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ABSTRACT 
 

 The role of the epicycloid in both historical and mathematical contexts was 

studied through readings and research. Throughout history, circles have been considered 

perfect and thus very important shapes. Because epicycloids are constructed by 

combining circular motions, their historical value is evident. Epicycloids are traced 

through history, with special emphasis on their use in astronomy.  

 The epicycloid is also important from a purely mathematical perspective. The 

connection of the figure with Fourier series is analyzed and illustrated with various 

Matlab plots. Because of this connection, the power of the epicycloid as a modeling tool 

becomes clear.  

The epicycloid has also made some more recent appearances and these are 

presented as well. Of note here is the Antikythera mechanism which is an ancient device 

incorporating epicycloids that was fairly recently discovered. Also of interest is a toy 

called the Spirograph, which uses epicycloids to create intricate patterns.  
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Chapter 1 The Epicycloid 

1.1 Introduction to Epicycloids 

In mathematics, the term epicycloid refers to the plane curve produced by letting a 

small circle roll along the circumference of a larger circle. Note that by increasing the 

size of the larger circle, we can produce the same curve by letting the small circle's center 

move around the circumference of the larger circle while the small circle itself rotates 

(see figure 1).  

 

Figure 1: An epicycloid is the plane curve produced by letting a circle of radius r roll around a larger circle of 
radius R (illustrated above left). This process is equivalent to letting the center of the small circle move 

around a circle of radius R+r while the smaller circle itself rotates (illustrated above right). 
 

In this construction, the smaller circle is called the epicycle and the larger circle is 

the deferent. There are basically only four parameters involved in producing an 

epicycloid: the radii of the respective circles and their rates of rotation (in the clockwise 

or counter-clockwise direction). With the simplicity of the geometry in mind, it is truly 

amazing what a wide array of figures we can produce. A few examples are shown in 

figure 2 below.  
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Figure 2: By varying the radii and angular velocities of the epicycle and the deferent, a variety of epicycloids 
can be produced. The four curves shown above are just a few interesting examples.  Clockwise from top left, 

the angular velocities of the epicycles in the counter-clockwise direction are 8, 8, π, and -3. These are 
relative to a counter-clockwise angular velocity of 1 for the deferents.  The radii of the deferents are 4, 1.01, 

3, and 3, respectively. The radius of each epicycle is set at 1.  

 
Because of the importance of the circle as a geometric figure, the ability to model 

different motions using circles alone was crucial in a historical context. The epicycloid 

was put to use by astronomers like Appolonius, Hipparchus. Ptolemy, and Copernicus, 

among others, to model the complex motion of the heavens. In addition to the historical 

value of the epicycloid, the curve has a surprising connection to approximation using 

Fourier series, one of the most commonly used approximation techniques today. While 

advanced mathematicians use epicycloids (disguised as Fourier series) more often than 

they may realize, the average person may also have encountered such curves when 
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reading about recent research into the Antikythera Mechanism or even when playing with 

a child's toy called the Spirograph.  
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1.2 Why the Epicycloid? 

What is perfection? Look around the room. There is a photo in a beautifully 

carved frame. The shape of the rectangle appeals to me. Looking from this chair the sides 

seem to align exactly, creating an illusion of perfect symmetry. Get up and move closer. 

Wait. From here I can see that the edge of the frame is not aligned with the shape of the 

white-stuccoed wall at its side. Adjust it slightly. Step back, look again. Hold on, now the 

bottom of the frame looks tilted compared with the horizontal horizon of the shiny red 

concrete floor.  Adjust again. No good; this seems hopeless. The frame itself though, 

taken aside from its surroundings, appears a perfect shape. Step in to admire it. 

Exasperation! At this distance the sides of the frame itself do not seem perfectly in line 

with one another. There is a gap the size of a dime's thin side between the vertical and 

horizontal pieces of wood. This makes the right side tilt slightly towards the left. What is 

perfection? I am still admiring the beauty of the frame regardless. The ornate carvings in 

the ochre-stained oak are truly beautiful. Run my fingers over the wood, up and down, 

tracing the lines of the carving. At last, my fingers feel not smooth wood, but there are 

flaws. I see small chips in the stain, with dark brown peeking through. The wood feels 

rough to the touch, not smooth and slippery, as it appears.  

What is perfection? Surely it is here, somewhere in this room. Aha, a shiny green 

bowl, its round top reflecting the light from the sun through the window. Look down at 

the bowl. The lip seems to create a perfect circle. The illusion is delightful. Run my 

fingers along the edge of the bowl. One complete rotation and I am back where I began. 

But alas, the potter's hands have flawed this piece. The grooves on the surface are not 

aligned exactly. Is this really a circle at all? Frustration. Lean in to admire the shiny 

depths of the sea green stain on the smooth ceramic. Looking into the bowl, concentric 

circles materialize, one inside the other, shrinking to a point at the depth of the bowl. 

Surely this is perfection. Eyes look deeper and deeper into the circles. But, none are quite 

perfect. Indeed, there are no circles at all, just human conceptions of circles. These are 

approximations of the circle made by the human eye.  

What is perfection? Throughout the history of our world, humans have searched 

for an example of perfection on earth. The concept of perfection is an elusive one, 
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however. It seems the paragon of perfection is an object that is completely even and 

completely balanced. This is an object that has been designed so precisely that when 

viewed from any angle and rotated in any direction it appears exactly as it did, unchanged 

based on perspective. The search for such an object on earth has proved fruitless. Nature 

tends from order to disorder and the human hand itself creates flaws, even when carefully 

trained and artistically skilled. While humanity's search for this object of complete 

symmetry here on earth may have come up empty-handed, that does not mean that such 

an object does not exist. The hunting grounds just need to be broadened. 

Imagine a circle. Cut it down the center, completely across the diameter. The two 

sides are mirror images of one another. They are completely even and exactly balanced. 

Turn the circle a quarter turn and slice again. Alas, mirror images again! Now, turn an 

eighth of a rotation and slice. This is perfection. No matter how many slices are made 

along the circle's diameter, each piece is a perfect copy of every other. The circle has 

infinitely many lines of symmetry, unlike any other shape. The paragon of perfection, 

then, is not an object at all, but an abstraction. It is a shape created in one's mind. A 

perfect circle can never be duplicated in physical reality because all earthly creations are 

inherently flawed if one looks at them closely enough. 
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1.3 A Brief History of Modeling with the Circle 

Being perceived as the epitome of perfection, the circle has drawn much interest 

throughout history. Greek philosopher and mathematician Plato, born in the 5th century 

BC, is usually given credit for giving the circle the important place in science which it 

would hold the next two millennia. Plato was an ideal thinker, believing that ideas were 

more important than reality. Thus, the circle was important to Plato because although it 

could not exist here on earth, it certainly did exist as an idea. More specifically, Plato 

believed that the circle "exists, but not in the physical world of space and time. It exists as 

a changeless object in the world of Form or Ideas."1 Since the circle could not exist on 

earth, Plato put it to use in modeling the Heavens, where perfection was certainly 

achievable. Plato believed that the heavenly bodies, being examples of the divine, moved 

in circular orbits. These circular orbits were within crystalline spheres, since a sphere is 

the three dimensional version of a circle and is thus the perfect solid. In fact, the "stars, 

planets, sun, and moon moved around the earth attached to the surface of crystalline 

spheres which slid over one another," and as the spheres moved, "they created a sound in 

the cosmos called the music of the spheres."2

Aristotle, another Greek philosopher who was actually a student of Plato, was 

another major proponent of the circle's importance in modeling the heavens. Along 

similar lines as Plato, Aristotle believed that the heavenly bodies were perfect and thus 

must travel in circular orbits. Aristotle focused more on reality than on ideas, and hence 

his focus was on enhancing Plato's model so that it more accurately represented the 

observational data available at the time. Keeping with the principle of uniform circular 

motion, Aristotle added more spheres to Plato's model. The heavenly bodies orbited in 

circles inside of 55 concentric crystalline spheres, outside of which was the final sphere 

called the Prime Mover. It was this Prime Mover that "caused the outermost sphere to 

rotate at constant angular velocity, and this motion was imparted from sphere to sphere, 

thus causing the whole thing to rotate."

 With his model of the universe, Plato 

ingrained into science an idea that would dominate until the years of Kepler: the heavenly 

bodies move with uniform motion in circular orbits. 

3 While slightly more advanced than Plato's model, 

neither construction could accurately account for the varying brightness of the planets as 

they make their way around their orbits. Another major flaw was that neither model could 
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explain the retrograde motion of the planets, during which they appear to stop their 

motion across the sky, then travel backwards, stop, and then move forward again.  

The question of how to accurately represent the observed motions of the heavenly 

bodies using only uniform circular motions was of much interest during this time. In fact, 

according to a later scientist and philosopher Simplicius, it was Plato himself who issued 

a challenge to mathematicians to find such a model of the heavens. He posed the problem 

to find "what circular motions uniform and regular, are to be admitted as hypotheses so 

that it might be possible to save the appearances presented by the planets."4

It turns out that we have already encountered the shape that would provide the 

best answer to the challenge: it is the epicycloid. In the next chapter we present the 

parametric equations for the epicycloid and explain how the epicycloid can reproduce the 

retrograde motion observed in the planets.  

 Similar to the 

reaction to the Brachistochrone challenge much later, leading mathematicians began to 

make feverish attempts to answer Plato's challenge and thus prove their superiority 

among scientists. 
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Chapter 2 Mathematical Preliminaries 

2.1 The Parametric Equations of the Epicycloid 

Let us derive the parametric equations for the location of the planet p after time t, 

given the angular velocity of the deferent, ω1, and that of the epicycle, ω2, as well as the 

radius of the deferent, R, and of the epicycle, r. Consider a coordinate system in which 

the earth is placed at the origin. Let us start time at 0 when the epicycle is centered on the 

x-axis at (R,0), see figure 3 on the following page.  

As the deferent rotates counter-clockwise by an angle Ө, the epicycle 

simultaneously rotates counter-clockwise over angle Ф.  

The position of p relative to the center of the epicycle d is pd: (x,y)=(rcos(Ф), 

rsin(Ф)) and the position of p relative to the earth e is  

 

pe: (x,y)=(rcos(Ф)+Rcos(Ө), rsin(Ф)+Rsin(Ө))       (2.1) 

 

Now, let us relate the angles Ө and Ф. As the deferent rotates by Ө, a fixed point 

inside the deferent moves from A to B. Thus, the arc swept out is (R-l)Ө, where l is the 

radius of the circle containing A and B, centered at d. In the same time, the point A can 

be considered as rotating with the epicycle from A to A', sweeping out angle Ф. Thus, the 

arc between A and A' is lФ. Since these two arcs come into contact during the same 

period of time, they must be of equal length. 

So, we have (R-l)Ө =lФ. Solving for Ф gives Ф 





=

l
l-R Ө. By substitution into 

2.1, the position of p relative to the earth is given by 

 

pe: (x,y)=(rcos 







l
l-R Ө +Rcos(Ө), rsin 








l
l-R Ө +Rsin(Ө))       (2.2) 

 

Next, let us relate R, l, and Ө to the angular velocities ω1 and ω2. The deferent sweeps out 

the angle Ө in time Ө/ω1. In the same time, the epicycle sweeps out angle Ф.  

Thus, we have Ө/ω1=Ф/ω2. Solving for Ф, we get Ф= ω2Ө/ω1.  
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Figure 3: As the epicycle rotates, the arcs AB and AA' come into contact. The arc AB is (R-l)Ө and the arc 

AA' is lФ. The fact that these arcs come into contact over a given period of time allows us to relate the 
angles Ө and Ф. 

 

Substituting this value into 2.1 gives the position of p as determined by the 

angular velocities as 

 

(x,y)=(rcos(ω2Ө/ω1)+Rcos(Ө), rsin(ω2Ө/ω1)+Rsin(Ө))       (2.3) 

 

As a final step, let us relate the angle Ө to the elapsed time t. Since the angular 

velocity of the deferent is ω1, we have ω1= Ө/t. Substituting this time into 2.3, we have 

the position of p with respect to the earth given parametrically as 

 

(x,y)=(rcos(ω2t) + Rcos(ω1t), rsin(ω2t) + Rsin(ω1t))      (2.4) 

As we move counter-clockwise along 
the inner circle from B to A’, we 
rotate by angle Ф. Note that the 

same angle is swept out as we move 
on the larger circle from C to P’. 

