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Experiment 4
Soil feedback and relative abundance of plants in the field (Fig. 3) was measured. The
abundance of each plant species was measured at 100 different locations within the
LTMRS. Locations were randomly chosen, and the presence of all plant species within a
1-m2 quadrat was recorded at each location. Relative abundance for each species was
calculated as the percentage of locations containing that species. This was performed in the
summers of 1998 and 2000, and results were pooled. Seeds were collected from each of 61
plant species, and feedback response was determined using similar methods as described
above in experiment 1. Regression analysis was used to determine the relationship between
plant abundance and soil feedback.
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Body size and temperature are the two most important variables
affecting nearly all biological rates and times1–7. The relationship
of size and temperature to development is of particular interest,
because during ontogeny size changes and temperature often
varies8–12. Here we derive a general model, based on first
principles of allometry and biochemical kinetics, that predicts
the time of ontogenetic development as a function of body mass
and temperature. The model fits embryonic development times
spanning a wide range of egg sizes and incubation temperatures
for birds and aquatic ectotherms (fish, amphibians, aquatic
insects and zooplankton). The model also describes nearly 75%
of the variation in post-embryonic development among a diverse
sample of zooplankton. The remaining variation is partially
explained by stoichiometry, specifically the whole-body carbon
to phosphorus ratio. Development in other animals at other
life stages is also described by this model. These results suggest
a general definition of biological time that is approximately
invariant and common to all organisms.

The effects of body size and temperature on biological rates and
times, including development time, have traditionally been studied
separately. There is a rich literature on biological allometry that
spans nearly a century1–3. The relationships of various attributes of
organisms such as metabolic rate, development time and lifespan, to
body mass, m, are well approximated by power laws. In endother-
mic birds and mammals, where body temperature is nearly con-
stant, biological rates and times (t) vary with body size as t /m1=4

(refs 4 and 5). An equally rich literature on physiology relates many

Box 1
Relationship of equation (3) to Q10

As most biological processes occur in the temperature range

Tc ¼ 0–40 8C, the term (1þ (Tc/T0)) in equation (3) differs from unity

by at most 40=273 < 0:15. So equation (3) can be well

approximated by:

aðTcÞ ¼ aðT0Þe
ð �E=kT2

0
ÞðTcÞ

Thus, mass-corrected development time (t/m1/4, equation (5)) is

inversely proportional to exp[(Ē/kT2
0)(Tc)] which becomes a Q10

when Tc ¼ 10 8C. We then note that, because T0 and k are fixed,

Q10 depends only on Ē, the activation energy. Taking an average

value of �E ¼ 0:6 eV gives Q10 < e0:9 < 2:5. This can also be

expressed in terms of the slope of the fitted lines of Fig. 1a–d, which

range from a ¼ 2ð0:11–0:14Þ per 8C. Thus, Q10 can be

approximated by exp(210a). Perhaps of greater importance is to

recognize that the conventional Q10 factor is only an

approximation. The exact expression includes further temperature

dependence beyond the purely exponential dependence on Tc.

Indeed, if Fig. 1a–d were replotted without the factor (1þ Tc/T0) in

the exponent, the slopes would be 10–15% shallower, leading to a

10–15% error when using Q10 to obtain values of a.
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biological rates and times to temperature6,7. Such temperature
dependence is traditionally described in terms of Q 10, the assumed
exponential change in rate for a temperature change of 10 8C.
Recently, an allometric model for the effect of body size on growth
was formulated based on the allocation of metabolic energy at the
cellular level13,14. The general equation is:

dm

dt
¼ am3=4½1 ÿ ðm=MÞ1=4� ð1Þ

where the mass of the organism (m) as a function of time (t) is
expressed in terms of the asymptotic mass (M) and a. The
parameter a is related to fundamental cellular properties by
a ¼ B0mc=Ec, where m c is the mass of an average cell, E c is the
average amount of energy needed to create the cell, and B 0 is the
normalization factor for metabolic rate13, B, which scales with mass
as B ¼ B0m3=4. B 0 is proportional to the biochemical reaction rates
for cellular metabolism, and therefore varies with temperature via a
standard Boltzmann’s factor exp(2Ē/kT), where T is the absolute
temperature (in K), Ē is the average energy for the reaction and k is
Boltzmann’s constant. As a/ B0, it has the same temperature
dependence, namely aðTÞ / expðÿ �E=kTÞ. This can also be expressed
in the conventional Q10 form (Box 1)15. The value of a(T) at some
temperature T is thereby related to its value at some other arbitrary

