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Shrimp adjust their sex ratio to fluctuating age
distributions

Eric L. Charnov1,2 and Robert W. Hannah3

1Department of Biology, The University of New Mexico, Albuquerque, NM 87131 and
2Department of Zoology, Oregon State University, Corvallis, OR 97331 and 3Oregon Department

of Fish and Wildlife, 2040 S.E. Marine Science Drive, Newport, OR 97365, USA

ABSTRACT

Long-term data sets that quantitatively confirm basic ecological theory are rare for field
populations. Highly variable recruitment often causes wide temporal variation in population
age distribution and basic theory for adaptive sex ratio often predicts ‘sex ratio tracking’ to
match the fluctuating age distribution. Using sex-changing shrimp as a model system, we test
this in a new data set of 20 years duration. The new data support the theory, despite intense
fishery exploitation that itself has greatly altered the age distribution in recent years.

Keywords: evolutionarily stable strategy, fisheries, frequency dependence, protandry,
recruitment variation.

INTRODUCTION

Twenty-four years ago, Charnov et al. (1978) first showed that the breeding sex ratio
of commercially important sex-changing shrimp (Pandalus jordani) off the US west coast
varied in response to year-to-year fluctuations in the population’s age structure; here we
extend the analysis to include the next 20 years, making our data set the longest ever used to
test theory for adaptive sex ratio adjustment in a field population. Briefly, the data consisted
of sex ratio each fall for each of two adult age groups and the proportion of the adult
population (P) that was first versus older, mostly second, breeders; the life history is
illustrated in Fig. 1. It is easy to separate first breeders from older breeders, since a first
breeder is only about half the mass (weight) of an older breeder; gender is also easily
determined morphologically within an age group. The analysis showed that the proportion
of females (1 − r1) among the first breeders declined to zero with decreasing P; 1 − r1 was
roughly 0.5 when strong first breeder recruitment (Hannah, 1993) pushed P to near 1. This
response was predicted by theory for adaptive sex ratio (developed below). The data
spanned the mid-1960s through 1975 (≈12 years for each of three sampling areas). Data for
these early years also showed that, when P was very small, some older breeding shrimp
remained males, a result also predicted by theory. The data are summarized in Charnov
(1982, ch. 10).
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In this paper, we return to sex change in P. jordani off Oregon and ask if data for the rest
of the century (i.e. 1980–2000) still support the theory for adaptive sex ratio tracking. Since
our test of theory will be quantitative, the next section will develop the ESS (evolutionarily
stable strategy) argument (Charnov et al., 1978).

SEX RATIO THEORY

Consider the life history in Fig. 1 and assume two breeding-age (size) groups. Provided
growth and survival are not dependent on gender, the best an individual can do is to
maximize its reproductive gains while a first breeder and then again as a second breeder. So
long as the ESS sex ratio among the second breeders does not require anyone to change
back from female to male, the shrimp (which can change sex only once) can be modelled
as follows. Let P equal the proportion of breeders that are small. Furthermore, let an
individual that is big and reproducing as a female have an egg count of W2 relative to a
small individual as a female. Big individuals reproducing as males will be given a fertility
of W1 relative to a small individual as a male.

Consider a very large population (of size N) with the characteristics that the proportion
r1 of the small individuals reproduce as males, while the proportion r2 of the big individuals
are males. If we define fitness to be the probability that an individual passes its genes to a
zygote formed during the current breeding season, the fitness of a small individual (Ws),
which reproduces as a male with some other probability (r̂1, where r̂1 ≠ r1), may be written
as:

Ws =
P

2 ·N � r̂1

Pr1 + r2W1(1 − P)
+

1 − r̂1

P(1 − r1) + W2(1 − P)(1 − r2)� (1)