Angular velocity ω1 

Angular velocity ω2 
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2.2 Preliminary Lemma on Angles 

The goal here is to show that given angle γ=∠ADB , the angle between the center 

of the circle and A and B is γ2=∠ACB  (see figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: By properties of isosceles triangles presented below, it can be shown that the angle between A, C, 
and B is equal to twice the angle between A, D, and B. 

 

If γ=∠ADB  and α=∠BDC , since the triangle ADC∆  is isosceles, then 

αγ +=∠DAC . Also, )(2180 αγ +−=∠ DCA . 

Then, BDC∆ is isosceles, so we have α=∠=∠ DBCBDC .  

Now, ABC∆ is also isosceles, so we know αδ +=∠ACB .  

Summing the angles in ABC∆  gives 180)(2 =++ ραδ . Similarly, for ABD∆ we 

have 180)(2 =++ γαδ .  

Combining these two equations, we have )(2)(2 γαδραδ ++=++ . After 

simplification, we are left with γρ 2= .  

Thus, we have shown that ACB∠ is always twice ADB∠ .  

180◦-2(γ+α) 

A 
B 

C 

D 

α 
γ 

γ+α 

δ+α δ 

α 

 ρ 
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2.3 The Epicycloid and Retrograde Motion 

Next, let us present a proof that retrograde motion, as observed from earth, can 

indeed be produced by an epicycle moving upon a deferent. The proof incorporates a 

brief geometric result which we establish before presenting the details.  

The goal here is to establish a condition relating the angular speeds of the deferent 

and epicycle with their respective radii such that if the condition is satisfied, retrograde 

motion is observed from earth. Then we will verify that the condition is sufficient.  

The proof that we present follows the structure of Appolonius' Theorem on 

Stationary Points, but we use modern trigonometric methods which were not available to 

Appolonius to simplify the proof.  

Here, ω1 is again the angular velocity of the deferent and ω2 is the angular velocity 

of the epicycle. In order for retrograde motion of the planet to be observed from the earth, 

there must be some point at which the planet appears stationary, call it S1. At this point, 

the motion of the planet is given by the rotational motion of the deferent combined with 

the rotational motion of the epicycle.  

Let D represent the motion of the planet at S1 due to the rotation of the deferent 

and let E represent the motion of the planet at S1 due to the rotation of the epicycle (see 

figure 5). 

 

 

Figure 5: Due to the 
combined motions of the 

deferent and the epicycle, at 
the point S1 the planet 

appears stationary from the 
earth. The planet then 

appears to travel backwards 
across the sky for a short 
period before resuming 

forward motion. 
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For the planet to appear still from the earth, the sum of the two velocity vectors 

D and E must lie along the line of sight from the earth to the planet. This line of sight is 

represented by the line segment eS1.  

 Now, since E is tangent to the epicycle, it must be at a right angle to the radius. 

Thus, 901 =∠ tdS . Similarly, since D is tangent to the deferent at the moment when the 

planet is at S1, the angle between D and |eS1| is also 

right. Hence, 9021 =∠ SrS since the two angles are 

opposite (see figure 6).  

 

 

Figure 6: Since the angle between D and the earth is right, it 
is clear that the other three angles must also each be 90◦. 

 

 

 

 Since we require DE + to lie along the segment eS1, we need to constrain D  in 

relation to E . We can do this by requiring that the component of  D  along the direction 

of E  be equal in magnitude and opposite in direction to E . Hence, we have 

)cos( 21StSED ∠= .  

 Next, we need to determine the angular velocities of the deferent and the epicycle. 

Since the tangential velocity at a given point on a circle is directly proportional to the 

radius of the circle5 eSD 11ω=, we have  and 12 dSE ω= . 

Since )cos( 21StSED ∠= , we have )cos( 211211 StSdSeS ∠=ωω . Therefore, 

)cos( 21
1

1

2

1 StS
eS

dS
∠=

ω
ω . 

Now, let us relate )cos( 21StS∠  to the radii of the deferent and the epicycle.  
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Notice that 902121 =∠+∠ SdSStS  since tdS1∠  is right. Similarly, 
90121 =∠+∠ drSSdS  since 21SrS∠  is right. Hence, we must have that 

drSSdSSdSStS 1212121 ∠+∠=∠+∠ . Subtracting 21SdS∠  from both sides gives 

drSStS 121 ∠=∠ . 

 This further implies that )cos()cos( 121 drSStS ∠=∠ . But, we can use

1

1
1 2

)cos(
dS
rS

drS =∠  as illustrated in figure 7.  

 

Figure 7: It is clear from the diagram that cos(∠ rS1d) can be 
calculated as the above ratio. 

 

 

From above then, we have 



















=

1

1

1

1

2

1

2 dS
rS

eS
dS

ω
ω  which simplifies to 

eS
rS

1

1

2

1

2
=

ω
ω

. 

Now, 1rS and eS1 are not extremely useful quantities for us. Instead, let us relate these 

to the radii de  and 1dS .  

We have 1
1

2
dS

rS
<  since r and S1 lie on the epicycle. Also, deeSdS >+ 11 , assuming 

that the epicycle is indeed rotating (e.g. ω2 is not zero). Hence, 11 dSdeeS −> . From 

above, we have that 
1

1

2

1

dSde
dS
−

<
ω
ω . Equivalently,  

epicycledeferent

epicycle

RadiusRadius
Radius

−
<

2

1

ω
ω       (2.5) 

 So, we have thus established a condition relating the radii of the deferent and the 

epicycle with their respective angular velocities necessary for a stationary point to occur.  

Next, let us establish that retrograde motion is indeed observed from the earth 

given that 2.5 is satisfied. Referring again to figure 5, we need to show that the planet 

appears to be moving forward before reaching S1, then backwards after passing S1 on its 

orbit.  
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We will need a preliminary inequality before we begin, which will not be proven 

here. Refer to figure 8. Given adc ≤ , we have  

 

β
γ

>
− da
d 6

 

       (2.6) 

Now, let us choose a point on the 

epicycle where forward motion should be 

observed from earth. Call this point f in figure 9 

which is below. Notice that errSfr << 1 , so 

we may apply 2.6, which gives  

 

β
γ

>
1

1

eS
rS

 (2.7) 

Figure 8: Given c < d < a, it can be shown 
that 2.6 above holds. See the above 

reference. 

 

 

 

 

 

 

 

 

Figure 9: 2.6 can be applied here with 
a=|er|, d=|rS1|, and a-d=|eS1|. 
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Above we showed that 
eS

rS

1

1

2

1

2
=

ω
ω . Combining this equality with 2.7, we have 

β
γ

ω
ω

>
2

12  or equivalently 
β
γ

ω
ω

22

1 > . Now, let us choose the point l to be the point on the 

deferent at which 
β
γ

ω
ω

2
2

2

1 =  (see figure 9).  

Then, based on the preceding lemma, the planet moves from f to S1 as it rotates an 

angular distance of β2 . Since the angular velocity of the epicycle is 2ω , this rotation 

occurs in time 
2

2
ω
β . But, from above we have that 

1

2

2

2
ω
γ

ω
β
= . This implies that as the 

planet progresses from f to S1, the 

deferent simultaneously rotates from 

m to l (see figure 10).  

 

 

 

 
 

 

 

 

Figure 10: In the time it takes for the planet to 
appear to progress from f to S1 on the epicycle, 

the deferent rotates so that the point m 
progresses to the point l. 
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So after time 
1

2

2

2
ω
γ

ω
β
=  has elapsed, from the earth the epicycle appears to have 

rotated by angleγ  and the deferent by 2γ . Thus, the planet appears to have moved 

forward by γγγ −= 21  since γγ >2 . Thus, we have established that before reaching the 

stationary point S1, the motion of the planet appears forward from the earth.7

The next step is to establish that after passing S1, there is some point b such that 

the planet appears to move backwards, from the perspective of earth, as the epicycle 

rotates from S1 to b (see figure 11). If we let p be at the other stationary point, the point b 

is necessarily between S1 and p.  

  

 

 

 

 

 

 

 
 

Figure 11: As the planet appears to 
progress from S1 to b on the 

epicycle, the deferent rotates so that 
the point m progresses to the point 

n. 

 

 

 

 

 

 

Here, let us apply 2.6 again. Since ereSbe << 1 , we have  

 

β
γ

>
1

1

rS
eS

 (2.8) 
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Above we showed that 
eS

rS

1

1

2

1

2
=

ω
ω . Combining this with 2.8 gives 

β
γ

ω
ω

>
1

2

2
 or 

equivalently 
β
γ

ω
ω 2

1

2 > . Now, let us choose the point n on the deferent at which 
21

2 2
β
γ

ω
ω

=  

(see figure 11 again here). Note that 2β  is necessarily greater than β  for this equality to 

hold.  

Now, as the planet rotates from S1 to b on the epicycle, the angular rotation is γ2  

(again by the preceding lemma on angles). Since the angular velocity of the epicycle is 

2ω , this rotation takes time 
2

2
ω
γ . But, n has been chosen such that 

1

2

2

2
ω
β

ω
γ
= . Therefore, 

as the planet rotates on the epicycle from S1 to b, the deferent simultaneously rotates from 

m to n.  

After time 
1

2

2

2
ω
β

ω
γ
=  has elapsed, from the earth the epicycle appears to have 

rotated byβ  and the deferent by 2β . Thus, the position of the planet appears to have 

changed by 02 <− ββ since ββ >2 .  

Indeed, we have established that between the two stationary points S1 and p in 

figure 11, the motion of the planet appears backwards from the earth.  

In this section we have shown that given Appolonius' condition on the angular 

velocities and radii of the epicycle and deferent is satisfied, the epicycloid model does 

produce retrograde motion from the perspective of the earth.  
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Chapter 3 The Early Work: Appolonius and Hipparchus 

3.1 Appolonius' Alternative: The Movable Eccentric Circle 

One important mathematician to respond to Plato's challenge was Appolonius of 

Perga, born in the third century BC. Appolonius did most of his work out of the 

intellectual center of Alexandria. He was the first to intensely study the use of epicycloids 

to model the heavens. In fact, it was Appolonius, in his Theorem on Stationary Points, 

who proved that the epicycloid model could reproduce the retrograde motions of the 

planets.8

In Appolonius' model, the eccentric circle of radius

 This was a major breakthrough since the inability to recreate this motion was a 

big problem with the previous models. Along with his studies on retrograde motion, 

Appolonius also looked into what kinds of figures could be produced by imposing certain 

conditions on the epicycle and the deferent. Appolonius was one of the first to consider 

the equivalence of using eccentric circles to model planetary motion and using the 

epicycloid. In an eccentric circle model, the earth is placed some distance, called the 

eccentricity, away from the center of the circle which carries the planet. Thus, the 

uniform circular motion occurs around the eccentric point instead of around the earth. 

AP  is rotating 

counterclockwise around the eccentric point A (see figure 12). Also, the eccentric point A 

remains at a fixed distance 

of AE  from the earth.  

 
 

Figure 12: Since |AE|=|CP| and 
|AP|=|CE|, by requiring that |AE| 

remains parallel to |CP|, the 
planet P is observed from earth 
equivalently using either model. 
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Appolonius realized that this system is geometrically equivalent to the epicycloid 

model with the radius of the epicycle CP  equal to the eccentricity AE  and the radius of 

the deferent EC equal to the radius of the eccentric circle AP . The only other condition 

that we must specify is that the segment AE  remains parallel to the segment CP , which 

is equivalent to requiring that the epicycle remains fixed ( )02 =ω , while the deferent 

rotates with angular velocity 1ω .  

Under these conditions, it is clear that the two systems are equivalent since the 

planet P can be reached from the earth by first moving from E to C and then to P or by 

moving first from E to A and then to P. Hence, the line of sight from earth to the planet is 

either along the vector CPEC +  or along APEA + . But, since we have required that 

EA  remains parallel to CP  and we have CPEA =  and CEAP = , it is clear that the 

points A, C, E, and P are the vertices of a parallelogram. Thus, APAECPEC +=+  and 

the two systems are equivalent as observed from earth.9

Also, we can derive the parametric equations for the eccentric circle easily by 

setting

  

02 =ω  in 2.4 (the parametric equations for the epicycloid). This gives  

 

(x,y)=(r + Rcos(ω1t), Rsin(ω1t))       (3.1) 

 

 The eccentric circle model is of interest because later astronomers combined this 

model with epicycloids in order to represent complex planetary motions more accurately.   

