are

strictly less tharV, it follows that the(L(i,k) + 1)th sample originating from processBr must be greater than
or equal toVk. Hence, it follows that the element with indék(hk)) pﬂs in the sorted input at processBrin

Step (1) had to be greater than or equaMto and that at mos((L(Lk)) pﬂs— 1) elements in this sorted in-

put were strictly less thawk. Since these elements were mapped as described above to the set of sequences
{I(i,O):I(i,l),---:l(i,pfl)}u it follows that the maximum number of elements in each of these sequences which are
strictly less thanv are ((L(i,k) +1) 523 — 1) if (j=p—1) and(Lgjx+1) 523 otherwise and statement (C) fol-

lows. O

In order to establish the complexity of our algorithm, we need to establish an upper bound in Step (6) on
zﬁ;é |T(u,j7k)|, the number of elements selected by proce&dor routing to processaf,. However, instead
of trying to determine this bound directly, it turns out to be easier if we consider an alternative approach. Let
Rix = {UT(U,LW) :0<u<p-10<w< k} be the number of elements selected by proceBséor routing
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to processorsy throughPk. Clearly, Ry includes all those elements that are strictly less ¥arplus up to
Zw—t Est[w] - elements equal in value ¥ (if they can be found), where as befdres the smallest index less

than or equal td such that Splittdt] = V. Then, an equivalent statement of our objective is to establish an upper
bound on the difference between Mig, the minimum possible size &;x 1), and Max; ), the maximum
possible size oRj .

Lemma (2): The number of elements in Step (6) which will be selected by proc&dor routing to processors
Po throughPy is at least Min; ) = (k+ 1)%

Proof: Assertion (A) in Lemma (1) states that at least the (tsqtk +E k)) p“ elements in the sorted sequence
li,j) are less than or equal ¥. Assertion (B) in Lemma (1) states that at least the ﬂrsp S elements

in the sorted sequendg j) are strictly less thaVi. Hence, at mosE y) - p of the flrst( (i.k) +E(,7k)) s
elements in the sequentg;) are equal tdk. Hence, since our algorithm will select all those elements in the
set{l(o,j), [(Ljys e I(D*LJ)} which are strictly less thav, plus up tozﬁ;é Euk p%s elements which are equal in
value toV (if they can be found), if follows that it will always be able to select at least

p1 n
Niw = 3 (b +Eon) 5o
n
n

elements for routing to processdisthroughP and Lemma (2) followsO

Lemma (3): The number of elements in Step (6) which will be selected by proc&dor routing to processors
Po throughP is at most

n — I e —
Maxg,) — ((ks+ P) % p) if k= p. 1
’ (ks+ p) p%s otherwise

Proof: Assertion (C) in Lemma (1) states that the maximum number of elemens;jrwhich are strictly
less thanv is at most((L(i,k) +1) pizs—l) if (j=p—1) and (LG +1) otherwise. Hence, since our
algorithm will select all those elements in the @(t,o), Li1ys -+ D, p—1) } WhICh are strictly less thav, plus up

to 25;3 E(uk p%s elements which are equal in valueMp (if they can be found), if follows that it will always be
able to select at most

Zﬁ’;é(( wh + 1+ Euk) 5 1)

Max = ((k+Ds+p)F-p) ifk=p-1
’ S ( (uK) +1+E(uk))pT:
((k+1)s+p)52— otherwise

elements for routing to processdgthroughP and Lemma (3) followsO

Lemma (4): The number of elements sent by proced3do processoP is at most(% + Sﬂp - p) forj=p-1

and (% + S—”p) otherwise.
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Proof: As noted earlier, the maximum number of elements selected by prodgswrprocessof is simply
the difference between Mip_1), the minimum possible number of elements selected for proceBstirsough
P-1), and May; i), the maximum possible number of elements selected for procegstimoughPk. Subtract-
ing the lower bound of Lemma (2) from the upper bound of Lemma(3), we get:

(((k+ 1)s+p) 55— p) ks =

nh,n_ ifi=p—1
MaX(J,k)_Min(j,kfl): (p2+ps p) m]j=p

Theorem 1: The overall complexity of our algorithm for sorting by regular sampling is
O(%Iog%+T+%o), forn> p® and(pg s< %)

Analysis: The cost of sequential sorting in Step (1) depends on the data type - sorting integers using radix sort
requiresO (%) time, whereas sorting floating point numbers using merge sort recﬂ)i(@og (%)) time.

