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Abstract

We present a navigation function through which a group of mobile agents can be coordinated to achieve a par-
ticular formation, both in terms of shape and orientation, while avoiding collisions between themselves and with
obstacles in the environment. Convergence is global and complete, subject to the constraints of the navigation
function methodology. Algebraic graph theoretic properties associated with the interconnection graph are shown
to affect the shape of the navigation function. The approach is centralized but the potential function is constructed
in a way that facilitates complete decentralization. The strategy presented will also serve as a point of reference
and comparison in quantifying the cost of decentralization in terms of performance.
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1 Introduction

In the recent years the problem of collision free navigation of multiple agents to achieve a desired formation has
attracted considerable attention. The basic motivation arises from the fact that multi agent navigation, forms an
integral part of the systems which require coordination to achieve a certain task. There is a lot of work in the area
of formation control for multi-agent systems [7, 14, 10, 5, 18], with applications in the field of networked UAVs,
aircraft formations, satellite clusters, etc. Occasionally, formation control is linked to motion planning, obstacle
avoidance and navigation.

There are primarily two ways to address the problem of motion planning for a team of mobile agents. The
problem has been addressed in the past with centralized navigation scheme by a number of groups [1, 2, 8]. In
the centralized architecture there is single control law and the collision free trajectories are constructed in the
composite configuration space. A similar idea has been exploited in [4], where the formation objectives and
constraints have been encoded in a Formation function. In paper [8], a centralized cooperative control strategy
using an artificial potential function is presented for a planar world.

The centralized approach involves computational complexity and is based on the premises that agent state
information can always be communicated infinitely fast, but it guarantees completeness of solution. In order to
allow the control architecture to scale nicely with the size of the group, decentralized solutions are alternatively
sought. These typically involve the combined effect of individual, agent-based local potential fields [3, 6, 13, 17]
Obstacle avoidance in a moving formation using potential field based [15, 13, 3], and reactive or optimal control
approaches [9] have also been addressed.

The problem with current decentralized motion planning and formation control schemes stems from the in-
ability to predict and control the critical points of the combined, resultant potential field. This has always been the
case with conventional potential field strategies. In a seminal paper [12], Rimon and Koditschek introduced the
navigation function methodology and offered the first formal solution to the problem of local minima in potential
field motion planning. Navigation functions are smooth real valued maps realized through suitably chosen scalar
valued cost functions. Integrating the negated gradient vector field of the cost function automatically gives rise to
trajectories that guarantee collision free motion and convergence to the destination from almost all initial condi-
tions. A set of measure zero including a number of critical points has to be excluded, but it has been shown [11]
that this is the best that can be done in such situations. The only decentralized approach which can guarantee con-
vergence is the one described in [3], however, decentralization is limited in the sense that each agent essentially
carries a copy of the centralized scheme, requiring full knowledge of the system and environment state.

In this paper we construct a formation constraint function which is also a navigation function, while taking
special care to facilitate complete subsequent decentralization. The use of this navigation function guarantees that
no agent will collide with environment obstacles or other agents and that the desired formation (both in terms of
shape as well as orientation) will be achieved asymptotically. Having a provably correct centralized coordination
scheme will not only lead us to decentralized solutions, but also provide a point of reference and comparison in
order to quantify the cost of decentralization in terms of performance. An interesting feature in our analysis is
that the topology of the interconnection graph —specifically its algebraic properties, as expressed by the Laplacian
and Incidence matrices— finds its way into the tuning parameters of the potential field.

The rest of the paper is organised as follows. In Section 2 we present the problem statement and a brief
review of the formation graph theory. In Section 3 we define the formation navigation function and discuss the
construction of the goal function and the obstacle function. Section 4 we show that the potential function we have
presented is indeed a navigation function. Section 5 we present the simulation results for triangular formation
case. Finally in Section 6, we conclude the paper listing the issues for further work.
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2 Problem Formulation

We consider a homogeneous group of mobile agents, each with dynamics given by

qi = Ui, qiERnai:L"wN (l)

where ¢g; and u; are the state and control input of agent i, respectively. In the remaining, g and u will denote the
stack vectors of ¢; and u;. The agents are treated as autonomous point-robots.

The objective here is to construct a potential field that will enable the Nagents to stabilize with respect to their
groupmates in configurations that make a particular formation, while avoiding collisions between themselves and
with obstacles in the environment. The desired formation is specified in terms of a labeled directed graph.

