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Abstract

A common statistical problem is that of finding the median element in a set of data. This paper presents an effi-
cient randomized high-level parallel algorithms for finding the median given a set of elements distributed across
a parallel machine. In fact, our algorithm solves the general selection problem that requires the determination of
the element of rankk, for an arbitrarily given integerk.

Our general framework is an SPMD distributed memory programming model that is enhanced by a set of com-
munication primitives. We use efficient techniques for distributing and coalescing data as well as efficient combi-
nations of task and data parallelism. The algorithms have been coded in the message passing standard MPI, and
our experimental results from the IBM SP-2 illustrate the scalability and efficiency of our algorithm and improve
upon all the related experimental results known to the authors.
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1 Introduction

Given a set of dataX with jXj = n, the selection problem requires the determination of the element with rankk

(that is, thekth smallest element), for an arbitrarily given integerk. Median finding is a special case of selection
with k = n

2. In previous work, we have designed deterministic and efficient parallel algorithms for the selection
problem on current parallel machines [5, 6, 3]. In this paper, we discuss a new UltraFast Randomized algorithm
for the selection problem which, unlike previous research (for example, [11, 12, 15, 8, 14, 13, 16, 19, 18, 17]),
is not dependent on network topology or limited to the PRAM model which does not assign a realistic cost for
communication. In addition, our randomized algorithm improves upon previous implementations on current par-
allel platforms, for example, Al-Furaih et al. [2] implement both our deterministic algorithm and the randomized
algorithms due to Rajasekaran et al. [15, 13] on the TMC CM-5.

The main contributions of this paper are

1. New techniques for speeding the performance of certain randomized algorithms, such as selection, which
are efficient with likely probability.

2. A new, practical randomized selection algorithm (UltraFast) with significantly improved convergence.

The remainder of this paper is organized as follows. Both our new and Rajasekaran’s randomized selection
algorithms are detailed in Section 2, followed by analysis and experimental results in Section 3. Additional
information on Chernoff Bounds is located in Appendix A. More extensive statistics from our experiments are
reported in [4].

2 Parallel Selection

The selection algorithm for rankk assumes that input dataX of sizen is initially distributed evenly across thep
processors, such that each processor holdsn

p elements. Note that median finding is a special case of the selection
problem wherek is equal todn

2e. The output, namely the element fromX with rank k, is returned on each
processor.

The randomized selection algorithm locates the element of rankk by pruning the set of candidate elements
using the following iterative procedure. Twosplitter elements(k1;k2) are chosen which partition the input into
three groups,G0;G1; andG2, such that each element inG0 is less thank1, each element inG1 lies in [k1;k2],
and each inG2 is greater thank2. The desire is to have the middle groupG1 much smaller than the outer two
groups(jG1j � jG0j; jG2j) with theconditionthat the selection index lies within this middle group. The process
is repeated iteratively on the group holding the selection index until the size of the group is “small enough,”
whereby the remaining elements are gathered onto a single processor and the problem is solved sequentially.

The key to this approach is choosing splittersk1 andk2 which minimize the size of the middle group while
maximizing the probability of theconditionthat the selection index lies within this group. Splitters are chosen
from a random sample of the input, by finding a pair of elements of certain rank in the sample (see Section 3).
The algorithm of Rajasekaran and Reif [15, 13] takes a conservative approach which guarantees the condition
with high probability. We have discovered a more aggressive technique for pruning the input space by choosing
splitters closer together in the sample while holding the condition with likely probability. In practice, the condition
almost always holds, and in the event of a failure, new splitters are chosen from the sample with a greater spread
of ranks until the condition is satisfied.

In addition, we improve upon previous algorithms in the following ways.