Step (3) involves selectingp samples, and Step (4) involves mergipgorted sequences followed lpybi-
nary searches. Since only procesByy_y is active in these two steps, they requidésp) and O(splogp)
time, respectively. Step (6) involves a total ©f p?) binary searches on sequences of ségeand therefore

requiresO(pZIogﬁnz) time. Lemma (4) guarantees that at the end of Step (7) no processor holds more than
(% + 2 — p) elements. Hence, the consolidation of Step (8) and the comparison-based merge of Step (9) re-
quireO (% +3+ p? — p), andO ((% +3- p) log p) time, respectively. Steps (2), (5), and (7) call the com-
munication primitivestranspose , bcast , andtranspose , respectively. The analysis of these primitives in

[4] shows that these three steps requiggnn{n, p) < (r+ E“Z(p— 1)0), Teomn(N, P) < (T+2(p—1)0), and

n

Teomm(N, P) < (T-l— (F + S—”p) (p— 1)0), respectively. Hence, with high probability, the overall complexity of
our sorting algorithm is given (for floating point numbers) by

T(n,p) = Tcomp(n:p)+Tcomn{n,p)
n n n

Of —=lo —+T+—G> 1
<D gp p @

forn2p3and(p§s§ 5”2) |

Clearly, our algorithm is asymptotically optimal and appears to have very small coefficients. But a theoretical
comparison of our running time with previous sorting algorithms is difficult, since there is no consensus on how to
model the cost of the irregular communication used by the most efficient algorithms. Hence, it is very important
to perform an empirical evaluation of an algorithm using a wide variety of benchmarks.

Before proceeding to this discussion, however, we describe first a modification of our algorithm which we
used in the actual implementation. This modification has has no impact on the overall complexity, but it does
result in a more efficient implementation. The basis for the modification is the observation that, in Step (8),
the p? subsequences to be merged at each processor can be redyzedhbsequences based simply on the
initial origin of their elements. Specifically, the setptubsequenceT; ok), T 1k)s - T(i,p-1,k } at processor
P« share a a common origin in the sorted input at proceBsor Step (1). They are the elements form the set
of sorted sequencei o), l(i 1), i,p-1)} Which fall between Splitt¢k — 1] and Splittejk]. Recall also that
the set of of sequencedi o), (i), l(i,p—1)} were generated by “dealing out” the sorted input at processor
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P, and that this mapping is clearly reversible. Hence, with a little bit of information, it is possible to reverse
this mapping and reassemble fheubsequenceS; ok, Tii,1k), - T(i,p-1k) } iNt0 a single sorted sequenadg

without actually making any comparison between the values. The advantage of this process of reassembling is
that it can be done i® (%) time instead of tim&®© (% log p) required for binary merge. Note that, while this has

no effect on the overall complexity as binary merging is still required to merge the resultingsstqfiences
{Y4,0):Ygig)s -+ Yii,p-1) }» it does make an appreciable difference in the experimentally measured performance.

More specifically, in Step (5), each sequeiigg ) is tagged with a set of valuesa,b,c,d >, wherea; j 1
specifies the number of elementsTin; i) with the same value as Splitfer 1], b(i, j, k) is the starting index in
li,j) of thec(i, j, k) values inT;; ; \, which are strictly greater than Splitfler- 1] and strictly less than Splittd],
andd(i, j,k) specifies the number of elementsTin; ) with the same value as Splitfe}. Then, Step (8) can be
rewritten into two steps as follows.

e Step (8*): Each processé “unshuffles” the set op subsequences
{Ti,000> T, k)» -+ T(i,p-1,k } Originating with the sorted input at process#rin Step (1) to form the se-
quencel i), for (0 <i < p—1). This procedure involves the following three substeps, in which both
Tii,jx andU i) are most easily thought of as stack data structures:

— (A): For each subsequence in the §&t o), Tii,1k)s - T(i,p-1.k }» POP the firsky; ; ) elements (which
have the same value as Splifter 1]) and push them ontdj; ).