temperature, T 0, by aðTÞ=aðT0Þ ¼ ½expðÿ �E=kTÞ�=½expðÿ �E=kT0Þ�.
Therefore,

aðTÞ ¼ aðT0Þe
2ð �E=kÞðð1=TÞ2ð1=T0ÞÞ ¼ aðT0Þe

ð �E=kT0ÞððT2T0Þ=TÞ ð2Þ

Equation (2) can be expressed in terms of 8C (Tc ¼ T 2 273) by
setting T0 ¼ 273 K, the temperature at which water freezes and
biological reactions cease. This yields the following:

aðTcÞ ¼ aðT0Þe
ð �E=kT2

0ÞðTc=ð1þTc=T0ÞÞ ð3Þ

Throughout development, the mass of the embryo, m, is small
compared to adult mass, M, so equation (1) is well approximated by
dm=dt ¼ am3=4. When integrated from m ¼ 0 at t ¼ 0 at a fixed
temperature this gives:

m ¼
aðTÞt

4

� �4

or
t

m1=4
¼

4

aðTÞ
ð4Þ

Substituting equation (3) into equation (4) gives:

t

m1=4
¼

4

½aðT0Þe
ð �E=kT2

0ÞðTc=ð1þTc=T0ÞÞ�
ð5Þ

which provides a general expression relating development time (t)
to body mass (m) and temperature (T c (in 8C)). If body tempera-
ture T c changes during growth, equation (1) must be integrated to
reflect the time dependence of the parameter a.

Taking the logarithm of both sides of equation (5) predicts that
plots of ln(t/m 1/4) versus T c/(1 þ (T c/273)) will yield an approxi-

Figure 4 Plot as Fig. 1 but for post-embryonic (hatching to adult) development time for

zooplankton (rotifers, copepods and cladocerans) incubated at different constant

temperatures ranging from 5 to 30 8C. The line is fit using least-squares linear regression.

Data sources listed in Methods.

Figure 1 The effect of incubation temperature on mass-corrected embryonic

development time for amphibians (a), fish (b), multivoltine aquatic insects (c) and

zooplankton (d) incubated at different constant temperature. Incubation temperature is

given as T c/[1þ (T c/273)], in 8C over the range 5–25 8C (see Methods); mass-corrected

embryonic development time is given as t/m 1/4, in d per (mass at hatch in g)1/4. Lines

were fitted using least-squares linear regression. Data obtained from refs 8 and 9.

y = –0.10x + 4.59
r2 = 0.82
n = 140

0

3

6

0 15 30

ln
(t/

m
1/

4 )

Tc/(1+(Tc/273))

Figure 2 Plot as Fig. 1 but for marine fishes in the field (see Methods). Incubation

temperatures ranged from 3 to 30 8C. The line is fit using least-squares linear regression.

Data obtained from ref. 10.

Figure 3 Plot as Fig. 1 but for aquatic ectotherms (data from Fig. 1a–d) and birds. The line

is fit using least-squares linear regression to the mean values for all aquatic ectotherms

(fish, amphibians, zooplankton, and aquatic insects; diamonds) and the mean value for

birds (square) at different incubation temperatures ranging from 5 to 36 8C. Ectotherm

data were obtained from refs 8 and 9, bird data from ref. 11.
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mately universal straight line with slope, a ¼ 2 �E=kT2
0, and inter-

cept, yint ¼ ln½4=aðT0Þ�. As Ē and aðT0Þ ¼ B0mc=Ec depend on
fundamental cellular properties, they, as well as the normalization
factor B 0, do not vary significantly across taxa15. Therefore, the
slope (a) and intercept (y int) should be approximately invariant
quantities. We test this prediction using data from the simplest
natural ‘system’ for growth: development time (zygote to hatchling)
of eggs. Development of eggs is particularly well suited for assessing
equation (5) because the embryo grows in mass as it incorporates
the food stores in the egg. Furthermore, development occurs over a
wide range of temperatures, from about 5 to 40 8C.

Using laboratory data on embryonic development time from
four different groups of aquatic ectotherms (fish, amphibians,
aquatic insects and zooplankton), plots of ln(t/m 1/4) versus Tc=ð1þ
ðTc=273ÞÞ are indeed well fitted by straight lines with similar slopes
and intercepts (Fig. 1a–d; see Methods)8,9. Similar plots also fit field
data on development time for marine fish eggs with a slope and
intercept similar to the laboratory studies (Fig. 2) (see Methods)10.
Furthermore, birds’ eggs, which are incubated at much higher
temperatures, are also fitted by such plots; pooled data for birds
(13 orders, 172 species)11, using a mean incubation temperature of
36 8C (ref. 8), fall on the same line as the pooled data for aquatic
ectotherms (Fig. 3).

