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Abstract

This paper describes the synthesis of Non-fragile or Resilient regulators for linear systems. The
general framework for fragility is described using state-space methodologies, and the LQ/H static state-
feedback case is examined in detail. We discuss the multiplicative structured uncertainties case, and
propose remedies of the fragility problem. The benchmark problem is taken as example to show how an
“uncertain” or resilient static state feedback controller can affect the performance of the system.

1 Introduction

The purpose of this paper is to address and understand the effects of uncertainties in the implementation of
robust regulators which optimize a performance index in linear systems. In the literature, there are different
algorithms that give an answer to the classical problem shown in Figure 1:

Given a linear plant P with some additive uncertainties AP find a feedback controller K which internally
stabilizes the family P + AP and satisfies some performance requirements.

K P+ AP

Figure 1: Robust Control Scheme

In this paper we will consider structured uncertainties in the plant, to represent the effect of (generally)
slowly time-varying parameters whose exact values are unknown but which are known to belong to a given
set [1]. Most control algorithms proposed in the literature do not consider the problems introduced by imple-
menting uncertain controllers. We first remark that it is reasonable to consider only structured uncertainties
in the controller since by design, one can choose its exact structure even though the designer may not be
able to exactly implement that nominal configuration. The controllers obtained using most robust design
approaches are thus optimal if implemented exactly. There are however many reasons to believe that one
can never exactly implement a compensator which theoretically meets all objectives (see [2] for an example
of a compensator that cannot be implemented). Moreover, it is easy to argue that even when exact imple-
mentation is possible, some tuning by the control engineer is required on the actual controller in order to
achieve a “safety” margin with respect to sampling procedures, roundoff errors etc. We thus consider the
more realistic block diagram in Figure 2.
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Figure 2: Robust Fragility Control Scheme

In a recent paper, Keel and Bhattacharyya [3] have shown that, in the case of unstructured uncertainties
in the plant, and using H.,, H2 or [; synthesis techniques, the resulting controllers exhibit a poor stability
margin if not implemented exactly! This so-called “fragility” is displayed despite of, or because of, the fact
that these controllers are optimal when implemented using their nominal parameters. Paper [3] gives the
following suggestions to overcome the fragility problem:

1. Developing synthesis algorithms which take into account some structured uncertainties in the controllers
and searching for the “best” solution that guarantees a compromise between optimality and fragility,

2. Examining the structure of the controller in order to parameterize it in a useful way (lower-order or
fixed-structure controller).

In a following paper, Haddad and Corrado [4] address and solve a special case the fragility problem by
considering a structured uncertain dynamic compensator for a noise-driven linear plant. They obtain suffi-
cient conditions by bounding the uncertainties in the controller using classical quadratic Lyapunov bounds
[5]. The resulting controllers are proven to be “resilient” in the sense that even when they are not exactly
implemented, stability and some measure of performance are maintained.

It is true that other authors have hinted at the problem of fragility [6] and that many critics have dismissed
the issue, since robust controllers are not designed to be resilient. On the other hand, the problem is reminis-
cent of the Linear Quadratic Gaussian (LQG) optimal controllers which were only useful when implemented
on the exact plant, and had no robustness margins if the plant was uncertain. This lack of robustness
was corrected using Linear Quadratic Gaussian synthesis with Loop Transfer Recovery (LQG/LTR) [7]. In
addition, even robust controllers will eventually have to be implemented on an actual system using digital
hardware and should be resilient both to implementation errors and to tuning [6].

The aim of this paper is to extend the ideas in the two papers [3, 4] and to analyze the robust fragility
problem by considering the combined effect of structured uncertainties in the plant and in the compensator.
The basic idea is that, instead of computing the controller as a single point in the parameters space, we look
for a controller set using an a priori information. This is reminiscent of the designs of Ackermann [6] and of
those in [8].

This paper is organized as follows. In section 2, we present the synthesis of static state-feedback controllers for
linear systems while allowing structured uncertainties in the feedback gain matrix. We then further restrict
our study to the multiplicative structured uncertainties schemes in the plant. In section 3, a numerical
example using Linear Matrix Inequalities as a computational tool is given. Our conclusions and directions
for future research are finally given in section 4.

2  Outline of the problem

Let us consider the following time-varying linear system
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where



e z(t) € R™, is the state vector,
e u(t) € R™ is the control input,
e y(t) € RP is the output measurements vector,

e A(t), contains polytopic and/or affine uncertainties (see [9])
a
A(t) = Ao + Zai(t)Ai,
i=1

where the scalar coefficients a; () represent unknown but slowly-varying coefficients whose values belong
to an uncertainty interval

e B(t) and C(t) are constant matrices B and C respectively.