— (B): Identify the smallest-indexed subsequence from the set whose associated \#yg aé also
less than or equal to all the other valueshyfj ) in the set. Beginning at this subsequence and
proceeding in ascending order of indgfwith wrap around), pop one element off each subsequence
and push it ontdJ; ). The procedure continues in this round-robin fashion untit@ll,) elements
which are strictly between Splittér— 1] and Splittefk] have been removed from each subsequence
Tiik-

(i,j,k)

— (C): For each subsequence in the 8Bt o ), T(i.1 ), -+ 1(i,p-1k) }» POP the remaining; ; ) elements

(which have the same value as Spliftgrand push them ontd; .

e Step (9*%): Each process®& merges the set gf consolidated subsequences
{Uiok),Y(1s-+-sYp-1k } to produce thé&th column of the sorted array.

4 Performance Evaluation

Our sample sort algorithm was implemented usirgI1$-C [10] and run on a variety of machines and processors,
including the Cray Research T3D, the IBM SP-2-WN, and the Thinking Machines CM-5. For every platform, we
tested our code on nine different benchmarks, each of which had both aiBfebérversion (64-bit on the Cray
T3D) and a 64-bit double precision floating point numtmboble version.

4.1 Sorting Benchmarks

Our nine sorting benchmarks are defined as follows, in whietmd p are assumed for simplicity but without
loss of generality to be powers of two and Mg the maximum value allowed fatoubles is approximately
1.8 x 10%98

1. Uniform [U], a uniformly distributed random input, obtained by calling the C library random number
generatorandom() . This function, which returns integers in the range ((261— 1), is seeded by each
processoP; with the value(21+ 1001). For the double data type, we “normalize” the integer benchmark
values by first subtracting the valué&®2nd then scaling the result §23° x MAX ). Note that the same
procedure is used throughout to generate the double benchmark from the integer benchmark.
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2. Gaussian [G] a Gaussian distributed random input, approximated by adding four callsdam() and
then dividing the result by four.

3. Zero [Z], a zero entropy input, created by setting every value to a constant such as zero.

4. Bucket Sorted [B], an input that is sorted intp buckets, obtained by setting the firp%t elements at each
processor to be random numbers between 0(5%\1{# 1), the secondp% elements at each processor to be

random numbers betweé%& and(z—f;2 — 1), and so forth.

5. g-Group [g-G], an input created by first dividing the processors into groups of consecutive processors of
size g, whereg can be any integer which partitionsevenly. If we index these groups in consecutive

order from 0 up to(g — 1), then for groupj we set the firs% elements to be random numbers between

(((jg+%—1) modp) +1) 2~ and ((((jg+ %) modp) +1) 2 - ) the secondy; elements at each
processor to be random numbers between
(((jg+ %) modp) +1) %1 and((((jg+§+1) mod p) + 1) ipl —1), and so forth.

6. Staggered [S] created as follows: if the processor indéx less than or equal t()g — 1), then we set alg
elements at that processor to be random numbers be@é’em 1) ipl) and ((2i +2) %l - 1) . Otherwise,

we set aII% elements to be random numbers betwé(ﬁi -p) %l) and ((Zi —p+1) 2—;’1 - )

7. Worst-Load Regular [WR] - an input consisting of values between 0 4@# — 1) designed to induce the
worst possible load balance at the completion of our regular sample sorting algorithm described in Section
3. Specifically, at the completion of sorting, the even-indexed processors wil(%e}ldg‘ — p) elements,
whereas the odd-indexed processors will r(ddd— 2+ p) elements. See the available code for generating
this benchmarks.

8. Deterministic Duplicates [DD], an input of duplicates in which we set %Ilelements at each of the first
iz’ processors to be lay all % elements at each of the neﬁ(tprocessors to be qug) and so forth. At

processoPy, we set the firsg; elements to be Ioé%), the next;5 elements to be Ioéz—“p), and so forth.

9. Randomized Duplicates [RD] an input of duplicates in which each processor fills an afrayith some
constant numbeaange(rangeis 32 for our work) of random values between 0 drahge— 1) whose sum

isS. The firstlsl] x 1 values of the input are then set to a random value between Qrande— 1), the

p
nextlsz] X % values of the input are then set to another random value between @aamge— 1), and so

forth.