Definition 2.1 (Formation graph). The formation graph, G = {V,E, L}, is a directed labeled graph consisting
of:
a set of vertices (nodes), V = {vy,...,vy}, indexed by the mobile agents in the group,

a set of edges, E = {(v;,v;j) € V x V3, containing ordered pairs of nodes that represent inter-agent position
constraints, and

2 cij €R", (vi,vj) € E}, indexed by the edges in ‘E.

a set of labels, L = {y;j | Yij = HCIi —qj —Cij|

We will use forms from algebraic graph theory to rewrite our ¥;; in terms of a brief review that follows

An orientation in a graph is the assignment of a direction to each edge, so that each edge e;; = (v;,v;) is an arc
from vertex i to vertex j. We denote by G°, the graph G with G orientation. The incidence matrix of a directed
graph G ={V,E,L},isais a V x E matrix B(G®) = (b;;) such that, b;; = —1 if edge j leaves vertex j, b;; = 1
if edge j enters vertex j and zero otherwise.

The Laplacian of G is the symmetric matrix defined as L(G) = B(G°)B(G®°)7, and it is independent of the
orientation 6. The Laplacian matrix captures many topological properties of the graph. L is a positive semi-
definite matrix and for a connected graph L has a single zero eigenvalue.

Throughout the paper, the use of the Euclidian norm is implied, i.e. ||-|| = ||-||,. Specifying the formation
constraints as edge labels in the form

HCIi—CIj—CinZ =0, V(vivj)€E,

not only specifies inter-agent distances, but also their relative orientation. The workspace W = {q | ||¢|| < R} C
R", common for all agents, is assumed to be populated by a set of disjoint configurations p;, j = 1,...,s that
represent point-obstacles. The assumption that both the robots as well as the obstacles are represented by points
is not as restrictive as it may seem, since it has been shown [16] that a large class of shapes can be mapped to
single points through a series of transformations; this “point-world” topology can be regarded as a degenerate
case of the “sphere-world” topology of Rimon and Koditchek [12].

The potential function, @(g), has to be constructed so that setting the agent control inputs equal to its (scaled)
negated gradient:
u=—Kve(q),

gives rise to a closed loop system in which trajectories from all initial conditions (except for a set of measure
zero) are collision free and converge to configurations corresponding to the desired formation.

3 Formation Navigation Function

Requiring (almost) global convergence to a desired equilibrium, suggests navigation functions as a natural design
choice. In its original form [12], a navigation function @(q) is defined on a compact connected analytic manifold
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with boundary, F C R", in the interior of which there is a destination point g,. The navigation function is a map
¢:F—[0,1]ifitis:

1. smooth on F (at least a C?) function);

2. polar on F, (g4 is a unique minimum);

3. admissible on F, (uniformly maximal on dF);

4. a Morse function, (its critical points are nondegenerate).

Our navigation function does not conform strictly to the above definition, since we have relaxed the admissi-

bility requirement. This relaxation does not affect the convergence properties but rather produces a potential field
with nonuniform norm on dF. The proposed function has the following form:

A Ya(q)

2
B’ @

9(q)
where

- Ya(q) : F — Ry is a positive semi-definite scalar function, assuming the value of zero only when g = g,.

- B(g) : F — [0, 1] function that vanishes only when agents are in contact with the obstacles or with one
another.

- k is a (positive) tuning parameter.

In the remaining of this section we will describe how one can construct a function in the form of (2), in a way that
facilitates decentralization. In the approach that we follow, components of y; and P that involve the coordinates
of agent i, should not be affected by “events” that happen outside of its local neighborhood.

3.1 v,;: the Goal Function

Function y; encodes the control objective: converging to the destination configuration g,. This configuration
corresponds to a desired formation, as defined by all the labels of the formation graph being set to zero. With that

in mind, a reasonable choice for 7y, is
|Z|
Ya(q) £ Y Vij(4i,q))- 3)
i=1
The reasoning behind this definition is that a sum of terms involving neighboring agents in the numerator of (2)
will be easier to decompose into agent-specific individual potentials.

