2021

Sex-specific anti-allodynic mechanisms of Cav3.3 T-type calcium channels in trigeminal neuropathic pain

Aleyah Goins
Marena Montera
Mitra Afaghpour-Becklund
Sabrina McIlwrath
Karin Westlund-High

See next page for additional authors

Follow this and additional works at: https://digitalrepository.unm.edu/hsc-bbhrd
Authors
Aleyah Goins, Marena Montera, Mitra Afaghpour-Becklund, Sabrina McIlwraith, Karin Westlund-High, and Sascha Alles
Sex-specific anti-allodynic mechanisms of Cav3.3 T-type calcium channels in trigeminal neuropathic pain

Background

T-type Ca2+ channels mediate neuronal excitability in chronic pain states. However, the roles of the Cav3.3 subtype of T-type channel in chronic pain, especially trigeminal neuropathic pain (TG NP) are understudied. Previously, we found that administration of a highly specific TAT-C3P Cav3.3 peptide reverses allodynia in our model of TG NP. The mechanism of action of TAT-C3P involves reducing Cav3.3 expression, hyperpolarizing resting membrane potential, reducing firing frequency and incidence of spontaneous firing in TG neurons. Anti-allodynic effectiveness of Cav3.3 blockade was stronger in females compared to male TG NP mice. These differences in effectiveness may be explained by a stronger reduction of Cav3.3 expression and a significant hyperpolarization of RMP in female TG neurons. Further work is required to elucidate the basis of these sex differences and develop Cav3.3-targeting therapeutics for chronic pain.

Cellular mechanisms of Cav3.3 in FRICT-ION mice

Figure 1. Model of mouse skull. Blue indicates where a 5mm inserted piece of chronic pain model was used that causes friction against the trigeminal nerve. All mice had chronic pain induced for at least 3 weeks.

Figure 2. von Frey behavioral test for mechanical allodynia.

Figure 3. Western blot of female and male TG tissue with Cav3.3 blocking peptide TAT-C3P (Control) or TAT-C3P (Treatment). Females showed a greater decrease in signal intensity than males, which may explain why TAT-C3P has greater efficacy in females. Normalized ratio of intensity also showed females had lower levels of Cav3.3 protein than males.

Figure 4. Resting Membrane Potential was hyperpolarized under Treated (n=25) compared to Control (n=21) conditions in females only. This indicates a mechanism of increased effectiveness of TAT-C3P in females, as supported by the behavioral data. Current clamp traces are shown for stepwise current injections from -100 to +190 pA.

Figure 5. Effect of Cav3.3 blockade on other intrinsic electrophysiological properties of TG neurons in male and female FRICT-ION mice. No significant effects on rheobase, input resistance or AP half-width were observed between treated and control conditions.

Conclusions

- Cav3.3 blockade with TAT-C3P reverses allodynia in male and female chronic FRICT-ION mice but appears to be more effective in female mice.
- These effects are partially explained by a greater reduction of Cav3.3 levels in female than male mice and significant hyperpolarization of RMP in TG neurons from female mice, but not male mice.
- AP firing frequency was reduced in TG NP neurons from both male and female mice.
- Incidence of spontaneous activity of TG neurons was reduced by Cav3.3 blockade similarly in both male and female mice.

Future Directions

- Further f-I analyses is pending.
- We will be performing further immunohistochemistry studies of TG neurons to determine the role of specific cell types in the periphery.
- We will be using the FASTRAP system to elucidate the central mechanisms in the mediolateral dorsal horn of Cav3.3 blockade in male and female TG NP mice.
- Further work is required to elucidate the basis of these sex differences and develop Cav3.3-targeting therapeutics for chronic pain.

References