We selected these nine benchmarks for a variety of reasons. Previous researchers have used the Uniform,
Gaussian, and Zero benchmarks, and so we too included them for purposes of comparison. But benchmarks
should be designed to illicit the worst case behavior from an algorithm, and in this sense the Uniform benchmark
is not appropriate. For example, for> p, one would expect that the optimal choice of the splitters in the Uniform
benchmark would be those which partition the range of possible values into equal intervals. Thus, algorithms
which try to guess the splitters might perform misleadingly well on such an input. In this respect, the Gaussian
benchmark is more telling. But we also wanted to find benchmarks which would evaluate the cost of irregular
communication. Thus, we wanted to include benchmarks for which an algorithm which uses a single phase
of routing would find contention difficult or even impossible to avoid. A naive approach to rearranging the data
would perform poorly on the Bucket Sorted benchmark. Here, every processor would try to route data to the same
processor at the same time, resulting in poor utilization of communication bandwidth. This problem might be
avoided by an algorithm in which at each processor the elements are first grouped by destination and then routed
according to the specifications of a sequence destination permutations. Perhaps the most straightforward
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way to do this is by iterating over the possible communication strides. But such a strategy would perform poorly
with theg-Group benchmark, for a suitably chosen valug.dh this case, using stride iteration, those processors
which belong to a particular group all route data to the same subsgptlegtination processors. This subset of
destinations is selected so that, whendhgocessors route to this subset, they choose the processors in exactly
the same order, producing contention and possibly stalling. Alternatively, one can synchronize the processors
after each permutation, but this in turn will reduce the communication bandwidth by a factodimthe worst

case scenario, each processor needs to send data to a single processor a unique stride away. This is the case of the
Staggered benchmark, and the result is a reduction of the communication bandwidth by a factof oburse,

one can correctly object that both the g-Group benchmark and the Staggered benchmark have been tailored to
thwart a routing scheme which iterates over the possible strides, and that another sequences of permutations
might be found which performs better. This is possible, but at the same time we are unaware of any single phase
deterministic algorithm which could avoid an equivalent challenge. The Worst-Load Regular benchmark was
developed to induce the worst possible load distribution at the completion of sorting and was included to study
the behavior of our algorithm in the guaranteed worst-case scenario. Finally, the Deterministic Duplicates and the
Randomized Duplicates benchmarks were included to assess the performance of the algorithms in the presence
of duplicate values.

4.2 Experimental Results

For each experiment, the input is evenly distributed amongst the processors. The output consists of the elements
in non-descending order arranged amongst the processors so that the elements at each processor are in sorted
order and no element at procesBbis greater than any element at proces3ofor all i < j.

Two variations were allowed in our experiments. First, radix sort was used to sequentially sort integers,
whereas merge sort was used to sort double precision floating point numbers (doubles). Second, different imple-
mentations of the communication primitives were allowed for each machine. Wherever possible, we tried to use
the vendor supplied implementations. In fact, IBM does provide all of our communication primitives as part of its
machine specific Collective Communication Library (CCL) [6] and MPI. As one might expect, they were faster
than the high level 8L1T-C implementation.

Optimal Number of Samplessfor Sorting on T3D
Number of Processors
int./proc. 8 | 16 | 32 | 64 | 128

16K 128 | 128 | 128 | 128 | 128
32K 128 | 128 | 128 | 128 | 128
64K 256 | 256 | 256 | 256 | 128
128K 256 | 256 | 256 | 256 | 256
256K 512 | 512 | 512 | 256 | 512
512K 512 | 512 | 512 | 512 | 512
1M 1024| 512 | 512 | 512 | 1024

Table I: Optimal number of samplador sorting the [WR] integer benchmark on the Cray T3D, for a variety of
processors and input sizes.

