Nuclear Engineering ETDs

Publication Date

7-12-2014

Abstract

Plastic scintillator-based neutron time-of-flight (nTOF) detectors are used to measure neutron signals from fusion experiments. These nTOF signals yield a temporal pulse width that is used to determine ion temperatures after the de-convolution of the experimentally determined detector time response and shifted to account for the detector through-put delay. Typically, time response and through-put delays are measured at an accelerator or laser facility. However, an alternative method can use cosmic radiation to measure time response and through-put delay. Two plastic scintillator detectors in a coincidence system can detect an incident cosmic ray. If a third nTOF detector is placed between these coincident detectors, the output cosmic ray signal in the nTOF detector can be analyzed to produce the time response and through-put delay. Measurements taken using cosmic radiation were mostly within one standard deviation of data taken on the same detectors at an electron accelerator.

Keywords

nTOF, nTOF Detector Time Response, nTOF Detector Through-put Delay, Cosmic Radiation, Exponentially-Modified Gaussian Function

Sponsors

Department of Energy, Sandia National Laboratories

Document Type

Thesis

Language

English

Degree Name

Nuclear Engineering

Level of Degree

Masters

Department Name

Nuclear Engineering

First Advisor

Cooper, Gary

First Committee Member (Chair)

Busch, Robert

Second Committee Member

Ruiz, Carlos

Share

COinS