3.2 : the Obstacle Function

The definition of 3 is partially inspired by our previous work. In the original work of Rimon and Koditschek [12],
B is made up as a product of several “obstacle functions”, B(¢) = [1B;, where each B, is vanishing whenever the
system came into contact with one of the obstacles in the environment. In this case, collisions can occur not only
between an agent and an obstacle, but between agents as well. For all possible combinations of an obstacle at p,
and agenti = 1,...,N, we define a function

sign(|g;—pt || —d)+1
2

i— 27d2 2
(lgi = pll" =d?)* +1
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wherei=1,...,N,t=1,...,s and d is a parameter chosen so that ; is smooth:
1+a*
A= — )

The workspace boundary is seen as an obstacle, (labeled 0) and is being modelled in a similar way:

sign(||g; || —-R+d)+1

o <1—x R g~ &P ) 2
R a7+ 1

Similarly, for every pair i, j € {1,...,N} we can have:

5 sign(||ql-—qu—d)+l

N | ER VAV 2

bi,-é<1_x (la: e, =% ) . (©)
(lg: = al|” = a?)> +1

These are functions that vary in [0,1] and attain their maximum value whenever the distances Hq,- —q /H or

Figure 1: Obstacle functions are constant outside a certain “sensing” region.

Hqi —pj H are larger than d. In this way, the effect of the presence of obstacles and other agents on the motion of
an agent will remain “local”, within a region of radius d (Figure 1).

Then, the net effect of all obstacles and neighboring distances is captured in (g):

Blg) = []Bu][bij» ije{l,....N}, k=0,....s.
ik i

4 Proof of Correctness

In this section we will formally show that the function (2), constructed in Section 3 is indeed a navigation function
—with the exception of the admissibility property. Let F = W \ {pi,...,ps} denote the space remaining after
removing all the obstacle points. We define B;(€) = {g | 0 < B; < €,€ > 0}. In the following, F is partitioned into
five subsets:

1. the destination set, F; = {q | v4(q) = 0}
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2. the free space boundary, dF = B~1(0);
3. the set “near the obstacles”, Fy(g) = Ufi(‘)f‘ Bi(e) \ Fy;
4. the set “near the workspace boundary”, Fy(€) = By(g) \ (FyUFy(g));

5. the set "away from the obstacle”, F>(g) £ F \ (F; UOF U Fy(e) UF (g)).

We follow the steps in [1 1] to establish the convergence properties of the potential field. These are formally
stated in Propositions 4.2, 4.3, 4.4, 4.5, and 4.6. Since the desired formation can be achieved everywhere in
the free space, Proposition 4.2 cannot formally ensure that the goal configuration is a nondegenerate critical
point of the navigation function; however, it can be shown that it is indeed nondegenerate if we think of the
formation graph edge labels as configuration variables. Proposition 4.3 shows that there are no critical point on
the boundary of the workspace, and then Proposition 4.4 ensures that we can push all critical points near the
obstacles by selecting an appropriate k. Proposition 4.5 guarantees that with appropriate tuning, these critical
points will not be local minima; in fact Proposition 4.6 will not only show that the navigation function is a Morse
function but will also ensure that the critical points are saddles. We will also make use of the following Lemma
from [11]:

Lemma 4.1 ([11]). Let v, 8 be at least twice differentiable, and define p = ‘g’ At a critical point c of p,
1
V3| = 5[8VPv—vV3g],
c O

Proposition 4.2. The projection of ¢ on the orthogonal complement of F; has a nondegenerate local minimum
at the origin.

Proof. We define new configuration variables, which are linked to the formation graph labels: vec(w) £ (B®
I)vec(q) — ¢, where B is the incidence matrix of the formation graph, I is the identity matrix of appropriate
dimensions and c is the stack vector of label constants c¢;;. The destination g4 is mapped to origin of the new
configuration variable w, so that V2y; = 2I. Now the general expression of the gradient of @ is

1

Vi — 1BIVB]. ™

from which we get that differentiating with respect to w and evaluating at the origin, V,,¢

o =0. Using Lemma4.1,
the Hessian of ¢, will be
1
2

Voo = 5 [eﬁl/kszd - Yde@Bl/k] (8

Considering the derivatives in terms of w and since both y; and V,y; vanish at g, we will have V%V(plo = ﬁﬂ ,
e
which implies that w = 0 is a nondegenerate minimum of @(w). O

Proposition 4.3. All critical points of ¢ are in F;.
Proof. Consider a point g close to the obstacle boundary. Then, as go — JF, meaning that § — 0, and in view

of (7), Vo(qo) — —ﬁ%’ﬁl/"*VB. Since OF is given as the set where = 0, then V@ 50 will be normal to

the surface and —V @ will point towards the interior of F. O

Proposition 4.4. For all € > 0, there is a lower bound for k| for which all critical points are in F (€).
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Proof. From (7), for critical points ¢ # qq,

_ 2 [|VBI|
-k _ Yal VBl ©)
P IVl

The right hand side remains bounded, since we can see that with B;; defined as in (4), we have

g ), (10)

Vi = ——
qut (1+Zt2t)2 q

where z;; = ||gi — ps ||2 —d?, and thus VP is always bounded in F. By increasing k, the left hand side increases
and the only way to compensate for that increase is for B to decrease. Thus, for every € > 0, picking

YdVB|}
IVyall ]’

ensures that the critical point is within Fj (€). O

1
k>k & — sup{
e

Proposition 4.5. There exists an €y > 0 such that ¢ has no local minimum in Fy(€), as long as € < €.