 While Appolonius' contributions are immense, it seems that his focus was more 

on a qualitative, geometric study of the epicycloid itself, rather than on a quantitative 

application of the model to fit the observational data for the heavenly bodies. A more 

quantitative study would have to wait for Hipparchus, a mathematician and astronomer 

who lived in the 2nd century BC. Little is known of Hipparchus, and what we do know 

about his work is thanks to its description by later scientists. Hipparchus' goal was to 

determine the parameters needed for the epicycloid to accurately model the observational 

data and to make future predictions of the positions of the heavenly bodies.10 In this spirit, 
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he set about computing the constants needed to predict the future position of the Sun at a 

given time. 
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3.2 Hipparchus and the Sun 

 First, Hipparchus needed a value for the length of time it takes for the center of 

the epicycle of radius r to make a complete rotation around the deferent of radius R. For 

this, he used an approximation he had made of 2467.365 days.11

 Hipparchus also had measured the lengths of the seasons by observation. He thus 

had the lengths of time necessary for the sun to rotate from Q1, the vernal equinox, to Q2, 

the summer solstice, and from Q2 to Q3, the autumnal equinox, then from Q3 to Q4, the 

winter solstice (see figure 13). With this information at hand, he was prepared to 

calculate numeric values for both the ratio of the radius of the epicycle to the radius of 

the deferent and the angular position of the sun's apogee F (the point at which the sun is 

farthest from the earth, a distance of R + r).  

 Thus, each day the 

center of the epicycle sweeps out an angle of about .9856◦ or 59'8''.  

 

 

 

 

 

Figure 13: Hipparchus knew the 
lengths of time for the planet to 

progress between the equinoxes, 
Q1 and Q3, and the solstices, Q2 
and Q4. He used this information 
to calculate the parameters for 

his solar model. 

 

 

 

 

 

 

 

Hipparchus measured the position of the apogee F with respect to the vernal 

equinox, labeled Q1 in figure 13. Thus, the angle he sought is ρ=∠ EFQ1  in the figure. 
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Utilizing trigonometry, since EF  is parallel to 11QC , ρ=∠ EQC 11  also. Then, by the 

law of sines, 
)sin()sin(

111

ρα
ECQC

= . Considering the sun at summer solstice Q2, note that 

22QC  and the portion of the segment EF  of equal length always act as vertices in a 

parallelogram. Let us extend a line from the end of this segment (the point labeled A in 

figure 13) to Q2. Then, if 22QEC∠=β , then we have that AEQ2∠=β  also. Since 42QQ  

and 31QQ  meet at a right angle, we have ρ−=∠ 902FEQ . Applying the law of sines 

again, we have 
)90sin()sin(

2

ρβ −
=



AQEA
. But, 22QCEA =  and 22 ECAQ = . Also, 

)cos()90sin( ρρ =−  and hence
)cos()sin(

222

ρβ
ECQC

= .  

Hipparchus then had the equation 



























=

)sin(
)sin()tan( 22

211

1

β
αρ

QC
ECQC

EC
, which 

can be simplified to 
)sin(
)sin()tan(

β
αρ = . Then we can compute

)sin(
)sin(

ρ
α

=
R
r . 

To obtain numeric values for ρ and 
R
r , Hipparchus used the values he had 

computed for the lengths of the seasons. For the sun to travel from Q1 to Q2, Hipparchus 

measured the length of time as 94.5 days. From Q2 to Q3, the sun took 92.5 days. Hence, 

in 94.5 days, the center of the epicycle has rotated at constant angular velocity from from 

C1 to C2 (see figure 14 below). Thus, the angle swept out is 9021 ++=∠ βαECC .  

Then, in 92.5 days, C2 has rotated to C3 and hence the center of the epicycle has 

swept out angle αβ +−=∠ 9032 ECC . So, we have 





=++

2467.365
3605.9490βα , 

which gives 14253.3=+ βα . Also, 





=+−

2467.365
3605.9290 αβ , which gives 

17126.1=− βα . Solving the above two equations for the two unknowns, we have 
1569.2≈α  and 9856.≈β .  
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Figure 14: Using observed 
data for the lengths of the 
seasons, we obtain ρ≈65◦ 

and r/R=1/24. 

 

 

 

 

 

 

Inserting the values forα and β  into
)sin(
)sin()tan(

β
αρ = , we obtain 4378.65≈ρ  or 

equivalently ''16'2665≈ρ . Since Hipparchus did not have modern trig methods, he 

obtained a slightly different value for ρ of '3065 .12

)sin(
)sin(

ρ
α

=
R
r Now,  so we have 

04138.≈
R
r or 

165.24
1

≈
R
r . Again, with Hipparchus' methods, he obtained 

24
1

≈
R
r . 

Thus, Hipparchus had found numeric values for the angle of the sun's apogee 

(measured from the vernal equinox) and the ratio of the radii of the epicycle to that of the 

deferent. Hipparchus' value for ρ was quite accurate as the actual value for the longitude 

of the sun's apogee was about 66◦.13

24
1

≈
R
r On the other hand, the ratio he calculated of  

is quite inaccurate due to observational errors. The actual value is approximately 
60
1

≈
R
r . 

Hipparchus did not stop at modeling solar motion. He went on to study lunar motion as 

well.  
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3.3 Hipparchus and the Moon 

 Although the motion of the moon can also be modeled using an epicycloid, there 

is some variation from the solar model. Based on observations, Hipparchus knew that not 

only did the moon's speed vary as it rotated around the earth, but that the point at which 

the moon appeared to be moving the fastest was not at its perigee (the point at which it is 

closest to earth), as would be expected. In fact, the point of maximal speed varied over 

time.14 Also based on the observational data, Hipparchus concluded that the moon's orbit 

lay on a plane tilted about 5◦ off the ecliptic. This tilt, however, does not affect the 

logistics of the epicycloid model because Hipparchus assumed that the 5◦ tilt did not 

affect the motion of the moon as observed from earth in order to simplify the 

calculations.15

 In order for the location at which the moon achieves its maximal speed not to 

always be at perigee, Hipparchus used a rotating epicycle. He set about finding the 

parameters needed for the model to fit the observational data available to him. Choosing 

the angular velocity of the deferent was simple: after the deferent made one complete 

rotation, the moon appeared back at its starting point. As for the angular velocity of the 

epicycle, Hipparchus knew that each time the epicycle made a complete rotation, the 

moon appeared to move at the speed it began with. Thanks to the Babylonians and to his 

own observations, Hipparchus had data for the length of time required for the moon to 

make a complete revolution (called the sidereal month) and for the moon to return to its 

starting speed (called the anomalistic month). Using this data, Hipparchus concluded that 

the angular velocity of the deferent was 13.1764◦ per day and the angular velocity of the 

epicycle was 13.0650◦ per day.

 

16

 Since Hipparchus' work is now lost, it is not clear exactly what values he used for 

the radii of the deferent and the epicycle, although he did attempt to calculate these 

values. Because the observational data that Hipparchus used was obtained from 

observations of eclipses, his model worked well when the moon was near full but was not 

as accurate at other times.  
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Chapter 4 Ptolemy and the Golden Age of Epicycloids 

4.1 From Hipparchus to Ptolemy 

 Hipparchus succeeded in putting together usable models for the sun and the moon, 

but not for the five known planets. He insisted that the motions of the planets should be 

modeled in a quantitative, mathematical manner, but apparently concluded that this was 

too complex a task to undertake.17

 The modeling of planetary motions using epicycloids came with Greek 

astronomer Ptolemy, who lived approximately 85-165 AD in Alexandria.

 Hipparchus is important for his models of the sun and 

the moon using epicycloids, and perhaps more for his insistence on a more quantitative 

approach to science which eventually led to a change in thinking overall. It became 

important to develop models that actually fit observational data and could predict future 

occurrences of phenomena, key features of the scientific method.  

18

 What is truly unique to the Almagest is that in it Ptolemy compiled the knowledge 

available up to his time and expanded upon it. His goal was to build upon previous work 

and he points this out in his description of the purpose of the Almagest, writing that 

"those topics which have not been dealt with by our predecessors at all, or not as usefully 

as they might have been, will be discussed at length to the best of our ability."

 Ptolemy is 

known as the most influential astronomer up to his time and his theories dominated 

science until the Renaissance 1400 years later. Ptolemy is best known for his 13 book 

treatise on mathematical astronomy titled the Almagest, which means the greatest when 

translated. The Almagest is a mathematically rigorous text like no other before it. In the 

first two of the 13 books, Ptolemy lays out proofs of the mathematical techniques he will 

use in his astronomical models, including some involving trigonometric theory and 

spherical geometry, quite groundbreaking studies for his time.  

19

 While the models put forth in the Almagest were new in the respect of being 

presented in a systematic, quantified manner with accompanying rigorous proofs, many 

of the underlying ideas remained unchanged. Ptolemy believed strongly in the ideas of 

Aristotle, as passed down from Plato. Ptolemy built his entire system around Aristotle's 

 Here, 

Ptolemy was referring especially to the modeling of the planetary orbits, since no 

acceptable model had yet been developed.  
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model in which there is a "fixed earth around which the sphere of the fixed stars rotates 

every day, this carrying with it the spheres of the sun, moon, and planets."20 All motions 

were to be circular and uniform, since Ptolemy again considered the circle to be the 

perfect shape and thus appropriate for modeling the heavens. Indeed, Ptolemy went so far 

as to separate the fields of physics and mathematics, with the former being applied to 

earthly, changing things, and the latter to the heavens, which are "eternal and 

impassible."21

 Ptolemy's system uses epicycloids (in the form of deferents and epicycles or the 

equivalent eccentric circle) to model the motions of the heavenly bodies. In book 3 of the 

Almagest, Ptolemy set about studying solar motion.  
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4.2 Ptolemy and the Sun 

 Ptolemy expanded some on Hipparchus' solar theory, although he found it to be 

fairly accurate as presented by Hipparchus. Ptolemy studied the accuracy of the model by 

making his own observations to find the length of the seasons and the length of the year. 

Ptolemy found that the length of the seasons were unchanged from those values given by 

Hipparchus, hence he used 94.5 days for the length of summer and 92.5 days for the 

length of fall. When computing the length of the year, Ptolemy actually made a small 

error which led him to accept Hipparchus' value of about 2467.365  days as accurate.22

'3065

 

Since he accepted this length, he concluded that Hipparchus' values for the parameters of 

the epicycloid were also accurate:  for the longitude of the sun's apogee, and 
24
1

for the ratio of the radius of the epicycle to that of the deferent.  

 Using these values, Ptolemy went on to create tables that could be used to 

calculate the position of the sun at a given time. Consider figure 15.  

 

 

 

 

 

 

 

Figure 15: The sun's position as viewed 
from earth can be predicted by knowing 

only the angle β. 
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We wish to find the angle α, which gives the position of the sun as seen from 

earth. Since the center of the epicycle rotates uniformly around the deferent, the angle β 

is known. Call the angle β-α=ε. Since CS and AE  are opposite sides of a parallelogram, 

ε=∠ESA  also. Then, by the law of sines as applied to triangle ASE, we have 

ASAE
)sin()sin( αε

= . Since rCSAE == ,  RCEAS == , and α= β-ε, this can be 

rewritten as 
Rr

)sin()sin( εβε −
= . Continuing to simplify, 

Rr
)sin()cos()cos()sin()sin( εβεβε −

=  gives )cos(
)tan(
)sin( β

ε
β

−=
r
R . Thus,  

 

)cos(

)sin()tan(
β

βε
+

=

r
R

      (4.1). 

 

 Then, 


















+
= −

)cos(

1
)sin(

tan 1

β

β

ε

r
R

. So, Ptolemy could now predict the position of the 

sun at a given time. Thanks to Hipparchus' calculation of the sun's apogee relative to the 

vernal equinox, Ptolemy knew it took about 66 days, 10 hours, and 55 minutes for the sun 

to travel from the vernal equinox to the apogee. With this value, he could calculate the 

angle β, and then using 4.1 he could find the angle ε.  

 As a final step, Ptolemy need only subtract ε from β and he then had the angle α 

and hence the sun's position as observed from the earth.   

 Because Ptolemy did not have modern trigonometry at his disposal, calculating 

the amount to be subtracted (ε) was quite tedious. Because of this difficulty, Ptolemy 

went about creating a table to be used for quick calculations. Interestingly, Ptolemy chose 

not to use the time at which the sun passed apogee as a starting point for making these 

calculations. Rather, he chose to give the angle between the center of the epicycle and the 

sun's apogee measured at the time of the beginning of Babylonian King Nabonassar's 

reign corresponding to the year 747 BC.23 
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 Ptolemy's ultimate concern was to accurately represent data and use this data to 

make future predictions. Since the data could not always be fit to sufficient accuracy 

using a simple epicycloid model, Ptolemy added more geometric devices to the model. 
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4.3 Ptolemy and the Equant 

 Before exploring Ptolemy's model further, it will be helpful to briefly consider a 

third geometric construction incorporated in addition to the simple epicycloid and the 

eccentric circle: the equant point. Ptolemy used the equant point to account for variations 

in the speed of the planets and the moon as they made their orbits. To explain the 

observations accurately, Ptolemy combined all three constructions at once: the epicycloid, 

the eccentric circle, and the equant point.  

