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Reproductive effort, offspring size and benefit–cost
ratios in the classification of life histories

Eric L. Charnov*

Department of Biology, The University of New Mexico, Albuquerque, NM 87131-1091 and
Department of Zoology, Oregon State University, Corvallis, OR 97331, USA

ABSTRACT

There have been many attempts to document links between reproductive allocation and factors
such as adult body size and demography. This paper suggests that among closely related taxa,
two dimensionless numbers, each a benefit–cost ratio summarizing reproductive timing,
allocation and demography, are invariants and thus are useful to classify life histories. The two
numbers are E/α and C·E, where E is average adult life span, α is age-at-first-reproduction and
C is average mass (per adult) devoted to reproduction per unit of time, divided by the average
adult body mass (m); C is usually called ‘reproductive effort’. Since E −1 is the average adult
mortality rate, C/E −1 is the reproductive effort (benefit) per unit death (cost). Similarly, E/α is
the amount of time for reproduction (E) divided by the time cost to get there (α). Combining
these two numbers with the relative size (I) of an offspring (I/m) yields a new classification
scheme for life histories; this is contrasted with other classification schemes (e.g. r and K).

Keywords: classification of life histories, dimensionless numbers, life-history cube, r and
K selection, Smith–Fretwell.

INTRODUCTION

This paper develops a new way to classify or organize life histories, one which removes the
units of mass and time and views a life history in terms of a handful of dimensionless
variables. The variables with units that make up the dimensionless numbers are, I claim,
a very natural set of reproductive–demographic averages, at least for non-growing popula-
tions. The new scheme expands on one published a dozen years ago (Charnov and Berrigan,
1990). This approach to life histories raises many issues about natural selection in the face
of constraints (Charnov, 1993), but this aspect is downplayed here as I mostly wish to argue
for the usefulness of the classification scheme itself.

Organisms exist to reproduce and the rules governing reproductive allocations (timing,
mass to offspring, etc.) are usually viewed in a cost–benefit framework (e.g. Williams, 1966;
Stearns, 1992). Figure 1 is a very simple life history. α time is spent preparing to reproduce
and the average adult life span (E) is spent in reproduction; E is the benefit, α the cost. Thus,
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E/α is a benefit–cost ratio for the time made available to reproduce. After initiation of
reproduction at age α, a mass of R per unit time is devoted to reproduction. This is a benefit,
but what is the cost? Most people would argue that mortality is the cost, since after age
α resources are devoted to either reproduction (R) or keeping one’s self alive, ultimately
reflected in E. 1/E is an adult mortality rate, thus R/E −1 is another benefit–cost ratio
(Charnov, 2001b). But this ratio has units of mass (R = mass/time, E −1 = 1/time), while E/α
is dimensionless. Organisms with larger body size almost always have larger R and E, which
is why many authors have proposed that a natural measure of ‘reproductive effort’ be
something like R/(adult mass), the fraction of a body mass devoted to reproduction per unit
of time; call this ratio C. Now C/E −1is a dimensionless benefit–cost ratio; the fraction of a
body mass given to reproduction per unit of adult death (E −1).

The life history shown in Fig. 1 is very (too) simple; neither R nor adult body mass
(m) change with adult age, which allows adult demography to be summarized in E. How-
ever, the life history points towards two dimensionless benefit–cost ratios (E/α, C/E −1) that
may be useful in classifying life histories among various species. For the scheme to be useful,
however, the two numbers must somehow apply to much more complex life histories.
Surprisingly, they do. However, they are not the only dimensionless numbers needed to
characterize life histories; at least three more are needed, as I now show.

GENERAL AGE-STRUCTURED LIFE HISTORIES

Understanding age-specific life histories can be difficult because life tables, body-size growth
rules and age- (size)-specific reproductive allocations add up to a pretty long and com-
plicated list. However, we can reduce this seeming complexity somewhat by calculating
averages over the age distribution (Charnov, 1997), and get even more reduction if we use

Fig. 1. A simple life history. Reproduction begins at age α and size m. R resources are given to
reproduction per unit of time and the average reproductive interval, the average adult life span, is
E. Two dimensionless benefit–cost ratios are defined for this life history. E/α is reproductive time
(E) over preparation time (α), and (R/m)/E −1 is the relative reproductive rate (R/m) over the mortality
rate (E −1).
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the averages to make up dimensionless variables (Charnov, 1993). Seven numbers, five of
them averages, neatly summarize any age-structured life history. They are:

(1) α = age-at-first-reproduction (equation 1).
(2) S = lα, where lx is the chance of surviving to age x (l0 = 1). We can rewrite this as:

S = e− ∫
α

0

Z(x)dx = e−Z̄̄ ·α (2)

where Z(x) is the instantaneous mortality rate at age x and Z̄̄ is the ‘average-immature-
instantaneous-mortality rate’. S is the average chance of breeding.