Proof. We will show that at every critical point, the Hessian of ¢ has at least one negative eigenvalue. Manipu-
lating (8) we obtain

pU—k)/k

V| = T BV (k- 1 - BYY) S VBVRT — V). (1D

o k(eBY) kB
Without loss of generality, we select B;, 7 € {1,...,s} as the obstacle function that attains the smallest value (the
case where this function is a b;; for some i,j = 1,...,N can be treated identically) and break 3 as B = BB,

where B; = & Denoting (A), the symmetric part of a matrix A,

(1—k)/k k—1— 1/k _ _ _ _
B (kv WP (o, vt op, B (B, VB,

Vip| =
?l. k(eB'*) kB

+ BiszBiVBg] —YalBit V*Bir +2(VBit VB )s + Bir V2B }

Defining $ £ ( |I§Et8\\ )+, and taking the quadratic form:

k(eBl/k)
B(1-k)/k

9T (V2)0 = 37 kB /A2y — By V2 Bi] 90" [(k— 1 = B'/%) Z%B?VBWM —YaPie Vil

A

The second term on the right hand side can be made arbitrarily small by decreasing € (€ > B;;), so for the above
to be negative the first term, (A), should be strictly negative. From (9) we have,

k=1 _ _
kBT V3 —YaBit VB = Ya [\l\lvvylz,‘h Vi — Bitvzﬁi:|

=A< VdﬁT [SuP{ |‘|‘vqulh }Vz'Yd - Bilszit} v

2(1+a*)
B(1+d2)? Bir

= a9 [sup { o} V>t —Bi 5. (12)

A straightforward derivation of V2P, yields

—2Azis M3z —1) | |
{W}Vz(z”” {ngﬁ}vqu&nﬂ
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With B; — 0, we will have g; — p;, and given (5),

2(1+4d%)

ilg(l)qui’ - d3(1 +d2)2 Bir -

where Hp, = 2(LY @1, (alternatively Hy,; = 2(I% @1)), L being the Laplacian of G, and with (-)) used to
denote the matrix obtained by setting all elements of a given matrix to zero, except for those in the i row and
column. Matrix Hp, is essentially Vg(z,-,). Using Kronecker product and the incidence matrix(B), Y, can be
written as

v = (@B =) ((Behg—c)
= ¢"BanN"(Bahg—2q¢" (B c+2c°
g (Lol)g—2q" (B c+2c2

We use the following property of Kronecker product to evaluate ngd

BN (BoI)=B'oI)(BoI)=(B'B)oI=LoI

Ve = 2(Lehg—2B20) ¢
Writing ¥; = (¢7 (B I)T —cT)((B®1)q — ¢) it follows that V>y; = 2(L®1) and (12) implies

1+a%)
14+d2)?2 )"

18] y 5.2
A2 (NS“P{ vt —Pig
which can be made strictly negative by choosing d < d; sufficiently small.

W—a—lr ¢ o Voupe (vt}
28 ’

The following choice of € < €y guarantees a negative eigenvalue for (8):

=

inf; g, (e) Bir

[ (k—1) supF{A(V['sj,ng)}
N kinft.B;(S()) Bi{

+ supp A(V*Bir)] supg Ya

%0 A(d)

where A(-) denotes the largest eigenvalue of a matrix. O

Proposition 4.6. There exists an €1 > 0 such that if € < €1, all critical points are nondegenerate.