The system (1) can then be written in the form

z = (Ao+ X!, Az +Bu = (Ag+dA)z+ Bu 3
{ y(t) = Cx(t) (3)

Note that this model is similar to a stochastic differential equation with multiplicative noise [7]. Now, given
the initial state z(0), the problem is to find a state-feedback compensator u(t) = Kz(t) which minimizes the
Linear Quadratic (LQ) performance index,

J= /0 h [T (1)Qz(t) + u” (t)Ru(t)] dt. (4)

where Q = CTC and R is a symmetric positive definite matrix.

2.1 Non-fragile synthesis scheme
Although one finds the controller u = Kz, the actual controller implemented is
u=(K+6K)x =Kz (5)

where K is the nominal gain, and the term §JK represents drifting from the nominal solution. In this case,
the index (4) becomes a function of K, the uncertain term JK, and the uncertainties «; in (3) as shown
below

J=J(K,§K, a;).

A possible solution to the fragility problem may be as follows:
1. Letting 6K = 0, we perform a “nominal” synthesis and find a bound .J on the performance index (4),

We then solve a standard guaranteed-cost problem [5] for the controller gain, K which minimizes J(K);

2. We then fix the uncertainty range K and find a new bound 7 to (4),

obviously, we expect that J(K) < J (K) due to the quadratic expression of the index. Now, solving
the new guaranteed-cost problem we look for K which minimizes J(K) and we check if

7 (K) -7 (B)| <M (6)

where M is a level that can be fixed “a-priori”. If (6) is not true, we try to reduce the uncertainty
level K until is satisfied.

With this scheme in mind, we next study the multiplicative uncertainty case of equation (5) in greater detail.



2.2  Multiplicative structured uncertainties

Let the nominal state-feedback matrix K be a m x n, (m < n) matrix. If we allow percentage drift from
the nominal entries of the matrices K and represent each entry of the perturbed matrix as a multiplicative
scalar uncertainty, we have

[ k(T +611) oo k(1 + 1)
(K +0K) = : :
| Emi(L40m1) oo Emn(1 4 Smn)
[k ... ki kb ... kinbin
= SR : : , —1<0;; <65 <oy <1, (7)
IR . km1Omi - KmnOmn

Equation (7) then leads to the uncertain controller:

ult) = | K+ 3.3 6,0 KW | a(t) = Kaa(t) . (8)
i=1 j=1

where \Ifgm), \Ilg.n) are m X m and n X n rank-one matrices with a “1” entry located at the i-th and j-th
position of the main diagonal, respectively. Considering the closed-loop system, we have

q m n
i) = [ Ao+ D eidi + B[ K+ 3 ;0™ Kw™ | | x(t) . 9)
i=1 i=1 j=1
The closed-loop system matrix has the following form:
q m n
Alt) = Ao+ i + BE + 3 0;;BK 0" (10)
i=1 i=1 j=1
where B; = B\Ilgm). If we substitute into equation (4) the expression of the controller (8), we have that
J = / (27 Qz + 2" KARKax) dt. (11)
0
Let us consider the term

tTKIRKax (12)

in equation (11): due to expression of the uncertainty term (7), it is possible to bound this term by
a(K)sT KTRK

where .
_ sups,, Amax (KARKA)
Amin (KTRK) ’
the supremum operation is performed over the uncertainty set and Amax and Anin indicates respectively the
maximum and the minimum eigenvalues of a matrix. It is easy to see that the bound

a(K)eTKTRKz > 2" KARKax

works only when K is known in advance. The index (11) is then bounded by

J = / ” (2" Qz + a(K)x" K" RKz) dt (13)
0



which gives rise to the following non-linear dynamic optimization problem:

Find K such that

i(t) = <A+ZaA> ) + Bu(t +ZZ§Z]BW

y(t) = a() o (14)
u(t) = Kuz(t)

u;(t) = Ky;(t)

is stable and minimizes the index (13).