(3) I = size (mass) of an offspring at independence from the parent (equation 3).
(4) m = average adult body mass:

m =
�
∞

α
lx ·mxdx

�
∞

α
lxdx

(4)

(5) R = average reproductive allocation per unit of time:

R =
�
∞

α
lx·Rxdx

�
∞

α
lxdx

(5)

R and m can be related in an interesting way. Suppose Rx = Cx ·mx , so Cx is the repro-
ductive effort, the allocation (Rx) at age x as a fraction of the body size at that age (mx).
Define the average of Cx (=C) as follows:

C =
�
∞

α
lx·mx ·Cxdx

�
∞

α
lx·mxdx

so C = R/m (5a)

and we can choose any two of the three numbers to work with. We will use C and m.

(6) E = average adult life span:

E = ∫
∞

α

lx

S
dx (6)

(7) The final useful number (already dimensionless) is R0, the ‘net reproductive rate’, the
average number of daughters produced over a mother’s lifetime. Since here we wish to count
total offspring produced, we simply assume a 1 :1 primary sex ratio and multiply R0 by 2. If
bx is the number of daughters produced by an age x female,

2 ·R0 = 2 ∫
∞

α
lx ·bxdx = ∫

∞

α

lx Rx

I
dx =

S

I ∫
∞

α

lx ·Cx ·mx

S
dx
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Using equations (2), (4), (5a) and (6), 2R0 may be written as:

2R0 = (ēz̄ ·α) · [C ·E ] ·�m

I � (7)

SEVEN NUMBERS AND R0 ≈ 1

We have now reduced the age-specific life history to seven numbers, six of them with units
of time or mass:

R0 I, m 1/Z̄̄, C−1, E, α

{ { {

units: dimensionless mass time

We can further reduce the list by working only with dimensionless variables. There are four:
I/m, S, E/α, C ·E.

Note that R0 (equation 7) is itself a function of three of these numbers. Not all of the
three numbers in equation (7) can vary independently; R0 ≈ 1 in non-growing populations,
since a female just replaces herself with one daughter. This ‘non-growing population con-
straint’ means that equation (7) is held equal to ≈2 by density dependence (somewhere in
the life history), or

S(E ·C)

I/m
≈ 2 (8)

So, if we know two of the numbers, the value of the third is fixed. I suspect (Charnov,
1993) that S is the most likely candidate for density dependence and I suggest that the
comparative study of life histories across species should focus on the ‘allowed’ values for the
three dimensionless numbers E ·C, I/m and E/α. C ·E is the reproductive effort (C) per unit
of adult mortality (1/E). As discussed in the Introduction, E/α and C/E −1 are both repro-
ductive benefit–cost ratios, here defined for arbitrarily complex age-structured life histories.
So, what do E/α, C ·E (and I/m) look like across various taxa? Surprisingly, E/α and C ·E may
be invariants within some taxa (e.g. mammals, fish); I/m is sometimes an invariant.

VALUES FOR THE THREE NUMBERS: MAMMALS, BIRDS AND FISH

It has long been known that E is proportional to α within various taxa (for a summary, see
Charnov and Berrigan, 1990; Charnov, 1993): E/α ≈ 0.5 for fish, ≈ 2.25 for birds and ≈1.35
for mammals. I = m for altricial birds, which raise their offspring to adult size. I/m ≈ 0.3 for a
diverse sample of mammals (Charnov, 1993, fig. 5.4). Offspring size (egg size) appears to be
unrelated to adult size across species of fish, so I/m is clearly not an invariant for fish.
However, I/m ≈ a few percent, at most, for the majority of fish.
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Gunderson (1997) showed that C is proportional to E −1 in a large and diverse sample of
fish, so that C ·E ≈ 0.60; he used gonad mass per year over body mass as the estimate of C.
C ·E are probably invariants within birds and mammals as well, by the following calcula-
tion, which sets R0 ≈ 1 (Charnov et al., 2001). Figure 1.2 in Charnov (1993) shows that
S ≈ 0.2 for a wide variety of altricial birds. So a female bird raises 1/S = 5 daughters over her
lifetime; since each is her mass, C ·E ≈ 5. Here we assume her mate rears the five sons; if she
raises more than half the brood, C ·E > 5, so 5 is a minimum. Female mammals typically
rear both their sons and daughters, and S ≈ 0.3–0.4 (Charnov, 1993); 1/S ≈ 2.85 (if
S = 0.35), so a female rears twice this in sons and daughters, or C ·E = (2) (2.85) (0.3) ≈ 1.7,
since each offspring is 0.3 of the mother’s mass at independence. So, C ·E ≈ 0.6 for fish, ≈5
for birds and ≈1.7 for mammals.

