'Nephrogenic' systemic fibrosis is mediated by myeloid C-C chemokine receptor 2 dataset

Catherine Do
South Texas Veterans Health Care System

Viktor Drel
University of Texas Health Science Center at San Antonio

Chunyan Tan
University of Texas Health Science Center at San Antonio

Duck-Yoon Lee
University of Texas Health Science Center at San Antonio

Brent Wagner
Kidney Institute of New Mexico, University of New Mexico

Follow this and additional works at: https://digitalrepository.unm.edu/kinm

Part of the Nephrology Commons

Recommended Citation
Do, Catherine; Viktor Drel; Chunyan Tan; Duck-Yoon Lee; and Brent Wagner. "'Nephrogenic' systemic fibrosis is mediated by myeloid C-C chemokine receptor 2 dataset." (2019). https://digitalrepository.unm.edu/kinm/1

This Dataset is brought to you for free and open access by the HSC Data Community at UNM Digital Repository. It has been accepted for inclusion in The Kidney Institute of New Mexico by an authorized administrator of UNM Digital Repository. For more information, please contact disc@unm.edu.
'Nephrogenic' systemic fibrosis is mediated by myeloid C-C chemokine receptor 2 Dataset.

This dataset presents results of an in vivo model of gadolinium-based contrast agent-induced systemic fibrosis. Figure 1 demonstrates that gadolinium-based contrast agent treatment induces dermal fibrosis and hypercellularity of the same magnitude in patients afflicted with ‘nephrogenic’ systemic fibrosis. Electron microscopy demonstrated that systemic gadolinium treatment induced the formation of multinucleated giant cells in the dermis laden with electron-dense, mesh-like nanostructures. Scanning transmission electron microscopy with energy-dispersive spectroscopy revealed that the electron-dense nanoparticles were gadolinium rich. Figure 2 represents the first chimeric model of mice and gadolinium-induced systemic fibrosis (to our knowledge). Lethally-irradiated mice with 5/6 nephrectomy (to model renal insufficiency) were salvaged with bone marrow from green fluorescent protein-expressing donors. After engraftment, the group was randomized to gadolinium-based contrast agent treatment or control. Gadolinium-based contrast agent treatment led to dermal fibrosis, dermal hypercellularity, and an increase in myeloid cells in the dermis. Figure 3 represents the expression of fibrocyte markers (CD34, CD45RO), the myofibroblast marker α smooth muscle actin, and a marker of alternatively-activated macrophages—CD163—in the dermis. Figure 4 demonstrates an increase of the monocyte chemoattractant protein and its receptor, the C-C chemokine receptor 2, in the dermis of the gadolinium-based contrast-treated group. Figure 5 shows the impact of recipient deficiency of the C-C chemokine receptor 2 in a chimeric model of gadolinium-based contrast agent-induced fibrosis and dermal cellularity. Figure 6 depicts the inverse of the experiment shown in Figure 5; wild-type recipient mice were lethally irradiated and salvaged with C-C chemokine receptor 2-deficient bone marrow (with a red fluorescent tag). Skin fibrosis and dermal cellularity were abrogated in the group treated with gadolinium-based contrast agent.

Figure 1 Files:

Figure1_022019JournalOfInvestigativeDermatology_data.xlsx

Figure1_101615CCR2.tiff

Figure1_collagen1.tif

Figure1_Fibronectin.jpg

Figure1_File02.TIF

Figure1_File02.TXT

Figure1_File10-control.TIF

Figure1_File10-control.TXT

Figure1_GAPDH.tif

Figure1_WT_M-CTR_MOUSE_11_001.tif

Figure1_WT_M-CTR_MOUSE_11_003.tif

Figure1_WT_M-OM_MOUSE_9_010.tif

Figure1_WT_M-OM_MOUSE_9_011.tif

Figure1_WTFC_2-4.jpg

Figure1_WT-F-Con_8-3.jpg
Figure 2 Files:
Figure2_052715_GFP.tif
Figure2_090215_GFP_mice_skin_cell_count_columnar_for_the_JID.csv
Figure2_CollagenI-1.jpg
Figure2_DAPI_Mice10-Ctr-2.tif
Figure2_DAPI_Mice6-Omn-2_GFP.tif
Figure2_Fibronectin-5.jpg
Figure2_Fibronectin-DAPI_Mice10-Ctr-1.tif
Figure2_Fibronectin-DAPI_Mice6-Omn-2.tif
Figure2_GAPDH_CollagenI-2.jpg
Figure2_NSF_in_vivo_GFP_mouse_skin_fold_thicknesses.xlsx
Figure2_WTFO_7-2.jpg