The success of the model in describing how size and temperature
affect embryonic development time led us to consider whether it
might also apply to development at different life stages. As shown in
Box 2, the model makes similar predictions for post-embryonic
development time (hatch to maturity). Nearly 75% of the variation

in post-embryonic development times in zooplankton can be
explained by the model. This suggests that equation (5) applies to
both embryonic and post-embryonic growth (Fig. 4) (see
Methods)12.

The regression lines for the mass-corrected relationships of devel-
opment time to temperature (Figs 1–4) also provide an independent
means of estimating the parameter a. The temperature dependence
of a may be expressed in terms of the slope and intercept using
equation (3): aðTcÞ ¼ 4 exp½2ðaTc=ð1þ Tc=T0Þ þ yintÞ�. Taking
average values of a ¼ 20:12 per 8C and yint ¼ 6 lnðd g21=4Þ from
Fig. 3, this equation predicts a ¼ 0:65 g1=4 d21 for post-embryonic
growth of birds at 40 8C, and a ¼ 0:018 g1=4 d21 for post-embryonic
growth of cod at 5 8C (ref. 16). These values compare favourably
with independent estimates of a derived from fitting empirically
measured growth curves14. These estimates give nearly the same
value of a ¼ 0:017 g1=4 d21 for the cod, and three values that bracket
0.65 for birds (0.47, 1.56, 1.90 g1/4 d21)14. The fact that these two
independent methods give similar values is further evidence that the
model captures the effects of body size and temperature on growth.

Moreover, the activation energy for metabolic reactions can
be used to predict the slope of the relationships in Figs 1–4. Using
the equation a ¼ 2 �E=kT2

0 (that is, equation (5)), and an average
activation energy for metabolic reactions of 0.6 eV (range between
approximately 0.2 and 1.2 eV)15,17–19, we predict a ¼ 20:09 per 8C.
The closeness of this value to the observed average value of a ¼
20:12 per 8C provides support for this model (that is, equation (5)).

We have therefore shown that body size and temperature account
for much, but by no means all, of the variation in biological rates
and times. Our model, based on first principles of allometry and
kinetics, can help to isolate the causes of this still unexplained
variation. For example, during post-embryonic growth, unlike
embryonic growth, individuals must forage to obtain resources
from environments where the availability of nutrients varies. In
particular, it is suggested that organisms with higher mass-specific
post-embryonic growth rates ((1/m)(dm/dt)) acquire more phos-
phorus (P) relative to other elements such as carbon (C) to produce
the phosphorus-rich nucleic acids required for more frequent cell
divisions and faster growth (that is, the ‘stoichiometric growth
hypothesis’)20–22. Thus, faster-growing organisms would be pre-
dicted to have lower C:P ratios. In Box 3, we relate this stoichio-
metric growth hypothesis to our size/temperature model. Figure 5
shows that C:P ratios explain much of the residual variation in Fig. 4.

Many biological times, including cardiac cycle, blood circulation
time, and development time (that is, t), increase as the 1/4 power of

Box 3
The relationship to biological stoichiometry

To incorporate the “stoichiometric growth hypothesis”20–22 we
propose that a(T) also depends on the C:P ratio so that

aðTÞ / expð2 �E=kTÞlðC : PÞ, where l(C:P) is a decreasing function

of the C:P ratio. This can be used in equation (5) to predict that

growth rates decrease with C:P across species (see Methods). To

assess if C:P ratios do in fact decrease with growth rates across

species, we plot C:P ratios against the corresponding residuals for

zooplankton in Fig. 4 (Fig. 5). Species in Fig. 5 represent all major

groups of zooplankton shown in Fig. 4 (cladocerans, calanoid and

cyclopoid copepods), except rotifers for which stoichiometric data

were not available. We predict an inverse relationship such that

species that lie above the fitted line (that is, lower average growth

rates) would have high C:P ratios, and vice versa. And, the plot

does indeed show that considerable variation about the line in

Fig. 4 is explained by differences in the C:P ratios among species.

This supports our prediction and suggests that the relationship

between size, temperature and biological stoichiometry proposed

above may be correct.