The results iffables | andll together with their graphs iRigures 1and2 examine the preliminary question
of the optimal number of samplegor sorting on the Cray T3D and the IBM SP-2-WN. They show the value of
s which achieved the best performance on the Worst-Load Regular [WR] benchmark, as a function of both the
number of processorsand the number of keys per proces%oﬂ'he results suggest that a good rule for choosing
sis to set it to 22/°9VP)] %, which is what we do for the remainder of this discussion. To compare this
choice fors with the theoretical expectation, we recall that the complexity of Steps (3) and (4) are respectively
O(sp) andO(splogp), whereas the complexity of Step (9)@5( (% +9- p) log p). Hence, the first terms are
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Optimal Number of Samplessfor Sorting on SP2
Number of Processors
int./proc. 8 | 16 | 32 | 64 | 128
16K 256 | 128 | 128 | 128 | 128
32K 256 | 256 | 256 | 256 | 256
64K 512 | 256 | 256 | 256 | 512
128K 512 | 512 | 512 | 512 | 512
256K 512 | 512 | 512 | 256 | 512
512K 1024 | 1024 | 1024 | 1024 | 1024
1M 1024 | 1024 | 1024 | 1024 | 1024

Table II: Optimal number of samplesfor sorting the [WR] integer benchmark on the IBM SP-2-WN, for a
variety of processors and input sizes.

an increasing function of, whereas the second term is a decreasing functian tifis easy to verify that the
expression for the sum of these two complexities is minimizedsfer O (\/%) and, hence, the theoretical
expectation for the optimal value sfagrees with what we observe experimentally.

| Size | [U] [ [G] [[2G]|[4G]| [B] | [SI [ [Z] |IWR] | [DD] | [RD] |
256K | 0.047| 0.046| 0.040| 0.040| 0.046| 0.042| 0.036| 0.051 | 0.037| 0.042
1M | 0.104| 0.102| 0.094| 0.092| 0.103| 0.094| 0.080| 0.113| 0.081| 0.089
4M | 0.309| 0.305| 0.299| 0.291| 0.310| 0.303| 0.245| 0.325| 0.250| 0.261
16M | 1.09 | 1.08 | 1.09 | 1.06 | 1.10 | 1.11 | 0.903| 1.13 | 0.904| 0.930
64M 418 | 411 | 422 | 409 | 415 | 431 | 352 | 4.21 | 3.52 | 3.59
Table IlI: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node Cray

T3D.

Optimal Number of Samples on T3D

Optimal Samples

Processors

Figure 1: Optimal number of samplse$or sorting the [WR] integer benchmark on the Cray T3D, for a variety of
processors and input sizes.
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Optimal Number of Samples on SP-2

Optimal Samples

Processors

Figure 2: Optimal number of sampledor sorting the [WR] integer benchmark on the IBM SP-2-WN, for a
variety of processors and input sizes.

| Size | [U] [ [G] [[2G]|[4G]| [B] | [SI [ [Z] |[IWR] | [DD] | [RD] |
256K | 0.055| 0.055| 0.050| 0.048| 0.051| 0.049| 0.046| 0.056 | 0.047 | 0.050
1M | 0.091| 0.094| 0.085| 0.086| 0.089| 0.087 | 0.083| 0.099 | 0.087| 0.089
4M | 0.237| 0.236| 0.229| 0.223 | 0.224| 0.228| 0.222| 0.253| 0.231| 0.239
16M | 0.873| 0.878| 0.974| 0.886| 0.868| 0.969| 0.819| 0.904 | 0.835| 0.851
64M | 345 | 3.46 | 383 | 3.86 | 3.38 | 3.79 | 3.09 | 3.45 | 3.11 | 3.12
Table IV: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node IBM
SP-2-WN.

The results imables Il throughVI together with their graphs iRigures 3through6 display the performance
of our sample sort as a function of input distribution for a variety of input sizes. In each case, the performance
is essentially independent of the input distribution. These figures present results obtained on a 64 node Cray
T3D and a 64 node IBM SP-2; results obtained from other platforms validate this claim as well. Because of
this independence, the remainder of this section will only discuss the performance of our sample sort on the
Worst-Load Regular benchmark [WR].

The results inTables VII and VIl together with their graphs iRigure 7 examine the scalability of our
sample sort as a function of machine size. Results are shown for the T3D, the SP-2-WN, and the CM-5. Bearing

| Size | U] | [G] [[2G]|[[4G]| [B] | [S] | [2] [IWR] | [DD] | [RD] |
256K | 0.056 | 0.056| 0.046| 0.046 | 0.055| 0.045| 0.044 | 0.060| 0.043| 0.050
1M | 0.126| 0.126| 0.113| 0.113| 0.131| 0.111| 0.107| 0.136| 0.018| 0.115
4M | 0.411| 0.411| 0.387| 0.394 | 0.416| 0.389| 0.376| 0.435| 0.383| 0.384
16M | 160 | 1.59 | 155 | 155 | 158 | 155| 149 | 160 | 1.50 | 1.49
64M | 653 | 6.57 | 6.44 | 6.45 | 655 | 6.49 | 6.26 | 6.61 | 6.26 | 6.14
Table V: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node Cray
T3D.