1. Stopping Criterion . For utmost performance, current parallel machines typically require a coarse gran-
ularity, the measure of problem size per node, because communication is typically an order of magnitude
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slower than local computation. In addition, machine configurations tend to be small to moderate in terms
of number of processors (p). Thus, a stopping criterion of problem size< p2 is much too fine grained for
current machines, and we suggest, for instance, a stopping size of max(p2;4096). When p is small and
n= O

�
p2
�
, a second practical reason for increasing the stopping size is that the sample is very limited and

might not yield splitters which further partition the input.

2. Aggressive Convergence. As outlined in Section 3, our algorithm converges roughly twice as fast as the
best known previous algorithm.

3. Algorithmic Reduction . At each iteration, we use “selection” to choose the splitters instead of sorting, a
computationally harder problem.

4. Communication Aggregation. Similar collective communication steps are merged into a single operation.
For instance, instead of calling theCombineprimitive twice to find the size of groupsG0 andG1 (jG2j can
be calculated from this information and the problem size), we aggregate these operations into a single step.

Next we outline our new UltraFast Randomized Selection Algorithm, followed by the Fast Randomized algo-
rithm.

2
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2.1 UltraFast Randomized Selection Algorithm

An SPMD algorithm on each processorPi :

Algorithm 1 UltraFast Randomized Selection Algorithm

Input:

f n g - Total number of elements
f p g - Total number of processors, labeled from 0 top�1
f Li g - List of elements on processorPi , wherejLi j= n

p

fC g - A constant�max(p2;4096)
f ε g - logn of the sample size (e.g. 0:6)
f ∆� g - selection coefficient (e.g. 1:0)
f κ g - selection coefficient multiplier (e.g. 2:25)
rank - desired rank among the elements

begin
Step 0.Setni =

n
p.

While (n>C)

Step 1.Collect a sampleSi from Li by pickingni
nε

n elements at random onPi .
Step 2.S= Gather(Si ; p).
Setz= TRUE and∆ = ∆�.
While (z� TRUE)

OnP0

Step 3.Selectk1, k2 from Swith ranks
j

ijSj
n �∆

pjSj
k

and
j

ijSj
n +∆

pjSj
k
.

Step 4.Broadcastk1 andk2.
Step 5. PartitionLi into < k1 and[k1;k2], and> k2, to give countsless, middle, (andhigh). Only
save the elements which lie in the middle partition.
Step 6.cless= Combine(less;+); cmid = Combine(middle;+);
Step 7.If (rank2 (cless; cless+cmid] )

n= cmid ; ni = middle ; rank= rank�cless ; z= FALSE
Else

OnP0: ∆ = κ �∆
Endif

Endwhile
Endwhile
Step 8.L = Gather(Li).
Step 9.On P0

Perform sequential selection to find elementq of rank in L;
result= Broadcast(q).

end
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2.2 Fast Randomized Selection Algorithm

This algorithm is due to Rajasekaran and Reif [15, 13], and implemented by Al-furaih et al. [2].

An SPMD algorithm on each processorPi :

Algorithm 2 Fast Randomized Selection Algorithm

Input:

f n g - Total number of elements
f p g - Total number of processors, labeled from 0 top�1
f Li g - List of elements on processorPi , wherejLi j= n

p
f ε g - logn of the sample size (e.g. 0:6)
rank - desired rank among the elements
l = 0 ; r = n

p �1

begin
while (n> p2)

Step 0.Setni = r� l +1
Step 1.Collect a sampleSi from Li [l ; r] by pickingni

nε

n elements at random onPi betweenl andr.
Step 2.S= ParallelSort(Si ; p).
OnP0

Step 3.Pick k1, k2 from Swith ranks
l

ijSj
n �pjSj logen

m
and

l
ijSj
n +

pjSj logen
m
.