This problem is in general difficult to solve but, in particular cases, it reduces to a convex optimization prob-
lem [10]. In the following we analyze some of these special cases.
2.2.1 Special Cases

In the single input case (m = 1) (7) reduces to
(K+0K) =] ki(L4+01) ... ka(1+6y) ] (15)

where d; are scalar coefficients (|d;| < d; < 1). We can then write the controller as,

= K(I, + Xn: 5,0z = KA(6)z, (16)

Jj=1

where the term A(J) indicates the diagonal matrix whose entries are 1 + §;. The index J can be easily

bounded by noting that
AG)RAW) < (1+6)°R

where 6 = max;(d;). The index (4) is then bounded as follows
J<J = / TQa: +(1+06) TKTRKx) dt . (17)

Let us then examine the closed-loop system:
q
z(t) = (A + Z a; A + BKA(6)> x(t). (18)
i=1
The system matrix A(t) can be rewritten as
q n
Alt)=A+BK + Y a4 + Y §;BKW®",
i=1 j=1

and in this case the problem is equivalent to the following static output feedback problem [11]:

Find K such that

#(t) = (A+ X i, aidi)z(t) + Ba(t)
y(t) = A(d)z() ; (19)
at) = Ky(t)

is stable and the bound J (17) is minimized.

However, using the following proposition we show that this particular static output feedback problem can
be reduced to a full-state static feedback problem:




Proposition 1 If the coefficients 6; are slowly time-varying, the dynamic optimization problem (17), subject
to the dynamic constraints (19), is equivalent to a guaranteed-cost full static state-feedback problem.

Proof: If we consider the variable y(t) in the equation (19), we have the following nonsingular transformation
of coordinates

y(t) = A(d)x(t) (20)
the closed-loop system (18) in the y variable becomes
g(t) = zn: L ii %, Agj + znjznqu: i arAir | y@®) + | B+ ia.B- a(t), (21)
j:11+6j ! i:lj:11+6i ! i:lj:lk:11+6i ! j=1 Y ’

where Aj = A\I’gn), Aij = \Ilgn)A\I/.gn), Zijk = ‘Ilgn)Ak\I’]n
in the form

) and B; = \Ilg-")B. We can write the system (21)

k n
gt) = | Ao+ D> NAw | y®) + | B+ > _6;B; | a(t), (22)

Jj=1

where k = n + n? + n?q, Ap = 0 and A is equal to one of the terms in equation (21). The index (17) has
the following form

J= / y"A0) (Q+ (L+0)) KTRE) A (9)y di (23)
0
Equation (23) can be bounded by
T = ! . /Oo (yTQy+ (1+9)2aTQa) dt . (24)
(14+n)" Jo
where 1 = min; §;. Finally we have that the index (24) is subject to the dynamic bound (21). ]

Solution Scheme: In this case, the solution of the problem is bounded by the following value of the index

(1+6)2

i n)zx(O)TPm(O)
where P = P();, ;) is the solution to the matrix Riccati equation
P\, ;) AN, 65, K) + A(Ni, 65, K) T P(Xi,65) + Q + (14 0)* KTRK = 0. (25)
where .
AN, 0, K) = Ao +ZAiAi+BK+zn:6ijK, 1<i<k 1<j<n.
i=1 j=1

The problem can then be converted to the following convex optimization problem

2
(1+ G)ZtrP
(L+mn) (26)
subject to P A(wj, i, K) + A(wj, v, K)TP+Q+ (1+6)> KTRK <0

where wj,1); each represent the upper and lower limits of the uncertainty ranges

min

ijQ:{{ﬁ,/\_j},lngk:}

P € U= {{8;,6;},1<i<n}.

(Note that the expressions are numerical sets and not intervals.)




Note: When all entries of the state-feedback matrix K are perturbed by the same amount (§; =d2 = ... =
0, = 0), as was done in [4], the problem is reduced to:

Find K such that

i(t) = (A + ; aiAZ) z(t) + (B + 6B) a(t) (@7)
alt) = Ka(t)

and the index (17) is minimized.

It is interesting to see, using a numerical experiment, how these simple cases can be formulated as convex
optimization problems and what is the quantitative effect of a Non-fragile synthesis over the performance of
the system.

3 A Numerical Example (LQ/#, design)

Let us consider the following mechanical system [9], known as the “Benchmark Problem” where

x (t)
1

e x (1)
2

Figure 3: Benchmark Problem

1. wu(t) is the control input;

2. x1, 2 are the positions, with respect to a reference system, of the masses;
3. the masses mi,mo are equal to 1 in the appropriate units;

4. the stiffness k(t) is a slowly-varying parameter in the interval [0.5, 2].