Figure 3 Files:
Figure3_CD34-Ctr8-DAPI-2merged.png
Figure3_CD34-Om2-DAPI-1merged.png
Figure3_CD45RO-Ctr9-3.tif
Figure3_CD45RO-Ctr9-DAPI-3.tif
Figure3_CD45RO-Om1-2m.tif
Figure3_CD45RO-Om1-2.tif
Figure3_CD45RO-Om1-DAPI-2.tif
Figure3_Ctr11-aSMA-3.jpg
Figure3_Ctr11-CD163-1.jpg
Figure3_Ctr11-GFP-1.jpg
Figure3_Ctr11-GFP-3.jpg
Figure3_Ctr11-GFP-aSMA-DAPI-3.jpg
Figure3_Ctr11-GFP-CD163-DAPI-1.jpg
Figure3_GFP_CD45RO_Ctr9-3.tif
Figure3_GFP_CD45RO_Om1-2.tif
Figure 3 Files:
Figure3_Om4-aSMA-2.jpg
Figure3_Om4-CD163-2.jpg
Figure3_Om4-GFP-2fig.jpg
Figure3_Om4-GFP-2.jpg
Figure3_Om4-GFP-aSMA-DAPI-2.jpg
Figure3_Om4-GFP-CD163-DAPI-2.jpg

Figure 4 Files:
Figure 4GFP_mice_skin_Western2_CCR2.2.png
Figure4_041817_NSF_in_vivo_GFP_skin_CCR2_fluorescent_intensity.csv
Figure4_Ctr8-CCR2-merg-1.jpg
Figure4_Ctr8-CCR2-merg-1.pdf
Figure4_GFP_mice_skin_Western_2GAPDH.2.png
Figure4_GFP_mice_skin_Western_CCR2_GAPDH_calibration.csv
Figure4_GFP_mice_skin_Western_CCR2_GAPDH_calibration_v1.csv
Figure4_MCP-1-Ctr9-DAPI-1merged.png
Figure4_MCP-1-Om2-DAPI-1merged.png
Figure4_Om2-CCR2-merg-3.jpg

Figure 5 Files:
Figure5.tif
Figure5_CCR2-Ctr8-CD45RO-3.jpg
Figure5_CCR2-Ctr8-GFP-3.jpg
Figure5_CCR2-Ctr8-GFP-CD45RO-DAPI-3.jpg
Figure5_CCR2-KO_Ctr3_GFP-cd34-DAPI-1.jpg
Figure5_CCR2-KO_Ctr3-CD34-1.jpg
Figure5_CCR2-KO_Ctr3-GFP-1.jpg
Figure5_CCR2-KO_Ctr3-GFP-1h.jpg
Figure5_CCR2-KO_Ctr4-CD163-3.jpg
Figure5_CCR2-KO_Ctr4-CD163-DAPI-3.jpg
Figure5_CCR2-KO_Ctr4-GFP-3.jpg
Figure 6b_skin_H_E_stain_count.csv
Figure 6d_Fn-01-19-18-07.tif
Figure 6d_Fn-01-19-18-08.tif
Figure 6d_Fn-01-19-18-49.tif
Figure 6e_CD163-01-20-18-01.tif
Figure 6e_CD163-01-20-18-02.tif
Figure 6e_CD163-01-20-18-11.tif
Figure 6e_CD163-01-20-18-12.tif
Figure 6f_CD34-01-19-18-15.tif
Figure 6f_CD34-01-19-18-16.tif
Figure 6F_CD34-01-19-18-37.tif
Figure 6F_CD34-01-19-18-38.tif
Figure 6g_CD45RO-02-08-18-31.tif
Figure 6g_CD45RO-02-08-18-32.tif
Figure 6g_CD45RO-02-08-18-49.tif
Figure 6g_CD45RO-02-08-18-50.tif
Figure 6h_RFP-01-20-18-03.tif
Figure 6h_RFP-01-20-18-04.tif
Figure 6h_RFP-01-20-18-05.tif
Figure 6h_RFP-01-20-18-06.tif

Recommended Citation:
Do, Catherine; Viktor Drel; Chunyan Tan; Duck-Yoon Lee; and Brent Wagner. "'Nephrogenic' systemic fibrosis is mediated by myeloid C-C chemokine receptor 2 dataset."(2019). https://digitalrepository.unm.edu/kinm/1