Step 4.Broadcastk1 andk2. Therank to be found will be in[k1;k2] with high probability.
Step 5.PartitionLi betweenl andr into< k1, [k1;k2], and> k2 to give countsless, middle, andhigh, and
splitterss0 ands1.
Step 6.cmid = Combine(middle;+).
Step 7.cless= Combine(less;+).
Step 8.If (rank2 (cless;cmid] )

n= cmid ; l = s1 ; r = s2 ; rank= rank�cless

Else
If (rank� cless)

r = s1 ; n= cless

Else
n= n� (cless+cmid) ; l = s2 ; rank= rank� (cless+cmid)

Endif
Endif

Endwhile
Step 9.L = Gather(Li [l ; r]).
Step 10.OnP0

Perform sequential selection to find elementq of rank in L,
result= Broadcast(q).

end

4
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3 Analysis

The following sampling lemma from Rajasekaran [15] will be used in the analysis.

Let S= fv1;v2; : : : ;vsg be a random sample from a setX of cardinalityn. Also, letv01;v
0
2; : : : ;v

0
s be the sorted

order of this sample. Ifri is the rank ofk0i in X, the following lemma provides a high probability confidence
interval forri .

Lemma 1 For everyα, Pr
�
jri � i n

sj>
p

3α np
s

p
logen

�
< n�α.

Thus, if k1 andk2 are chosen as the splitters from sample setS by selecting the elements with rankisn �
d
p

slogen and is
n +d

p
slogen, respectively, andd =

p
4α, then the element of desired rank will lie in the middle

partition(cless; cless+cmid] with high probability(1�n�α).

A tradeoff occurs between the size of the middle partition(r) and the confidence that the desired element lies

within this partition. Note that in the Fast Randomized algorithm, withd = 1, this probability is 1�n�
1
4 , and

r � 8 np
s

p
logen. Sinces� nε, this can be approximated byr � 8n1� ε

2
p

logen.

Suppose now the bound is relaxed with probability no less than 1�n�α = ρ. Thenα = � log(1�ρ)
logn , and the

splittersk1;k2 can be chosen with ranksisn �∆
p

sand is
n +∆

p
s, for ∆ = 2

p� loge(1�ρ) (see Table I). Then the
size of the middle partition can be bounded similarly byr � 16 np

s

p
� loge(1�ρ). This can be approximated by

r � 16n1� ε
2
p� loge(1�ρ). Thus, the middle partition size of the UltraFast algorithm is typically smaller than

that of the Fast algorithm, whenever the conditionn> (1�ρ)�4.

∆ Lower bound of capture (ρ, in %)
6.07 99.99
5.26 99.9
4.29 99.0
3.03 90.0
2.54 80.0
2.19 70.0
1.91 60.0
1.50 43.0
1.00 22.1
0.50 6.05

Table I: Lower bound of the capture probability (ρ) that the selection index is in the middle partition, where

ρ = 1�e�
∆2
4 .

A large value forε increases running time since the sample (of sizenε) must be either sorted (in Fast) or have
elements selected from it (in UltraFast). A small value ofε increases the probability that both of the splitters lie
on one side of the desired element, thus causing an unsuccessful iteration. In practice, 0:6 is an appropriate value
for ε [2].

3.1 Complexity

We use a simple model of parallel computation to analyze the performance of these two selection algorithms.
Current hardware platforms can be viewed as a collection of powerful processors connected by a communication
network that can be modeled as a complete graph on which communication is subject to the restrictions imposed
by the latency and the bandwidth properties of the network. We view a parallel algorithm as a sequence of local
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computations interleaved with communication steps, and we allow computation and communication to overlap.
We account for communication costs as follows.

The transfer of a block consisting ofm contiguous words, assuming no congestion, takes O(τ+σm) time,
whereτ is an bound on the latency of the network andσ is the time per word at which a processor can inject or
receive data from the network.

One iteration of the Fast randomized selection algorithm takes O
�

n( j)+(τ+σ) logp
�

time, wheren( j) is the

maximum number of elements held by any processor during iterationj. From the bound on the size of the middle
partition, we find a recurrence on the problem size during iterationi,

n0 = n
ni+1 � 8n0:7

i

p
logeni ;

(1)

which shows a geometric decrease in problem size per iteration, and thus, O(loglogn) iterations are required.