The linear time-varying model which describes the behavior of the system is

,

1 (t) 0 0 10 zy(t) 0
a(t) 0 0 0 1 || () 0
is(t) | T~ | —k(t) k(@) 0 0 @) | T u(t)
{ 4 (t) k(t) —k(t) (;1(;)) z4(t) 0 o8)
— T2 (t)
y(t) = [0 10 0] (1) +u(t)
\ £L’4(t)

It is easy to see that we can represent (28) as an affine uncertain model where the matrix A(t) is given by

0010 0O 0 00
0 0 01 0O 0 0 0

AD=10 0 0 o |+kO | 2, | o o | =4 +kBA
0 00O 1 -1 0 0

and the matrices B, C, D are constant.




3.1 Non-fragile synthesis using a uniform perturbation scheme

Using the MATLAB™ LMI toolbox and the function msfsyn a nominal LQ/H» static state-feedback syn-
thesis was performed. The guaranteed LQ/H2 performance was found to be 1.54 and the controller gain
vector given by

K=[Fk ks ks ko]=[-27917 17912 -2.3651 —0.1045 ]. (29)

An affine family of controllers according to the following rule was generated

K=(1+0K (30)

where § is a parameter which corresponds to a drifting of the nominal value k;: in this case each component
of K was considered to have same relative uncertainty range [4]. The fragility of the controller was tested
by varying 6 and, using MATLAB™ LMI Toolbox standard routines quadstab and pdlstab, the values of
0 for which the closed-loop system is no longer quadratically stable [10, 9] or, less conservatively, does not
admit a parameter-dependent Lyapunov function [10, 12, 9] were checked. For this particular system the
nominal controller (29) was taken into consideration and, examining the closed-loop system

& = (Ao + kA, + (1 + 6)BK) (t),

was obtained that if § is greater than 0.1 quadratic stability is lost, and if § is greater than 0.78 the system
does not admit a parameter-dependent Lyapunov function.

Letting § now to be an uncertain parameter in the interval —0.1 < § < 0.1 a new synthesis was performed
having in mind the optimization scheme expressed by the equation (27). Using Convex Optimization meth-
ods, the problem which generates the new solution is the following

min trP
. . B B (31)
subject to  P(Ag + kA1 + (1 4+ 8)BK) + (Ao + kA1 + (1+ 0)BK)TP+Q + (1+60)> KTRK <0

where
1. k€ {0.5,2}, 6 € {-0.1,0.1} and § = 0.1,
2. Q=CTC and R = 1.

It is important to remark that, in this case, 4 matrix inequalities must be considered because the two
parameters (k,d) are involved in the inequality and all the possible combinations between the maximum and
the minimum values of the uncertainty intervals have to be chosen. Using again the function msfsyn a new
“center” value for the K vector was obtained

K= -3.0930 20916 —2.6365 —0.0396 ]

and the guaranteed LQ/H, performance in this case was equal to 1.7.
The difference between the two guaranteed costs is equal to

1.7 — 1.54| = 0.16

which corresponds to a 10.36% worsening of the LQ /% cost as a price paid to guarantee Non-fragility.

3.2 Non-fragile synthesis using a general perturbation scheme

A more realistic experiment was carried out by perturbing each entry of the K vector independently from
each other. We allow for example that,

1. ki has a 15% drift around its nominal value,

2. ks has a 20% drift around its nominal value,



3. k3 has a 10% drift around its nominal value,
4. k4 has a 30% drift around its nominal value.

In this case the Convex Optimization problem is given by (26) and, using the state space transformation
(20), we have an affine uncertain linear model (27) which has 36 parameters (236 inequalities!) but in this
case most of them are ineffective because most all the matrices in equation (27) are zero. The new entries
of the K vector are now found to be

K = [ —238.4746 266.7781 —21.8273 —670.6591 ]

and the guaranteed LQ/H2 performance was 5.0198, which is worse than the previous case when each entry
of the K is equally perturbed by 10% of its nominal value.

The effect of this type of synthesis in the two cases is now clear: A trade-off exists between the minimization
of a performance indices and the fragility of the compensator.

4  Conclusions

In this paper, the effect of the LQ robust synthesis of uncertain static state feedback controller for linear
systems with structured uncertainties in the dynamic matrix was observed. Simple theoretical results and
upper bounds on the performance index were obtained when multiplicative structured uncertainties are al-
lowed in the controller. A guaranteed-cost approach, using Linear Matrix Inequalities was the computational
tool used in the numerical experiment (benchmark problem) and the main result was that a price had to
be paid in terms of performance in order to guarantee non-fragility. Future directions of research include
the synthesis of dynamic Non-fragile controllers, and the relation between the order of the controller and its
fragility characteristics.
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