Proof. Just as in [11], it suffices to show that @’ (V2@)m, with ® = |I§l§i 7 can be made positive by choosing €
sufficiently small. Using (11), we have

k(P

1-k
k

o (V2g)o = o' kBT V2 ]o+y.0” [(klﬁk) VRVRT —V?B| o
——— —

kB
n

Recalling that Vf]yd =2(L®1I) and that L is positive semidefinite,

keBl/k

1—k

YaP

k=1 =Pt gpypr —Vzﬁl ®

@
LB w02 o (P

o' Voo > o’
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Without loss of generality, we assume that we are in B;, C Fy and we write (Vp, ®)? = <V(Bit[3i,)7co)2. Then, with
some algebraic manipulation, I" becomes:

(k=1-BOBi, o= o 2(1+BF) o (k—1-BHBa
T(m,VBitﬂ_ TWB#,VB,}) T VB2 — B’ V2B — P e’ V2Bio.
In the above, the first term is nonnegative, so
o (BB g, 2 20580 9p, vp,) 07 ViR B ViR
:é [_M(B”)z _ (%<VB:[,VB”> + th(’) \% B;z(!)) Bir + (kBB)B” VBl ]

In the above, the term inside the square brackets is a second order polynomial in B;: —ai(Bi)* — a2Bi + as.

Having a3 > 0 for k > 2, and assuming first that a; > 0, the polynomial has two real roots and is positive
_ \/a?+4,

whenever Bir < WTTZJ“”

Bir > ‘ Selectlng

. On the other hand, if a; <0, then I"' > —ap + % which is positive whenever

fa2+g/a%+4a1 as

8<81ém1n 2—[117@ 5

ensures that the quadratic form will be positive. O

Having shown so far that the only critical points of ¢ (besides the destination) are inside Fp, and that these
points are not minima, we complete this section with the following Proposition:

Together, Propositions 4.2 — 4.6 ensure that (2) has navigation function properties, which means that the flows
of (1) approach g, asymptotically from almost every initial condition, (except for a set of measure zero which
includes the critical points).

5 Simulation Results

Example of a triangular formation

We verify the case of three mobile robots moving in the planar world. The robots start from some initial
position and move towards achieving a triangular formation while avoiding collision with obstacles and with
each other.

Consider three robots each represented by configuration ¢;, for i = 1,2,3 and ¢; = (x;,y;). Relative po-
sition vector between agents i and j is denoted by ¢;; = g; — ¢; and the configuration space is spanned by

q=lai a4 4"
Digraph G ={V,E, L}, where ¥ = {1,2,3} and E = {(1,3),(3,2),(2,1)}

The constraint imposed on each edge is defined as follows,

Y3 = (—x1—c1)*+ -y —c)?
Y = (-x-c)*+(m—y3—c)’
o1 = (x1—x2—cs5)?+ (y1 —y2—ce)?
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where ¢;, for i = 1,2...6 are constants. So, the formation constraint function 7y, is given by

Ya = Y13+ V32 + Y21 (13)
Incidence Matrix(B) of the above graph is given by
-1 0 1
B=| 0 1 -1 (14)
1 -1 0
Laplacian L = B'B
2 -1 -1
L=| -1 2 -1 (15)
-1 -1 2

Therefore,

2 0 -1 0 -1 0
o 2 0 -1 0 -1
-1 0
0 -1
-1 0 -1 0 2 O
0 2

Vi = (16)

In the simulation cases, we have coordinated a group of three mobile agents into forming a equilateral triangle,
pointing north. The environment is populated with 25 stationary point-obstacles, forming a IT configuration. The
agents start at initial configurations denoted 1’,2’, and 3’ and reach their final configuration denoted by 1, 2, and
3 in Figure 2. The agents start from initial positions away (north-east) from the IT obstacle configuration and
therefore stationary obstacle avoidance is not an issue here (in Figure 2 two of the obstacles in the upper right
hand corner of the IT configuration are visible). What we want to test is the ability of the agents to avoid each
other while trying to achieve the desired formation.

In the second case, we initially position one of the agents inside the IT obstacle configuration. Again, the
starting positions are denoted 1’, 2/, and 3’ and converge to 1, 2, and 3 in Figure 3. In this case we are testing not
only the ability of the robots to form the desired triangle, but also their obstacle avoidance capabilities.

6 Conclusions

We have presented a navigation function that can be used for centralized multi-agent navigation and coordination.
The potential field produced by this function ensures almost global asymptotic convergence of the agents to a
particular oriented formation shape, while guaranteeing collision avoidance in the process. Formal analysis of the
navigation function presented, shows that the topology of the interconnections in the multi-agent group affects its
motion planning capabilities. This scheme is thought to be the first step towards constructing a provably correct
and globally convergent decentralized scheme, and assessing the cost of decentralization in terms of performance.
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Figure 3: Simultaneous obstacle avoidance and formation stabilization.
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