Ws =
P

2 ·N � r̂1

M
+

1 − r̂1

F �

Fig. 1. Pandalid shrimp change sex from male to female (top path), but with only a few breeding age
groups (here two), some first breeders mature as females (lower path). The shrimp breed once a year, in
the fall, so second breeders are one year older than first breeders; a second breeder is about twice the
weight of a first breeder. Theory predicts that the female proportion of first breeders (1 − r1) depends
upon the ratio of older breeders to first breeders (see text). Sometimes some second breeders are
predicted to remain female.
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The fitness of a big individual (Wb) that alters the probability (with which it reproduces as
a male) to r̂2 is similarly defined:

Wb =
1 − P

2 ·N �r̂2W1

M
+

W2(1 − r̂2)

F � (2)

If the situation is to be evolutionarily stable, it must be that an individual cannot increase
its own fitness by altering the probability with which it becomes a male (or a female) away
from the respective population values (Maynard Smith, 1982) (that is, Ws and Wb do not
increase as r̂1 and r̂2 are altered from r1 and r2). The task now becomes to find r1 and r2 that
satisfy this condition; as in much of sex allocation theory (Charnov, 1982), the r1 and r2 we
seek are those that maximize the product (M ·F ).

The maximization of M ·F by choice of r1 and r2 (provided W2 > W1) implies the
following rules:







=
1

2�1 − W2�1 − P

P �� if W2 < P/(1 − P)
(3)1 − r1

= 0 if W2 > P/(1 − P)

and







=
1

2�1 −
1

W1
� P

1 − P�� if W1 > P/(1 − P)
(4)r2

= 0 if W1 < P/(1 − P)

This solution has the characteristics that: (1) sex ratio within a size class depends on the
frequency distribution of size classes, but (2) more than 50% of the small shrimp should
be males, while more than 50% of the big shrimp should be females, because females gain
more reproductive success by being big than males do (that is, W2 > W1); indeed, W2 > W1 is
required for male-to-female sex change itself to be stable (Charnov, 1982). Figure 2 is a
graphical presentation of equations (3) and (4).

BIAS IN THE ESTIMATE OF P

Our data consist of shrimp sampled from the commercial catch during the fall breeding
period; since the fishing gear changed in a major way at the end of 1970s, we analysed
sex and size composition for the period 1980–2000. The fishing gear tends to select
larger shrimp, so the observed (1 − P)/P will be inflated, reflecting the extent to which the
respective size groups are caught. For example, suppose the true ratio of second (N2) to first
(N1) breeders is N2/N1 [=(1 − P)/P]; our observed ratio is thus q2N2/q1N1, where q2/q1 reflects
the relative catchability of second versus first breeders. Call q2N2/q1N1 ≡ (1 − P)*/P; then
(1 − P)/P = (q1/q2)(1 − P)*/P.

So the ESS equation for the female proportion of first breeders (1 − r1) (equation 3) can
be written as:
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1 − r1 =
1
2 � 1 − W2�q1

q2
� �1 − P

P �*� (5)

W2, the relative fecundity of second versus first breeders, is of a magnitude of about 2–3
(Hannah et al., 1995), but q1/q2 is unknown, except <1 (perhaps �1).

The equation for the male proportion of second breeders (equation 3) will be rewritten:

r2 =
1
2�1 − � 1

W1
��q2

q1
�� P

1 − P�
*� (6)

As can be seen, these ESS equations in terms of (1 − P)*/P and P*/(1 − P) simply change
the slope of the predicted sex-ratio/age-ratio relation; for example; the slope is changed
from −W2/2 to −(W2/2)(q1/q2) for first breeder females.