R0 IS A FITNESS MEASURE

R0 plays two roles in understanding life histories in non-growing populations (Charnov,
1993, 1997). R0 ≈ 1 (equation 7 = 2) is a population dynamic constraint and implies that not
all aspects of demography are free to vary. We implicitly assume density dependence some-
where in the life history; usually, I assume it is in S, which is why the value of S is set after
the other dimensionless numbers in equation (7). R0 is also a measure of individual fitness
(Charnov, 1997); here the various parameters in equation (7) are linked by trade-offs
(Charnov, 1993, 1997, 2000, 2001a,b; Charnov et al., 2001). Here also enters α, the age of
first reproduction, since things like body size (m) depend upon α. The optimal life history
adjusts some life-history variables (i.e. α) in the face of trade-offs with others (we set ∂R0/∂
[somethings] = 0). If we wish to predict dimensionless numbers such as C ·E, E/α or I/m,
the resulting formulae can only contain other dimensionless numbers. If C ·E and E/α are
invariants across species, then it is likely that the dimensionless numbers that characterize the
trade-offs are also invariants. Thus, the dimensionless approach to life histories looks for
invariants in the outward life history (e.g. C ·E, E/α) and in the trade-offs that generate the set
of optimal life histories (Charnov, 1993, 2000, 2001a,b; Charnov et al., 2001).

It will be useful to illustrate this with a life-history evolution model for indeterminate
growers like fish (Charnov et al., 2001). Suppose (Fig. 2) body size growth follows some
particular function of body mass, mx, prior to the age (size) of first reproduction (α, mα)
when some constant fraction (C) of mx is then given to reproduction; the growth rate
follows the hatched area in Fig. 2. The average adult size (m, equation 4) will thus be a
function of α (mα), adult survivorship, and C. Suppose survivorship follows Fig. 3; Z(x)
is high at small x, but drops to some constant value (Z) prior to feasible ages of first
reproduction. The adult Z is assumed to be independent of C; these Z and C assumptions
are justified in Charnov et al. (2001). R0 (equation 7) may be written as:

R0 =
1

2
·e−�

α

0

Z(x)dx ·C ·m ·� 1

I ·Z� since E = 1/Z

logeR0 = loge � 1

2 · I ·Z� + logeC + logem − �
α

0
Z (x)dx

The optimal α (mα) and C are found by setting ∂logeR0/∂α = 0 and ∂logeR0/∂C = 0 (in
this procedure, we assume C ·mα takes on a value less than 100% of production (Fig. 2);
otherwise, growth will cease at age α and mα = m).
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0 =
∂logeR0

∂α
⇒

∂logem

∂α
= Z ⇒

1

Z
= E = �∂logem

∂α �
−1

0 =
∂logeR0

∂C
=

1

C
+

∂logem

∂C
⇒ C = −�∂logem

∂C �
−1

These equations allow us to solve for the optimal α (or mα) and C, and they summarize the
effects of α and C on the percent change on the average adult size, m.

We can easily write these conditions in terms of our two dimensionless benefit–cost ratios
(E/α, C/E −1):

E

α
= �1

α�





1
∂logem

∂α






= �∂logem

∂loge α�
−1

Fig. 2. A model for indeterminate growth. Before age α, growth follows the production relation (bold
line). After α, C ·mx of production is given to offspring, so growth rate is the hatched area. Thus the
average adult size, m (equation 4), depends on α, C and the adult mortality schedule.

Fig. 3. The mortality rate, Z(x), assumption. Early in life, Z(x) is high, but it drops to some constant
value (Z) prior to feasible ages of first reproduction. Z(x) is also assumed to be density dependent
early in life and Z(x) may go up late in life, due to senescence. Z(x) is also assumed to not change with
C, the reproductive allocation.
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C ·E = �∂logem

∂α �
−1

·�∂logem

∂C �
−1

If E/α and C ·E are to be invariants across absolute magnitudes in (say) fish, the underlying
similarities are in how α and C impact relative growth rate in terms of the average adult size,
m. Charnov et al. (2001) discuss a specific, and plausible, growth model (dmi/dt) that yields
invariant E/α and C ·E values of the fish magnitude (E/α ≈ 0.5, C ·E ≈ 0.6).

OPTIMAL SIZE OF AN OFFSPRING AND C·E

I suspect that I/m is the least invariant number within taxa (excepting altricial birds) because
optimal offspring size is often independent of the total resource to be divided up among
offspring (Smith and Fretwell, 1974; Charnov and Downhower, 1995) and more dependent
upon the survival/growth environment for the offspring, an environment that may be rather
unlike that of the adult.