11
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| Size | [U] [ [G] [[2G]|[4G]| [B] | [SI [ [Z] |IWR] | [DD] | [RD] |
256K | 0.090| 0.087| 0.082| 0.080| 0.084| 0.080| 0.077| 0.093| 0.081| 0.084
1M | 0.181] 0.184| 0.176| 0.186| 0.176| 0.176| 0.168| 0.198| 0.187| 0.188
4M | 0.598| 0.590| 0.580| 0.576| 0.578| 0.600| 0.570| 0.614 | 0.584| 0.589
16M | 226 | 225 | 235 | 235 | 226 | 240 | 225 | 234 | 229 | 2.33
64M | 9.61 | 9.61 | 10.0 | 10.0 | 9.57 | 10.00| 9.57 | 9.74 | 9.49 | 9.55
Table VI: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node IBM
SP-2-WN.

Execution Time vs. Input Distribution
Integers, Cray T3D

10
0 1
[})
E
= 01
=
0.01

LVl 6] [2-G] [4-G] [B] [S] [Z] [WR] [D:D] [RDO]
Benchmark

[=—6am —=—16M —=—4m —a 1M = 056K]

Figure 3: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node Cray
T3D.

in mind that these graphs are log-log plots, they show that, for a given inpub,sthe execution time scales
inversely with the number of processgrgor (p < 64). While this is certainly the expectation of our analytical

model for doubles, it might at first appear to exceed our prediction & éﬁ log p) computational complexity
for integers. However, the appearance of an inverse relationship is still quite reasonable when we note that,

Execution Time vs. Input Distribution
Integers, IBM SP-2-WN

10 ; ;
P ;
E
= 01
0.01

vl Gl [2-G] 4-G] [B] [S] [Z2] [WR] [DD] [RD]
Benchmark

[-=—64M = 16M —=—4M —a 1M - 256K]

Figure 4: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-node IBM
SP-2-WN.
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Execution Time vs. Input Distribution
Doubles, Cray T3D
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vl Gl [2-G] 4-G] [B] [S] [Z2] [WR] [DD] [RD]
Benchmark

[-=—64M = 16M —=—4M —a 1M - 256K]

Figure 5: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node Cray
T3D.

Execution Time vs. Input Distribution
Doubles, SP-2-WN
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vl Gl [2-G] 4-G] [B] [S] [Z2] [WR] [DD] [RD]
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[-=—64M = 16M —=—4M —a 1M - 256K]

Figure 6: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-node IBM
SP-2-WN.

for values ofp between 8 and 64, Iggvaries by only a factor of two. Moreover, tms(g log p) complexity is

entirely due to the merging in Step (9), and in practice, Step (9) never accounts for more than 30% of the observed
execution time. Note that the complexity of Step (9) could be reduc@(t%)) for integers using radix sort, but

the resulting execution time would, in most cases, be slower.

Regular Sorting of 8M Integers [WR]
Number of Processors

Machine 8 | 16 | 32 | 64 | 128
CRAY T3D | 3.23| 1.73| 0.976| 0.594| 0.496
IBM SP2-WN | 2.73 | 1.38| 0.761| 0.472| 0.410
TMC CM-5 - 7.83| 3.99 | 229 | 255
Table VII: Total execution time (in seconds) required to sort 8M integers on a variety of machines and processors
using the [WR] benchmark. A hyphen indicates that particular platform was unavailable to us.

13
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Regular Sorting of 8M Doubles [WR]
Number of Processors
Machine 8 | 16 | 32 | 64 | 128
CRAY T3D | 5.25| 2.65| 1.41| 0.827| 0.619
IBM SP2-WN | 7.95| 4.05| 2.09| 1.18 | 0.870
TMC CM-5 - - 6.89| 4.39 | 4.24

Table VIII: Total execution time (in seconds) required to sort 8M doubles on a variety of machines and processors

using the [WR] benchmark. A hyphen indicates that particular platform was unavailable to us.
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Figure 7: Scalability of sorting integers and doubles with respect to machine size.