 The equant point model is different from the others because here the center of 

motion is no longer the center of the circle around which the body rotates. Instead, the 

center of motion is about the equant point (labeled Q in figure 16), which is off-center. 

The body rotates around the equant point Q uniformly, so 21PP∠ is swept out in the same 

amount of time as 43PP∠ since both are right angles.  

 

 

 

 

Figure 16: In the equant construction, the 
body rotates on a circle centered at a point 

which is not the center of motion. The 
motion is uniform around an off-center 

equant point. 

 

 

 

 

 

 

 

  

From the center of the circle, the body appears to rotate faster when it is farther 

from the equant point and slower when it is near the equant point. This construction 

allowed Ptolemy to model some of the observed variation in lunar and planetary speeds.  

 The basic equant model outlined above was insufficient alone to model the 

observed data, so Ptolemy used it in combination with the eccentric circle and epicycloid. 
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A basic example of the models used in combination is shown in figure 17. Here the body 

B rotates around an epicycle which itself rotates around a deferent centered at A. The 

center of the deferent is neither the earth nor the center of rotation. The earth is off-center, 

as is the center of motion (the equant point), labeled Q in the figure.  

 

 

 

 

 
 

Figure 17: A basic combination of 
the epicycloid, eccentric circle, and 

equant point models.24

 
 

 

 

 

 

Even further modifications were necessary, depending on the particular celestial 

body being modeled.  

The introduction of the equant construction represented a major shift in scientific 

study overall. By using the equant point, not only had Ptolemy violated the concept of 

strict circular motion about the earth by placing the earth off-center in the model, but he 

was no longer adhering to the idea that the motion of the heavenly bodies was uniform 

around the earth. Let us return briefly to the implications and criticisms of Ptolemy's 

model after taking a look at the rest of the system. 

Books 4 and 5 of the Almagest are dedicated to the study of lunar motion, which 

is quite complex. 
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4.4 Ptolemy and the Moon 

 Ptolemy began with Hipparchus' lunar model and improved upon it. Since 

Hipparchus' lunar model was less accurate when the moon was not close to being full, 

Ptolemy altered the theory so that it better fit the data when this was the case. To account 

for the irregularities in lunar motion, Ptolemy found that the epicycloid, with either a 

fixed or rotating epicycle, was insufficient. Instead, he combined the epicycloid with an 

eccentric circle.  

 In Ptolemy's model, the moon travels on an epicycle rotating clockwise. But, the 

deferent is not centered on earth, but rather at an off-center point labeled A in figure 18. 

Also, the point A itself simultaneously rotates around the earth on a circle of radius AE  

in a clockwise direction. The motion of the point A is not constant with respect to the 

earth, but rather as measured from the sun S as seen from the earth.  

 

 

 

 
 

Figure 18: Ptolemy's model for 
lunar motion was quite 

complicated. Not only was the 
deferent not centered on the 
earth, but the center A itself 

rotated about the earth. 

 

 

 

 

 

 

To fit the angular velocities and the radii for the deferent and the epicycle, 

Ptolemy again used the observational data he had for the length of the month. The details 

are not presented here, but some of the results are worth mentioning. Ptolemy set the 

length of FE  to 60 units, and then determined that the radius of the deferent should be 
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49.6833 units and the radius of the epicycle should be 5.25 units. So, the ratio of the radii 

of the epicycle to the deferent is approximately .1057. Ptolemy also calculated the 

eccentricity, AE in figure 18, and the value he found here was 10.3167 units.25

Although Ptolemy's lunar model is rather complex since it involves more than a 

basic epicycloid construction, it is interesting because it represents a shift from strict 

adherence to the ideas of Plato and Aristotle. The results predicted by Ptolemy's lunar 

model were better than those predicted by previous theories, but there were still flaws. 

One major difficulty was that the moon's "apparent diameter should vary by a factor of 

almost 2 during a single revolution."

 As for 

the angular velocities, Ptolemy found values that only differed slightly from those given 

by Hipparchus.  

26

Ptolemy presents his model for the planets in the last 5 books of the Almagest. 

This model is perhaps his most important contribution of all since he was the first to 

create a comprehensive planetary model using epicycloids. Ptolemy's model is truly awe-

inspiring. Not only is it mathematically rigorous, but it actually represents the observed 

data to an impressive degree of accuracy for its time. Since the motions of the planets are 

quite complicated, it follows that Ptolemy's model is in places quite complex, often 

incorporating combinations of the epicycloid, eccentric circle, and equant point 

constructions.  

 This was obviously not realistic, even by naked 

eye observations. Ptolemy is said to have believed the model's purpose was to make 

predictions, which it did with sufficient accuracy, and thus this incorrect change in size 

was of secondary importance.  
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4.5 Ptolemy and the Planets, an Overview 

Let us consider a simplified version of Ptolemy's planetary system, since our 

focus is on the incorporation of epicycloids rather than a detailed study of the physics 

behind the motions. Figure 19 below gives an overview of the model, neglecting the 

effects of placing the earth off-center and of making the center of rotation an equant point. 

Thus, we are studying only the epicycloid component of the model. 

Figure 19: A simplified view of Ptolemy's planetary model. Each planet rotates on an epicycle which 
simultaneously moves around a deferent. The orbits of Mars, Jupiter, and Saturn are outside that of the Sun, 

while the orbits of Mercury and Venus are within the Sun's orbit. 
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 In Ptolemy's time, only five planets were known: Saturn, Jupiter, Mars, Venus, 

and Mercury, respectively from outer to inner. Ptolemy arranged the five planets on 

deferents of increasing size, not centered on the earth but rather at eccentric points. 

Ptolemy placed the moon's sphere closest to earth and the sphere of the fixed background 

stars as the outermost. As for the five planets, Ptolemy did not doubt that Mars, Jupiter, 

and Saturn orbited beyond the sun, and hence these planets are often called the superior 

planets. Ptolemy was less sure about the correct placement of the spheres of Mercury and 

Venus, which are often called the inferior planets. His doubts arose because although 

Ptolemy knew these two planets always remained relatively close to the sun, he did not 

have sufficient data to conclude with certainty how the deferents of Mercury and Venus 

should be placed relative to the sun. As per Ptolemy, "the spheres of Venus and Mercury 

are placed by the earlier mathematicians below the sun's, but by some of the later ones 

above the sun's because of their never having seen the Sun eclipsed by them."27

 Ptolemy decided to go with the earlier mathematicians and place the deferents of 

Mercury and Venus inside the Sun's orbit. In hindsight, had Ptolemy placed Mercury and 

Venus on a common deferent (the sun's sphere) and centered each of their epicycles on 

the sun, the entire system could easily be reckoned with a simplified version of 

Copernicus' heliocentric system. This equivalence will be discussed in a later section. 

Instead, Ptolemy centered the epicycles of the inferior planets on a line connecting the 

earth with the sun.

 

28

 Ptolemy's model is not without flaws. It is important to remember that Ptolemy 

intended his model to be used to predict the future locations of the heavenly bodies, 

which it did fairly well according to the standards of his time. With this ultimate goal in 

mind, Ptolemy was less concerned with whether the model was actually a physical reality 

or merely a mathematical construction. He was therefore willing to overlook some flaws 

that did not affect the model's capability to make predictions.  

 See figure 19 here.  

 With this basic overview of Ptolemy's planetary system at hand, let us briefly 

consider his treatment of the inferior and superior planets and present some numeric 

values for the radii and velocities of the respective epicycles and deferents.  
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4.6 Ptolemy's Treatment of Venus and Mercury 

Ptolemy had data indicating that Venus and Mercury remained close to the sun as 

they orbited. In fact, he knew Venus remained within 47◦ of the sun and Mercury within 

29◦, explaining why the planets appear to rise and set with the sun.29

by the earth.  

 To account for this 

behavior, Ptolemy placed the centers of both epicycles on a fixed line joining the earth to 

the sun. As the sun traveled around the earth, Venus and Mercury followed along while 

also rotating on their epicycles. A simplified view is given in figure 20. This arrangement 

explained why the planets were obscured during most of the daylight hours, because their 

light was drowned out by the brightness of the sun. Also, close to sunrise and sunset, 

Venus and Mercury were visible from earth because the sun's light was blocked partially 

 

 

 

 

 

 

Figure 20: Because Venus 
and Mercury rise and set with 

the sun, Ptolemy centered 
their epicycles on a line 

joining the earth with the sun. 

 

 

 

 

 

 

 

While we present an overview of Ptolemy's model, in reality he actually needed to make 

some modifications to accurately fit the data. For instance, to account for minor 

irregularities, the Sun, Earth, and center of the epicycle are not exactly aligned as they are 

in the simplified version above. The model for Venus is shown in more detail in figure 21.  
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Figure 21: A more detailed 
look at Ptolemy's model for 

Venus. Both the earth E and 
the equant point Q are off-

center. 

 

 

 

 

 

 

The center of motion for Venus' orbit is the off-center equant point labeled Q in 

figure 21. The deferent is not centered on the earth or the equant point, but rather on the 

midpoint between these two, labeled C in the figure.  

Ptolemy set the radius of Venus' deferent at 60 units and then went about 

determining what the radius of the epicycle should be in comparison. From observations, 

Ptolemy knew the maximum angle between the sun and Venus was about 47◦, and he 

used this to conclude that the radius of Venus' epicycle should be about 43.2 units. He 

also determined that the distance between the earth and the center of the deferent should 

be about 1.25 units.30

Mercury's orbit was the hardest to model because it was not close to being 

circular and because the observational data available to Ptolemy was flawed. The data led 

Ptolemy to think there were two points on Mercury's orbit where the planet reached its 

minimal distance from earth. With this in mind, Ptolemy's model for Mercury was much 

more complex than the model for Venus. Figure 22 illustrates the model.  
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Figure 22: Ptolemy's 
model for Mercury is 

much more complicated 
than Venus', in part 

because his data was 
flawed. Not only do the 
epicycle and deferent 

rotate, but the center of 
the deferent itself 

rotates. 

 

 

 

 

This time, the earth E and the equant point Q do not even lie on the diameter of 

the circle. Mercury orbits on an epicycle which rotates on the deferent centered on C1. In 

addition, the center of the deferent C1 rotates around the point A in the clockwise 

direction. For the required effect, Ptolemy also required the angles φ=∠ 2FQC  and 

θ=∠ 1FAC  to remain equal.  

Again, Ptolemy set the deferent's radius at 60 units and then concluded that the 

epicycle's radius should be 22.5 units and that the distance between the earth and the 

equant point should be 3 units.31

Let us now look briefly at Ptolemy's model for the superior planets: Saturn, 

Jupiter, and Mars.  
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4.7 Ptolemy on Saturn, Jupiter, and Mars 

 Modeling the motion of Saturn, Jupiter, and Mars was simpler because these 

planets were not limited to within a certain angle of the sun. The basic scheme is the 

same for each of these three planets: the planet travels around an epicycle whose center 

rotates on a deferent which is not centered on the earth. The earth is placed eccentrically, 

with the center of the deferent halfway between the earth and the equant point (about 

which the motion is uniform). In the figure, the center of the epicycle C2 rotates about the 

equant point Q uniformly. Based on the observational data, Ptolemy concluded that the 

lines connecting the earth with the sun, ES , and the planet with the center of the 

epicycle, 2PC , should always be parallel. Hence, PACNES 2∠=∠  (both are labeled ϴ 

in the figure). 32

 

 

 

 
 

 

Figure 23: Ptolemy's model for each of 
the superior planets was based on the 

basic model to the left. The lines 
connecting the earth to the sun and the 

planet to the center of its epicycle always 
remain parallel. 