The classic model for optimal offspring size is that of Smith and Fretwell (1974). S is
considered to be a function of I as in Fig. 4, and the optimal I (= I*) is where ∂S/∂I =
S/I. This model is easily extended to include a density-dependent component to S (Charnov,
1993: 107; 1997) with the same result; after all, the I* is not affected by any multiplier of the
S(I) function. Return to equation (7) and rewrite it as:

S

I
= � 2R0

C ·E� ·m−1

Set R0 ≈ 1 and assume I* is the offspring size; then:

∂S

∂I*
= � 2

C ·E� ·m−1

The slope of the trade-offs function, S(I) at I*, is predicted to be inversely proportional
to the average adult body mass (m) among species with the same C ·E value; indeed, 2/C ·E
is the proportionality constant. This extends a result first hinted at in Charnov (2001b)
and links the C ·E number to the classic Smith–Fretwell idea. Since C ·E ≈ 0.6 for fish
and ≈1.7 for mammals, ∂S/∂I ≈ 3.3 m−1 for fish and ≈1.2 m−1 for mammals (predicted).
These ∂S/∂I predictions have yet to be tested for any animals (Charnov, 2001b). Note that
S/I is itself a benefit (S)/cost (I) ratio: S survival per offspring achieved at a cost of I
resources per offspring. Note that, at a fixed body mass (m), fish, with tiny eggs, are pre-
dicted to be almost three times (3.3/1.2) more efficient at offspring production (S/I, ∂S/∂I)
than mammals with I/m ≈ 0.3. S/I and R/E −1 were introduced earlier (Charnov, 2001b) as
useful dimensional benefit–cost ratios.

DISCUSSION

Consider Fig. 5, where life histories are represented in an cube with edges C ·E, E/α and I/m;
I have placed fish, mammals and altricial birds in their approximate locations, and the birds
define the present limits of the C ·E and E/α values. This visualization immediately suggests
a series of questions: Are large parts of the cube unoccupied? Are only certain locations
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occupied, or is the occupied region a nearly one- or two-dimensional object? Why? One
constraint here is that S is probably held < about 0.5, so R0 ≈ 1 places restrictions on I/m and
C ·E (equation 8). And then there are more specific questions: Where are bats, mammals
with I/m ≈ 1? Or, where are precocial birds, which have I/m very small? Where are vascular

Fig. 4. Survival of an offspring to adulthood (S) increases with the resources invested in the offspring
(I). The optimal offspring size is I*, where a ray from the origin is just tangent to the trade-off curve
(∂y/∂x = y/x).

Fig. 5. The life-history cube. The dimensionless axes are (1) relative size of an offspring (I/m),
(2) reproductive effort (C) per unit of adult mortality (E −1), and (3) reproductive life span (E) over
time to reach adulthood (α). Altricial birds, mammals and fish are placed in their approximate
locations.
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plants, which have tiny I/m, but also may have density dependence throughout the life
history (and how do we accommodate asexual reproduction or even hermaphroditism as
opposed to dioecy)? And, finally, there are questions that relax the invariance notion of C ·E
or E/α; many, if not most, aspects of life history are somewhat plastic (e.g. norms of
reaction for age/size at maturity; Stearns, 1992). Do plastic responses move life histories
within a taxon all over the cube, or are the responses themselves confined to certain regions
of the cube?

This classification scheme for life histories differs from those such as ‘r- and K-selection’
or the ‘triangular-life-history-continuum’ (both discussed in Pianka, 2000: 186–187) in that
these other schemes invariably use axes with dimensional magnitudes such as time or mass.
Elephants and squirrels are at opposite poles in these schemes, and the suggestion is made
that natural selection operates in fundamentally different ways when we contrast them
(opportunistic vs equilibrium, for example; many more contrasts are discussed in Pianka,
2000). But when we remove absolute magnitude for time and mass, squirrels and elephants
look a lot alike, and look different from fish or altricial birds. Selection may well operate
similarly on squirrel and elephant life histories in the sense that R0 is fitness and the trade-
offs have the same dimensionless features. My working hypothesis (Charnov, 1993, 2000,
2001a; Charnov et al., 2001) is that the trade-off features are the same within (say) altricial
birds, mammals or indeterminate growers like fish, with major differences between these
groups; the ‘differences between’ generate the distribution shown in Fig. 5.

I assume non-growing populations (i.e. R0 ≈ 1) but, if one wishes, the scheme could be
extended to growing populations; here the stable age distribution plays the probability
density role that the lx schedule plays for the non-growing case, and the intrinsic rate of
increase, with units of 1/time, is an additional necessary number (Charnov, 1993: 137).
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