Chemical and Biological Engineering ETDs


Zh Chen

Publication Date



Synthetic solid-state nanopores are being intensively investigated as single-molecule sensors for detection and characterization of DNA, RNA, and proteins. This field has been inspired by the exquisite selectivity and flux demonstrated by natural biological channels and the dream of emulating these behaviors in more robust synthetic materials that are more readily integrated into practical devices. To date, the guided etching of polymer films, focused ion beam sculpting, and electron-beam lithography and tuning of silicon nitride membranes have emerged as three promising approaches to define synthetic solid-state pores with sub-nanometer resolution. These procedures have in common the formation of nominally cylindrical or conical pores aligned normal to the membrane surface. Here we report the formation of kinked' silica nanopores, using evaporation induced self-assembly, and their further tuning and chemical derivatization using atomic layer deposition. Compared to 'straight-through' proteinaceous nanopores of comparable dimensions, kinked nanopores exhibit a factor of up to 5x reduction in translocation velocity, which has been identified as one of the critical issues in DNA sequencing. Additionally we demonstrate an efficient two-step approach to create a nanopore array exhibiting nearly perfect selectivity for ssDNA over dsDNA. We show that a coarse-grained drift-diffusion theory with a sawtooth like potential can reasonably describe the velocity and translocation time of DNA through the pore. By control of pore size, length, and shape, we capture the major functional behaviors of protein pores in our solid-state nanopore system.'


sol-gel, nanopore fabrication, DNA detection, self-assembly; Nanostructured materials, Biosensors, Translocation (genetics)

Document Type




Degree Name

Chemical Engineering

Level of Degree


Department Name

Chemical and Biological Engineering

First Advisor

Brinker, C. Jeffrey

First Committee Member (Chair)

Brinker, C. Jeffrey

Second Committee Member

Ward, Tim

Third Committee Member

Keller, David

Fourth Committee Member

Thomas, James

Fifth Committee Member

Dunphy, Darren