 

 

 

 

 

 

 

Ptolemy used 60 units as the standard radius for the deferent of each of the three 

planets. He computed the radii of the respective epicycles to be 6.11, 11.5, and 39.5 units 

for Saturn, Jupiter, and Mars. The eccentricities (length of EC1  in figure 23) he 

computed are 3.04, 2.75, and 6 units for Saturn, Jupiter, and Mars, respectively.33 
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Thus, Ptolemy had modeled the complete (as far as he was concerned) universe 

using epicycloids with slight modifications. Now that we have studied the model in some 

geometric detail, let us consider its implications in a historical context. 
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4.8 Reactions to Ptolemy's Model 

 Given the capabilities of the models put forth in the Almagest, it is not surprising 

that the work was controversial as well as awe-inspiring. Ptolemy's theories remained 

accepted as the most accurate representation of the known universe for the next 1400 

years, a truly amazing feat. Indeed, "the Almagest was not only a work on astronomy, the 

subject was defined as what is described in the Almagest.34

The biggest stir created by the Almagest was due to Ptolemy's use of the equant 

point. Using the equant mechanism meant that the uniform motion of the heavenly bodies 

was not relative to the earth itself, but rather to the off-center equant point. In Ptolemy's 

opinion, this motion was still uniform and circular, and hence still met the standards of 

Plato and Aristotle. However, many astronomers believed that uniform motion about the 

equant point was not the strict uniform circular motion Plato had described.  

 

Another major issue with the Ptolemaic model was its complexity. As we have 

discussed, the common belief at the time was that when studying the motions of the 

heavens, we are studying directly the work of God or the divine in its perfect, 

uncorrupted state. This being the case, many philosophers suggested that the universe 

should be simple and perfectly ordered. In fact, "God would create a harmonious and 

symmetrical universe, a simple universe absent of superfluous, ugly details."35

An important consideration here is what the ultimate purpose of creating a model 

of the universe is. Ptolemy and his followers "were not concerned if his system did not 

describe the 'true' motions of the heavenly bodies; their concern was to 'save the 

phenomena,' that is, give a close approximation of where the heavenly bodies would be at 

a given point in time."

 Ptolemy's 

model, although quite accurate in making predictions, was not completely symmetrical 

due to the equant points, and certainly was not simple with its puzzling combinations of 

epicycloids, eccentrics, and equants.  

36

According to Plato and Aristotle, the heavenly bodies orbited the earth on spheres 

which were made of crystal. If the deferent for each planet was made of crystal, when the 

 In most cases, the model did this very well and hence Ptolemy's 

followers were satisfied. Being the intellectual mastermind that he was, though, Ptolemy 

must have often wondered how the universe was physically constructed in reality, since 

there is no doubt that he was aware that his system could probably not operate in reality. 
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planet came around its epicycle, the crystal would shatter leading to certain catastrophe! 

Doubters of Ptolemy argued that even a predictive model should more accurately 

describe the physical realities of the universe. In the eyes of Islamic astronomer Ibn 

Rushd, Ptolemy's model was "contrary to nature," and "offers no truth, but only agrees 

with the calculations and not what exists."37

As the years passed, Ptolemy's model began to fall short even in making 

predictions. The inaccuracies increased as time went by since Ptolemy's system was 

based upon observations made and his time and prior to it. By the 16th century, there was 

serious interest in modifying Ptolemy's theories so as not only to simplify the details, but 

to more accurately fit with the astronomical phenomena of the time. This interest is 

justified considering that "in 1504 a Ptolemaic prediction for a conjunction of two planets 

was off by 10 days, and in 1563 another predicted conjunction was off by a month."

 

38

 

 

Even with so many doubts, modified versions of the model that would become 

widespread did not come until the 15th century. 
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Chapter 5 The Twilight of Epicycloids: Copernicus and 
Kepler 

5.1 Why so Long? 

 Given that there were so many doubts and inaccuracies, it is valid to question why 

the Ptolemaic system remained the most used model of the universe for 1400 years. The 

answers to this question are rooted in the evolution of science and humanity over this 

period of time. The era between Ptolemy's lifetime and the Renaissance saw the fall of 

Roman civilization, the rise of the Arab Empire, the Dark Ages in the West, and finally 

the rebirth of Western intellectualism with the beginnings of the Renaissance. Thus, it is 

not in solitude that the story of the epicycloid unfolds, but rather it takes place within this 

historical framework by which it is shaped.  

 The symbolic end to the rule of the Roman Empire came with the sabotage of the 

library and museum at the intellectual capital of Alexandria. These iconic buildings were 

destroyed in the 4th century when Emperor Constantine took over the city and dedicated it 

to Christianity. The library and museum were considered pagan institutions and thus in 

392, "the last fellow of the Museum was murdered by a mob and the Library was 

sabotaged."39 The rise of Christianity in the West corresponded to the decline of scientific 

study. At first the Catholic Church felt it necessary to expound its position as ruler of 

humanity in all aspects of life and hence condemned much of the previous scientific 

knowledge since it was associated with paganism. In fact, during the early years of 

Catholic rule, the Church was "opposed to scientific endeavor, not unnaturally since the 

early Christians had had to fight for the survival of their religion by emphasizing the 

importance of its theology at the expense of pagan learning."40

 During the period of Catholic rule, known as the Dark Ages, people in the West 

had limited access to most scholarly works such as those of Appolonius, Hipparchus, and 

Ptolemy. This is because the Greek language almost completely disappeared and was 

replaced by Latin. Most of the intellectual works had only been partially translated, if at 

all. In this sense it is almost as if they had never existed at all and would have to be 

redeveloped entirely from scratch. Of importance here, "the detailed Ptolemaic theory of 

the heavens appears to have been completely unknown," and its importance was 
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"overshadowed largely by the conflict between Aristotle and Christianity."41

 The reign of Islam was strongest from the 7th to the 10th centuries. While the 

Muslims did attempt some astronomical study during this time, nothing notable in 

comparison to Ptolemaic theory was developed. This lack of consequential progress 

perhaps can be attributed to a lack of time and stability. The Roman Empire had 

flourished for centuries, providing philosophers and scientists with the opportunity to 

ponder in peace. The Islamic Empire was powerful for only a short period in comparison 

to the Roman Empire. By the 10th century, the Islamic Empire was broken up into 

"independent fragments, none of which provided the continuity over many generations 

that had made possible Alexandrian advances in geometrical astronomy."

 In fact, the 

Almagest in its complete form was not available to the Latin-speaking world until the 15th 

century. While the study of epicycloids and astronomy slowed down in the West, the 

intellectual center shifted to the Islamic world.  

42

 The Arabs are important for their preservation of ancient Greek works as well as 

for some original contributions. The Arabs had better access to astronomical texts since 

many had previously been translated into Arabic. While these translations were important 

because the works could be studied and built upon by the Muslims, they were perhaps 

more valuable in that they acted as preservations of the ancient texts. Since many of the 

Greek versions were destroyed during the reign of the Catholic Church, it was these 

Islamic translations that would be re-translated and would eventually re-introduce ancient 

knowledge to the Western world.  

 This is not to 

say that the Arabs did not contribute to the story of astronomy and the epicycloid, 

however.  

 While the Arabs did study the Ptolemaic system and expand upon his model, their 

major contribution comes in the form of the advancement of mathematics as a whole. As 

far as direct relation to the Almagest and epicycloid, two Muslim astronomers are 

especially of note. In the 1200's, Nasir al-din al-Tusi wrote his Memoir on Astronomy, a 

"commentary on the Almagest which attempted to give Ptolemy's models a physical 

meaning."43 This work is representative of a general shift in thinking; while it was 

important for a model to accurately describe data while staying true to Plato's principles, 

it was perhaps more so for the model to accurately represent physical reality. In this 
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memoir, al-Tusi also presents the geometric discovery for which he is best known: the 

Tusi-Couple. Through this geometric construction, al-Tusi proves that straight lines (and 

hence rectilinear motion) can be represented by circular motion, basically in the form of 

an epicycloid.  

 The Tusi-Couple can be incorporated into the Ptolemaic model to make some 

simplifications and it also has philosophical implications. Islamic interest in the Tusi-

Couple was primarily as a means of ridding the Ptolemaic model of the objectionable 

equant point. Removing the equant point was very important to the Muslims, and 14th 

century astronomer Ibn al-Shātir made a notable contribution to the story of the 

epicycloid when he created a model that attempted to remove the equant point from 

Ptolemy's model and also to model more data. While the Tusi-Couple is important as a 

geometric construction, it is perhaps more so as an example of the new way of thinking 

beginning to take hold. Was uniform circular motion of the heavens indeed a steadfast 

reality if there is really little distinction between the perfect figure of the circle, 

representing the heavenly, and the plain old straight line, representative of the earthly and 

imperfect? This kind of question opens the door to many more, one being if there is not 

that much distinction between the earthly and the heavenly, why must the universe 

revolve about the earth at all? 

 The Arabs also contributed by expanding and developing mathematical methods 

that would travel back to the West. Muslim achievements include the development of 

spherical geometry and trigonometric methods, the creation of trigonometry tables, and 

the contribution to observational data. Muslim works and the ancient texts began to be 

translated and make their way back to the West by the 10th century. By this time the 

Catholic Church felt secure in its position of power and began to allow the revival of 

intellectualism, giving rise to the first universities. The transition was slow, but "by the 

twelfth century, the study of cosmology and natural philosophy once again became 

acceptable."44 This acceptance came with a new belief that understanding the world was 

an important component of understanding the divine. One influential supporter of this 

idea was Saint Thomas Aquinas, who stressed "that a complete understanding of the 

world could be obtained only through both revelation and reason."45 
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 The doors were now open for the Renaissance to begin and a new way of thinking 

to flourish. The advent of the printing press allowed for the first widespread distribution 

of astronomy textbooks in the 1400's. By the 14th century, the Renaissance had officially 

begun and over the 15th and 16th centuries it spread. Amidst new discussions of Aristotle, 

Ptolemy, epicycloids, and the possibility of a rotating earth, the astronomer whose model 

would alas replace Ptolemy's arose.  
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5.2 Copernicus' Significance in the Story of the Epicycloid 

 The mathematician and astronomer Copernicus lived from the late 15th to early 

16th century and his model of the universe finally replaced Ptolemy's as the standard. 

Copernicus felt that a more extensive renovation of Ptolemy's model was in order, since 

the small changes made over the years had not been sufficient to correct the issue. 

Copernicus' objections to Ptolemy's model were much the same as those of astronomers 

before him, but his solution is definitely unique.  

 Like many others, Copernicus objected to Ptolemy's use of the equant point. He 

still believed in Plato's vision of uniform circular motion and so insisted that the true 

model of the universe would hold true to this notion. Copernicus indicated that one 

reason for his work was so that "there could perhaps be found a more reasonable 

arrangement of circles, from which every apparent irregularity would be derived while 

everything in itself would move uniformly, as is required by the rule of perfect motion."46

 Copernicus' solution to these problems was to place the sun at the center of the 

universe, rather than the earth. He was not the first to propose a heliocentric model, but 

his was the one that was finally accepted as the correct description of the universe. 

Copernicus first set forth his ideas in a paper titled Commentariolus sometime between 

1510 and 1514. In Commentariolus, Copernicus laid out his assumptions about the 

universe, including the position of the earth and the fact that it rotates. Here, Copernicus 

correctly noted the truth about retrograde motion: this motion "was only apparent, but not 

real, and its appearance was due to the fact that the observers were not at rest in the 

center."

 

Copernicus' model no longer requires use of the equant point, but it is still based on 

epicycloids. Another major objection Copernicus had was a seeming lack of flow or 

unification in Ptolemy's model. He felt that, the universe being divine as it was, should be 

tied together in a more elegant way than Ptolemy had presented. 

47

 The Commentariolus was not widely distributed, but Copernicus' more extensive 

work, On the Revolutions, was. This 6 book work was published in 1543 and became the 

heliocentric counterpart to the Almagest. In the first book of the work, Copernicus 

presents an overview of his model. He stresses that this model has a major advantage 

 While he still used epicycloids to accurately fit the data, one major advantage 

of Copernicus' model was this explanation of the retrograde motion of the planets. 
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over Ptolemy's version since in it all the pieces fit together more naturally. In Copernicus' 

system, the periods of rotation for the planets decrease from outer to inner. Saturn rotates 

around the sun in 30 years, Jupiter in 12 years, Mars in 2 years, then the earth in 1 year, 

carrying with it the moon upon an epicycloid. Inside the earth's orbit, Venus rotates about 

the sun in 9 months and Mercury in 80 days.48

  

 This explanation of the ordering was much 

more natural since the periods here decrease monotonically, while Ptolemy's model was 

odd in this respect since the sun, Mercury, and Venus all rotated in 1 year, a fact with no 

natural explanation. 
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5.3 Copernicus' Model 

 Copernicus was the last astronomer to create a comprehensive model of the 

universe based on epicycloids. While the advantages over the Ptolemaic system 

mentioned so far have some significance, Copernicus' major contribution was the shift 

from the geocentric universe to the heliocentric universe. While this is a major change in 

thinking, mathematically the change is not very significant. In fact, in general 

Copernicus' model does not significantly improve upon the abilities of Ptolemy's to make 

predictions. What is important to keep in mind, though, is that Ptolemy and Copernicus 

had different goals in creating models of the universe. Ptolemy's main focus was on 

creating a model with accurate, at least to the standards of his day, predictive capabilities. 