Sincen( j) = O
�

n
p

�
, Fast selection requires

O
�

n
p loglogn+(τ+σ) logploglogn

�
(2)

time. (Assuming random data distribution, the running time reduces to O
�

n
p +(τ+σ) logploglogn

�
.) [2]

Each iteration of the UltraFast algorithm is similar to Fast, except sorting is replaced by sequential selection,
which takes linear time [9]. Also, the problem size during iterationi is bounded with the following recurrence,

n0 = n
ni+1 � 16n0:7

i

p� loge(1�ρ) ;
(3)

and similar to the Fast algorithm, UltraFast as well requires O(loglogn) iterations. Thus, UltraFast randomized
selection has a similar complexity, with a worst case running time given in Eq. (2). As we will show later
by empirical results in Table III, though, the constant associated with the number of iterations is significantly
smaller for the UltraFast algorithm.

3.2 Experimental Data Sets

Empirical results for the selection algorithm use the following three inputs. Given a problem of sizen and ap
processors,

� [I] - Identical elementsf0;1; : : : ; n
p �1g on each processor,

� [S] - Sorted elementsf0;1; : : : ;n�1g distributed inp blocks across the processors, and

� [R] - Random, uniformly distributed, elements, withn
p elements per processor.

� [N] - This input is taken from the NAS Parallel Benchmark for Integer Sorting [7]. Keys are integers in
the range[0;219), and each key is the average of four consecutive uniformly distributed pseudo-random
numbers generated by the following recurrence:

xk+1 = axk (mod 246)

wherea= 513 and the seedx0 = 314159265. Thus, the distribution of the key values is a Gaussian approx-
imation. On ap-processor machine, the firstn

p generated keys are assigned toP0, the nextnp to P1, and so
forth, until each processor hasn

p keys.

6



UNM Technical Report: EECE-TR-99-005

3.3 Empirical Results

Results for a previous implementation of the Fast randomized selection algorithm on the TMC CM-5 parallel
machine appear in [2]. However, this machine is no longer available and does not support the current message
passing standardMPI . Therefore, we have recoded this algorithm into MPI.

n p [R]andom Input [S]orted Input
CM-5 SP-2 CM-5 SP-2

4 174 68.0 194 104
512K 8 105 62.7 119 79.6

16 69.5 39.5 86.7 61.9
4 591 153 601 229

2M 8 318 108 359 182
16 193 74.4 237 136

Table II: Comparison of the execution time of the Fast Randomized Selection Algorithm on TMC CM-5 [1, 2]
and IBM SP-2-TN (in milliseconds).

Table II compares the execution time of the Fast Randomized algorithm on both the CM-5 [1, 2] and the
SP-2. Since selection is computation-bound, we would expect the performance to be closely related to the node
performance of these two machines. The SP-2-TN 66MHz POWER2 processor is roughly twice as fast as the
CM-5 33 MHz RISC processor. As expected, this factor of two performance improvement is apparent in the
execution time comparison for equivalent machine and problem sizes. In actuality, the SP-2 is more than twice
as powerful, since communication latency and bandwidth are improved roughly by a factor of three.

We conducted experiments with our UltraFast and the known Fast randomized selection algorithms on an
IBM SP-2 with four, eight, and sixteen processors, by finding the median of each input in the previous section
for various problem sizes (ranging between 16K to 16M elements)1. A comparison of the empirical execution
times for machine configurations ofp = 4;8; and 16 processors are graphed using log-log plots in Figures 1, 2,
and 3, respectively. In all cases, the UltraFast algorithm is substantially faster than the Fast randomized selection
algorithm, typically by a factor of two. Running time can be characterized mainly byn

p logp and is only slightly
dependent on input distribution.