Fig. 2. Alteration in the time of sex reversal in response to fluctuating age distributions. We illustrate a
population with only two breeding-age groups (first breeders, older breeders). Their ratio gives the age
distribution, which is assumed to vary from year to year. If there are few older breeders (1/A small), all
the older breeders should be female, and some fraction of the first breeders should also be female (the
rest, male). If there are few first breeders (1/A large, or A small), all of the first breeders should be
male, while some of the older breeders should also be male (the rest, female). As the age distribution
varies from year to year, the cohorts are predicted to alter their sex ratios accordingly. Note that
>50% of first breeders are male, while <50% of older breeders are male, thus the theory never
requires an individual to sex reverse from female to male. [Original derivation and equations in
Charnov et al. (1978). The reason for plotting one sex ratio versus A, and the other versus 1/A, is to
make the theoretical relations linear.]
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SHRIMP SEX CHANGE: 1980–2000

The population age structure for P. jordani off the Oregon coast has been greatly changed
since the 1970s because of intensification of the fishery (Hannah and Jones, 1991); for
example, the proportion of first breeders in the commercial catch (which estimates P, with
bias) has increased from ≈30% to ≈70%. As theoretically predicted (equation 3, or 5), this
increase in P over time has been matched by a general increase in 1 − r1 (Hannah and Jones,
1991, fig. 9), particularly since 1979. But do the data support equations (5) and (6) for the
1980s and 1990s on a year-by-year basis? We have analysed P* and 1 − r1 and r2 by year for
each of the seven areas (Fig. 3) sampled from the commercial catch during the fall breeding
period. Figure 4 shows the results for 1 − r1 versus (1 − P)*/P for three representative areas
spanning the geographic range studied; adaptive adjustment of the first breeder sex ratio
still takes place on a year-by-year basis, now extending the test of equation (5) to more than
30 years, or roughly 15 generations, because there are only two breeding age classes. Since P
is generally much larger in these recent years, failure in recruitment of first breeders should

Fig. 3. The fishery sampling areas on the US west coast.
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Fig. 4. Proportion of female first breeders (1 − r1) versus the ratio of older breeders to first breeders
((1 − P)*/P) from samples of the commercial catch of P. jordani from catch areas 19, 22 and 28 for the
months of September and October, 1981–2000 (see Fig. 3). When available, we treated the two months
each year as separate estimates, which is why n > 20. Transitional shrimp were considered to be
functionally female, since they will breed as females that year. Shaded data points were omitted
for calculation of the Spearman rank correlation coefficient (r). All correlations were significant at
p < 0.001. If we accept the (≈) quantitative test of theory implied by this figure, we can use it to give
a rough estimate of the catchability ratio q1/q2. Let x* be the intercept on the abscissa; then, equation
(5) set equal to zero yields W2 ·x* = q2/q1. W2 ≈ 2.5 (Hannah et al., 1995) and inspection of the above
data puts x* ≈ 1.5; thus, q2/q1 ≈ 4.

more rarely push P down to values small enough to favour some second breeders remaining
males (equation 4); as expected, the r2 are most often at or near zero and positive values of r2

are only associated with very small P (= P*) values. Since there are very few positive values
of r2, we have not fit correlations, but display the data in Fig. 5. The P*/(1 − P) axis is
truncated at about 6 (and in each case there are many more zero r2 at the larger abscissa;
values not shown). Also, as expected, non-zero r2 are much rarer in these latter years
(contrast Fig. 5 here with figs 10.8 and 10.9 in Charnov, 1982).
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Fig. 5. Proportions of male second breeders (r2) versus the ratio of first breeders to older breeders
(P*/(1 − P)). There are many more r2 = 0 points at ever higher abscissa values (>6), as noted on each
panel.

CONCLUSION

We display data (Figs 4 and 5) for three of the seven fishery sampling areas (Fig. 3), three
areas that more or less correspond to the sampling areas used in Charnov and co-workers’
1978 paper. Data for the four areas not displayed likewise support the theory. We still
have no knowledge about the physiological or social mechanisms the shrimp use in
‘their decision’ to become male or female at the age of first breeding, or to remain males as
second breeders. Hannah and Jones (1991) suggest that accelerated sex change (Fig. 4)
under increasing P (i.e. increased exploitation) may buffer recruitment and thus somewhat
protect the population from overharvesting; of course, facultative sex reversal would have
exactly the opposite effect in exploited protogynous (i.e. female-to-male sex change) fishes
(Charnov, 1982).
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