On the other hand, Copernicus' major ambition was to create a system which modeled the 

physical realities of the universe, rather than just a piece of mathematical machinery. In 

changing beliefs about the basic nature of our universe, Copernicus definitely succeeded.  

 Of course, Copernicus' model needed to also be able to make predictions and to 

incorporate sound mathematics, which it did. Indeed, while Copernicus' model, (a basic 

overview is given in figure 24), did not improve much upon Ptolemy's in ability to make 

predictions, it did explain some phenomena in a much simpler way.  

 

 

 

 

 

 

 

Figure 24: Simplified view of 
Copernicus' planetary model 

showing the ordering of the orbits. 
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 First, Copernicus' system explained the fact that Venus and Mercury always 

appear close to the sun. By placing earth's orbit outside those of Venus and Mercury, it is 

clear that viewed from the earth, these planets never deviate far from the sun. Thus, 

Copernicus had the advantage over Ptolemy here since Ptolemy had to set the velocities 

and radii of these two planets at specific values in order to model this behavior. Second, 

Copernicus' model clearly can produce retrograde motion without the need for 

epicycloids.  

 While Copernicus' model explained these and some of the other phenomena in a 

simpler way than Ptolemy's did, it still required epicycloids to explain the variation in the 

speed of the planets as they orbit the sun. Indeed, the details of the Copernican model are 

comparable in complexity to that of the Ptolemaic system. Also, both models require a 

comparable number of circles. It is clear, then, that the major contribution Copernicus 

made was really to the progression of science as a whole rather than the specifics of his 

model.  

 Since we have studied the geometric details of Ptolemy's system in some detail, 

let us simply show here that with some simplification, the geocentric and heliocentric 

systems are mathematically equivalent. Consider the Ptolemaic system, but with 

planetary eccentricities all equal to zero. So, in this simplified version, all planetary orbits 

are centered on the earth, and the earth is also the center of the motion.  

 Let us take a look at the inner planets, Venus and Mercury, first. Here, one more 

slight simplification of the Ptolemaic model is necessary to establish equivalence. As we 

have seen, Ptolemy kept Venus and Mercury close to the sun by placing the centers of 

their epicycles on a line connecting the earth and the sun. Instead, consider a slight 

modification in which Venus and Mercury share a common deferent on which each 

epicycle rotates (see figure 25 below). 
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Figure 25: To the left, Ptolemy's actual handling of Mercury and Venus. Notice the planets are forced to 
remain close to the sun since their epicycles are centered on the line of sight from the earth to the sun. To 

the right, we have a slight modification in which this behavior is explained by placing Mercury and Venus on 
a common deferent. 

 

 Keeping this modification in mind, let us now compare this idealized Ptolemaic 

system with an idealized Copernican system in which the orbits are centered exactly on 

the sun. Consider figure 26 below.  

 

Figure 26: In the Ptolemaic system to the left, the radius of the deferent is equal to earth's distance from the 
sun in the Copernican system (right). Since the angular distance between the sun and the planet, as viewed 
from earth, must be the same in each system (angle ϴ), we conclude that the epicycle's radius is equal to 

the planet's distance from the sun in the Copernican system. 
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In the Ptolemaic system, we can reach the planet P from earth by first traveling to 

the center of the epicycle C, and then to the planet P. Note here the path of travel is along 

the vector EC  and then along the vector CP , so we can represent the path as the vector 

sum CPEC + . Now, consider the Copernican model. Here, to reach the planet from 

earth, we travel first from the earth to the sun, and then from the sun to the planet. So, 

here the path of travel is along SPES + . Now, since the distance traveled from earth in 

the direction of the sun must be the same in both cases, vectors EC in the Ptolemaic 

model and ES in the Copernican model must have the same magnitude. Thus, in the 

Ptolemaic system, the radius of the deferent must be equal to the distance between the 

earth and the sun, which is 1 astronomical unit (AU), a distance of approximately 150 

million kilometers.49 CEP∠ Similarly, for the vector paths to be equivalent, we require 

in the Ptolemaic system and SEP∠ in the Copernican system (the angular position of the 

planet as viewed from earth relative to the sun) to be equal. This angle is labeled ϴ in 

figure 26 above. Since the vector sums from earth to the planet are equivalent, we can 

conclude that CP  in the Ptolemaic model and SP  in the Copernican model are of equal 

magnitude. Thus, the radius of the epicycle is equivalent to the distance from the planet 

to the sun. 

Now, since the earth orbits the sun once every year and the deferent's radius is 1 

AU, it is clear that the center of the epicycle should rotate once around the deferent in 1 

year. Also, since each planet orbits the sun in a fixed amount of time, call it T, we know 

that the epicycle makes one complete rotation in time T (the orbital period of the planet). 

Thus, for Venus the epicycle makes a rotation in about 225 days and for Mercury in 

about 27 days.50

For the outer planets, we can also show equivalence of the two systems in their 

simplified states. Refer to figure 27 here.  

 Since the radius of the deferent is equivalent to the distance from earth 

to the sun in the Copernican system, it is apparent that the assumption that Venus and 

Mercury share a common deferent is necessary. 
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Figure 27: For the outer planets, the radius of the deferent is equal to the planet's distance from the sun in 
the Copernican model. From simple geometry, we conclude that the radius of the epicycle is equivalent to 

the distance from the earth to the sun (1 AU). 

 

 In the Ptolemaic system, to reach the planet P from the earth E, first we travel 

along EC  and then along CP , so along the vector sum CPEC + . In the Copernican 

model, first we travel from earth to the sun along ES  and then from the sun to the planet 

along SP . Hence, the path of travel is along SPES + . For equivalence of the two models, 

the radius of the deferent is equal to the distance from the sun to the planet in the 

Copernican model. Then, note that ESP∠  and ECP∠  in the Ptolemaic model must be 

equal since they are opposite angles in a parallelogram (this angle is labeled θ  in figure 

27).  

Now, θ  is the angle between the sun and the planet, as viewed from the earth, and 

hence must be equivalent to SEP∠  in the Copernican model. It is clear, then, that all the 

epicycle radius vectors for the superior planets ( CP  in figure 27) must point in the same 

direction. As for the length of the radii, since CPECEP +=  in the Ptolemaic system and 

SPESEP +=  in the Copernican system and since EC  (Ptolemaic) = SP  (Copernican), 

we have that CP  (Ptolemaic) = ES  (Copernican). So, it is clear that the radii of the 

epicycles are equal to the distance from the earth to the sun in the Copernican model. 

Thus, each outer planet has an epicycle of radius 1 AU.  

Planet’s Orbital Period Planet’s Orbital Period 

1 year 1 year 
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 Since earth orbits the sun once a year, each planet will make a complete rotation 

around its epicycle once a year. Similarly, the epicycle will make a complete rotation 

around the deferent in the amount of time it takes the planet to orbit the sun: about 29.5 

years for Saturn, 12 years for Jupiter, and 2 years for Mars.51

 We have shown that the Ptolemaic and Copernican models are geometrically 

equivalent with the modifications made above. Basically, for the inner planets the 

deferent represents the earth's orbit around the sun and the epicycle represents the planet's 

orbit around the sun. On the contrary, for the outer planets the deferent represents the 

planet's orbit around the sun and the epicycle the earth's orbit. So, while Copernicus' 

model revolutionized science, from a strictly mathematical standpoint, it does not differ 

much from Ptolemy's (aside from relatively minor changes).  
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5.4 Reactions to Copernicus 

 Copernicus' goal in placing the sun at the center of the universe does not seem to 

have been to revolutionize science. He simply felt that the heliocentric system was 

superior to the geocentric, and therefore he made the change. Initial reactions to On the 

Revolutions

 Copernicus objected that in Ptolemy's model the "sun, the moon, and the five 

planets seemed ironically to have different motions from the other heavenly bodies and it 

made more sense for the small earth to move than the immense heavens."

 varied from heated disdain to lack of concern, but the new role of the earth 

as a body rotating about the sun eventually was accepted and Copernicus' work helped to 

set off the Scientific Revolution.  

52

 Perhaps surprisingly, it was not the Catholic Church that was the major objector 

to Copernicus' ideas, but rather the newly rising Protestant Church. Keeping in mind the 

ideas of the Reformation, this actually makes sense. Protestants were demanding a return 

to the word of the Bible taken literally, which they pointed out suggested an earth 

centered universe. Martin Luther was one of the biggest critics of Copernicus' work, 

stating that "the fool will turn the whole science of astronomy upside down. But, as the 

Holy Writ declares, it was the Sun and not the Earth which Joshua commanded to stand 

still."

 While this 

statement seems innocent enough, suggesting that the earth was not at the center of the 

universe and that it rotated had serious implications. The earth had long since held a 

special place at the center of the universe since many felt God gave humans the role of 

being superior beings. Suggesting the earth was not the center meant humans no longer 

held this superior role and were merely floating around on one of several planets. The 

idea that the earth was rotating seemed even more ridiculous when it seemed that if this 

was the case, we should feel the winds of rotation.  

53

 On the contrary, some religious believers felt that 

 

On the Revolutions fit well with 

faith. Some of the ideas could be interpreted to tie together religion and science, rather 

than to counter faith. Indeed, Copernicus' insistence that the universe was harmonious 

and symmetrical had appeal in the religious upheaval of the Reformation. One German 

mathematician Rheticus noticed how Copernicus' model related God, astronomy, and the 

ancient ideas of Plato. He remarked on Copernicus' six moving spheres that "the number 
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six is honored beyond all others in the sacred prophecies of God…What is more 

agreeable to God's handwork than that this first and most perfect work should be summed 

up in this first and most perfect number?"54

 While it is clear that Copernicus intended his system to be an actual physical 

representation of the universe, many accepted it merely as a predictive tool. This is partly 

due to a preface added to 

 While strong opinions like these existed, a 

general feeling of indifference was more common.  

On the Revolutions without Copernicus' knowledge. While 

supervising the printing of the work, Lutheran clergyman Andrew Osiander added a 

preface suggesting that its purpose was to make predictions. The preface reads, in part, "it 

is not necessary that these hypotheses should be true, or even probable; but it is enough if 

they provide a calculus which fits the observations."55

 Copernicus was the last astronomer to create an all-encompassing model of the 

universe based on epicycloids. The next major innovation in modeling the universe came 

with Kepler's model which finally did away with the long-standing notion that the 

heavens were composed of objects moving in a uniform and circular manner. The 

eventual acceptance of the elliptical orbits of the planets meant that there was no longer a 

need for epicycloids to model the heavenly motions directly. However, the ellipses of 

Kepler, while new in idea, can be thought of as merely epicycloids with certain 

parameters.  

 With this preface in mind, the most 

common initial reaction was acceptance of Copernicus' model as a mathematical tool, 

regardless of acceptance as a physical reality.  
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5.5 The Ellipse as an Epicycloid 

 Let us establish that any ellipse can be created using an epicycloid. Consider an 

earth centered ellipse given by the parametric equations 

 

x = a cos(α)       (5.1)  

y = b sin(α) 

 

We will consider the case where a > b and hence the x-axis is major. The goal is to 

compare 5.1 with the parametric equation derived earlier for the epicycloid: 

 

x = rcos(ω2Ө/ω1)+ Rcos(Ө)      (5.2)              

y = rsin(ω2Ө/ω1)+Rsin(Ө) 

 

Clearly we can rewrite 5.1 as  

 

x =(1/2)(a-b)cos(α)+(1/2)(a+b)cos(α)         

y = (1/2)(b-a)sin(α)+(1/2)(a+b)sin(α)  

 

Using the fact that cosine is an even function and sine is an odd function, the parametric 

equations can again be rewritten, this time as  

 

x =(1/2)(a-b)cos(-α)+(1/2)(a+b)cos(α)       (5.3)       

y = (1/2)(a-b)sin(-α)+(1/2)(a+b)sin(α)  

 

We can now compare 5.2 with 5.3. If R=(1/2)(a+b), r=(1/2)(a-b), and ω2=-ω1, then the 

equations are identical.  