However, the results in Tables VII and VIl together with their graphs in Figure 7 also show that for
greater than 64, the inverse relationship between the execution time and the number of processors begins to
deteriorate.Table IX explains these results with a step by step breakdown of the execution times reported for

the sorting of integers on the T3D. Step (1) clearly displays()i(%) complexity expected for radix sort, and
it dominates the total execution time for small valuegofThetranspose
(r + %0) complexity we originally suggested. The dependenceai p simply becomes more pronounced as

Step by Step Breakdown of Sorting 8M Integers

Step

Number of Processors (Number of Samples)

8 (1024) | 16 (512) | 32 (512) | 64 (256) | 128 (256)

2.320220

1.172284

0.591670

0.299310

0.151576

0.132129

0.069106

0.045686

0.029076

0.019693

0.008468

0.010606

0.026364

0.026372

0.053686

0.000015

0.000019

0.000028

0.000047

0.000085

0.000052

0.000078

0.000082

0.000128

0.000226

0.000390

0.001303

0.004339

0.012499

0.028225

0.130839

0.070650

0.050185

0.039518

0.076284

O N[OOI B WN

0.148714

0.077050

0.042443

0.034429

0.059114

9

0.485934

0.332238

0.215449

0.152325

0.107410

[ Total | 3.226760] 1.733333[ 0.976246] 0.593705] 0.496300]

operation in Step (2) displays the

Table IX: Time required (in seconds) for each step of sorting 8M integers on the Cray T3D using the [WR]

benchmark.

14
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p increases an% decreases. Step (3) exhibits tBésp) complexity we anticipated, since fol 209/P)]  gis
halved every other timg is doubled. Steps (6) and (9) display the expe@e(qbzlog p) andO ((% + r—s‘) log p)

p
behavior. The reason for this is that in Step (7), each processor must exghaniggequences with every other

processor and must include with each subsequence a record consisting of four integer values which will allow
the unshuffling in Step (8) to be performed efficiently. Hence,@f(ep% + s—“p+4p) transpose  block size in

the case of 128 processors is nearly half that of the the case of 64 processors (1280 vs. 2816). This, together
with the fact thatt increases as a function @f explains why the time required for Step (7) actually increases

for 128 processors. Step (8) would also be expected to emiéing r—s‘) (z O(% +\/n_p) for s~ \/%)

complexity. But the scheme chosen for unshuffling also involve3(g) amount of overhead for each grouppof
subsequences to assess their relationship so that they can be efficiently unshuffled. For sufficiently large values of
p, this overhead begins to dominate the complexity. While the data of Table IX was collected for suggegs

on the T3D, the data from the SP-2-WN and the T3D support the same analysis for sorting both integers and
doubles.

(% (0] ( (% + \/W)) log p) for s~ \F) complexity, respectively. Steps (7) and (8) exhibit the most complicated

The graphs irFigure 8 examine the scalability of our regular sample sort as a function of keys per processor
(%) for differing numbers of processors. They show that for a fixed number of up to 64 processors there is an
almost linear dependence between the execution tim% ax¢hile this is certainly the expectation of our analytic

model for integers, it might at first appear to exceed our predictiorCo(alogn) computational complexity for

floating point values. However, this appearance of a linear relationship is still quite reasonable when we consider
that for the range of values shown logliffers by only a factor of 2. For p > 64, the relationship between
the execution time and ar%i is no longer linear. But based on our discussion of the data in Table IX, for large

p and relatively smalh we would expect a sizeable contribution from those steps which exhi@lzlog p),
(0] (% + /N p) , andO ((% + /N p) log p) complexity, which would explain this loss of linearity.