Box 2
Extension to post-embryonic growth

The general solution to equation (1) valid for all times is given by

m

M

� �1=4

¼ 1 2 1 2
m0

M

� �1=4
� �

e2at=4M1=4

where m0 is the initial larval mass (m ¼ m0 at t ¼ 0). Most

zooplankton have determinate growth, and the onset of adulthood

is assumed to be at m ¼ d M; at this size growth ceases and the

available energy is diverted to reproduction. We assume

d < 0:50–0:90, and is similar across species (see below). The time

taken, tm, to reach m ¼ d M is given by

tm
m1=4

¼
4

a

� �
1

d1=4

� �
ln
ð1 2 ðm0=MÞ

1=4Þ

ð1 2 d1=4Þ

� �
Apart from the d1/4 term and the slowly varying logarithmic factor,

this equation for post-embryonic growth (that is, hatch to maturity),

is identical in structure to equation (5), which describes embryonic

growth. Proceeding as before and using equation (3) for the

temperature dependence of a implies that plots of ln(tm/m1/4)

versus Tc/(1þ (Tc/T0)) will yield straight lines whose slopes are the

same as those derived from equation (5) for embryonic growth:

both should have slopes given by a ¼ 2 �E=kT2
0. Their intercepts, on

the other hand, should be slightly different: for post-embryonic

growth the intercept is given by ln [4/a(T0)]þ ln ln[(1 2 (m0/M)1/4)/

(1 2 d1/4)] 2 1/4 ln d rather than simply ln[4/a(T0)]. The difference

between these is rather small; if m0=M ! 1, d in the range of 0.50–

0.90 yields a correction in the range of approximately 0.50–1.3, a

10–22% increase in the intercept above the value of approximately

6 shown in Fig. 1. The correction depends very little on d, so d need

not be strictly constant across species. Data for post-embryonic

growth for a variety of zooplankton (rotifers, copepods and

cladocerans) are plotted in this way in Fig. 4. As can be seen, a

straight line is obtained with a slope of 20.11 per 8C and an

intercept of 7.2 ln(g1/4d21). Because the latter is 17% greater than

6, there is excellent agreement with corresponding values derived

from embryonic growth data in Figs 1–3.
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body mass2,3. Because all of these times are ultimately related to
biochemical reaction rates, they are expected to decrease with
temperature via the same Boltzmann factor, exp(2Ē/kT). Com-
bined, the effects of mass and temperature therefore yield a general
definition of biological time:

tB ¼ tðm=m0Þ
21=4eð2

�E=kð1=Tÿ1=T0ÞÞ

¼ tðm=m0Þ
21=4e2aTc=ð1þTc=T0Þ ð6Þ

where m0 normalizes mass to some arbitrary value (for example,
1 g) and T0 normalizes temperature to some arbitrary value (for
example, 20 8C). This is the biological time clock. A

Methods
Embryonic development time
Embryonic development times of aquatic ectotherms were collected from compilations of
laboratory studies where eggs were incubated at different constant temperatures ranging
from 5 to 25 8C (refs 8 and 9). These include mostly freshwater, but some marine, species of
both vertebrates and invertebrates (zooplankton: 2 phyla, 7 orders, 29 species; fishes: 7
orders, 21 species; amphibians: 2 orders, 10 species; multivoltine aquatic insects: 3 orders,
10 species). For each species, we included only data from the ‘biologically relevant’
temperature range required for normal development. Egg sizes were obtained from
reference texts and used as an approximation for the mass of species at hatching, m, as the
mass at hatch is not often measured. This introduces a maximum possible error of ,5% so
long as m $ 0:8 times the egg mass. Methods are detailed in refs 8 and 9.

Field data on embryonic development times of marine fish are comparable to the
laboratory data, except that T c was taken as the “prevailing temperature at incubation”10.
Egg masses were calculated from egg diameters assuming a density of 1 g ml21 (ref. 8).

Post-embryonic development time and biological stoichiometry
Most post-embryonic development times and adult body masses were obtained from a
compilation of published data12, though some additional data were acquired for genera
under-represented in this compilation. These include cladocerans (Daphnia 23,24,
Diaphanosoma 24, Ceriodaphnia 25, Bosmina 26), and species of cyclopoid27,28 and calanoid
copepods29. Adult body masses for these species were estimated in the same manner as in
the compilation. For Box 3, whole-body C:P ratios were obtained for as many of the species
shown in Fig. 4 as possible. The stoichiometric ratios were published values for adults of
those species, or adults of species from the same genus and similar body size21,30.
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Figure 5 The relationship between deviations for the fitted line in Fig. 4 (that is, T c/(1þ (T c/273)) versus t/m 1/4) and whole-body carbon to phosphorus ratios (C:P) for adults of these

species. Data sources listed in Methods.
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