For p = 8, Table III provides a summary of the number of times each algorithm iterates. While the Fast
algorithm typically iterates in the neighborhood of about 25 times, there are cases when it iterates hundreds or
even thousands of times. However, the UltraFast algorithm never iterates more then three times. This is due
to two reasons. First, UltraFast converges roughly twice as fast as the Fast algorithm. Second, the algorithm
stops iterating by using a more realistic stopping criterion matched to the coarse granularity of current parallel
machines. In addition, whenp is small andn= O

�
p2
�
, the Fast algorithm’s sample is very limited and sometimes

does not yield splitters which further partition the input. Thus, in this situation, the Fast algorithm might iterative
from tens to thousands of times before pruning any additional elements from the solution space.

Detailed results from the UltraFast and Fast algorithms (for the[I] , [S], and[R] inputs) forn = 512K, 1M,
2M, 4M, and 8M, and further statistics from the[N] input, are available in [4]

4 Future Directions

We are investigating other combinatorial algorithms that may have significant practical improvement by relaxing
the probabilistic bounds, as demonstrated by our UltraFast randomized selection.

In addition, our UltraFast parallel, randomized selection algorithm, here designed and analyzed for a message-
passing platform, would also be suitable for shared-memory multiprocessors (SMP’s). Each communication step

1Throughout this paper,K andM refer to 210 and 220, respectively.

7



UNM Technical Report: EECE-TR-99-005

n Input Fast Algorithm UltraFast Algorithm

512K I 19 2
S 17 2
R 29 2
N 19 2

1M I 24 2
S 17 2
R 22 2
N 32 2

2M I 26 2
S 22 3
R 21 2
N 38 3

4M I 37 3
S 23 3
R 21 3
N 4095 3

8M I 28 3
S 24 3
R 21 3
N 866 3

Table III: Total number of iterations of the Fast and UltraFast Randomized Selection Algorithms. For this table,
the number of processors usedp= 8.

can be eliminated, simplified, or replaced with a shared-memory primitive. For instance, the SMP algorithm

0.001

0.01

0.1

1

14 15 16 17 18 19 20 21 22

[S] UltraFast[S] Fast

[R] UltraFast[R] Fast

[I]  UltraFast[I]  Fast

Execution Time of Fast and UltraFast
Randomized Selection Algorithms

on a 4-node IBM SP-2-TN

T
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e 
(s

)
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Figure 1: Empirical Performance of Fast versus UltraFast Randomized Selection Algorithms withp= 4 nodes of
an IBM SP-2-TN.
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Figure 2: Empirical Performance of Fast versus UltraFast Randomized Selection Algorithms withp= 8 nodes of
an IBM SP-2-TN.

0.1

1

16 17 18 19 20 21 22 23 24

[S] UltraFast[S] Fast

[R] UltraFast[R] Fast

[I]  UltraFast[I]  Fast

l o g2 N Elements

Execution Time of Fast and UltraFast
Randomized Selection Algorithms

on a 16-node IBM SP-2-TN

T
im

e 
(s

)

Figure 3: Empirical Performance of Fast versus UltraFast Randomized Selection Algorithms withp= 16 nodes
of an IBM SP-2-TN.
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would be as follows. Each processor collects its portion of the sample from the corresponding block of the input
and writes the sample to a shared-memory array. Thus, the second step, aGather communication, is eliminated.
After a single processor determines the splittersk1 andk2 from the sample, theBroadcast communication in
step four simplifies into a memory read by each processor. TheCombine in step six may be replaced by the
corresponding shared-memory primitive. TheGather in step eight can be replaced with a shared-memory gather.
We are currently investigating the performance of this SMP approach.

10
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A Chernoff Bounds

The following inequalities are useful for bounding the tail ends of a binomial distribution with parameters(n; p).
If X is a binomial with parameters(n; p), then the tail distributions, known as Chernoff bounds [10], are as
follows.

Pr(X � (1� ε)np)� e�
ε2np

2 (4)

Pr(X � (1+ ε)np)� e�
ε2np

3 (5)

for all 0< ε < 1.
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