Finally, the graphs ifrigure 9 examine the relative costs of the nine steps in our regular sample sort algorithm.
Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using both the integer and the double
versions of the [WR] benchmark. Notice that foe= 64M integers, the sequential sorting, unshuffling, and
merging performed in Steps (1), (8), and (9) consume approximately 85% of the execution time on the T3D and
approximately 75% of the execution time on the SP-2. By contrast, théranapose operations in Steps (2)
and (7) together consume only about 10% of the execution time on the T3D and about 20% of the execution
time on the SP-2. The difference in the distribution between these two platforms is likely due in part to the fact
that an integer is 64 bits on the T3D while only 32 bits on the SP-2. By contrast, doubles are 64 bits on both
platforms. Fom = 64M doubles, the sequential sorting, unshuffling, and merging performed in Steps (3), (8), and
(9) consume approximately 80% of the execution time on both platforms, whereas thengpase  operations
in Steps (2) and (7) together consume only about 15% of the execution time. Together, these results show that
our algorithm is extremely efficient in its communication performance.

4.3 Comparison with Previous Results

Despite the theoretical interest in deterministic sorting algorithms, we were able to locate relatively few empirical
studies. All but one of these studies used machines which are no longer available. The single exception is the
recent work of Gerbessiotis and Siniolakis [12, 13hble X compares the performance of their deterministic
algorithm with that of our regular sampling algorithm on an IBM SP-2.
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Problem | 2 Processors| 4 Processors| 8 Processors
Size HIJB | GS [HIBB | GS | HIB | GS
128K | 0.117| 0.709| 0.066 | 0.399| 0.041| 0.217
512K | 0.499| 2.87 | 0.285| 1.54 | 0.144| 0.844

1M 1.01 | 5.73 | 0.566| 3.06 | 0.307| 1.61

Table X: Total execution time (in seconds) to sort the [U] integer benchmark on the IBM SP-2, comparing our

results (HIB) with those reported by Gerbessiotis and Siniolakis (GS)

4.4 Comparison With Our Random Sample Sort Algorithm

Table XI compares the performance of our sorting by regular sampling algorithm with that of our random sample
sort algorithm [14] on both the T3D and the SP-2-WN using the [WR] benchmarl dfn, p) represents the

time required by our regular sample sort algorithm dag{n, p) represents the time required by our random
sample sort algorithm, then the corresponding entry in Table XTggs(n, p) — Tgg(n, p)) as a percentage of

Tgg(n, p). Thus, a negative entry indicates that the regular sample sort runs faster than the random sample sort
algorithm. The results largely confirm what we would expect: large valugsto§ether with relatively small

values ofn make the performance of our regular sampling algorithm uncompetitive when compared with our
sample sort algorithm. The reason for this is that, unlike our regular sampling algorithm, none of the steps in
our sample sort algorithm exhibit such strong dependencp. oBut aside from this subset of problems, the
performance of the two algorithms is comparable. Here, regular sampling would seem to have the advantage,
because it deterministically guarantees the performance bounds and the memory requirements for any input.

Comparison of Regular Sampling with Sample sort
Machine | Keys/ Number of Processors
(Type) Proc. 8 | 16 | 32 | 64 | 128
T3D 64K | -19% | 04% | 6.2% | 245%| 74.6%
(integers) | 256K | -2.2% | -1.2% | 0.8% | 10.8%| 29.1%
IM | -3.0% | -28% | -0.8% | 45% | 13.8%

SP2-WN| 64K | 1.2% | -1.2% | 5.8% | 16.6 %] 39.3 %
(integers) | 256K | 12.5%| 8.9% | 95% | 10.8%] -1.6%
IM | 13.3%] 11.8% | 10.7% | 6.5% | 6.4 %

T3D 64K | -28% | -3.2% | 3.0% | 19.5%| 57.1%
(doubles) | 256K | -2.4% | -3.0% | 0.0% | 46% | 21.6%
IM | -30% | -27% | -1.7% | 15% | 82%

SP-2-WN | 64K | -1.6% | -1.3% | -1.9% | 59% | 31.0%
(doubles) | 256K | -1.1% | -0.5% | 05% | 4.0% | 9.6%
1M 01% | 19% | 21% | 1.3% | 5.0%
Table XI: Comparison of time required by our regular sampling algorithm with the time required by our sample
sort algorithm using our [WR] benchmark. TRg(n, p) represents the time required by our regular sampling
algorithm andigg(n, p) represents the time required by our random sample sort algorithm, then the corresponding
entry is(Trg(n, p) — Tgg(n, p)) as a percentage dgg(n, p). Thus, a negative entry indicates that the regular
sample sort runs faster than the random sample sort algorithm.
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