 Thus, given an ellipse with x the major axis, we can create it using an epicycloid 

with the above conditions on the radii and angular velocities of the epicycle and deferent. 

See figure 28 here. The same argument holds for an ellipse with y the major axis by 

simply reversing the roles of a and b.  

 

{  

{  

{  

{  



 

58 

Figure 28: Assuming the angular velocity of the epicycle is the negative of the angular velocity of the 
deferent, the epicycloid traces out an ellipse with major axis of length 2(R+r) and minor axis of length 2(R-r). 

 

We can rewrite our ellipse from 5.3 in terms of R and r as  

 

x = (R+r)cos(α)      (5.4)       

y = (R-r)sin(α)  

 

Thus, the major axis of the ellipse is of length 2(R+r) and the minor axis is of length  

2(R-r).  

 Most shapes traced out by epicycloids are not ellipses since in general ω2 is not 

equal to -ω1, and this condition is necessary to create an ellipse. It is clear that since the 

circle is a special case of an ellipse, circles can also be created using the epicycloid. This 

is actually quite simple: simply set the length of the ellipse's major axis equal to the 

length of its minor axis, so we have R+r=R-r. Hence, this is equivalent to setting the 

Angular speed ω1 

Angular speed -ω1 

{  
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radius of the epicycle to zero. The circle can be modeled by the deferent alone, which is 

an obvious fact.  

 We have shown here that Kepler's ellipses can be modeled using epicycloids. This 

was not really done in practice since the idea of elliptic motion of the planets was 

eventually accepted. 
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Chapter 6 Not the End for the Epicycloid: the Connection 
with Fourier Analysis 

6.1 The Truth about Fourier Series 

 Thus far, we have focused mostly on epicycloids in a historical context. A 

common assumption is that the use of the epicycle on deferent to model phenomena is 

outdated and does not compare in accuracy to more modern methods. This is entirely 

false. In fact, as we will proceed to show, one of the most commonly used methods to 

approximate functions today, by expression as a Fourier series, is nothing more than 

approximating that function by epicycles upon epicycles. Hence, not only is this type of 

modeling not antiquated, but it is extremely powerful since the vast majority of functions 

can be modeled to a high level of accuracy by Fourier series and thus by stacking 

epicycle upon epicycle.  

 In 1807, work by Euler, D'Alembert, Bernoulli, and Joseph Fourier came to a 

culmination in Fourier's paper, "On the Propagation of Heat in Solid Bodies." In this 

work, Fourier introduced the representation of functions as sums of sines and cosines.56

 As is commonly known, a given function f(t) may be represented as a Fourier 

series in complex form using the relationship  

 

Today we know this as the Fourier series for a given function. While it would take even 

more work to determine exactly what conditions must be placed on a function for its 

Fourier representation to be valid and accurate, the basic ideas as we still invoke them 

today were introduced in the 1807 paper. It is interesting that the ideas put forth in 1807 

were considered by many to be new, when in fact such approximations had been in use 

for centuries in the form of epicycle on deferent modeling. Let us now demonstrate the 

equivalence.  
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Here we implicitly assume that f(t) does have a Fourier series representation, and also 

that f(t) is periodic of period 2L. This is the case if f(t) is C1 continuous and piecewise 
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smooth. By choosing the period large enough, we can get an approximation to a given 

function on whatever interval we desire, assuming it is of finite length.  

 Using Euler's identity to expand the complex Fourier representation above, we 

have  
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Let us consider a partial sum of the terms, for n between -k and k. Then we have 
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But, this is exactly equivalent to a stack of 2k-1 epicycles upon a deferent centered at c0, 

with each circle having radius equal to cn and appropriate orientation based on the sign of 

the index n. This is clear since we can represent a circle of period 2L/n1 and radius 
1nc , 

centered in the complex plane at the point c0 as ))sin()(cos()( 11
01 1

t
L

nit
L

ncctC n
ππ

±+=  

where the sign depends on the direction of rotation.  

 Now consider the complex function C1(t) as itself the center for a new circle, this 

one of radius 
2nc  and period 2L/n2. This new construction, call it E1(t), represents one 

epicycle upon a deferent and is given by  
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Continuing in this manner, it is clear that 6.2 is nothing more than a superposition of 

epicycles centered at the zero coefficient of the Fourier series of the function f(t). Hence, 
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modeling f(t) with the partial sum of its Fourier series, where n runs from -k to k is 

nothing more than approximating that same function with 2k-1 epicycles and a deferent.  

 Thus, there is no doubt that the long established method of approximating orbits 

using epicycloids is still quite applicable today. Before considering a few examples, let us 

demonstrate the incredible capabilities of epicycle on deferent modeling by showing that 

any function f(t) (under the conditions mentioned above) can be approximated to any 

desired degree of accuracy using only a finite number of epicycles.  

 Since our function f(t) is well-behaved, it can be represented as a complex Fourier 

series using 6.1, where this series converges uniformly to the value of the function. 

Hence, given 0>ε  as small as we please, we have the inequality ε<− )()( tftf N  for 

all 0NN >  (N0 finite). Here )(tfN  is the partial sum of 6.1 for n between -N and N. 

Invoking the equivalence established above, we have shown that the orbit traced out by 

2N-1 epicycles on a deferent represented by the partial sum is epsilon-close to the graph 

of f(t) for all time t. Since 0>ε  can be chosen arbitrarily small, it is clear that f(t) can be 

represented to any desired degree of accuracy by the stacking of a finite number of 

epicycles.  

 The implications of this are truly astounding. Not only have we established the 

power of modeling with epicycloids, but we can now use the theory to model an 

infinitude of figures, many of which don't seem to lend themselves to circular modeling 

at all. Let us first consider the intriguing example of polygons and then take a look at 

tracing out a flower. For simplicity, we will consider the functions as periodic of period 

2π, keeping in mind that other periods will produce similar results.  

 It has been established that for 2≥n , the Fourier series for an n-gon in the 

complex plane is given by  
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Using this representation, we can demonstrate a surprising fact: linear motion can be 

created using only circles.  



 

63 

 A straight line can be thought of as a 2-gon in the complex plane and hence can 

be represented by 6.4 as  
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k
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where the length of the line will be half of the period (hence the length here will be π). 

Consider a partial sum of 6.5 for k between -N and N: 
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Since the numbers k=1mod(2) are all odd integers, it is clear that in 6.6, each value of k 

has a corresponding negative counterpart with the same coefficient. Hence, for the line, 

our Fourier series consists of a sum of paired terms all of the form  
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for a given value of k. Consider k=1. Expanding in terms of sines and cosines, 6.7 

becomes just 2cos(t), which is completely real and of period 2π. Thus, the first complex 

pair produces a line segment. On the other hand, 6.7 is equivalent to 

))sin()(cos())sin()(cos( tittit ++−  for k=1. This is the representation of an epicycle on a 

deferent centered at 0, both with radii equal to 1 and moving in opposite directions (see 

figure 29).  

 

 

Figure 29: The figure is given by 2cos(t), or equivalently by 
(cos(t)-isin(t))+(cos(t)+isin(t)). 
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 It is clear that such cancellations will occur for each respective pair of complex 

exponentials. This is equivalent to the cancellation of the vertical component of motion 

for the respective epicycles, since each pair represents a pair of epicycles of the same 

radius and period, moving in opposite directions. See the Matlab plot in figure 30.  

 

 

 

 

Figure 30: A plot of 6.5 for 6≤k  

illustrating that in fact a straight line 
is drawn out by the epicycloids. 

 

 

 

 

 

 Let us consider the triangle next. The triangle's Fourier series is given by 6.4 as 
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Expanding as sines and cosines for values of k between -4 and 4, we have 
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Thus, we have a triangle in the complex plane represented as two epicycles on a deferent 

of radius 1. See figure 31.  
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Figure 31: A triangle is traced out in 
the complex plane by two epicycles 

with radii 1/4 and 1/16, rotating about a 
deferent of radius 1. The periods, from 

largest circle to smallest, are 2π, π, 
and π/2. 

 

 

 

 

Here the vertical component of motion is preserved since the indices, k=1mod(3), do not 

come in precise positive and negative pairs that cancel. Plots of 6.8 are given below for 

4≤k (the three circles shown above), and 100≤k . 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 32: A triangle is traced out in the complex plane to any desired degree of accuracy by stacking 
epicycloids. The results are shown here for 3 circles and 67 circles, respectively. 

 
 

 

As a final example for polygons, let us look briefly at the square. Here, 6.4 gives 

the Fourier representation as  

Radius 1 unit Radius 1/4 unit 

Radius 1/16 unit  
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 Here, let us expand in sines and cosines for values of k between -5 and 5: 
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Here we have the square approximated by 3 epicycles on a deferent of radius 1. Again, 

the vertical component of motion is preserved due to the nature of the indices. Plots are 

shown for 5≤k  and 100≤k .  

 

 

 

 

 

 

 

 

 

 

 

Figure 33: A square may also be created to any desired degree of accuracy by stacking epicycloids. The 
results are shown here for 3 circles and 47 circles, respectively. 

 

 From our examination of polygons, some similarities are evident. First, since 

1=1mod(n) for any number of vertices n, any polygon will have a standard unit circle 

(radius 1, period 2π, positive orientation) in its Fourier representation. In addition, this 

circle will always be the deferent (the largest circle) since the coefficients are 
k
π2  and 

these represent the respective radii. Thus, as |k| increases, the radii decrease. Also, the 

  



 

67 

polygons will always have periods of 2π since the successive periods 
k
π2  decrease as |k| 

increases. The polygons are especially interesting because they are made of lines and so it 

is surprising that they can be represented by the superposition of circles.  

 Keeping in mind that almost any figure can be represented with epicycloids, let us 

consider just one further example as an illustration of the possibilities. We can represent a 

20-petaled flower in the complex plane by the parametric equations  

 

x = sin(10t)*cos(t)      (6.12)       

y = sin(10t)*sin(t) 

 

for a given t-interval, or equivalently as sin(t)*sin(10t)  cos(t)*sin(10t) iz += for the 

same interval. Now, by expanding 6.12 using Euler's identity, we have the equivalent 

parametric equations 

 

x = 1/2*(sin(11t)+sin(9t))      (6.13)       

y = -1/2*(cos(11t)-cos(9t)) 

 

 This is the representation of the flower as a Fourier series.  We have 6.1, but with 

only two terms: 

intsin(t)*sin(10t)  cos(t)*sin(10t) eci
n

n
n∑
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Hence, the flower is traced out by one epicycle upon a deferent where both circles have 

radius 
2
1 . One circle has period 

11
2π  and the other has period 

9
2π . Below is a plot of 

6.13. 
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Figure 34: A plot of the Fourier series of the flower. The flower is traced out by one epicycle rotating upon a 
deferent. 

 
 

Of course, there is nothing special about the flower shown above aside from it 

having a relatively simple Fourier series representation that makes a nice example. We 

could have considered a wide variety of functions as examples using the same procedure.  

Just with this short demonstration, it is clear that approximating data or figures 

using epicycloids is not at all an outdated method. Indeed, we use the method quite often, 

only disguised as what is today known as modeling with Fourier series. Since both 

methods are equivalent, the accuracy and power of modeling with epicycloids is now 

clear. With this conclusion, the reasoning of the astronomers of antiquity becomes quite 

impressive and the astronomers themselves now seem much wiser than their time would 

lead us to think they were.  



 

69 

6.2 Epicycloids and non-Periodic Motion 

 So far we have considered using epicycloids to model periodic motion. In a 

historical context, periodic motions are important because they often occur in natural 

settings such as the planets orbiting through the heavens. However, the capabilities of 

epicycloids in modeling are not limited to periodic motions alone; in fact, we can use a 

similar process to model non-periodic motions as well. 

 Since the Fourier series representation of an orbit always involves only integer 

indices, each sine and cosine pair has period 
k
π2  for the appropriate value of k. Since the 

index here has initial value 1 (index 0 can be thought of as corresponding to the center of 

the deferent), the largest period will always be 2π. Since each of the other periods Tk can 

be multiplied by k to get 2π, all the periods are commensurable and hence the entire orbit 

has period 2π. Since a periodic motion in the complex plane is always a closed curve, the 

Fourier series interpretation of epicycloids always produces a periodic, closed orbit.  

 On the other hand, we can produce non-periodic motions using epicycloids as 

well. Consider one epicycle rolling on a deferent, represented by the parametric equations  

 

x = r*cos(ω2t)+R*cos(ω1t)     (6.14)       

y = r*sin(ω2t)+R*sin(ω1t) 

 

where r is the epicycle's radius, ω2 is its angular velocity, R is the deferent's radius, and 

ω1 is the angular velocity of the deferent. Now, let us choose one of the velocities, say ω1, 

equal to 2π, for example. Then set ω2 equal to 22π . Thus, the parametric equations for 

this particular case are  

 

x = r*cos( 22π t)+R*cos(2πt)     (6.15)       

y = r*sin( 22π t)+R*sin(2πt) 

 

{ 

 

  
{ 
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The terms r*cos( 22π t) and r*sin( 22π t) are periodic with period 
2

1
, 

obviously an irrational number. On the other hand, the terms R*cos(2πt) and R*sin(2πt) 

are periodic of period 1, which is clearly rational. Now, since 2  is is not a multiple of 

any two rational numbers, the two periods will never match up and hence the sum of the 

two terms (6.15) will not be periodic. Below are plots of 6.15 for R and r equal to 1, with 

11 values of t and 101 values of t, respectively. Notice that the curves do not close and 

become more dense as we increase the number of t values.  

 

 

 

 

 

 

 

 

 

 

Figure 35: Plots of 6.15 are shown. On the left, we have the equations plotted for integer values of t between 
0 and ten, and on the right for integer values of t between 0 and 100. Due to the non-commensurable 
periods, the curves never close, but rather become denser as we increase the number of values of t. 

 

Here, specific numbers were chosen for illustrative purposes, but the results hold 

in general. If some of the terms have irrational periods and others do not, then the periods 

will never match up and the overall function will not be periodic. We considered 

specifically one epicycle upon a deferent, but the result can be extended to stacked 

epicycles since each epicycle that we add just corresponds to adding another sine and 

cosine term in the parametric equations.  

Thus, using irrational periods we can model motion that is not even periodic using 

epicycloids. In the complex plane, the orbit we produce is not closed since it is not 

periodic. The ability to model non-periodic motion is just another illustration of the 

power of modeling using epicycloids.  
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Chapter 7 Recent Sightings of Epicycloids 

7.1 A Modern Discovery: Epicycloids and the Antikythera 

 In 1901, divers off the coast of a Mediterranean Island called Antikythera made 

an unexpected discovery when they encountered the remains of an ancient shipwreck. At 

first unnoticed among the treasures recovered, including vases, bronze statues, and 

glassware, was perhaps the most valuable treasure of all. What looked to be just lumps of 

bronze corroded over the years turned out to be a complex device for modeling the 

position of the sun, moon, and perhaps the planets using the astronomical theory of 

ancient times. The device is the earliest example of the use of gears discovered as of yet 

and has given modern scientists a new perspective on the sophistication of ancient 

thinkers and designers alike. Although some aspects of the device, which has come to be 

called the Antikythera Mechanism, remain mysterious, we do have many answers thanks 

to extensive research that has been done over the past century. We now have reputable 

theories on the origins of the device and on its workings and structure, including the 

incorporation of the theory of epicycloids in line with Hipparchus' models. 

 There has been much speculation on where the mysterious, remarkably complex 

device came from. The existence of a similar contraption had been suggested by Marcus 

Cicero a Roman philosopher, in the first century BC. According to his writings, a bronze 

planetarium had been recovered after the defeat of Syracuse by Roman general Marcellus 

in 212 BC.58 This planetarium was among the creations thought to be made by 

Archimedes, who is known for both his mathematical abilities and his skill in 

incorporating these ideas into mechanical models. Prior to the discovery of the 

Antikythera mechanism, Cicero's claim that "the invention of Archimedes deserves 

special attention because he had thought out a way to represent accurately by a single 

device for turning the globe those various and divergent movements with their different 

rates of speed,"59 was thought to be an overstatement. Although no one doubted the 

ingenuity of Archimedes' creations, there was simply no evidence that something of this 

degree of complexity had ever existed. The discovery of the Antikythera permanently 

altered this assumption. To be clear, the device and the one that inspired Cicero's awe are 

not one and the same.  
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 The ship carrying the Antikythera is estimated to have sunk in approximately 85 

BC, and the device itself is thought to have been built about 20 years prior to the 

shipwreck.60 Hence, this device could not have been built by Archimedes, but could 

perhaps be modeled after one that was. Among the inscriptions on the Antikythera, there 

is no signature, nor is there a clear indication of where the device was constructed. The 

other items recovered from the shipwreck, including Greek luxury items, suggest that the 

ship may have been heading for Rome with looted Greek treasures. One intriguing clue is 

the discovery of vases in the rubble designed in the style being used on the Greek island 

of Rhodes.61

 While the origins of the device are still somewhat unclear, research has provided 

much insight into the structure and workings of the Antikythera mechanism. The device 

was hand-cranked and is thought to have been inside a wooden box with a handle on the 

side that was used for operation. When a person turned the handle, time passed before his 

or her eyes. The positions of the sun and moon were accurately displayed and while it is 

still questionable, there is evidence that the device may also have modeled the orbits of 

the five planets known at the time. In addition, the device provided the date, predicted the 

positions of certain stars, tracked cycles important in predicting eclipses and creating 

calendars, and may have even been used to track the dates of Olympic Games.

 Perhaps the ship had made a stop at Rhodes and acquired the mechanism 

while there. 

62

this was achieved by at least 30 gear wheels, 

ranging in size, each of which had gear 

teeth shaped like equilateral triangles, with 

the number of teeth ranging from 15 to 223. 

See figure 36 below for an overview of the 

gearing.  

 All of 

 

Figure 36: A detailed look at the gearing inside the 
Antikythera mechanism. As can be seen, the device 
is quite complex, with circles rolling upon and within 

other circles.63
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It was these gears that allowed the device to make accurate predictions, for the 

wheels "multiplied the speed of rotation by precise mathematical ratios depending on the 

number of teeth on each wheel."64 It is in the details of the gearing that the connection 

with Hipparchus becomes clear. While the part of the mechanism thought to model the 

motion of the five planets has never been found, there is a fair amount of certainty in how 

the portion controlling the lunar motion operated. Hipparchus accounted for the variation 

in the moon's speed by having it orbit the earth on a circle which was slightly off-center 

from the earth. As he showed, this eccentric circle model is equivalent to an epicycle on 

deferent model, with the respective radii and velocities chosen appropriately. Researchers 

have found that the "gears inside the Antikythera mechanism precisely model this theory. 

One gearwheel sits on top of another, but on a slightly different axis."65 Here, the design 

is truly ingenious, with the top and bottom wheels connected with a pin-in-slot device 

designed so as the wheels turn, the "pin slides back and forth in the slot. This causes the 

speed of the top wheel to vary, even though the speed of the bottom wheel is constant."66 

It is amazing to find complex examples of epicycloids in action in such an ancient device. 

While there is still room for debate, experts think the Antikythera mechanism also 

modeled the orbits of the planets, accounting even for their varying speeds and brightness, 

by using the theory of epicycloids. In fact, there is evidence that the mechanism modeled 

the motion of the planets "using what is still known today as epicyclic gearing - small 

wheels riding around on bigger wheels."67

 It is now clear that the ancient Greeks were capable of producing an extremely 

complex mechanical model which brought to life the mathematical theories of the time. 

The Antikythera mechanism is evidence that the Greeks were more technologically 

advanced than was ever thought. Questions remain, however. It is not clear exactly what 

the device was used for. Suggestions include predicting the positions of the heavenly 

bodies (although it is not necessary to have a physical model to do this), astrology, 

adjusting or creating calendars, setting the dates of events like festivals or Olympic 

Games, predicting eclipses, or perhaps as a model for display.

  

68 Perhaps an even more 

perplexing question to the modern thinker is why the Greeks never used gearing devices 

like those in the mechanism to create clocks or steam engines, as would be done much 

later. Since we now know the Greeks had the capabilities, why was there not an industrial 
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revolution in the first century BC? This question is more easily answered than might be 

thought. The ancient thinkers did not think in terms of creating devices to do work here 

on earth, but rather created models to recreate the otherworldly, the most divine 

dimension of human life. There is a major difference in goals: "where we see the 

potential of that technology to measure time accurately and make machines do work, the 

Greeks saw a way to demonstrate the beauty of the heavens and get closer to the gods."69

 

 

While the Greeks may not have used gears to advance industry, the Antikythera 

mechanism remains an astounding example of complex epicycle-on-deferent theory put 

to use in a mechanical device.  
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7.2 Epicycloids for Fun: the Spirograph 

 While the average person may not have come in contact with epicycloids in 

astronomy, put them to use while computing a Fourier series, or even read about the 

discovery of the Antikythera mechanism, most of us encountered the figure as children 

playing with a classic toy called the Spirograph (see figure 37 below). The toy is made up 

of plastic gears of different sizes, each with holes strategically placed at various locations. 

By assembling the gears appropriately using the included colored pins, one can produce a 

vast array of complex figures. What is amazing is the beauty and complexity of these 

figures which are produced using only simple circular gears. But this fact is not 

surprising when we consider that many of the shapes produced by the Spirograph came 

simply from varying the parameters of an epicycle rolling on a deferent. 

 

 

 
 

 

 

Figure 37: The contents of the box containing 
the classic Spirograph toy. Notice that a variety 
of plastic gears (epicycles and deferents) are 

included.70

 
 

 

 

 

 

By placing a small circular gear on the outside of a larger ring-like gear and 

rotating them, we produce an epicyclic orbit (see figure 38 below).  
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Figure 38: The basics of the Spirograph. 
Here, the radius of the epicycle (smaller gear) 

is B and the radius of the deferent is A+B, 
where the larger ring gear has radius A. The 
pencil is inserted into a hole a distance of C 

from the center of the smaller gear. 

 

 

 

 

 

Here, if the larger gear has A gear teeth and the smaller gear has B teeth, by an 

appropriate scaling of the axis, the situation can be represented by letting the radius of the 

epicycle be B and the radius of the deferent be A+B. Now, the pencil is positioned in a 

hole in the body of the epicycle gear a distance C from its center. The parametric 

equations for the position of the pencil tip after time t are  

 

x = (A+B)*cos(t)-C*cos(
B

BA + t)     (7.1)1

y = (A+B)*sin(t)-C*sin(

       

B
BA + t) 

  

Below is typical pattern that might be produced using the Spirograph: 

                                                 
1 See Ippolito for a derivation.  

{ 
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Figure 39: Pattern produced using a ring gear with 144 gear teeth and a circle gear with 45 teeth and hole 
positioned 42 units (with appropriate scaling) from its center. Hence, in 7.1, B=45, A=99, and C=42. 

 

 The capabilities of the Spirograph are limited in comparison to epicycle on 

deferent modeling in general since the toy only comes with a few wheels. Of course, 

since the gears all have a rational number of teeth and rational radii, after some number 

of rotations, the orbits produced by the Spirograph will all be closed. Thus the Spirograph 

is capable of producing only periodic orbits. Even with these limitations, the toy can 

create an awe-inspiring array of figures incorporating epicycles. The childhood memories 

of the simple toy that many of us have make it clear that we all have more experience 

with epicycloids than we may think. 
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Chapter 8 Conclusion 

The journey through the history of the epicycloid is intriguing. Astronomers such 

as Appolonius, Hipparchus, Ptolemy, and Copernicus put the epicycloid to use in 

modeling the universe in truly impressive ways. Each of these scientists, among others, 

contributed to the story of the figure as an astronomical model by adding new details to 

previous versions or in some cases completely renovating them. The use of the epicycloid 

allowed the complex motions of the heavenly bodies to be modeled and predicted to an 

incredible degree of accuracy while still conforming to Plato's dictum of uniform circular 

motion. 

The story of the epicycloid in the context of the history of science is fairly well 

known. Much more obscure is the mathematical potential of epicycloids in fitting data 

and curves. When we consider that the procedure of stacking epicycles upon one another 

is mathematically identical to adding terms in a Fourier series representation, the true 

power of the epicyloid becomes clear. This connection with Fourier series makes the 

innovation of the astronomers in using the epicycloid even more incredible. The fact is 

that the use of the epicycloid in astronomy was a genius idea for the time.  

Not only does the Fourier connection shed light on this fact, but it also clears up 

the common misconception that the epicycloid is really only important in a historical 

context. Since the importance of the Fourier series in mathematics can hardly be 

questioned, neither then can the importance of the epicycloid since the two are one and 

the same. Not only is the epicycloid impressive as a geometric figure alone, but it is so 

for its role in the history of science and its mathematical power as well.  
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